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Abstract

It is broadly believed that general relativity —a geometric theory— is fully equivalent to the field theory
of a massless, self-interacting, spin-2 field. This belief is reinforced by statements in many textbooks.
However, an increasing criticism to this belief has been published. To settle this old debate about the
precise physical nature of gravitation, this author introduces a simple but exact argument —based in the
equivalence principle— that shows that general relativity is not equivalent to a field theory of gravity.
Subsequently, both the general relativistic Lagrangian for a particle and the HILBERT & EINSTEIN
equations are obtained as an approximation from a field theory of gravity, somehow as geometric
optics can be derived from physical optics. The approximations involved in the geometrization are
two: (i) the neglect of TZ%, and T/ in the field-theoretic tensor ©*” and (ii) the approximation of
the effective metric by the curved spacetime metric g, = &.. + O(h2,). Further discussion of this
derivation and of the approximations involved is given.

Several misunderstandings about the consistency and observability of the flat spacetime theories of
gravity are corrected. A detailed analysis of the fundamental differences between geometric and
field-theoretic expressions reveals that all the well-known deficiencies of general relativity —including
the impossibility to obtain a consistent quantum general relativity— are direct consequences of the
geometrization of the gravitational interaction. Finally, remarks about the status of dark matter are
given, from the perspective of a generalized theory of gravity.
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1 Introduction

It is broadly believed that general relativity —a geometric theory— is fully equivalent to the
field theory of a massless, self-interacting, spin-2 field. This belief is reinforced by statements
in many textbooks. For instance, FEYNMAN affirms [1]:

«lIt is one of the peculiar aspects of the theory of gravitation, that is has both a
field interpretation and a geometrical interpretation. [...] the fact is that a spin-
two field has this geometrical explanation [...] The geometrical interpretation is
not really necessary or essential to physics.»

Although RoBerr M. WALD warns [2]:

«It should be noted, however, that the notion of the mass and spin of a field
require the presence of a flat background metric 1, which one has in the linear
approximation but not in the full theory, so the statement that, in general relativity,
gravity is treated as a massless spin-2 field is not one that can be given precise
meaning outside the context of the linear approximation.»

Whereas C. MisNER, K. THORNE, & J. WHEELER emphasize that the flat background is not
observable in general relativity [3]:

«In other words, this approach to Einstein’s field equation can be summarized as
"curvature without curvature” or—equally well—as "flat spacetime without flat
spacetime"!»

Recently, technical criticism to THIRRING [4] and DEsER [5] respective claims on the identity
between general relativity and a field theory of gravity has been published [6-8]. DEeser
has partially answered to critics in a recent work [9], but avoided the main criticism against
his claims [8]: (i) Deser confounds the spacetime metric g, of general relativity with the
effective metric g, associated to the gravitational field and (ii) he uses an expression for
the energy-momentum tensor of the gravitational field which does not satisfy basic physical
conditions as zero trace —massless graviton— and positive energy density.

To settle this old debate about the precise physical nature of gravitation, this author will intro-
duce in the next section a simple but exact argument —based in the equivalence principle— that
shows that general relativity is not equivalent to a field theory of gravity over flat spacetime.
In section 3, general relativity is derived as a geometrical approximation to the field theory of
gravity.

In this work, Greek indices run over values 0, 1,2, 3, whereas Latin indices run over values
1,2, 3, and the summation convention is used.
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2 Non-equivalence between geometry and fields

For the sake of maximum pedagogical simplicity, we illustrate the non-equivalence between
geometrical and field-theoretical descriptions of gravity using a simple system: a point-like
non-charged particle in a curved spacetime with coordinates % and curvature being generated
by external bodies.

The general relativistic Lagrangian for this particle is [2]

. [omow
L= —mC2 Tgy,yy (1)

where ¥% = d&”/dt is the four-velocity [10].

Applying the equivalence principle, the general relativistic Lagrangian strictly reduces to the
Lagrangian of the special theory of relativity for Minkowskian spacetime with coordinates x”

[ vEvY
LSR = —mC2 777“”. (2)

This flat spacetime Lagrangian is equivalent to the curved spacetime Lagrangian (1) by virtue
of the equivalence principle of general relativity.

The field-theoretic Lagrangian for a point-like non-charged particle in a flat spacetime and in
presence of a gravitational field generated by external bodies is

[vHvY 1
L= —mC2 777;111 - 5@,‘“’[7[““ (3)

for a field potential h,, and a total energy-momentum tensor ©/* [11] —as will be shown
latter this total tensor includes physical components absent in general relativity—.

It is evident that the flat spacetime Lagrangians (2) and (3) are non-equivalent, except in the
trivial case when the gravitational field is absent h,,, = 0. As a consequence, the so-claimed
full equivalence between geometric and field-theoretic descriptions of gravitation is already
broken at the Lagrangian level (1) < (3), because (1) < (2) ¢ (3).

We can consider more particles, electromagnetic and other interactions, the Lagrangians of
the fields, heat effects, and other complexities, but the conclusion will remain: the geometric
expressions are not equivalent to field-theoretic expressions over flat spacetime.

Since the equivalence principle when applied to the kinetic part of (3) gives (1), we must wait
corrections to general relativity becoming from the interacting term in (3). We will show in
the next section what approximations must be introduced in order to derive general relativity
from a field theory of gravity; i.e., to derive geometrical gravity from physical gravity.
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3 General relativity from a field theory of gravity

Once shown, in the previous section, that the geometrical description provided by general
relativity is not fully equivalent to the physical description provided by a field theory of gravity,
we will show now how the general relativistic Lagrangian (1) can be obtained under a well-
defined and physically admissible set of approximations.

We start from the field-theoretic Lagrangian (3) and notice that the gravitational interaction
depends on a total energy-momentum tensor ©#¥ [11]. This tensor is the source of the
gravitational field, but is not the T#* that we find in the HIiLBERT & EINSTEIN metric equations
G = (8nG/c*) T [2,12]. The relation with T/ will be discussed in the section 4.

The total energy-momentum tensor ©#¥ [11] contains the matter energy-momentum tensor
TH¥ plus an interacting term, and a term due to the own gravitational field [8]

oM = TH 4 TI 4 ThY (4)

int grav-

Notice that T/%, is a true tensor in the field-theoretic approach and that T2, > 0; both
properties are merely a consequence of the fact that the gravitational field is here a physical
system, as the electromagnetic field, and carries energy and momentum. As we will show,
these reasonable physical properties are missing in general relativity, which —contrary to myth—
does not describe the physical gravitational field and its self-interaction. Effectively, the first
approximation involved in the derivation of general relativity is ©" = T 4 Op(h,,). The

precise meaning of Ox(h,,) and higher-orders will be discussed in the section 4.
For the point-like non-charged particle, T#" = ml'v*v”, with I = ¢/,/vFv?7,, being the
kinetic time-dilation factor. Substituting all back into (3) we obtain

mc? M2yky?
L= —T (1 + 2c2 hul/) + Oh(hiy) (5)

Using the identity 1 + A = /1 + 2A + A2, the Lagrangian can be rewritten as

mc? M2yryv

This can be finally expressed in the pseudo-geometric form

vH Y
L= _mcz\/CQgMV + Oh(h/?u))' (7)

introducing an effective metric g, = N, + hu,. This effective metric, obtained from the
potential h,, associated to the gravitational field, does not have any fundamental geometrical
meaning in the field-theoretic approach. Indeed, the physical spacetime metric continues being
Nuv in this approach.

This effective metric can be used as a shorthand for simplifying expressions. It is particularly
interesting that the role of g, in the field-theoretic approach, where the physical spacetime is
flat and the curved spacetime associated to the effective metric is non-observable, is analogue
to the corresponding role of the non-observable background 7, in general relativity when the
physical spacetime is not flat.
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As remarked in the introduction, many authors confound this effective metric g,,,, with the
metric g, of general relativity. In fact, those authors who incorrectly claim equivalence
between field-theoretic and geometrical pictures do not differentiate between flat spacetime
physical quantities and curved spacetime quantities [1,3-5,9]. YUrw V. BARYSHEV has
computed the traces for both metrics and obtains [8]

guwg" =4+ 2\ + Op(h%,) (8)

versus
g,uz/é—m/ =4. (9)

BaRrysHEV's calculation implies that g, is exactly equivalent to g, only in the trivial case
when the gravitational field is absent: h,,, = 0. This consequence could be advanced from a
purely physical reasoning: the physical metric g,,, of general relativity can be equivalent to the
effective metric of the field-theoretic approach only when g,,,, coincides with the corresponding
physical metric 1, over which both the mass and spin of the gravitational field are defined
—recall the quote by WaLD reproduced in the introduction—. This analysis of the relationship
between g, and g, coincides with the result obtained in the section 2 for the corresponding
Lagrangians (1) and (3).

For obtaining the general relativistic Lagrangian, we must first introduce the next change of
variables

Nudxtdx” = g, dx"dx". (10)
Dividing both sides by (dt)? and using the definition of the effective metric
hAE 6x’\ (()"XE di‘ 2
VRV =g v (14 28T ). 11
guwvtv guvv(+77#,,8x“8><” dt (11)

Substituting this identity into the pseudo-geometric Lagrangian (7) and taking into account
gravitational time-dilation effects, we finally obtain the general relativistic Lagrangian (1) plus

field-theoretic corrections
A I
L = —mc? 7&” + Oh(hfw), (12)

Summarizing, the general relativistic Lagrangian (1) can be obtained as an approximation to
the field-theoretic Lagrangian (3), somehow as geometric optics can be derived from phys-
ical optics. The pair of approximations involved in the derivation of the general relativistic
Lagrangian are: (i) the neglect of T4~ and T;. in the field-theoretic tensor ©* and (ii)
the approximation of the effective metric by the curved spacetime metric g,,,, >~ g,,... Further

discussion of this derivation and of the approximations involved is given in the section 4.

A similar procedure can be used for the derivation of the HiLBERT & EINSTEIN metric equations
[12] of general relativity

BTG (2 1
R = =2 (T“” - S&" TAA). (13)

We begin with the non-linear field equations [§]

1 3 1
e = 7P (gL, "
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where [0 = 7892 /0x*0x” is the flat-spacetime D'Alembertian operator and §3 the Dirac
Delta, and again approximate the total energy-momentum tensor [11] by that for matter alone
O = TH + Op(hu)

16wG63 1
[pHY — 7::4 (T‘“’ _ Enuu T>\)\> + Oh(hiu). (15)

Next introduce the covariant effective metric gt* = ntv + h*¥

167w G63 1
OA™ = 7;74 <TW _ 2gl»¢VT)\)\) + o,,(hfw)_ (16)

Now, using the change of variables (10), and the definition of the flat-spacetime D’'Alembertian
operator [ = n*%9? /0x*0xP, the left-hand-side of (16) can be modified as follows

v A AL Tuv Tuv
o (O B P -

Ox“OxB x> OxP ) 0%°0%8 & 0% 0%E

where the definition of the inverse spacetime metric ¢ is evident. This can be further
rewritten using the Riccr tensor RHY, which satisfies [13]

”7
0% OKE

To continue with the derivation, the main term that we must consider in the right-hand-side
of (16) is T, because the scalar T*) = g\¢ T** + O(hy¢). This main term transforms as

I/ Ox* Ox¥ o di\?
wov oL ~anfB
Pvive = f(@f(o‘ 8>”</3>er v (dt) ' (19)

= 2R"™ + On(h2,). (18)

where ' = ¢//V* V€8¢ is the time-dilation factor in coordinates X.

Approximating the effective metric by the curved spacetime metric g, = &, + O(hfw); using
the definition of h,,, and (10) for obtaining (9x*/9%*)(dx” /0X") = Suudp, + On(hy,); using
(11) for obtaining dt/dt = I'/{ + On(huy); and introducing (??), (?7), and (19) into (16)
gives finally the HiLBerT & EINSTEIN equations of general relativity (13) plus field-theoretic
corrections

l/_;\’l“/ _ 8rG

5 Lo w5 2
P <TIW _ Eg,uVT /\> + Oh(hm,). (20)
It is important to remark that the factor 3 has been introduced into the definition of Tuv,
according to usual standards in general relativity literature. Nevertheless, now T#" is not the
energy-momentum tensor of matter, as incorrectly stated [1-3], but its energy-momentum
density tensor [11].

Summarizing, the HILBERT & EINSTEIN metric equations [12] of general relativity (13) can
be obtained as an approximation to the field-theoretic gravitational equations (14), somehow
as geometric optics can be derived from physical optics. The approximations involved in the
derivation of the HiLBERT & EINSTEIN equations are again: (i) the neglect of T/% and T/ in
the field-theoretic tensor ©** and (ii) the approximation of the effective metric by the curved
spacetime metric g, =~ §,,,. Further discussion of this derivation and of the approximations

involved is given in the next section.
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4 Final remarks

Notice that the change of variables (10) contains at least a term of order O(h,,) in the
right-hand-side, but is of order O(h?,) in the left-hand-side. This means that field-theoretic
corrections to the general relativistic Lagrangian (1) and to the HiLBERT & EINSTEIN equations
(13) will be mapped to higher-order terms in the deviation i\’/w from flatness.

As would be inferred from the discussion in the previous section, the notation Op(h2,) means
that field terms involving quadratic, cubic, and higher-powers of the gravitational potential
h,. are being neglected in the expressions. Nevertheless, ‘'mixed’ terms as v/v/hj;, involving
products of the gravitational potential and velocity, and 'kinetic’ terms as (v/v/n;)? —both
terms being of order O(h2,) when (v?/c?) is typically of O(hgo)— are retained together with
other terms of higher-order.

That is, the derived general relativistic expressions are valid beyond the linear regime, but
are not completely equivalent to a full nonlinear field theory of gravity because are missing
terms of Oh(hfw) and superior. As will be explained below, precisely the absence of such field-
theoretic terms is related to several well-known deficiencies of general relativity, including the
impossibility to obtain a consistent quantum general relativity.

All the experimental basis of general relativity [14] is automatically satisfied by the field
theory of gravity, with the higher-order field-theoretic corrections being actually undetectable
by observations or experiments, although could be checked in a near future [8].

Evidently, the flat spacetime associated to 7, is unobservable in general relativity because
&, is the physical metric corresponding to coordinates %”. However, many authors [3, 5]
confound these coordinates with the x” used in the field-theoretic approach (10) —or what is
the same, confound g,,, with g,,— and misguidedly claim that the flat spacetime associated
to the field-theoretic approach is not observable, when it is so observable as the spacetime
used in electromagnetism, for instance. It must be emphasized that the curved spacetime
associated to g, is unobservable in a field theory of gravity by analogous reasoning.

Specially exaggerated is a recent STRAUMANN's statement affirming that the «flat Minkowski
spacetime becomes a kind of unobservable ether» [15]; his analogy is an exaggeration because
the hypothesis of the ether was disproved by early 20th century experiments that lead to the
development of the special theory of relativity, whereas no experiment disproves the existence
of flat spacetimes with coordinates x®. What is more, a flat spacetime is one of the key
elements involved in many experimental results, including the celebrated high-precision tests
of quantum electrodynamics.

MIsNER, THORNE, & WHEELER state that a flat spacetime theory of gravity —what they call
«tensor theory»— is internally inconsistent and that «steps to repair this inconsistency in the
theory lead inexorably to general relativity» [3]. However, their «tensor theory» is not the
correct field theory of gravity, but an inconsistent mixture of an equation of motion —see their
eq. 2 in Box 7.1-, which is essentially equivalent to the geodesic equation of motion of general
relativity, plus a set of 'field’ equations —their eq. 4 in Box 7.1- which are not the genuine
equations (14) of the field theory of gravity.
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Unsurprisingly, the trio of authors obtain inconsistencies with such mixture of geometric and
'field" equations [3], but their criticism of flat spacetime theories does not apply to the field
theory of gravity discussed here. Concretely, their main argument in the section «H. Self-
Inconsistency of the Theory» does not apply to this field theory of gravity because the field
equations (14) do not require (0/0x”) TH = 0, unlike their eq. 4 in Box 7.1.

Using the EiNsTEIN tensor G = RM — (1/2)g""R*), the HiLBERT & EINSTEIN equations
(13) can be written in a well-known alternative form

G = — T (21)

This mathematically elegant and concise form is rather popular in the literature [2,3,5,15,16];
however, «this is not the most useful form for actual calculations» [14], reason for which the
above equations are re-written in the so-called «relaxed form» [14]. We present here a
different form, for the sake of comparison with the equations of the field theory of gravity.
This form is as follows

167G (2, -
g™ = CZ (T“”+t“”>, (22)

with {4 = h#” — (1/2)n" h* and
= (c*/8r G) (G — Gy, (23)
where G*[1 is the linearized EINSTEIN tensor.

The geometric constraint V,G* = 0, where V, denotes a covariant partial derivative,
reduces to an ordinary partial derivative for the linearized EinsTrIN tensor (9/9x”)G*I! = 0,
which implies

0 (4 A
uv g —
v (T +t ) 0. (24)

Equations (22), (23), and (24) look as the a priori waited expressions for a self-interacting
gravitational 'field’, gravitational 'tensor’, and 'conservation’ law, respectively. Nevertheless,
this is incorrect and arising from a misguided analysis based in the appearances. The true
meaning of (22), (23), and (24) is completely different and given next.

For a detailed comparison with the field theory of gravity, we must first write the field-theoretic
equations (14) in the alternative form

167G (20 2 |
oy = 27 (TW T T-’“’), (25)

C4 grav int

introducing a 'relaxed’ potential x** = A" — (1/2)n*vh*y and the densities Tre = §3TmY,
Thy, =§3Th  and ThY = 63T/. The equations (25) verify the identity

grav grav?

0 M v v
o (T a4 T2) o (26)
The fundamental differences between geometric and field expressions are the following. First,
the D'Alembertian operator [ is defined in the physical spacetime of (25), whereas this same
O is operating over a fictitious spacetime in the geometrical (22). A consequence is that
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the geometrical equations cannot be used to study the physical propagation of gravitational
waves.

Second, x*" is associated to physical gravitational fields —carrying energy and momentum—
which are responsible for gravitational forces generalizing the Newtonian and Poincaré ones [8],
whereas {#” is representing a metric deviation from flatness. This metric deviation lacks any
physical meaning beyond the merely geometrical and can be done to vanish —via an adequate
change of coordinates as (10)—; derivatives of this metric deviation cannot be related to
gravitational forces, as a consequence.

Third, the right-hand-sides of (22) and (24) contain the energy-momentum density [11] tensor
for matter plus a new object t*¥. What is its interpretation? During a long time, physicists
waited that this ¥, or a similar one, could be finally identified with the energy-momentum
density [11] 'tensor’ of the own gravitational 'field’. However, as emphasized above, general
relativity is a metric theory and, as a natural consequence, ¥ is a pseudo-tensor with only
a pure geometrical meaning (23), in complete agreement with the lack of true gravitational
field due to the equivalence principle. This pseudo-tensor represents quadratic and higher-
order deviations of the EiNsTEIN tensor from its linearized version. In striking contrast, the
right-hand-sides of (25) and (26) contain a true tensor 7';,’;‘,, giving the energy-momentum
density [11] of the own gravitational field [8].

Fourth, (24) is not a true conservation law, in part due to the pseudo-tensorial character of
t and, in part, because the flat spacetime is fictitious in general relativity. The geometrical
identity (24) predicts that energy is lost in the standard Friepman cosmology, for instance;
a unlikely but otherwise waited result, because the energy associated to the metric expansion
of space cannot be absorbed by any gravitational degree of freedom due to the absence of
field. However, (26) is a true conservation law, with the same status that field-theoretic
conservation laws used in the standard model of particle physics.

This detailed comparison of geometric and field-theoretic expressions reveals us that all the
well-known deficiencies of general relativity —spacetime singularities, no unification with rest of
interactions, gravitational pseudo-tensor, absence of conservation laws, impossibility to obtain
a consistent quantum gravity theory...— are direct consequences of the geometrization of the
gravitational interaction. Effectively, if we eliminate \72‘5\, during geometrization, we cannot
wait to identify any of the remaining geometrical objects with the physical energy-momentum
density [11] of the gravitational field, for instance; neither we can wait to obtain a consistent
quantum gravity theory by quantizing a gravitational field which is nowhere in the resulting
general relativity! The formulation of a consistent and complete theory of quantum gravity is

possible but will be left for a future work.

Finally, it is worth to mention that, although the geometric equations of general relativity
have been here derived as a well-defined approximation to a physical theory of gravity, there
exist tricky ways to use general relativity beyond its true scope. For instance, if we generalize
the equations (21) to

R 871G [ 4 A A

_ Y nyz

oo =22 (o T4 ), @)
with ?”D‘,’\’/, and fg; associated to new hypothetical forms of matter and energy —dark matter
and dark energy, respectively—, then we can continue to use the equations, at least up to
certain limits.
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A detailed study of the dark matter term in (27) was recently done, with the following main
conclusions [17]: (i) dark matter is a fictitious distribution of matter, what explains why
all its direct searches in laboratory experiments are giving null results; (ii) general relativity
more dark matter cannot explain recentest astrophysical observations explained, however, by a
generalized theory of gravity without any need for dark matter; (iii) the generalized equations
can be casted into ordinary form when a fictitious distribution of dark matter is added to
the real mass, explaining the partial empirical success of the tandem general relativity plus
dark matter; and (iv) from our definition of the dark matter term ?’5‘,’\’/, we obtain the main
properties traditionally attributed to it, in excellent agreement with dark matter literature.

A detailed investigation of the dark energy term in (27), with objectives similar to those of
the above study, is currently in the schedule of this author.
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