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1 Introduction

Local fractional calculus [1-8] played an important role in fractal mathematics and engi-
neering, especially in nonlinear phenomena.Very recently, Yang [9-11] gave Local fractional

integral of f(x) as follows:

(o)
oy "f (@) = 1—|—a /f )(de)* (1+a Ataozf A",

with At; = tj41 — t; and At = max{Aty, Aty,...,At;,...}, where for j = 1,2,...,N — 1,
to =a and ty = b, [tj,tj4+1] is a partition of the interval [a, b].

The set up of this paper is as follows. In Section 2 we study Local fractional improper
integrals of first kind. Finally, in Section 3, we deal with Local fractional improper integrals of

second kind on fractal space.

2 Local fractional improper integrals of first kind

Definition 2.1 (Local fractional improper integral of type 1) Local fractional improper integrals

of type 1 are evaluated as follows:
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If aIt(a)f(:c) =F(t) = ﬁ f(f f(z)(dx)* exists for all t > a, then we define

9 f(2) +Q/ f(x)(dx)®

tloor1+ /f )(dz)* = lim I ()

provided the limit exists as a finite number. In this case, mfa f(z)(dz)* is said to be

(2.1)

convergent (or to converge). Otherwise, ﬁfaoo f(z)(dz)* is said to be divergent (or to

diverge).

Proposition 2.1 suppose f(x) > 0 for all x € [a,00), Then the local fractional integral F(t) is

increasing on [a, o).

Proof. Take t1,t9 € [a,00) with ¢; < t3. By the property of additivity of the domain of

integration.

- T(+a)

b
I'l+a)
The last integral is > 0 by Property 2.18.[9] ,Therefore F'(t2) > F(t1).

=F(t1) +

Proposition 2.2 if both ﬁ [ f(z)(dz)* and F(%Jm) [ g(x)(dx)™ are convergent , ky ke

are constant , then

1 > o
F(1+04)/a (k1 f(x) + kag(z)](dx)?,

s convergent,and

1 > a
e / [k f (2) + kag(2)](dz)

1 * a 1 e a
:Mkl/(l f(z)dx) +F(1+o¢)k2/a g()(dz)

Proposition 2.3 if f(x) is local fractional integrable for any infite interval [a,t] , a < b, then
(1) ﬁ [ f(2)(dz)> and F(Iia fboo )(dar)a both converge or both diverge.

9 iy U~ iy £ 100 ey 0
for ﬁ faoo f(z)(dx)* and Tita) 1+a fb )(dx) both converge.

The existence of the limit tlggo F(t) is equivalent to the conditions of Cauchy’s criterion for
the existence of the limit of a function, which reads: For any € > 0 there exists tg > a such
that for all t1,ty with ¢; > ¢y and to >t the inequality |F'(t1) — F'(t2)| < € holds. So we can
express the following Cauchy criterion for existence of an local fractional improper integral of

first kind.



Theorem 2.1 . For the existence of the local fractional integral (2.1) it is necessary and

sufficient that for any given e there exists to > a such that

«

L * Fa)(da)| < e,

‘F(l +a) Jy,

for any t1,to satisfying the inequalities t1 > tg and to > tg.
An local fractional integral of type (2.1) is said to be absolutely convergent provided the

integral

1 b2 N
Figay ), V@l

of the modulus of the function f(z) is convergent. If an local fractional integral is convergent,

but not absolutely convergent, it is called conditionally convergent.

Theorem 2.2 if f(x) is integrable for any infite interval and ﬁ L0 f (@) |(da)™ is conver-

gent ,then
1 & o
wr L @

s convergent. And

1 o0 N 1 00 .
‘F<1+a)/ f(z)(d) Sera)/a | f () |(dz)®.

Proof. This follows from the inequality (see[9])

to
‘ ! f(a)(dn)?| <

1 b2 N
i ), | @l

- F(l +O[) t1

and Theorem 1.

A convergent local fractional improper integral may not be absolutely convergent. But,
of course, a convergent local fractional improper integral of a nonnegative function is always
absolutely convergent.

Let us now consider the local fractional integral (2.1) with a nonnegative function f(x). In
this case the function F'(t) defined by definition 1 is obviously nondecreasing. Therefore, if it
is bounded, i.e., if F(t) < M(t > a) for some M > 0, then local fractional integral (2.1) is
convergent:

J f(2) = Jim J N f(x) = lim F(t) < M.

0o
t—o00

If F(t) is unbounded, then integral (2.1) is divergent:

o2 f(2) = Jim oI f(@) = lim F(t) = oc.

t—o0

Hence we have the following result.



Theorem 2.3 An local fractional integral (2.1) with f(x) > 0 for all x > a is convergent if
and only if there exists a constant M > 0 such that

Ft) = mia)/ f@)(de)* < M, for t>a.

The value of the local fractional improper integral is then not greater than M.
Proof. By Proposition 1, F'(t) is increasing on [a,c0). Then
lim F(t) =sup{F(t)[t > a} =M >0,
t——+o0

and the theorem follows

1 ¢ N
M/a f(z)(dx)* < M,

for every t > a whenever the integral converges.

Now we present the following comparison test.

Theorem 2.4 Let the inequalities 0 < f(x) < g(x) be satisfied for all x € [a,00). Then the

convergence of the local fractional improper integral

implies the convergence of the local fractional improper integral

1 & o
e (23)

and the inequality

1 & o 1 & o
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while the divergence of integral (2.3) implies the divergence of local fractional integral (2.2).

proof. Let Fi(t) = ﬁfi f(z)(dz)™ and Fy(t) = ﬁfi g(x)(dx)* for t > a, since
0 < f(z) < g(z) for every = > a,then
Fi(t) < Fy(t), (2.4)
And (2.2) converges, then there exists a M > 0 such that
Fy(t) <M, for t>a. (2.5)

From (2.4) and (2.5) ,we have
Fi(t) <M, for t>a. (2.6)

By (2.6),then . liin F(t) exists and is finite. Hence (2.3) converges, also
— 100

lim Fi(t) < lim Fy(t) < M. (2.7)

t—+o00 t—+o00
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And we obtain

1 0 . 1 0 .
F(1+a)/a f(@)(dz) SF(l—I—a)/a g(@)(dw)".

To avoid troublesome details of working with inequalities in practice, it is often convenient

to use the following theorem rather than to use the comparison test directly.

Theorem 2.5 (Limit Comparison Test) Suppose ﬁ [ f(z)(dz)* and

i | s,

are local fractional improper integrals of the first kind with positive integrands, and suppose

that the limit

GO
Ihlgo () =L“, (2.8)

exists (finite) and is not zero. Then the local fractional integrals are simultaneously convergent

or divergent.
Proof. It follows from (2.8) that for any € € (0, L) there exists ¢y € (a,00), such that

f(z)

La—so‘<ﬁ<Lo‘+eo‘,for all typ > a.
g(x

and, since g(x) > 0, we have

(LY —e%)g(x) < f(z) < (L* +e%)g(z),for all ¢y > a. (2.9)

The convergence of the local fractional integral ﬁ faoo g(z)(dx)® implies the convergence
1

of the local fractional integral 5 ftooo g(z)(dz)® and hence also the convergence of the local

fractional integral ﬁ ftzo (L™ + %) g(x)(dx)®. Therefore, by virtue of Theorem 4, the local

fractional integral ﬁ ftzo g(z)(dx)™ also converges, and, together with it, so does the local
1

fractional integral F [ f(a)(dz)*. Conversely, if ﬁ [ f(x)(dx)*is convergent, then

ﬁ faoo g(z)(dz)® is also convergent, which can be proved similarly using the left part of the
inequalities (2.9).

Remark 2.1. For the local fractional integrals described in Theorem 5, suppose that L =

0. Then, if ﬁ [ g(x)(dx)™ is convergent, so is ﬁ [ f(z)(dz)*. Or, alternatively,
suppose that L = co. Then, if ﬁ [° g()(da)™ is divergent, so is ﬁ L7 f (@) (da).

From Theorem 2.2 and Theorem 2.5, the following result is straightforward

Corollary 2.1 Let|f(z)| < g(z) for allz € [a,00). Then the convergence of the local fractional

integral ﬁ [ g(z)(da)™ implies the convergence of the integral

1 & o
M/a f(@)(dx)™.



If an local fractional integral is conditionally convergent, the demonstration of its conver-
gence is usually a more delicate matter. Many of the instances of practical importance can be
handled by the following theorem, which is an analogue of the well-known Dirichlet-Abel test

for local fractional improper integrals on R®.

Theorem 2.6 Let the following conditions be satisfied.
(1) f(x) is local fractional integrable from a to any pointt € [a,00), and the local fractional

integral .
F() = gy [ )

1s bounded for all t > a.
(2) g(x) is monotone on [a,00) and lim g(x) =0,

Then the local fractional improper integral of first kind of the form

1 *° o
fra ) @, (210)

18 convergent.

Proof. Applying the mean value theorem for Local fractional integrals [12 |, we can write, for

any t1,ts € [a,00) with to > t; > a

e ARICLCICOR
= lo(t) = g()F(€) + )y [ S

where F'(€) is between inf F(t) and sup F(t). Let us suppose that M is a bound for
teft1,to] telt1,to]

|F(t)| on [a,0), that is, |F(t)| < M. Then we have from (2.11), taking into account that the
local fractional integral on the right hand side of (2.11) is equal to F(t2) — F(t1),

L7 @) (o)

\W 5 < M{lg(t2)] +3lg(t2)]] (2.12)

Using this inequality, it is not difficult to complete the proof.

Let € > 0 be arbitrary. Since g(x) — 0 as z — 0, we can choose a number ty > a such
that |g(z)| < £ for all z > to.Hence, and from (2.12), it follows that for all ¢; and ¢, with
t1 > tpand t9 > tg the inequality

(07

rray [, s <

holds. Consequently, by the Cauchy criterion (Theorem 2.1) the integral (2.10) is convergent.
Remark2.2. Integrals with —oo as a limit of integration may be treated by methods parallel

to those given above.



3 Local fractional improper integrals of second kind

Definition 3.1 (Local fractional improper integral of type 2) local fractional improper integrals
of type 2 are evaluated as followS'

1. if f(zx) is continuous on [a,b) and not continuous at b then we define

)(d)® = 1 )(dz) 1
1+a/f @) tfi‘rua/f @) (3:-1)

provided the limit exists as a finite number. In this caseﬁ f; f(z)(dz)* is said to be con-
vergent (or to converge). Otherwise, ﬁ f(f f(z)(dz)™ is said to be divergent (or to diverge).

2. if f(x) is continuous on (a,b] and not continuous at a then we define

)(dz)® = li )(dz)
1+a/f 2 tfﬁrua/f z)"

provided the limit exists as a finite number. In this caseﬁ f; f(x)(dx)™ is said to be con-
vergent (or to converge). Otherwise, ﬁ f: f(x)(dx)®™ is said to be divergent (or to diverge).
3. if f(x) is not continuous at ¢ where a < ¢ < b and both ﬁf:f(w)(dx)“ and

ﬁ fcb f(z)(dz)* converge then we define

b c b
i [ @@ = s [ @)+ s [ @

The local fractional integrals on the right are evaluated as shown in 1. and 2.

All theorems of Section 2 have exact analogues for the local fractional improper integrals
of second kind whose wordings differ only slightly from the statements given in Section 2.
For the existence of the left side of (3.1) it is necessary and sufficient that the conditions of

Cauchy’s criterion hold: Given any € > 0, there is by < b such that

'mia) / F(@)(dw)®

for any c1; ¢o € [a, 00) satisfying the inequalities by < ¢; < b and by < ¢o < b.

<€,

Suppose in local fractional integral (3.1) we have f(z) > 0. Then, for ¢ € [a,b),

PO = ey . F@)da)®

does not decrease as ¢ increases, and the local fractional integral (3.1) is convergent if and only

if F'(¢) is bounded, in which case the value of the integral is lirgl F(c). This result enables us
c—b—

to prove a comparison test strictly parallel to Theorem 5, from which in turn we deduce limit

tests in which the convergence or divergence of two integrals of the same type,

1 b a 1 ' o
F(l—l—a)/a f(x)(dx)* and F(l—i-oa)/a g(x)(dx)?,

7



are related by an examination of the limit

lim ﬁ
z—b= g()

Similar definitions are made and entirely similar results are obtained for integrals of the second

kind improper at the lower limit of integration.

Remark 3.1. Many local fractional improper integrals occurring in practice are of mixed

type. If singularities occur within the interval of integration, or at both ends of an interval of

integration, the local fractional integral must be separated into several local fractional integrals,

each of which is a pure type of either first or second kind. The local fractional integral is called

divergent if any one of the constituent pure types is divergent.
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