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Abstract

All eyes are on the Riemann’s hypothesis, zeta and L-functions, which are false, read this paper.

The Euler product converges absolutely over the whole complex plane. Using factorization
method we can prove that Riemamn’s hypothesis and conjecture of Birch and Swinnerton-Dyer
are false. All zero computations are false, accurate to six decimal places. Riemann’s zeta functions
and L —functions are useless and false mathematical tools. Using it one cannot prove any

problems in number theory. Euler totient function ¢(n) and Jiang’s function J, . (@) will

replace zeta and L — functions.
1. Introduction

The function ¢'(S) defined by the absolute convergent series

g(s)= ii (D
o1 N

in complex half-plane Re (S) >1 is called the Riemann’s zeta function.

The Riemann’s zeta function has a simple pole with the residue 1 at S=1 and the function
£(s) is analytically continued to whole complex plane. We then define the £'(S) by the Euler
product

=11 a-pP", (2)

P
where the product is taken all primes P, s=o+it, i = \/—71 o and t arereal.

The Rieman’s zeta function £(S) has no zeros in Re (S)>1. The zeros of £(S) in
0<Re(S) <1 are called the nontrivial zeros. In 1859 G. Riemann conjectured that every zero of
£ (s) would lie on the line Re (S) =1/ 2. It is called the Riemenn’s hypothesis. [1] We have

{(s=o+it,c>21)#0 (3)
We define the elliptic curve [2]
E,:y’=x"-D’x, (4)

where D is the congruent number.
Assume that D is square-free. Let P be a prime number which does not divide 2D. Let

N, denote the numbers of pairs (X,y) where X and Yy run over the integers modulo P,



which satisfy the congruence
y>=x>—D?*X mod P. (5)
Put
a, =P—-N, (6)
We then define the L — function of E by the Euler product
L(Ey.9)= [ @-a,P*+P*)" (7

(P.2D)=1

where the product is taken over all primes P which do not divide 2D . The Euler product

converges absolutely over the half plane Re(S) >3/ 2, but it can be analytically continued over
the whole complex plane. For this function, it is the vertical line Re(S) =1 which plays the
analogue of the line Re (S)=1/2 for the Riemann zeta function and the Dirichlet
L — functions. Of course, we believe that every zero of L(E,,S) in Re(S) >0 should lie on
the line Re (S) =1. It s called a conjecture of Birch and Swinnerton-Dyer (BSD). We have

L(E,,s=0+it,02>3/2)=0 (8)
2. Riemann’s Hypothesis is false
Theorem 1. Euler product converges absolutely in Re (S)>1. Let S,=1/2+it, using

factorization method we have

(s, =1/2+it)#0 (D

Proof. Let S =2s;, 2.2s,, 2.85;, 35y, 45, 5S;, - PByS,

We have the following Euler product equations

£(2)) =S ()] @+P™)* =0, (10)
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£(2.8s)) = J(S)H (P +=— PSO) #0, (12)

£(3s,) =4 (s)[] @+P™>+P?*) "0, (13)

$(4s)=¢(s)[ [ @+P™)"[] @+P?™)* =0, (14)



£(55) =¢(s)[] @+P ™ +P?0 4P 4 po)™ 20, (15)
P

¢ (Rso) = g(so)H (R P_(Po_l)so)_l #0, (16>

Since the Euler product converges absolutely in Re (S) > 1, the equation (10)-(16) are true.
From (10)-(16) we obtain

£(s,)#0 (D

All zero computations are false and approximate, accurate to six decimal places. Using three
methods we proved the RH is false [3]. Using the same Method we are able to prove that all
Riemann’s hypotheses also are false. All L — functions are false and useless for number theory.

3. The Conjecture of Birch and Swinnerton-Dyer is false.

Theorem 2. Euler product converges absolutely in Re (S)>3/2. Let S =1+it. Using

factorization method we have

L(Ep,s, =1+it) =0 an

Proof. Let S=2s,3s,,4s,,-

we have the following Euler product equations.
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Since the Euler product converges absolutely in Re (S) > 3/ 2, equations (18)-(20) are true.
From (18)-(20) we obtain

L(Ep,s,)#0 an
All zero computations are false and approximate. Using the same method we are able to prove all
L(E,s) #0 inwhole complex plane.

The elliptic curves are not related with the Diophantine equations and number theory [4]. Frey and
Ribet did not prove the link between the elliptic curve and Fermat’s equation [4,5]. Wiles proved
Taniyama-Shimura conjecture based on the works of Frey, Serre, Ribet, Mazuer and Taylor, which
have nothing to do with Fermat’s last theorem [6]. “Taniyama-Shimura conjecture” was in
obscurity for about 20 years till people seriously started thinking about elliptic curves.



Mathematical proof does not proceed by personal abuse, but by show careful logical argument.
Wiles proof of Fermat’s last theorem is false [7-9]. In 1991 Jiang proved directly Fermat’s last
heorem [10,11].

4. Conclusion.

The zero computations of zeta functions and L — functions are false. Riemann’s zeta functions
and L —functions are useless and false mathematical tools. Using it one cannot prove any
problems in number theory [12]. The heart of Langlands program(LP) is the L — functions [13].
Therefore LP is false. Wiles proof of Fermat last theorem is the first step in LP. Using LP one
cannot prove any problems in number theory, for example Fermat’s last theorem [6]. Euler totient

function ¢@(n) and Jiang’s function J (@) will replace Riemann’s zeta functions and

n+1

L — functions [13-15].
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