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Abstract

Dirac singletons are exceptional irreducible representations (IRs) of the
so(2,3) algebra found by Dirac. As shown in a seminal work by Flato and
Fronsdal, the tensor product of singletons can be decomposed into massless IRs
of the so(2,3) algebra and therefore each massless particle (e.g. the photon) can
be represented as a composite state of singletons. This poses a fundamental
problem of whether only singletons can be treated as true elementary particles.
However, in standard quantum theory (based on complex numbers) such a pos-
sibility encounters difficulties since one has to answer the following questions:
a) why singletons have not been observed and b) why the photon is stable and
its decay into singletons has not been observed. We show by direct calculations
that in a quantum theory over a Galois field (GFQT), the decomposition of
the tensor product of singletons IRs contains not only massless IRs but also
special massive IRs which have no analogs in standard theory. In the case of
supersymmetry we explicitly construct a complete set of IRs taking part in the
decomposition of the tensor product of supersingletons. Then in GFQT one
can give natural explanations of a) and b).
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1 Introduction: the notion of elementary particle

in quantum theory

Although theory of elementary particles exists for a rather long period of time, there
is no commonly accepted definition of elementary particle in this theory. A discussion
of numerous controversial approaches can be found, for example, in Ref. [1]. In the
spirit of quantum field theory (QFT), fields are more fundamental than particles
and some authors even claim that particles do not exist. From the point of view of
QFT, a possible definition follows [2]. It is simply a particle whose field appears in
the Lagrangian. It does not matter if it is stable, unstable, heavy, light. If its field
appears in the Lagrangian then it is elementary, otherwise it is composite.
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Another possible approach is as follows. Suppose that the space-time
background is invariant under the action of a group G which is called the symmetry
group. Then the operators describing a system under consideration should act in a
representation space of G. In that case an elementary particle can be defined such
that its representation space is a space of an irreducible representation (IR) of the
group G. This approach is in the spirit of the well known Klein’s Erlangen program
in mathematics. In particular, when the space-time background is Minkowski space,
elementary particles are described by IRs of the Poincare group discussed for the first
time by Wigner.

However, as we argue in Refs. [3, 4], quantum theory should not be based
on classical spacetime background and the approach should be the opposite. Each
system is described by a set of independent operators. By definition, the rules how
these operators commute with each other define the symmetry algebra. Then the
elementary particle can be defined such that its representation space is a space of an
IR of the symmetry algebra.

From the point of view of our definition of symmetry on quantum level,
de Sitter (dS) symmetry or anti-de Sitter (AdS) symmetry is more fundamental than
Poincare symmetry since the Poincare algebra is a special case of the dS or AdS alge-
bras obtained from them by contraction. For example, the representation operators
of the AdS algebra should satisfy the commutation relations

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1)

where a, b = 0, 1, 2, 3, 4, Mab = −M ba and ηab is the diagonal metric tensor such that
η00 = η44 = −η11 = −η22 = −η33 == 1. All the operators Mab are dimensionless
while in the case of Poincare symmetry only the operators of the Lorentz algebra are
dimensionless while the momentum operators have the dimension 1/length. If R is
a parameter with the dimension length and the operators P µ are defined as P µ =
M4µ/2R (µ = 0, 1, 2, 3) then in the formal limit R → ∞ one gets the commutation
relations of the Poincare algebra from Eq. (1). This contraction procedure is well
known.

The relations between unitary IRs of Lie groups and IRs of their Lie al-
gebras by Hermitian operators are well known and in typical cases these IRs are the
same. In particular, a classification of IRs of the AdS algebra can be obtained from
the well known results by Fronsdal and Evans [5, 6]. By analogy with IRs of the
Poincare algebra, such IRs also can be characterized by the values of mass and spin.
Among those IRs, there are ones which are analogous to massive and massless IRs of
the Poincare algebra and therefore in the AdS case they also can be called massive
and massless, respectively. However, a very interesting feature of the AdS case is that
here there also exist two special positive energy IRs discovered by Dirac [7], which
have no analogs with IRs of the Poincare algebra. These IRs are called the Dirac
singletons. In the literature, the singleton with the spin 1/2 is often called Di and
the one with the spin zero - Rac.
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Since each massive IR of the AdS algebra can be constructed as a tensor
product of another massive or massless IRs, a question arises whether states described
by massive IRs should be called elementary. In Standard Model (which is based on
Poincare invariance) only massless IRs are treated as elementary. On the other hand,
as shown in a seminal paper by Flato and Fronsdal [8] (see also Ref. [9]), each
massless IR can be constructed as a tensor product of singletons IRs. At the same
time, the singleton IRs cannot be represented as tensor products of other IRs. These
observations give grounds to think that in the AdS theory only the Dirac singletons
should be treated as true elementary particles. However, in that case the following
questions arise. Each massless boson (e.g. the photon) can be constructed as a
tensor product of either two Dis or two Racs. Which of those possibilities (if any) is
physically preferable? A natural answer is as follows. If the theory is supersymmetric
then the AdS algebra should be extended to the superalgebra osp(1,4) which has only
one positive energy IR combining Di and Rac into the Dirac supermultiplet. For the
first time, this possibility has been discussed probably in Refs. [10, 11]. Therefore
in that case there exists only one Dirac superparticle which could be treated as the
only elementary superparticle. Nevertheless, one still should answer the following
questions:

• a) Why singletons have not been observed yet.

• b) Why such massless particles as photons and others are stable and their decays
into singletons have not been observed.

In the present paper we argue that in a quantum theory over a Galois
field (GFQT) proposed in our earlier works (see e.g. Refs. [12, 13, 14]) one can give
natural explanations of a) and b). All the results of the paper are obtained by direct
calculations and therefore no special knowledge is needed for understanding those
results. We define GFQT as a theory where

• Quantum states are represented by elements of a linear projective space over a
Galois field and physical quantities are represented by linear operators in that
space.

For any new theory, there should exist a correspondence principle that at some condi-
tions the predictions of this theory are close to ones given by the old well established
theory. In Refs. [12, 13, 14] it is discussed in detail that a correspondence between
GFQT and standard quantum theory takes place if the characteristic p of the Galois
field is rather large. Representations of Lie algebras over a Galois field in spaces
over a Galois field are called modular representations. Let Fp = Z/Zp be the residue
field modulo p and Fp2 be a Galois field containing p2 elements. As argued in Refs.
[12, 13, 14], a natural version of GFQT is that the operators corresponding to physical
quantities act in spaces over Fp2 where p = 3 (mod 4) since in that case each element
of Fp2 can be written as a+ bi, a, b ∈ Fp and therefore the field Fp2 can be treated as
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a finite analog of complex numbers. The results of the present paper do not depend
on the choice of the Galois field in GFQT.

The paper is organized as follows. In Secs. 2-5 we explicitly construct
IRs describing massive and massless particles, and Dirac singletons. Standard and
modular IRs are discussed in parallel, and we indicate their common and distinct
features. In Sec. 6 we discuss in detail how usual particles and singletons should be
discussed in the Poincare and semiclassical limits of standard theory. In Sec. 7 it
is shown that, in contrast to standard theory, the tensor products of singleton IRs
in GFQT contain not only massless IRs but also special massive IRs, which have no
analogs in standard theory. Beginning from Sec. 8 we proceed to the supersymmetric
case, and the main result of the paper is described in Sec. 10. Here we explicitly
find a complete list of IRs taking part in the decomposition of the tensor product of
two supersingletons. In standard theory the well known results are recovered while
in GFQT this list also contains special supersymmetric IRs which have no analogs in
standard theory. Finally, Sec. 11 is a discussion.

2 Modular IRs of the sp(2) and su(2) algebras

The key role in constructing modular IRs of the so(2,3) algebra is played by modular
IRs of the sp(2) subalgebra. They are described by a set of operators (a′, a”, h)
satisfying the commutation relations

[h, a′] = −2a′ [h, a”] = 2a” [a′, a”] = h (2)

The Casimir operator of the second order for the algebra (2) has the form

K = h2 − 2h− 4a”a′ = h2 + 2h− 4a′a” (3)

We first consider representations with the vector e0 such that

a′e0 = 0, he0 = q0e0 (4)

where q0 ∈ Fp. We will denote q0 by the numbers 0, 1, ...p− 1. Denote en = (a”)ne0.
Then it follows from Eq. (3) and (4), that

hen = (q0 + 2n)en, Ken = q0(q0 − 2)en (5)

a′a”en = (n+ 1)(q0 + n)en (6)

One can consider analogous representations in standard theory. Then q0
is a positive real number, n = 0, 1, 2, ... and the elements en form a basis of the IR.
In this case e0 is a vector with a minimum eigenvalue of the operator h (minimum
weight) and there are no vectors with the maximum weight. The operator h is positive
definite and bounded below by the quantity q0. For these reasons the above modular
IRs can be treated as modular analogs of such standard IRs that h is positive definite.
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Analogously, one can construct modular IRs starting from the element e′0
such that

a”e′0 = 0, he′0 = −q0e′0 (7)

and the elements e′n can be defined as e′n = (a′)ne′0. Such modular IRs are analogs
of standard IRs where h is negative definite. However, in the modular case Eqs. (4)
and (7) define the same IR. This is clear from the following consideration.

The set (e0, e1, ...eN) will be a basis of IR if a”ei 6= 0 for i < N and
a”eN = 0. These conditions must be compatible with a′a”eN = 0. The case q0 = 0
is of no interest since, as follows from Eqs. (5-7), all the representation operators are
null operators, the representation is one-dimensional and e0 is the only basis vector in
the representation space. If q0 = 1, ...p− 1, it follows from Eq. (6) that N is defined
by the condition q0 +N = 0. Hence N = p− q0 and the dimension of IR equals

Dim(q0) = p− q0 + 1 (8)

This result is formally valid for all the values of q0 if we treat q0 as one of the numbers
1, ...p−1, p. It is easy to see that eN satisfies Eq. (7) and therefore it can be identified
with e′0.

In standard theory, IRs are discussed in Hilbert spaces, i.e. the space of
the IR is supplied by a positive definite scalar product. It can be defined such that
(e0, e0) = 1, the operator h is selfadjoint and the operators a′ and a” are adjoint to
each other: (a′)∗ = a”. Then, as follows from Eq. (6),

(en, en) = n!(q0)n (9)

where we use the Pocchammer symbol (q0)n = q0(q0 + 1) · · · (q0 + n− 1). Usually the
basis vectors are normalized to one but this is only a matter of convention but not
a matter of principle since not the probability itself but only ratios of probabilities
have a physical meaning (see e.g. the discussion in Ref. [14]). In GFQT one can
formally define the scalar product by the same formulas but in that case this scalar
product cannot be positive definite since in Galois fields the notions of positive and
negative numbers can be only approximate. Therefore in GFQT the probabilistic
interpretation cannot be universal. However, if the quantities q0 and n are such that
the r.h.s. of Eq. (9) is much less than p then the probabilistic interpretation is
(approximately) valid if the IR is discussed in a space over Fp2 (see Refs. [12, 13, 14]
for a detailed discussion). Therefore if p is very large, then for a large number of
elements there is a correspondence between standard theory and GFQT.

Representations of the su(2) algebra are defined by a set of operators
(L+, L−, L3) satisfying the commutations relations

[L3, L+] = 2L+ [L3, L−] = 2L− [L+, L−] = 2L3 (10)

In the case of representations over the field of complex numbers, these relations can be
formally obtained from Eq. (2) by the replacements h→ L3, a

′ → iL− and a”→ iL+.
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The difference between the representations of the sp(2) and su(2) algebras in Hilbert
spaces is that in the latter case the Hermiticity conditions are L∗3 = L3 and L∗+ = L−.
The Casimir operator for the algebra (10) is

K = L2
3 − 2L3 + 4L+L− = L2

3 + 2L3 + 4L−L+ (11)

For constructing IRs, we assume that the representation space contains a
vector e0 such that

L3e0 = se0 L+e0 = 0 (12)

where s ≥ 0 for standard IRs and s ∈ Fp for modular IRs. In the letter case we will
denote s by the numbers 0, 1, ...p− 1. If ek = (L−)ke0 (k = 0, 1, 2, ...) then it is easy
to see that

L3ek = (s− 2k)ek Kek = s(s+ 2)ek L+L−ek = (k + 1)(s− k)ek (13)

The IR will be finite dimensional if there exists k = kmax such that L+L−ek = 0 for
this value of k. As follows from the above expression, for modular IRs such a value
of k always exists, kmax = s and the dimension of the IR is Dim(s) = s + 1. For
standard IRs the same conclusion is valid if s iz zero or a natural number.

In standard quantum theory, the representation operators of the su(2)
algebra are associated with the components of the angular momentum operator
L = (Lx, Ly, Lz) such that L3 = Lz and L± = (Lx ± iLy)/2. The commutation
relations for the components of L are usually written in units where h̄ = 1. Then
s can be only an integer or a half-integer and Dim(s) = 2s + 1. As argued in Ref.
[3], fundamental quantum theory should not involve dimensionful physical quantities
at all. For correspondence between GFQT and standard theory, we write the com-
mutation relations in the form (10) which corresponds to commutation relations in
standard quantum theory in units h̄/2 = 1. The matter is that if p is very large then
1/2 in a Galois field is a very large number (p+ 1)/2.

3 Tensor product of modular IRs of the sp(2) al-

gebra

Consider two IRs of the sp(2) algebra in spaces Hj (j = 1, 2). Each IR is defined by
a set of operators (h(j), a(j)

′
, a(j)”) satisfying the commutation relations (2) and by a

vector e
(j)
0 such that (see Eq. (4))

a(j)
′
e
(j)
0 = 0, h(j)e0 = q

(j)
0 e

(j)
0 (14)

As follows from the results of the preceding section, the vectors e(j)n = (a(j)”)ne
(j)
0

where k = 0, 1, ...N (j) and N (j) = p− q(j)0 form a basis in Hj.
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The tensor product of such IRs is defined as follows. The basis of the
representation space is formed by the elements ekl = e

(1)
k × e

(2)
l and the independent

representation operators are (h, a′, a”) such that h = h(1) + h(2), a′ = a(1)
′
+ a(2)

′
and

a” = a(1)” + a(2)”. Here it is assumed that the operator with the superscript (j) acts

on the elements e
(j)
k in the same way as in the IR in Hj while on the elements e

(j′)
l

where j′ 6= j it acts as the identity operator. For example,

h
∑
kl

ckl(e
(1)
k × e

(2)
l ) =

∑
kl

ckl[(h
(1)e

(1)
k )× e(2)l + e

(1)
k × (h(2)e

(2)
l )]

Then the operators (h, a′, a”) satisfy the same commutation relations as in Eq. (2)
and hence they implement a representation of the sp(2) algebra in the space H1×H2.
Our goal is to find a decomposition of this representation into irreducible components.

It is obvious that the cases when q
(1)
0 = 0 or q

(2)
0 = 0 are trivial and

therefore we will assume that q
(1)
0 6= 0 and q

(2)
0 6= 0. Suppose that q

(1)
0 ≥ q

(2)
0 and

consider the vector

e(k) =
k∑
i=0

c(i, k)(e
(1)
i × e

(2)
k−i) (15)

As follows from Eq. (5) and the definition of h,

he(k) = (q
(1)
0 + q

(2)
0 + 2k)e(k) (16)

Therefore if a′e(k) = 0 then the vector e(k) generates a modular IR with the dimension

Dim(q
(1)
0 , q

(2)
0 , k) = p+ 1− (q

(1)
0 − q

(2)
0 − 2k) where q

(1)
0 − q

(2)
0 − 2k is taken modulo p.

As follows from Eqs. (6) and (15),

a′e(k) =
k∑
i=0

c(i, k)[i(q
(1)
0 +i−1)(e

(1)
i−1×e

(2)
k−i)+(k−i)(q(2)0 +k−i−1)(e

(1)
i ×e

(2)
k−i−1)] (17)

This condition will be satisfied if

c(i, k) =
(k + 1− i)(q(2)0 + k − i)c(i− 1, k)

i(q
(1)
0 + i− 1)

(i = 1, ...k) (18)

It is clear from this expression that in standard case the possible values of k are
0, 1, ...∞ while in modular case k = 0, 1, ...kmax where kmax = p− q(1)0 .

It is obvious that at different values of k, the IRs generated by e(k) are

linearly independent and therefore the tensor product of the IRs generated by e
(1)
0 and

e
(2)
0 contains all the IRs generated by e(k). A question arises whether the latter IRs

give a full decomposition of the tensor product. This is the case when the dimension
of the tensor product equals the sum of dimensions of the IRs generated by e(k).
Below we will be interested in the tensor product of singleton IRs and, as shown in
Sec. 5, in that case q

(1)
0 +q

(2)
0 > p. Therefore q

(1)
0 +q

(2)
0 +2k ∈ [q

(1)
0 +q

(2)
0 , 2p−q(1)0 +q

(2)
0 ]
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and for all values of k, q
(1)
0 +q

(2)
0 +2k is in the range (p, 2p]. Then, as follows from Eq.

(8), the fact that the IRs generated by e(k) give a full decomposition of the tensor
product follows from the relation

p−q(1)0∑
k=0

(2p+ 1− q(1)0 − q
(2)
0 − 2k) = (p+ 1− q(1)0 )(p+ 1− q(2)0 ) (19)

4 Modular IRs of the so(2,3) algebra

Standard IRs of the so(2,3) algebra relevant for describing elementary particles have
been considered by several authors. The description in this section is a combination
of two elegant ones given in Ref. [6] for standard IRs and Ref. [15] for modular IRs.
In standard theory, the commutation relations between the representation operators
are given by Eq. (1)

If a modular IR is considered in a linear space over Fp2 with p = 3 (mod 4)
then Eq. (1) is also valid. However, in the general case it is convenient to work with
another set of ten operators. Let (a′j, aj”, hj) (j = 1, 2) be two independent sets of
operators satisfying the commutation relations for the sp(2) algebra

[hj, a
′
j] = −2a′j [hj, aj”] = 2aj” [a′j, aj”] = hj (20)

The sets are independent in the sense that for different j they mutually commute
with each other. We denote additional four operators as b′, b”, L+, L−. The operators
L3 = h1−h2, L+, L− satisfy the commutation relations (10) of the su(2) algebra while
the other commutation relations are as follows

[a′1, b
′] = [a′2, b

′] = [a1”, b”] = [a2”, b”] = [a′1, L−] = [a1”, L+] = [a′2, L+] =

[a2”, L−] = 0 [hj, b
′] = −b′ [hj, b”] = b” [h1, L±] = ±L± [h2, L±] = ∓L±

[b′, b”] = h1 + h2 [b′, L−] = 2a′1 [b′, L+] = 2a′2 [b”, L−] = −2a2”

[b”, L+] = −2a1” [a′1, b”] = [b′, a2”] = L− [a′2, b”] = [b′, a1”] = L+

[a′1, L+] = [a′2, L−] = b′ [a2”, L+] = [a1”, L−] = −b” (21)

At first glance these relations might seem rather chaotic but in fact they are very
natural in the Weyl basis of the so(2,3) algebra.

In spaces over Fp2 with p = 3 (mod 4) the relation between the above sets
of ten operators is

M10 = i(a1”− a′1 − a2” + a′2) M14 = a2” + a′2 − a1”− a′1
M20 = a1” + a2” + a′1 + a′2 M24 = i(a1” + a2”− a′1 − a′2)
M12 = L3 = h1 − h2 M23 = L+ + L− M31 = −i(L+ − L−)

M04 = h1 + h2 M34 = b′ + b” M30 = −i(b”− b′) (22)
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and therefore the sets are equivalent. However, the relations (10,20,21) are more
general since they can be used when the representation space is a space over any
Galois field. It is also obvious that such a definition of the operators Mab is not
unique. For example, any cyclic permutation of the indices (1, 2, 3) gives a new set
of operators satisfying the same commutation relations.

In standard theory, the Casimir operator of the second order for the rep-
resentation of the so(2,3) algebra is given by

I2 =
1

2

∑
ab

MabM
ab (23)

As follows from Eqs. (10,20-22), I2 can be written as

I2 = 2(h21 + h22 − 2h1 − 4h2 − 2b”b′ + 2L−L+ − 4a1”a
′
1 − 4a2”a

′
2) (24)

We use the basis in which the operators (hj, Kj) (j = 1, 2) are diagonal.
Here Kj is the Casimir operator (3) for algebra (a′j, aj”, hj). For constructing IRs
we need operators relating different representations of the sp(2)×sp(2) algebra. By
analogy with Refs. [6, 15], one of the possible choices is as follows

A++ = b”(h1 − 1)(h2 − 1)− a1”L−(h2 − 1)− a2”L+(h1 − 1) + a1”a2”b
′

A+− = L+(h1 − 1)− a1”b′ A−+ = L−(h2 − 1)− a2”b′ A−− = b′ (25)

We consider the action of these operators only on the space of minimal sp(2)×sp(2)
vectors, i.e., such vectors x that a′jx = 0 for j = 1, 2, and x is the eigenvector of
the operators hj. Then by using Eqs. (10,20-22), one can directly verify that if x is
a minimal vector such that hjx = αjx then A++x is the minimal eigenvector of the
operators hj with the eigenvalues αj +1, A+−x - with the eigenvalues (α1 +1, α2−1),
A−+x - with the eigenvalues (α1− 1, α2 + 1), and A−−x - with the eigenvalues αj − 1.

By analogy with Refs. [6, 15], we require the existence of the vector e0
satisfying the conditions

a′je0 = b′e0 = L+e0 = 0 hje0 = qje0 (j = 1, 2) (26)

where qj ∈ Fp. As follows from Eq. (24), in the IR characterized by the quantities
(q1, q2), all the nonzero elements of the representation space are the eigenvectors of
the operator I2 with the eigenvalue

I2 = 2(q21 + q22 − 2q1 − 4q2) (27)

Since L3 = h1 − h2 then, as follows from the results of Sec. 2, if q1 and
q2 are characterized by the numbers 0, 1, ...p − 1, q1 ≥ q2 and q1 − q2 = s then the
elements (L+)ke0 (k = 0, 1, ...s) form a basis of the IR of the su(2) algebra with the
spin s such that the dimension of the IR is s + 1. Therefore in the theory over a
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Galois field the case when q1 < q2 should be treated such that s = p + q1 − q2. IRs
with q1 < q2 have no analogs in standard theory and we will call them special massive
IRs.

It is well known (see e.g., Ref. [6]) that M05 = h1 + h2 is the AdS analog
of the energy operator. As follows from Eqs. (20) and (21), the operators (a′1, a

′
2, b
′)

reduce the AdS energy by two units. Therefore e0 is an analog of the state with the
minimum energy which can be called the rest state. For this reason we use m to
denote q1 + q2. In standard classification [6], the massive case is characterized by the
condition q2 > 1 and the massless one—by the condition q2 = 1. There also exist two
exceptional IRs discovered by Dirac [7] (Dirac singletons). They are characterized
by the conditions m = 1, s = 0 and m = 2, s = 1. In this section we consider the
massive case while the cases of singleton, massless and special massive IRs will be
considered in the next section.

As follows from the above remarks, the elements

enk = (A++)n(A−+)ke0 (28)

represent the minimal sp(2)×sp(2) vectors with the eigenvalues of the operators h1
and h2 equal to Q1(n, k) = q1 + n− k and Q2(n, k) = q2 + n+ k, respectively.

Consider the element A−−A++enk. In view of the properties of the A
operators mentioned above, this element is proportional to enk and therefore one
can write A−−A++enk = a(n, k)enk. One can directly verify that the actions of the
operators A++ and A−+ on the space of minimal sp(2)×sp(2) vectors are commutative
and therefore a(n, k) does not depend on k. A direct calculation gives

(A−−A++ − A++A−−)e(n, k) = {(Q2 − 1)[Q1 − 1)(Q1 +Q2)− (Q1 −Q2)] +

(Q1 +Q2 − 2)(
1

2
Q2

1 +
1

2
Q2

2 −Q1 − 2Q2 −
1

4
I2)}e(n, k) (29)

where Q1 ≡ Q1(n, k) and Q2 ≡ Q2(n, k). As follows from this expression,

a(n)− a(n− 1) = q1(q2 − 1)(m− 2) + 2n(q21 + q22 +

3q1q2 − 5q1 − 4q2 + 4) + 6n2(m− 2) + 4n3 (30)

Since b′e0 = 0 by construction, we have that a(−1) = 0 and a direct calculation shows
that, as a consequence of Eq. (30)

a(n) = (n+ 1)(m+ n− 2)(q1 + n)(q2 + n− 1) (31)

Analogously, one can write A+−A−+enk = b(k)enk and the result of a direct
calculation is

b(k) = −1

4
(Q1 − 2)(Q2 − 1)(2Q2

1 + 2Q2
2 − 8Q1 − 4Q2 − I2) + a(n− 1) (32)
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Then, as a consequence of Eqs. (27) and (31)

b(k) = (k + 1)(s− k)(q1 − k − 2)(q2 + k − 1) (33)

As follows from these expressions, in the massive case k can assume only
the values 0, 1, ...s and in standard theory n = 0, 1, ...∞. However, in the modular
case n = 0, 1, ...nmax where nmax is the first number for which the r.h.s. of Eq. (31)
becomes zero in Fp. Therefore nmax = p+ 2−m.

The full basis of the representation space can be chosen in the form

e(n1n2nk) = (a1”)n1(a2”)n2enk (34)

In standard theory n1 and n2 can be any natural numbers. However, as follows from
the results of Sect. 2, Eq. (20) and the properties of the A operators,

n1 = 0, 1, ...N1(n, k) n2 = 0, 1, ...N2(n, k)

N1(n, k) = p− q1 − n+ k N2(n, k) = p− q2 − n− k (35)

As a consequence, the representation is finite dimensional in agreement with the
Zassenhaus theorem [16] (moreover, it is finite since any Galois field is finite).

In the case of standard IR of the so(2,3) algebra, one can assume addi-
tionally that the representation space is supplied by a scalar product. The element
e0 can always be chosen such that (e0, e0) = 1 and then one can explicitly calculate
all the scalar products (e(n1n2nk), e(n1n2nk)). If the representation operators satisfy
the Hermiticity conditions L∗+ = L−, a

′∗
j = aj”, b

′∗ = b” and h∗j = hj then, as follows
from Eq. (22), the operators Mab are Hermitian as it should be. However, by analogy
with the discussion in Sect. 2, one can conclude that for modular representations in
a special case when the representation space is a space over Fp2 with p = 3 (mod 4),
the probabilistic interpretation can be (approximately) valid only if q1, q2 � p and
we consider only a subset of elements, which are linear combinations of the elements
e(n1n2nk) such that n1, n2, n, k � p and the coefficients are much less than p (see
Refs. [12, 13, 14] for a detailed discussion).

In standard Poincare and AdS theories there also exist IRs with negative
energies. They can be constructed by analogy with positive energy IRs. Instead of
Eq. (26) one can require the existence of the vector e′0 such that

aj”e
′
0 = b”e′0 = L−e

′
0 = 0 hje

′
0 = −qje′0 (e′0, e

′
0) 6= 0 (j = 1, 2) (36)

where the quantities q1, q2 are the same as for positive energy IRs. It is obvious
that positive and negative energy IRs are fully independent since the spectrum of
the operator M05 for such IRs is positive and negative, respectively. However, the
modular analog of a positive energy IR characterized by q1, q2 in Eq. (26), and the
modular analog of a negative energy IR characterized by the same values of q1, q2
in Eq. (36) represent the same modular IR. This is the crucial difference between
standard quantum theory and GFQT, and a proof is given below.
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Let e0 be a vector satisfying Eq. (26). Denote N1 = p−q1 and N2 = p−q2.
Our goal is to prove that the vector x = (a1”)N1(a2”)N2e0 satisfies the conditions (36),
i.e., x can be identified with e′0.

As follows from the definition of N1 and N2, the vector x is the eigenvector
of the operators h1 and h2 with the eigenvalues −q1 and −q2, respectively, and, in
addition, it satisfies the conditions a1”x = a2”x = 0. Let us prove that b”x = 0.
Since b” commutes with the aj”, we can write b”x in the form

b”x = (a1”)N1(a2”)N2b”e0 (37)

As follows from Eqs. (21) and (26), a′2b”e0 = L+e0 = 0 and b”e0 is the eigenvector of
the operator h2 with the eigenvalue q2 + 1. Therefore, b”e0 is the minimal vector of
the sp(2) IR which has the dimension p − q2 = N2. Therefore (a2”)N2b”e0 = 0 and
b”x = 0.

The next stage of the proof is to show that L−x = 0. As follows from Eq.
(21) and the definition of x,

L−x = (a1”)N1(a2”)N2L−e0 −N1(a1”)N1−1(a2”)N2b”e0 (38)

We have already shown that (a2”)N2b”e0 = 0, and therefore it suffices to prove that
the first term in the r.h.s. of Eq. (38) is equal to zero. As follows from Eqs. (21)
and (26), a′2L−e0 = b′e0 = 0, and L−e0 is the eigenvector of the operator h2 with the
eigenvalue q2 + 1. Therefore (a2”)N2L−e0 = 0 and the proof is completed.

In standard theory, negative energy IRs are associated with antiparticles
and their energy becomes positive after quantization. However, in GFQT the fact
that positive and negative energy states belong to the same IR implies that very no-
tion of particle and antiparticle is only approximate (see Refs. [14, 4] for a detailed
discussion). As shown in Ref. [14], a modular IR splits into independent IRs corre-
sponding to a particle and its antiparticle only in the approximation when at energies
of order p the so(2,3) symmetry is broken.

5 Massless particles, Dirac singletons and special

massive IRs

Those cases can be considered by analogy with the massive one. The case of Dirac
singletons is especially simple. As follows from Eqs. (31) and (33), if m = 1, s = 0
then the only possible value of k is k = 0 and the only possible values of n are n = 0, 1
while if m = 2, s = 1 then the only possible values of k are k = 0, 1 and the only
possible value of n is n = 0. This result does not depend on the value of p and
therefore it is valid in both, standard theory and GFQT. The only difference between
standard and modular cases is that in the former n1, n2 = 0, 1, ...∞ while in the latter
the quantities n1, n2 are in the range defined by Eq. (35).
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The singleton IRs are indeed exceptional since the value of n in them
does not exceed 1 and therefore the impression is that singletons are two-dimensional
objects, not three-dimensional ones as usual particles. However, the singleton IRs
have been obtained in the so(2,3) theory without reducing the algebra. Dirac has
entitled his paper [7] ”A Remarkable Representation of the 3 + 2 de Sitter Group”.
Below we argue that in GFQT the singleton IRs are even more remarkable than in
standard theory.

First of all, as noted above, in standard theory there exist independent
positive and negative IRs and the latter are associated with antiparticles. In particu-
lar, in standard theory there exist four singleton IRs - two IRs with positive energies
and the corresponding IRs with negative energies, which can be called antisingletons.
However, at the end of the preceding section we have proved that in GFQT one IR
contains positive and negative energy states simultaneously. This proof can be ap-
plied to the singleton IRs without any changes. As a consequence, in the modular
case there exist only two singleton IRs.

If m = 1, s = 0 then q1 = q2 = 1/2. In GFQT these relations should be
treated as q1 = q2 = (p+ 1)/2. Analogously, if m = 2, s = 1 then q1 = 3/2, q2 = 1/2
and in GFQT q1 = (p+3)/2, q2 = (p+1)/2. Therefore the values of q1 and q2 for the
singleton IRs are extremely large since they are of order p/2. As a consequence, the
singleton IRs do not contain states where all the quantum numbers are much less than
p. Since some of the quantum numbers are necessarily of order p, this is a natural
explanation of the fact that the singletons have not been observed. In addition, as
follows from the discussion in Sects. 2 and 4 (see also Refs. [12, 13, 14] for details)
the fact that some quantum numbers are of order p implies that the singletons cannot
be described in terms of the probabilistic interpretation.

Note also that if we consider the singleton IRs as modular analogs of
negative energy IRs then the singleton IRs should be characterized either by q1 = q2 =
−1/2 or by q1 = −3/2, q2 = −1/2. However, since in Galois fields −1/2 = (p− 1)/2
and −3/2 = (p − 3)/2, those values are very close to ones characterizing modular
analogs of positive energy IRs. As a consequence, there is no approximation when
singleton states can be characterized as particles or antiparticles.

The Rac IR contains only minimal sp(2) × sp(2) vectors with h1 = h2 =
(p+1)/2 and h1 = h2 = (p+3)/2 while the Di IR contains only minimal sp(2)×sp(2)
vectors with h1 = (p + 3)/2, h2 = (p + 1)/2 and h1 = (p + 1)/2, h2 = (p + 3)/2.
Hence it easily follows from Eq. (8) that the dimensions of these IRs are equal to

Dim(Rac) =
1

2
(p2 + 1) Dim(Di) =

1

2
(p2 − 1) (39)

Consider now the massless case. Note first that when q2 = 1, it follows
from Eqs. (31) and (33) that a(0) = 0 and b(0) = 0. Therefore A++e0 = A−+e0 = 0
and if the definition e(n, k) = (A++)n(A−+)ke0 is used for (n = 0, 1, ...) and (k =
0, 1, ...) then all the e(n, k) will be the null elements.
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We first consider the case when s 6= 0 and s 6= p−1. In that case we define
e(1, 0) not as A++e0 but as e(1, 0) = [b”(h1 − 1) − a1”L−]e0. A direct calculation
using Eq. (21) shows that when q2 = 1, this definition is legitimate since e(1, 0) is the
minimal sp(2)× sp(2) vector with the eigenvalues of the operators h1 and h2 equal to
2 + s and 2, respectively. With such a definition of e(1, 0), a direct calculation using
Eqs. (10) and (21) gives A−−e(1, 0) = b′e(1, 0) = s(s+ 1)e0 and therefore e(1, 0) 6= 0.
We now define e(n, 0) at n ≥ 1 as e(n, 0) = (A++)n−1e(1, 0). Then Eq. (29) remains
valid when n ≥ 1. Since A++b′e(1, 0) = s(s+ 1)A++e0 = 0, Eq. (30) remains valid at
n = 1, 2, ... and a(0) = 0. Hence we get

a(n) = n(n+ 1)(n+ s+ 1)(n+ s) (n ≥ 1) (40)

As a consequence, the maximal value of n in the modular case is nmax = p − 1 − s.
This result has been obtained in Ref. [17].

For analogous reasons, we now cannot define e(0, k) as (A−+)ke0. However,
if we define e(0, k) = (L−)ke0 then, as follows from the discussion at the end in Sec.
2, the elements e(0, k) (k = 0, 1, ...s) form a basis of the IR of the su(2) algebra with
the spin s. Therefore the new definition of e(0, k) is legitimate since e(0, k) is the
minimal sp(2) × sp(2) vector with the eigenvalues of the operators h1 and h2 equal
to 1 + s− k and 1 + k, respectively.

A direct calculation using Eqs. (10) and (21) gives that with the new
definition of e(0, k), A−−A++e(0, k) = b′A++e(0, k) = 0 and therefore A++e(0, k) = 0.
When 1 ≤ k ≤ s− 1, there is no way to obtain nonzero minimal sp(2)× sp(2) vectors
with the eigenvalues of the operators h1 and h2 equal to 1 + s− k+ n and 1 + k+ n,
respectively, when n > 0. However, when k = s, such vectors can be obtained by
analogy with the case k = 0. We define e(1, s) = [b”(h2 − 1) − a2”L+]e(0, s). Then
a direct calculation gives b′e(1, s) = s(s + 1)e(0, s) and therefore e(1, s) 6= 0. We
now define e(n, s) = (A++)n−1e(1, s) for n ≥ 1. Then by analogy with the above
discussion one can verify that if A−−A++e(n, s) = a(n)e(n, s) then a(n) for n ≥ 1 is
again given by Eq. (40) and therefore in the modular case the maximal value of n is
the same.

If s = 0 then the only possible value of k is k = 0 and for the vectors
e(n, 0) we have the same results as above. In particular, Eq. (40) is valid with s = 0.
When s = p−1, we can define e(n, 0) and e(n, s) as above but since s+1 = 0 (mod p),
we get that e(1, 0) = e(1, s) = 0. This is in agreement with the above discussion since
nmax = 0 when s = p− 1.

According to Standard Model (based on Poincare invariance), only mass-
less Weyl particles can be fundamental elementary particles in Poincare invariant the-
ory. Therefore a problem arises whether the above results can be treated as analogs of
Weyl particles in standard and modular versions of AdS invariant theory. In view of
the relation P µ = M4µ/2R noted in Sect. 1, the AdS mass m and the Poincare mass
mP are related as mP = m/2R. Since m = 2q2 + s, the corresponding Poincare mass
will be zero when R → ∞ not only when q2 = 1 but when q2 is any finite number.
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So a question arises why only the case q2 = 1 is treated as massless. In Poincare
invariant theory, Weyl particles are characterized not only by the condition that their
mass is zero but also by the condition that they have a definite helicity. In standard
case the minimum value of the AdS energy for massless IRs with positive energy is
Emin = 2 + s when n = 0. In contrast to the situation in Poincare invariant theory,
where massless particles cannot be in the rest state, the massless particles in the AdS
theory do have rest states and, as shown above, the value of the z projection of the
spin in such states can be −s,−s+ 2, ...s as usual. However, we have shown that for
any value of energy greater than Emin, when n 6= 0, the spin state is characterized
only by helicity, which can take the values either s when k = 0 or −s when k = s,
i.e. we have the same result as in Poincare invariant theory. Note that in contrast
with IRs of the Poincare and dS algebras, standard IRs describing particles in AdS
invariant theory belong to the discrete series of IRs and the energy spectrum in them
is discrete: E = Emin, Emin + 2, ...∞. Therefore, strictly speaking, rest states do not
have measure zero as in Poincare and dS invariant theories. Nevertheless, the prob-
ability that the energy is exactly Emin is extremely small and therefore the above
results show that the case q2 = 1 indeed describes AdS analogs of Weyl particles.

Consider now dimensions of massless IRs. If s = 0 then, as follows from
the above results, there exist only minimal sp(2)×sp(2) vectors with h1 = h2 = 1+n,
n = 0, 1, ...p − 1. Therefore, as follows from Eq. (8), the dimension of the massless
IR with s = 0 equals

Dim(s = 0) =
p−1∑
n=0

(p− n)2 =
1

6
p(p+ 1)(2p+ 1) (41)

If s = 1, there exist only minimal sp(2)× sp(2) vectors with (h1 = 2 + n, h2 = 1 + n)
and (h1 = 1 + n, h2 = 2 + n) where n = 0, 1, ...p− 2. Therefore

Dim(s = 1) = 2
p−2∑
n=0

(p− n)(p− n− 1) =
2

3
p(p− 1)(p+ 1) (42)

If s ≥ 2, there exist only minimal sp(2)×sp(2) vectors with (h1 = 1+s+n, h2 = 1+n),
(h1 = 1 + n, h2 = 1 + s + n) where n = 0, 1, ...p − s and the minimal sp(2) × sp(2)
vectors with (h1 = 1 + s− k, h2 = 1 + k) where k = 1, ...s− 1. Therefore, as follows
from Eq. (8)

Dim(s ≥ 2) = 2
p−s∑
n=0

(p− n)(p− n− s) +
s−1∑
k=1

(p− k)(p− s+ k) =

p

3
(2p2 − 3s2 + 1) +

1

2
s(s− 1)(s+ 1) (43)

As noted in Sec. 4, the case of special massive IRs corresponds to the
situation where q1 and q2 are represented by the numbers 0, 1, ..p − 1 and q1 < q2.
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This case can be investigated by analogy with massive IRs in Sec. 4. We will see
below that the only special massive IRs taking part in the decomposition of the tensor
product of singletons are those with q1 = 0. Then s = p − q2. If q2 = 2, 3, ...p − 1
then, as follows from Eq. (31), the quantum number n can take only the value n = 0.
If q2 = 1 then the special massive IR can also be treated as the massless IR with
s = p − 1. As noted above, in this case the quantity n also can take only the value
n = 0. Let Dim(q1, q2) be the dimension of the IR characterized by q1 and q2. Then,
as follows from Eq. (8)

Dim(0, q2) =
p−q2∑
k=0

(1 + p− q2− k)(1 + k) = (1 + p− q2)2 +
1

2
(p− q2)2(1 + p− q2) (44)

6 Semiclassical approximation and Poincare limit

As already noted, the Flato-Fronsdal result [8] poses a fundamental question of
whether only singletons can be true elementary particles. In particular one has to
understand why singletons have not been observed yet and why the photon is stable
and its decay into singletons has not been observed. These questions have been widely
discussed in the literature (see e.g. a review [18] and references therein) but, in our
opinion, the explanation of the above facts in standard theory (based on complex
numbers) encounters serious difficulties. In the present paper we consider singletons
from the point of view of a quantum theory over a Galois field (GFQT) but the
approach is applicable in standard theory (over the complex numbers) as well. As
already noted in the preceding sections, the properties of singletons in standard the-
ory and GFQT are considerably different. In Sect. 11 we argue that in GFQT the
singleton physics is even more interesting than in standard theory. However, since
there exists a wide literature on singleton properties in standard theory, in the present
section we discuss what conclusions can be made about semiclassical approximation
and Poincare limit for singletons in this theory.

The first step is to obtain expressions for matrix elements of representation
operators. Since spin is a pure quantum phenomenon, one might expect that in
semiclassical approximation it suffices to consider the spinless case. Then, as shown
in Sec. 4, the quantum number k can take only the value k = 0, the basis vectors of
the IR can be chosen as e(n1n2n) = (a1”)n1(a2”)n2en (compare with Eq. (34)) where
(see Eq. (6)) en = (A++)ne0. In the spinless case, q1 = q2 = m/2. A direct calculation
using Eqs. (20,21,25,26) gives the following expressions for the matrix elements:

h1e(n1n2n) = [Q+ 2n1]e(n1n2n) h2e(n1n2n) = [Q+ 2n2]e(n1n2n) (45)

a′1e(n1n2n) = n1[Q+ n1 − 1]e(n1 − 1, n2n) a1”e(n1n2n) = e(n1 + 1, n2n)

a′2e(n1n2n) = n2[Q+ n2 − 1]e(n1, n2 − 1, n) a2”e(n1n2n) = e(n1, n2 + 1, n) (46)
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b”e(n1n2n) = Q−2
Q−1n(m+ n− 3)e(n1 + 1, n2 + 1, n− 1) +

1
(Q−1)2 e(n1, n2, n+ 1) (47)

b′e(n1n2n) = Q−2
Q−1n(m+ n− 3)(Q+ n1 − 1)(Q+ n2 − 1)e(n1, n2, n− 1) +

n1n2

(Q−1)2 e(n1 − 1, n2 − 1, n+ 1) (48)

L+e(n1n2n) = Q−2
Q−1n(m+ n− 3)(Q+ n2 − 1)e(n1 + 1, n2, n− 1) +

n2

(Q−1)2 e(n1, n2 − 1, n+ 1) (49)

L−e(n1n2n) = Q−2
Q−1n(m+ n− 3)(Q+ n1 − 1)e(n1, n2 + 1, n− 1) +

n1

(Q−1)2 e(n1 − 1, n2, n+ 1) (50)

where Q = Q(n) = m/2 + n.
The basis elements e(n1n2n) are not normalized to one and their norm can

be calculated by using Eqs.(9,20,21,25,26):

||e(n1n2n)|| = F (n1n2n) = {n!(m−2)n[(
m

2
)n]3(

m

2
−1)nn1!n2!(

m

2
+n)n1(

m

2
+n)n2}1/2

(51)
By using this expression, Eqs. (45-50) can be rewritten in terms of the matrix ele-
ments of representation operators with respect to the normalized basis ẽ(n1n2n) =
e(n1n2n)/F (n1n2n)1/2.

Each element of the representation space can be written as

x =
∑
n1n2n

c(n1n2n)ẽ(n1n2n)

where c(n1n2n) can be called the wave function in the (n1n2n) representation. It is
normalized as ∑

n1n2n

|c(n1n2n)|2 = 1

In standard theory the quantum numbers n1 and n2 are in the range [0,∞). For
massive and massless particles the quantum number n also is in this range while,
as shown in the preceding section, the only possible values of n for the spinless Rac
singleton are n = 0, 1. By using Eqs. (45-51), one can obtain the action of the
representation operator on the wave function c(n1n2n):

h1c(n1n2n) = [m/2 + n+ 2n1]c(n1n2n) h2c(n1n2n) = [m/2 + n+ 2n2]c(n1n2n)(52)

a′1c(n1n2n) = [(n1 + 1)(m/2 + n+ n1)]
1/2c(n1 + 1, n2n)

a1”c(n1n2n) = [n1(m/2 + n+ n1 − 1)]1/2c(n1 − 1, n2n)

a′2c(n1n2n) = [(n2 + 1)(m/2 + n+ n2)]
1/2c(n1, n2 + 1, n)

a2”c(n1n2n) = [n2(m/2 + n+ n2 − 1)]1/2c(n1, n2 − 1, n) (53)
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b”c(n1n2n) = [n(m+n−3)(m/2+n+n1−1)(m/2+n+n2−1)
(m/2+n−1)(m/2+n−2) ]1/2c(n1, n2, n− 1) +

[ n1n2(n+1)(m+n−2)
(m/2+n)(m/2+n−1) ]

1/2c(n1 − 1, n2 − 1, n+ 1) (54)

b′c(n1n2n) = [ (n+1)(m+n−2)(m/2+n+n1)(m/2+n+n2)
(m/2+n)(m/2+n−1) ]1/2c(n1, n2, n+ 1) +

[ (n1+1)(n2+1)n(m+n−3)
(m/2+n−1)(m/2+n−2) ]1/2c(n1 + 1, n2 + 1, n− 1) (55)

L+c(n1n2n) = [ (n+1)(m+n−2)n1(m/2+n+n2)
(m/2+n)(m/2+n−1) ]1/2c(n1 − 1, n2, n+ 1) +

[ (n2+1)n(m+n−3)(m/2+n+n1−1)
(m/2+n−1)(m/2+n−2) ]1/2c(n1, n2 + 1, n− 1) (56)

L−c(n1n2n) = [n(m+n−3)(n1+1)(m/2+n+n2−1)
(m/2+n−1)(m/2+n−2) ]1/2c(n1 + 1, n2, n− 1) +

[n2(n+1)(m+n−2)(m/2+n+n1)
(m/2+n)(m/2+n−1) ]1/2c(n1, n2 − 1, n+ 1) (57)

Consider first the case of massive and massless particles. As noted in Sec.
1, the contraction to the Poincare invariant case can be performed as follows. If R
is a parameter with the dimension length and the operators Pµ (µ = 0, 1, 2, 3) are
defined as Pµ = Mµ4/2R then in the formal limit when R → ∞, Mµ4 → ∞ but
the ratio Mµ4/R remains finite, one gets the commutation relations of the Poincare
algebra from the commutation relations of the so(2,3) algebra. Therefore in situations
where the Poincare limit is valid with a high accuracy, the operators Mµ4 are much
greater than the other operators. The quantum numbers (m,n1, n2, n) should be very
large since in the formal limit R →∞, m/2R should become the standard Poincare
mass and the quantities (n1/2R, n2/2R, n/2R) should become continuous momentum
variables.

A typical form of the semiclassical wave function is

c(n1, n2, n) = a(n1, n2, n)exp[i(n1ϕ1 + n2ϕ2 + nϕ)]

where the amplitude a(n1, n2, n) has a sharp maximum at semiclassical values of
(n1, n2, n). Since the numbers (n1, n2, n) are very large, when some of them change by
one, the major change of c(n1, n2, n) comes from the rapidly oscillating exponent. As
a consequence, in semiclassical approximation each representation operator becomes
the operator of multiplication by a function and, as follows from Eqs. (22,52-57)

M04 = m+ 2(n1 + n2 + n) M12 = 2(n1 − n2) (58)

M10 = 2[n1(m/2 + n+ n1)]
1/2sinϕ1 − 2[n2(m/2 + n+ n2)]

1/2sinϕ2 (59)

M20 = 2[n1(m/2 + n+ n1)]
1/2cosϕ1 + 2[n2(m/2 + n+ n2)]

1/2cosϕ2 (60)
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M14 = −2[n1(m/2 + n+ n1)]
1/2cosϕ1 + 2[n2(m/2 + n+ n2)]

1/2cosϕ2 (61)

M24 = 2[n1(m/2 + n+ n1)]
1/2sinϕ1 + 2[n2(m/2 + n+ n2)]

1/2sinϕ2 (62)

M23 = 2 [n(m+n)]1/2

m/2+n
{[n1(m/2 + n+ n2)]

1/2cos(ϕ− ϕ1) +

[n2(m/2 + n+ n1)]
1/2cos(ϕ− ϕ2)} (63)

M31 = 2 [n(m+n)]1/2

m/2+n
{[n1(m/2 + n+ n2)]

1/2sin(ϕ− ϕ1)−

[n2(m/2 + n+ n1)]
1/2sin(ϕ− ϕ2)} (64)

M34 = 2 [n(m+n)]1/2

m/2+n
{[(m/2 + n+ n1)(m/2 + n+ n2)]

1/2cosϕ+

(n1n2)
1/2cos(ϕ− ϕ1 − ϕ2)} (65)

M30 = −2 [n(m+n)]1/2

m/2+n
{[(m/2 + n+ n1)(m/2 + n+ n2)]

1/2sinϕ−

(n1n2)
1/2sin(ϕ− ϕ1 − ϕ2)} (66)

We now consider what restrictions follow from the fact that in the Poincare
limit the operators Mµ4 (µ = 0, 1, 2, 3) should be much greater than the other opera-
tors. The first conclusion is that, as follows from Eq. (58), the quantum numbers n1

and n2 should be such that |n1 − n2| � n1, n2. Therefore in the main approximation
in 1/R we have that n1 ≈ n2. Then it follows from Eq. (66) that sinϕ should be
of order 1/R and hence ϕ ahould be close either to zero or to π. Then it follows
from Eqs. (63-62) that the operators Mµ4 will be indeed much greater than the other
operators if ϕ2 ≈ π − ϕ1 and in the main approximation in 1/R

M04 = m+ 2(2n1 + n) M14 = −4[n1(m/2 + n+ n1)]
1/2cosϕ1

M14 = 4[n1(m/2 + n+ n1)]
1/2sinϕ1 M34 = ±2[n(m+ n)]1/2 (67)

where M34 is positive if ϕ is close to zero and negative if ϕ is close to π. In this
approximation we have that M2

04−
∑3
i=1M

2
i4 = m2 which ensures that in the Poincare

limit we have the correct relation between the energy and momentum.
Consider now the case of the spinless Rac singleton. Then m = 1 and

the quantity n can take only the values 0 and 1. Since Eqs. (52-57) are exact,
we can use them in the given case as well. However, since the quantum number
n cannot be large, we now cannot consider the n dependence of the wave function
in semiclassical approximation. At the same time, if the numbers (n1, n2) are very
large, the dependence of the wave function on (n1, n2) still can be considered in
this approximation assuming that the wave function contains the rapidly oscillating
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exponent exp[i(n1ϕ1 + n2ϕ2)]. Hence Eqs. (58-62) remain valid but for calculating
the operators Ma3 (a = 0, 1, 2, 4) one can use the fact that Eqs. (54-57) can now be
written as

b”c(n1, n2, n) = 2(n1n2)
1/2{c(n1, n2, 0)δn1 + exp[−i(ϕ1 + ϕ2)]c(n1, n2, 1)δn0} (68)

b′c(n1, n2, n) = 2(n1n2)
1/2{c(n1, n2, 1)δn0 + exp[i(ϕ1 + ϕ2)]c(n1, n2, 0)δn1} (69)

L+c(n1, n2, n) = 2(n1n2)
1/2{exp(−iϕ1)c(n1, n2, 1)δn0 + exp(iϕ2)c(n1, n2, 0)δn1} (70)

L−c(n1, n2, n) = 2(n1n2)
1/2{exp(iϕ1)c(n1, n2, 0)δn1 + exp(−iϕ2)c(n1, n2, 1)δn0} (71)

where δ is the Kronecker symbol. Then the mean values of these operators can be
written as

< b” >= A{exp(iϕ) + exp[−i(ϕ+ ϕ1 + ϕ2)]} < b′ >=< b” >∗ (72)

< L+ >= A{exp[−i(ϕ+ ϕ1)] + exp[i(ϕ+ ϕ2)]} < L− >=< L+ >
∗ (73)

where ∑
n1,n2

2(n1n2)
1/2c(n1, n2, 1)∗c(n1, n2, 0) = Aexp(iϕ)

and we use ∗ to denote the complex conjugation. By analogy with the above discus-
sion, we conclude that the Poincare limit exists only if ϕ2 ≈ π − ϕ1 and ϕ is close
either to zero or π. Then

M04 ≈ 4n1 M14 ≈ −4n1cos(ϕ1) M24 ≈ 4n1sin(ϕ1) (74)

and the mean value of the operator M34 is much less than M14 and M24.
Consider now the case of the Di singleton. It is characterized by q1 = 3/2,

q2 = 1/2. Then, as shown in the preceding sections, s = 1, the quantum number n
can take only the value n = 0 and the quantum number k can take only the values
k = 0, 1. We denote e0 = e(n = 0, k = 0) and e1 = e(n = 0, k = 1). Then, as
shown in the preceding section, e1 = L−e0 and the basis of the IR in standard theory
consists of elements e0(n1, n2) = (a1”)n1(a2”)n2e0 and e1(n1, n2) = (a1”)n1(a2”)n2e1
(n1, n2 = 0, 1, ...∞).

As explained in the preceding section, e(n = 1, k = 0) should be defined as
[b”(h1−1)−a1”L−]e0 and e(n = 1, k = 1) should be defined as [b”(h2−1)−a2”L+]e1.
Since in the case of the Di singleton e(n = 1, k = 0) = e(n = 1, k = 1) = 0, it follows
from Eq. (13) that

L+e0 = L−e1 = 0 L−e0 = e1 L+e1 = e0 b”e0 = a1”e1 b”e1 = a2”e0 (75)

Now it follows from Eq. (21) that

b”e0(n1, n2) = e1(n1 + 1, n2) b”e1(n1, n2) = e0(n1, n2 + 1)

b′e0(n1, n2) = (n1 + 1)n2e1(n1, n2 − 1) b′e1(n1, n2) = n1(n2 + 1)e0(n1 − 1, n2)

L+e0(n1, n2) = n2e1(n1 + 1, n2 − 1) L+e1(n1, n2) = (n2 + 1)e0(n1, n2)

L−e0(n1, n2) = (n1 + 1)e1(n1, n2) L−e1(n1, n2) = n1e0(n1 − 1, n2 + 1) (76)
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As follows from Eqs. (9) and (13)

||e0(n1, n2)|| = (n1 + 1)!n2!(n2 + 1)1/2 ||e1(n1, n2)|| = n1!(n2 + 1)!(n1 + 1)1/2 (77)

Hence one can define the normalized basis elements ẽj(n1, n2) (j = 0, 1) and any
element in the representation space can be written as x =

∑1
j=0 cj(n1, n2)ẽj(n1, n2).

By analogy with the above discussion, one can show that a necessary condition for
the Poincare limit in semiclassical approximation is that the quantities (n1, n2) are
very large, n1 ≈ n2, the functions cj(n1, n2) contain a rapidly oscillating exponents
exp[i(n1ϕ1 + n2ϕ2)] and ϕ2 ≈ π − ϕ1. In this approximation one can obtain the
results (58-62) while calculating the operators Ma3 (a = 0, 1, 2, 4) can be performed
as follows.

One can represent the wave function as (c0(n1, n2), c1(n1, n2)) and then,
as follows from Eqs. (76) and (77)

b”(c0(n1, n2), c1(n1, n2)) ≈ n1(exp(−iϕ1)c1(n1, n2), exp(−iϕ2)c0(n1, n2))

b′(c0(n1, n2), c1(n1, n2)) ≈ n1(exp(iϕ2)c1(n1, n2), exp(iϕ1)c0(n1, n2))

L+(c0(n1, n2), c1(n1, n2)) ≈ n1(exp[−i(ϕ1 − ϕ2)]c1(n1, n2), c0(n1, n2))

L−(c0(n1, n2), c1(n1, n2)) ≈ n1(c1(n1, n2), exp[i(ϕ1 − ϕ2)]c0(n1, n2)) (78)

Now it follows from Eqs. (22) and (78) that the mean values of the operators Ma3

are given by

< M34 >≈ 2A[cos(ϕ− ϕ1) + cos(ϕ+ ϕ2)]

< M30 >≈ 2A[sin(ϕ− ϕ1)− sin(ϕ+ ϕ2)]

< M23 >≈ 2A[cos(ϕ− ϕ1 + ϕ2) + cosϕ]

< M31 >≈ 2A[sin(ϕ− ϕ1 + ϕ2)− sinϕ] (79)

where ∑
n1n2

n1c1(n1, n2)
∗c0(n1, n2) = Aexp(iϕ)

If ϕ2 ≈ π−ϕ1 then it is easy to see that the Poincare limit for < M23 > and < M31 >
exists if ϕ ≈ ϕ1 or ϕ ≈ ϕ1 + π. In that case the Poincare limit for < M34 > and
< M30 > exists as well and < M34 > disappears in the main approximation.

We have shown that if the operators Mab are defined by Eq. (22) then in
the Poincare limit the z component of the momentum is negligible for both, the Di and
Rac singletons. This result could be expected from Eq. (67) since for them neither
m nor n can be large numbers. As noted in the remark after Eq. (22), the definition
(22) is not unique and, in particular, any definition obtained from Eq. (22) by cyclic
permutation of the indices (1, 2, 3) is valid as well. Therefore we conclude that in
standard theory, the Di and Rac singletons have the property that in the Poincare
limit they are characterized by two independent components of the momentum, not
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three as usual particles. This is a consequence of the fact that for singletons only the
quantum numbers n1 and n2 can be very large.

The properties of singletons in the Poincare limit have been discussed
by several authors, and their conclusions are not in agreement with each other (a
detailed list of references can be found e.g. in Refs. [18, 19]). In particular, there are
statements that the Poincare limit for singletons does not exist or that in this limit
all the components of the four-momentum become zero. The above consideration
shows that the Poincare limit for singletons can be investigated in full analogy with
the Poincare limit for usual particles. In particular, the statement that the singleton
energy in the Poincare limit becomes zero is not in agreement with the fact that
each massless particle (for which the energy in the Poincare limit is not zero) can
be represented as a composite state of two singletons. The fact that the standard
singleton momentum can have only two independent components does not contradict
the fact that the momentum of a massless particle has three independent components
since, as noted above, the independent momentum components of two singletons can
be in different planes.

The following important remark is now in order. Our consideration pro-
ceeds only from the commutation relations (1). As discussed in Refs. [3, 4] and Sec.
1, these relations should be treated as a definition of the AdS symmetry on quantum
level. This definition is a must in any quantum AdS theory, regardless of whether
the theory involves local fields on the AdS space or does not involve the AdS space
at all. The goal of any quantum theory is to construct Hilbert spaces and operators
for a system under consideration and, in the case of IRs, such spaces and operators
have been described in Secs. 4 and 5. This is the maximal possible information for
describing a particle in quantum theory. In particular, this information does not in-
volve the AdS space. One might pose a question about the space-time description of
a particle in this approach. According to quantum theory, any physical quantity can
be discussed only in conjunction with the operator defining this quantity. In the given
case a problem arises of how one can construct position operators from the operators
Mab.

A well-known analogy is nonrelativistic quantum mechanics. Here a parti-
cle is described by an IR of the Galilei algebra, which can be implement in the Hilbert
space of functions ψ(p) depending on the momentum p, and the momentum operator
P is the operator of multiplication by p. Then the position operator r can be defined
as ih̄∂/∂p. At the same time, in quantum theory there is no operator corresponding
to time and the problem of how time should be understood on quantum level is dis-
cussed in a vast literature. It is also well known since the 1930s that when quantum
theory is combined with relativity, there is no operator having all the properties of
the position operator (see e.g. Ref. [20]). As a consequence, in relativistic and de
Sitter theories, a space-time description has a physical meaning only in semiclassical
approximation. In particular, local fields defined on Minkowski, dS or AdS spaces do
not have the probabilistic interpretation. Those fields are only auxiliary notions for
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constructing operators describing a system of interacting particles in QFT.

7 Tensor products of singleton IRs

We now return to the presentation when the properties of singletons in standard and
modular approaches are discussed in parallel. The tensor products of singleton IRs
can be defined by analogy with tensor products of sp(2) IRs discussed in Sec. 3. If

e(j)(n
(j)
1 , n

(j)
2 , n(j), k(j)) (j = 1, 2) are the basis elements of the IR for singleton j then

the basis elements in the representation space of the tensor product can be chosen as

e(n
(1)
1 , n

(1)
2 , n(1), k(1), n

(2)
1 , n

(2)
2 , n(2), k(2)) = e(1)(n

(1)
1 , n

(1)
2 , n(1), k(1))×

e(2)(n
(2)
1 , n

(2)
2 , n(2), k(2)) (80)

Each representation operator B is a sum of the corresponding operators for the sin-
gleton IRs, B = B(1) + B(2) such that the operator B(j) acts on the vectors e(j) as
in the IRs for singleton j while on the vectors e(j

′) (j′ 6= j) it acts as the identity
operator. In the case of the tensor product of singleton IRs of different types, we
assume that singleton 1 is Di and singleton 2 is Rac.

Consider a vector

e(q) =
q∑
i=0

c(i, q)e(1)(i, 0, 0, 0)× e(2)(q − i, 0, 0, 0) (81)

where the coefficients c(i, q) are given by Eq. (18) such that the q
(j)
0 should be replaced

by q
(j)
1 (j = 1, 2). Since h

(j)
2 e(j)(i, 0, 0, 0) = ((p + 1)/2)e(j)(i, 0, 0, 0) (j = 1, 2) then

the vector e(q) is the eigenvector of the operator h2 = h
(1)
2 + h

(2)
2 with the eigenvalue

q2 = 1 and satisfies the condition a′2e(q) = 0 where a′2 = a
(1)′

2 + a
(2)′

2 . As follows

from the results of Sec. 3, e(q) is the eigenvector of the operator h1 = h
(1)
1 + h

(2)
1

with the eigenvalue q1 = q
(1)
1 + q

(2)
1 + 2q and satisfies the condition a′1e(q) = 0 where

a′1 = a
(1)′

1 +a
(2)′

1 . It is obvious that the value of q1 equals 3+2q for the tensor product
Di ×Di, 2 + 2q for the tensor product Di × Rac and 1 + 2q for the tensor product
Rac×Rac.

As follows from Eqs. (21) and (34), in the case of IRs

b′e(n1n2nk) = [(a1”)n1(a2”)n2b′ + n1(a1”)n1−1(a2”)n2L+ +

n2(a1”)n1(a2”)n2−1L− + n1n2(a1”)n1−1(a2”)n2−1b”]e(0, 0, n, k)

L+e(n1n2nk) = [(a1”)n1(a2”)n2L+ + n2(a1”)n1(a2”)n2−1b”]e(0, 0, n, k) (82)

Therefore, e(q) satisfies the conditions b′e(q) = L+e(q) = 0 where b′ = b(1)
′
+ b(2)

′
and

L+ = L
(1)
+ + L

(2)
+ . Hence, e(q) is an analog of the vector e0 in Eq. (26) and generates

an IR corresponding to the quantum numbers (q1, q2 = 1).
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We conclude that the tensor product of singleton IRs contains massless
IRs corresponding to q1 = q

(1)
1 + q

(2)
1 + 2q. As follows from the results of Sect. 3 (see

the remark after Eq. (18)), q can take the values 0, 1, ..., p−q(1)1 . Therefore Rac×Rac
contains massless IRs with s = 0, 2, 4, ..., (p−1), Di×Rac contains massless IRs with
s = 1, 3, 5, ...(p − 2) and Di × Di contains massless IRs with s = 2, 4, ...(p − 1). In
addition, as noted in Ref. [8]), Di×Di contains a spinless massive IR corresponding
to q1 = q2 = 2. This question will be discussed in Sec. 10

Our next goal is to investigate whether or not all those IRs give a complete
decomposition of the corresponding tensor products. For example, as follows from Eq.
(39), for the product Rac× Rac this would be the case if the sum

∑(p−1)/2
k=0 Dim(2k)

equals (p2 + 1)2/4 = p4/4 + O(p2). However, as follows from Eqs. (41) and (43),
this sum can be easily estimated as 11p4/48 + O(p3) and hence, in contrast to the
Flato-Fronsdal result in standard theory, in the modular case the decomposition of
Rac × Rac contains not only massles IRs. Analogously, the sum of dimensions of
massless IRs entering into the decompositions of Di × Rac and Di × Di also can
be easily estimated as 11p4/48 + O(p3) what is less than p4/4 + O(p2). The reason
is that in the modular case the decompositions of the tensor products of singletons
contain not only massles IRs but also special massive IRs. We will not investigate
the modular analog of the Flato-Fronsdal theorem [8] but concentrate our efforts on
finding a full solution of the problem in the supersymmetric case.

8 Modular IRs of the osp(1,4) superalgebra

If one accepts supersymmetry then the results on modular IRs of the so(2,3) algebra
can be generalized by considering modular IRs of the osp(1,4) superalgebra. Rep-
resentations of the osp(1,4) superalgebra have several interesting distinctions from
representations of the Poincare superalgebra. For this reason we first briefly mention
some well known facts about the latter representations (see e.g Ref. [21] for details).

Representations of the Poincare superalgebra are described by 14 oper-
ators. Ten of them are the well known representation operators of the Poincare
algebra—four momentum operators and six representation operators of the Lorentz
algebra, which satisfy the well known commutation relations. In addition, there
also exist four fermionic operators. The anticommutators of the fermionic opera-
tors are linear combinations of the momentum operators, and the commutators of
the fermionic operators with the Lorentz algebra operators are linear combinations
of the fermionic operators. In addition, the fermionic operators commute with the
momentum operators.

From the formal point of view, representations of the osp(1,4) superalge-
bra are also described by 14 operators — ten representation operators of the so(2,3)
algebra and four fermionic operators. There are three types of relations: the operators
of the so(2,3) algebra commute with each other as usual (see Sec. 4), anticommuta-
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tors of the fermionic operators are linear combinations of the so(2,3) operators and
commutators of the latter with the fermionic operators are their linear combinations.
However, in fact representations of the osp(1,4) superalgebra can be described exclu-
sively in terms of the fermionic operators. The matter is as follows. In the general
case the anticommutators of four operators form ten independent linear combinations.
Therefore, ten bosonic operators can be expressed in terms of fermionic ones. This is
not the case for the Poincare superalgebra since the Poincare algebra operators are
obtained from the so(2,3) one by contraction. One can say that the representations
of the osp(1,4) superalgebra is an implementation of the idea that supersymmetry is
the extraction of the square root from the usual symmetry (by analogy with the well
known treatment of the Dirac equation as a square root from the Klein-Gordon one).

We use (d′1, d
′
2, d1”, d2”) to denote the fermionic operators of the osp(1,4)

superalgebra. They should satisfy the following relations. If (A,B,C) are any
fermionic operators, [...,...] is used to denote a commutator and {..., ...} to denote an
anticommutator then

[A, {B,C}] = F (A,B)C + F (A,C)B (83)

where the form F (A,B) is skew symmetric, F (d′j, dj”) = 1 (j = 1, 2) and the other
independent values of F (A,B) are equal to zero. The fact that the representation of
the osp(1,4) superalgebra is fully defined by Eq. (83) and the properties of the form
F (., .), shows that osp(1,4) is a special case of the superalgebra.

We can now define the so(2,3) generators as follows:

b′ = {d′1, d′2} b” = {d1”, d2”} L+ = {d′2, d1”} L− = {d′1, d2”}
a′j = (d′j)

2 aj” = (dj”)2 hj = {d′j, dj”} (j = 1, 2) (84)

Then by using Eq. (83) and the properties of the form F (., .), one can show by direct
calculations that so defined operators satisfy the commutation relations (10,20,21).
This result can be treated as a fact that the operators of the so(2,3) algebra are not
fundamental, only the fermionic operators are.

By analogy with the construction of IRs of the osp(1,4) superalgebra in
standard theory [11], we require the existence of the generating vector e0 satisfying
the conditions :

d′je0 = d′2d1”e0 = 0 d′jdj”e0 = qje0 (j = 1, 2) (85)

These conditions are written exclusively in terms of the d operators. As follows from
Eq. (84), they can be rewritten as (compare with Eq. (26))

d′je0 = L+e0 = 0 hje0 = qje0 (j = 1, 2) (86)

The full representation space can be obtained by successively acting by the fermionic
operators on e0 and taking all possible linear combinations of such vectors.
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We use E to denote an arbitrary linear combination of the vectors
(e0, d1”e0, d2”e0, d2”d1”e0). Our next goal is to prove a statement analogous to that
in Ref. [11]:

Statement 1: Any vector from the representation space can be represented
as a linear combination of the elements O1O2...OnE where n = 0, 1, ... and Oi is an
operator of the so(2,3) algebra.

The first step is to prove a simple
Lemma: If D is any fermionic operator then DE is a linear combination

of elements E and OE where O is an operator of the so(2,3) algebra.
The proof is by a straightforward check using Eqs. (83-86). For example,

d1”(d2”d1”e0) = {d1”, d2”}d1”e0 − d2”a1”e0 = b”d1”e0 − a1”d2”e0

To prove Statement 1 we define the height of a linear combination of the
elements O1O2...OnE as the maximum sum of powers of the fermionic operator in
this element. For example, since each operator of the so(2,3) algebra is composed
of two fermionic operator, the height of the element O1O2...OnE equals 2n + 2 if E
contains d2”d1”e0, equals 2n + 1 if E does not contain d2”d1”e0 but contains either
d1”e0 or d2”e0 and equals 2n if E contains only e0.

We can now prove Statement 1 by induction. The elements with the
heights 0, 1 and 2 obviously have the required form since, as follows from Eq. (84),
d1”d2”e0 = b”e0−d2”d1”e0. Let us assume that Statement 1 is correct for all elements
with the heights ≤ N . Every element with the height N + 1 can be represented as
Dx where x is an element with the height N . If x = O1O2...OnE then by using
Eq. (83) we can represent Dx as Dx = O1O2...OnDE + y where the height of the
element y is N − 1. As follows from the induction assumption, y has the required
form, and, as follows from Lemma, DE is a linear combination of the elements E and
OE. Therefore Statement 1 is proved.

As follows from Eqs. (83) and (84),

[d′j, hj] = d′j [dj”, hj] = −dj” [d′j, hl] = [dj”, hl] = 0 (j, l = 1, 2 j 6= l) (87)

It follows from these expressions that if x is such that hjx = αjx (j = 1, 2) then d1”x
is the eigenvector of the operators hj with the eigenvalues (α1 + 1, α2), d2”x - with
the eigenvalues (α1, α2 + 1), d′1x - with the eigenvalues (α1 − 1, α2), and d′2x - with
the eigenvalues α1, α2 − 1.

By analogy with the case of IRs of the so(2,3) algebra (see Sec. 4), we
assume that q1 and q2 are represented by the numbers 0, 1, ...p− 1. We first consider
the case when q2 ≥ 1 and q1 ≥ q2. We again use m to denote q1 + q2 and s to denote
q1 − q2. We first assume that m 6= 2 and s 6= p − 1. Then Statement 1 obviously
remains valid if we now assume that E contains linear combinations of (e0, e1, e2, e3)
where

e1 = d1”e0 e2 = [d2”−
1

s+ 1
L−d1”]e0
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e3 = (d2”d1”e0 −
q1 − 1

m− 2
b” +

1

m− 2
a1”L−)e0 (88)

As follows from Eqs. (83-87), e0 satisfies Eq. (26) and e1 satisfies the same
condition with q1 replaced by q1 + 1. We see that the representation of the osp(1,4)
superalgebra defined by Eq. (86) necessarily contains at least two IRs of the so(2,3)
algebra characterized by the values of the mass and spin (m, s) and (m + 1, s + 1)
and the generating vectors e0 and e1, respectively.

As follows from Eqs. (83-87), the vectors e2 and e3 satisfy the conditions

h1e2 = q1e2 h2e2 = (q2 + 1)e2 h1e3 = (q1 + 1)e3 h2e3 = (q2 + 1)e3

a′1ej = a′2ej = b′ej = L+ej = 0 (j = 2, 3) (89)

and therefore (see Eq. (26)) they will be generating vectors of IRs of the so(2,3)
algebra if they are not equal to zero.

If s = 0 then, as follows from Eqs. (83,84,88), e2 = 0. In the general case,
as follows from these expressions,

d′1e2 =
1− q2
s+ 1

L−e0 d′2e2 =
s(q2 − 1)

s+ 1
e0 (90)

Therefore e2 is also a null vector if e0 belongs to the massless IR (with q2 = 1) while
e2 6= 0 if s 6= 0 and q2 6= 1. As follows from direct calculation using Eqs. (83,84,88)

d′1e3 =
m− 1

m− 2
[L−d1”− (2q2 + s− 1)d2”]e0 d′2e3 = (q2 −

q1 − 1

m− 2
)e0 (91)

If q2 = 1 then d′1e3 is proportional to e2 (see Eq. (88)) and hence d′1e3 = 0. In this
case q1 − 1 = m − 2 and hence d′2e3 = 0. Therefore we conclude that e3 = 0. It is
also clear from Eq. (91) that e3 = 0 if m = 1, s = 0, i.e. when e0 is the generating
vector of the Rac singleton. In all other cases e3 6= 0.

Consider now the case m = 2. If s = 0 then q1 = q2 = 1. The condition
e2 = 0 is still valid for the same reasons as above but if e3 is defined as [d2”, d1”]e0/2
then e3 is the minimal sp(2)× sp(2) vector with h1 = h2 = 2 and, as a result of direct
calculations using Eqs. (83,84,88)

d′1e3 =
1

2
(1− 2q1)d2”e0 d′2e3 =

1

2
(2q2 − 1)e0 (92)

Hence in this case e3 6= 0 and the IR of the osp(1,4) superalgebra corresponding to
(q1, q2) = (1, 1) contains IRs of the so(2,3) algebra corresponding to (1, 1), (2, 1) and
(2, 2). Therefore this IR of the osp(1,4) superalgebra should be treated as massive
rather than massless.

At this point the condition that q1 and q2 are taken modulo p has not been
explicitly used and, as already mentioned, our considerations are similar to those in
Ref. [11]. Therefore when q1 ≥ q2, modular IRs of the osp(1,4) superalgebra can be
characterized in the same way as conventional IRs [11, 10]:
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• If q2 > 1 and s 6= 0 (massive IRs), the osp(1,4) supermultiplets contain four
IRs of the so(2,3) algebra characterized by the values of the mass and spin
(m, s), (m+ 1, s+ 1), (m+ 1, s− 1), (m+ 2, s).

• If q2 ≥ 1 and s = 0 (collapsed massive IRs), the osp(1,4) supermultiplets contain
three IRs of the so(2,3) algebra characterized by the values of the mass and spin
(m, s), (m+ 1, s+ 1), (m+ 2, s).

• If q2 = 1 and s = 1, 2, ...p − 2 (massless IRs) the osp(1,4) supermultiplets
contains two IRs of the so(2,3) algebra characterized by the values of the mass
and spin (2 + s, s), (3 + s, s+ 1).

• Dirac supermultiplet containing two Dirac singletons (see Section 5).

The first three cases have well known analogs of IRs of the super-Poincare
algebra (see e.g., Ref. [21]) while there is no super-Poincare analog of the Dirac
supermultiplet.

Since the space of IR of the superalgebra osp(1,4) is a direct sum of spaces
of IRs of the so(2,3) algebra, for modular IRs of the osp(1,4) superalgebra one can
prove results analogous to those discussed in the preceding sections. In particular,
one modular IR of the osp(1,4) algebra is a modular analog of both standard IRs
of the osp(1,4) superalgebra with positive and negative energies. This implies that
one modular IR of the osp(1,4) superalgebra contains both, a superparticle and its
anti-superparticle.

At the same time, the cases when q1 < q2 (special massive IRs) have
no analogs in standard theory. We will see below that the decomposition of the
supersingleton tensor product can contain only special massive IRs of the osp(1,4)
superalgebra with q1 = 0. In this case we have that d′1d

”
1e0 = q1e0 = 0, d′2d

”
1e0 =

L+e0 = 0 and hence d”1e0 = 0. Since L+d
”
2e0 = d”1e0 = 0 and d′2d

”
2e0 = q2e0, the vector

d”2e0 is not zero and if e0 is the generating vector for the IR of the so(2,3) algebra
with (q1 = 0, q2) then d”2e0 is the generating vector for the IR of the so(2,3) algebra
with (0, q2 + 1). The IR of the osp(1,4) superalgebra does not contain other IRs of
the so(2,3) algebra since d”2d

”
1e0 = 0 and d”1d

”
2e0 = (d”1d

”
2 + d”2d

”
1)e0 = b”e0.

By analogy with Sect. 5, we use SDim(s) to denote the dimension of the
IR of the osp(1,4) superalgebra in the massless case with the spin s and SDim(q1, q2)
to denote the dimension of the IR of the osp(1,4) superalgebra characterized by the
quantities q1 and q2. Then as follows from the above discussion

SDim(0, q2) = Dim(0, q2) +Dim(0, q2 + 1) (q2 = 1, 2, ...p− 1)

SDim(s) = Dim(s) +Dim(s+ 1) (s = 1, 2, ...p− 2)

SDim(1, 1) = Dim(1, 1) +Dim(2, 1) +Dim(2, 2) (93)

and Dim(p− 1) = Dim(0, 1).
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9 Supersingleton IR

In this section we consider the supersingleton IR exclusively in terms of the fermionic
operators without decomposing the IR into the Di and Rac IRs. As a preparatory step,
we first consider IRs of a simple superalgebra generated by two fermionic operators
(d′, d”) and one bosonic operator h such that

h = {d′, d”} [h, d′] = −d′ [h, d”] = d” (94)

Here the first expression shows that, by analogy with the osp(1,4) superalgebra, the
relations (94) can be formulated only in terms of the fermionic operators.

Consider an IR of the algebra (94) generated by a vector e0 such that

d′e0 = 0 d′d”e0 = q0e0 (95)

and define en = (d”)ne0. Then d′en = a(n)en−1 where, as follows from Eq. (95),
a(0) = 0, a(1) = q0 and a(n) = q0 +n− 1− a(n− 1). It is easy to prove by induction
that

a(n) =
1

2
{(q0 −

1

2
)[1− (−1)n] + n} (96)

The maximum possible value of n can be found from the condition that a(nmax) 6=
0, a(nmax + 1) = 0. In the special case of the supersingleton, we will be interested in
the case when q0 = (p + 1)2. Then, as follows from Eq. (96), a(n) = n/2. Therefore
nmax = p − 1 and the dimension of the IR is p. In the general case, if q0 6= 0 then
a(n) = 0 if n = 2p+ 1− 2q0 and the dimension of the IR is D(q0) = 2p+ 1− 2q0.

Consider now the supersingleton IR. Let x = (d”1d
”
2 − d”2d

”
1)e0. Then,

as follows from Eq. (83), d′1x = (2q1 − 1)d”2e0 and d′2x = (1 − 2q2)d
”
1e0. Since

q1 = q2 = (p + 1)/2 we have that d′1x = d′2x = 0 and therefore x = 0. Hence the
actions of the operators d”1 and d”2 on e0 commute with each other. If n is even then
d”1(d

”
2)
ne0 = (d”2)

nd”1e0 as a consequence of Eq. (83) and if n is odd then d”1(d
”
2)
ne0 =

(d”2)
n−1d”1d

”
2e0 = (d”2)

nd”1e0 in view of the fact that x = 0. Analogously one can prove
that d”2(d

”
1)
ne0 = (d”1)

nd”2e0. We now can prove that d”1(d
”
2)
n(d”1)

ke0 = (d”2)
n(d”1)

k+1e0.
Indeed, if n is even, this is obvious while if n is odd then

d”1(d
”
2)
n(d”1)

ke0 = (d”2)
n−1d”1d

”
2(d

”
1)
ke0 = (d”2)

n−1(d”1)
k+1d”2e0 = (d”2)

n(d”1)
k+1e0

and analogously d”2(d
”
1)
n(d”2)

ke0 = (d”1)
n(d”2)

k+1e0. Therefore the supersingleton IR
is distinguished among other IRs of the osp(1,4) superalgebra by the fact that the
operators d”1 and d”2 commute in the representation space of this IR. Hence the basis
of the representation space can be chosen in the form e(nk) = (d”1)

n(d”2)
ke0. As a

consequence of the above consideration, n, k = 0, 1, ...p− 1 and the dimension of the
IR is p2 in agreement with Eq. (39).
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10 Tensor product of supersingleton IRs

We first consider the tensor product of IRs of the superalgebra (94) with q0 = (p+1)/2.
It can be defined as follows. The representation space of the tensor product consists
of all linear combinations of elements x(1) × x(2) where x(j) is an element of the
representation space for the IR j (j = 1, 2). The representation operators of the tensor
product are linear combinations of the operators (d′, d”) where d′ = d(1)

′
+ d(2)

′
and

d” = d(1)” + d(2)”. Here d(j)
′

and d(j)” mean the operators acting in the representation
spaces of IRs 1 and 2, respectively. We also assume that if d(j) is some of the d-
operators for the IR j then {d(1), d(2)} = 0.

Let e
(j)
0 be the generating vector for IR j and e

(j)
i = (d(j)”)ie

(j)
0 . Consider

the following element of the representation space of the tensor product

e(k) =
k∑
i=0

c(i)(e
(1)
i × e

(2)
k−i) (97)

where c(i) is some function. This element will be the generating vector of the IR of
the superalgebra (94) if d′e(q) = 0. As follows from the above results and Eq. (97)

d′e(q) =
1

2

k∑
i=1

ic(i)(e
(1)
i−1 × e

(2)
k−i) +

1

2

k−1∑
i=0

(−1)i(k − i)c(i)(e(1)i × e
(2)
k−i−1) (98)

Therefore d′e(k) = 0 is satisfied if k = 0 or

c(i+ 1) = (−1)i+1k − i
i+ 1

c(i) i = 0, 1, ...k − 1 (99)

when k 6= 0. As follows from this expression, if c(0) = 1 then

c(i) = (−1)
i(i+1)

2 Ci
k (100)

where Ci
k = k!/i!(k − i)! is the binomial coefficient. As follows from Eq. (96), the

possible values of k are 0, 1, ...p − 1 and, as follows from Eq. (97), he(k) = q0e(k)
where q0 = 1 + k. The fact that the tensor product is fully decomposable into IRs
with the different values of k follows from the relation

∑p
q0=1D(q0) = p2.

The tensor product of the supersingleton IRs can be defined as follows.
The representation space of the tensor product consists of all linear combinations
of elements x(1) × x(2) where x(j) is an element of the representation space for the
supersingleton j (j = 1, 2). The fermionic operators of the representation are linear

combinations of the operators (d′1, d
′
2, d1”, d2”) where d′1 = d

(1)′

1 +d
(2)′

1 and analogously

for the other operators. Here d
(j)′

k and d
(j)”
k (k = 1, 2) mean the operators d′k and dk”

acting in the representation spaces of supersingletons 1 and 2, respectively. We also
assume that if d(j) is some of the d-operators for supersingleton j then {d(1), d(2)} = 0.
The action of the bosonic operators in the tensor product can be defined by Eq. (84).
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Let e
(j)
0 be the generating vector for supersingleton j (see Eq. (86)) and

e0 = e
(1)
0 × e

(2)
0 . Consider the following element of the representation space of the

tensor product:

x(k1, k2) =
k1∑
i=0

k2∑
j=0

(−1)[
i(i+1)

2
+

j(j+1)
2

+k1j]Ci
k1
Cj
k2

(d
(1)”
1 )i(d

(2)”
1 )k1−i(d

(1)”
2 )j(d

(1)”
2 )k2−je0 (k1, k2 = 0, 1, ...p− 1) (101)

By using Eq. (83) and the results of this section, one can explicitly verify that all the
x(k1, k2) are the nonzero vectors and

d′1x(k1, k2) = d′2x(k1, k2) = 0 d′2d
”
1x(k1, k2) = x(k1 + 1, k2 − 1) (102)

Since the e
(j)
0 (j = 1, 2) are the generating vectors of the IRs of the osp(1,4)

superalgebra with (q1, q2) = ((p + 1)/2, (p + 1)/2), it follows from Eq. (85) that
x(k1, k2) is the generating vector of the IRs of the osp(1,4) superalgebra with (q1, q2) =
(1 + k1, 1 + k2) if d′2d

”
1x(k1, k2) = 0. Therefore, as follows from Eq. (102), this is the

case if k2 = 0. Hence the tensor product of the supersingleton IRs contains IRs of the
osp(1,4) algebra corresponding to (q1, q2) = (1 + k1, 1) (k1 = 0, 1, ...p− 1). As noted
in Sect. 8, the case (0, 1) can be treated either as the massless IR with s = p − 1
or as the special massive IR; the case (1, 1) can be treated as the massive IR of the
osp(1,4) superalgebra and the cases when k1 = 1, ...p − 2 can be treated as massless
IRs with s = k1.

The results of standard theory follow from the above results in the formal
limit p → ∞. Therefore in standard theory the decomposition of tensor product
of supersingletons contains the IRs of the osp(1,4) superalgebra corresponding to
(q1, q2) = (1, 1), (2, 1), ...(∞, 1) in agreement with the results obtained by Flato and
Fronsdal [8] and Heidenreich [9].

As noted in Sect. 7, the Flato-Fronsdal result for the tensor product
Di×Di is that it also contains a massive IR corresponding to q1 = q2 = 2. In terms
of the fermionic operators this result can be obtained as follows. If y = (d

(1)”
1 d

(2)”
2 −

d
(1)”
2 d

(2)”
1 )e0 then, as follows from Eqs. (83) and (84),

h1y = h2y = 2y L+y = L−y = 0 d
(1)′

1 y =
p+ 1

2
d
(2)”
2 e0 d

(2)′

1 y =
p+ 1

2
d
(1)”
2 e0

d
(1)′

2 y = −p+ 1

2
d
(2)”
1 e0 d

(2)′

2 y = −p+ 1

2
d
(1)”
1 e0 (103)

Since a′j = (d′j)
2 for j = 1, 2 (see Eq. (84)), it follows from these expressions that

a′1y = a′2y = 0, i.e. y indeed is the generating vector for the IR of the so(2,3) algebra
characterized by q1 = q2 = 2. However, y is not a generating vector for any IR of the
osp(1,4) superalgebra since it does not satisfy the condition d′1y = d′2y = 0.

The vector x(k1, k2) defined by Eq. (101) becomes the null vector when
k1 = p. Indeed, since Ci

k1
= k1!/[i!(k1 − i)!], the sum over i in Eq. (101) does
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not contain terms with i 6= 0 and i 6= p. At the same time, if i = 0 or i = p
the corresponding terms are also the null vectors since, as follows from the results
of the preceding section, (d′1)

pe0 = (d′2)
pe0 = 0. It is obvious that this result is

valid only in the modular case and does not have an analog in standard theory.
Therefore, as follows from Eq. (102), the decomposition of the tensor products of
two supersingletons also contains IRs of the osp(1,4) superalgebra characterized by
(q1, q2) = (0, 0), (0, 1), (0, 2), ...(0, p− 1).

We have shown that the decomposition of the tensor products of two su-
persingletons contains IRs of the osp(1,4) superalgebra characterized by the following
values of (q1, q2):

(0, 0), (0, 1), (0, 2), ...(0, p− 1), (1, 1), (2, 1), ...(p− 1, 1)

The question arises whether this set of IRs is complete, i.e. the decomposition of
the tensor products of two supersingletons does not contain other IRs of the osp(1,4)
superalgebra. Since the dimension of the supersigleton IR is p2 (see the preceding
section), this is the case if

p−1∑
k=0

SDim(0, k) +
p−1∑
k=1

SDim(1, k) = p4 (104)

It is obvious that SDim(0, 0) = 1 since the IR characterized by (q1, q2) = (0, 0) is
such that all the representation operators acting on the generating vector give zero.
Therefore, as follows from Eq. (93), the condition (104) can be rewritten as

2 +Dim(0) +Dim(2, 2) + 2
p−2∑
s=1

Dim(s) + 2
p−1∑
q2=1

Dim(0, q2) = p4 (105)

since Dim(1, 1) = Dim(0). The expressions for Dim(s) and Dim(0, q2) are given in
Eqs. (41-44) and hence the only quantity which remains to be calculated is Dim(2, 2).

The IR of the so(2,3) algebra characterized by (q1, q2) = (2, 2) is the
massive IR with m = 4 and s = 0. Therefore, as follows from the results of Sect. 4,
the quantity k in Eq. (28) can take only the value k = 0 and the quantity n can take
the values 0, 1, ...nmax where nmax = p− 2. Hence, as follows from Eqs. (8) and (35)

Dim(2, 2) =
p−2∑
n=0

(p− 1− n)2 =
1

6
p(p− 1)(2p− 1) (106)

The validity of Eq. (105) now follows from Eqs. (41-44,106).
The main result of the present paper can now be formulated as follows:
In a quantum theory over a Galois field, the tensor product of two super-

singletons is fully decomposable into the following IRs of the osp(1,4) superalgebra:

• Massive IR characterized by (q1 = 1, q2 = 1)
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• Massless IRs characterized by (q1 = 2, ...p− 1, q2 = 1)

• Special massive IRs characterized by (q1 = 0, q2 = 0, 1, ...p− 1)

and the multiplicity of each IR in the decomposition is equal to one.

11 Discussion

As it has been noted throughout the paper, the seminal result by Flato and Fronsdal
[8] poses a fundamental problem of whether only Dirac singletons can be true ele-
mentary particles. In this case one has to answer the questions a) and b) in Sec. 1.
In the literature, a typical explanations of a) are that singletons are not observable
because they cannot be considered in the Poincare limit or because in this limit the
singleton four-momentum becomes zero or because the singleton field lives on the
boundary of the AdS bulk or as a consequence of other reasons. As shown in Sec.
6, semiclassical approximations for singletons in the Poincare limit can be discussed
in full analogy with the case of massive and massless particles. As a result, in the
general case the energy of singletons in the Poincare limit is not zero but, in contrast
to the case of usual particles, singletons can have only two independent components
of standard momentum, not three as usual particles. A problem arises about whether
such objects can be detected by standard devices, whether they have a coordinate
description etc. At the same time, in standard theory there is no natural explanation
of b).

In Refs. [12, 13] we have proposed a new approach to quantum theory
where Hilbert spaces are replaced by spaces over a Galois field, and operators of
physical quantities become operators acting in such spaces. We call this approach a
quantum theory over a Galois field (GFQT). A detailed motivation of this approach
can be found in Ref. [14]. We believe that there are several reasons of why GFQT
is a more natural and physical approach to quantum theory than standard one (see
Refs. [14, 4]).

For any new theory there should exist a correspondence principle describ-
ing conditions when the new and old theories give close predictions. In the given case,
standard theory can be considered as a formal limit of GFQT when the characteristic
p of the Galois field in GFQT becomes infinitely large. In the case of dS or AdS
theories this implies that GFQT and standard theory give close predictions when dS
or AdS energies, momenta and angular momenta are much less than p (note that all
those quantities are dimensionless). A rough estimation of p in the framework of our
approach to gravity gives a value of order exp(1080) [22]. One might think that this
value is so huge that GFQT should be practically indistinguishable from standard
theory. However, the fact that p is finite has far reaching practical and theoretical
consequences. In our approach the gravitational constant is proportional to 1/lnp,
so in the formal limit p → ∞ gravity disappears, i.e. in our approach gravity is a
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consequence of finiteness of nature. Another consequence of the finiteness of p is that
the very notion of particle-antiparticle becomes only approximate since states treated
as particle and antiparticle in standard theory belong to the same IR [14, 4]. Note
that this property takes place even in standard theory if the symmetry algebra is
dS rather than AdS [23, 3]. As a consequence, while in standard theory there are
four singleton IRs describing the Di and Rac singletons and their antiparticles, in
GFQT only two IRs remain since standard Di and anti-Di now belong to the same
IR and the same is true for standard Rac and anti-Rac. We use Di and Rac to call
the corresponding modular IRs, respectively. Nevertheless, since each massless boson
can be represented as a composite state of two Dis or two Racs, a problem remains of
what representation (if any) is preferable. This problem has a natural solution if the
theory is supersymmetric. Then the only IR is the (modular) Dirac supermultiplet
combining (modular) Di and (modular) Rac into one IR.

The main result of the paper is described in Sec. 10 where we explicitly de-
scribe a complete set of supersymmetric modular IRs taking part in the decomposition
of the tensor product of two modular supersingleton IRs. In particular, by analogy
with the Flato-Fronsdal result, each massless superparticle can be represented as a
composite state of two supersingletons and one again can pose a question of whether
only (super)singletons can be true elementary (super)particles.

This question is also natural in view of the following observation. As shown
in Refs. [5, 6] (see also Sec. 4 of the present paper), the AdS mass m and standard
Poincare mass mP are related as m = 2RmP where R is the radius of the Universe.
In view of the present data on the cosmological constant, one might think that R is
of order 1026m. Then the AdS mass of the electron is of order 1039. It is natural to
think that a particle with such an AdS mass cannot be elementary. Moreover, the
present upper level for the photon mass is 10−18ev which seems to be an extremely
tiny quantity. However, the corresponding AdS mass is of order 1015 and so even the
mass which is treated as extremely small in Poincare invariant theory might be very
large in AdS invariant theory. Nevertheless, assuming that only (super)singletons can
be true elementary (super)particles, one still has to answer the questions a) and b).

As explained in Sec. 5, a crucial difference between singletons in standard
theory and GFQT follows. Since 1/2 in the Galois field is (p + 1)/2, the eigenvalues
of the operators h1 and h2 for singletons in GFQT are (p+1)/2, (p+3)/2, (p+5)/2...,
i.e. huge numbers if p is huge. Hence the Poincare limit and semiclassical approxi-
mation for singletons in GFQT have no physical meaning and singletons cannot be
observable. In addition, as noted in Sec. 4 (see also Refs. [12, 13, 14]), the proba-
bilistic interpretation for a particle can be meaningful only if the eigenvalues of all
the operators Mab are much less than p. Since for singletons this is not the case, their
state vectors do not have a probabilistic interpretation. These facts give a natural
answer to the question a).

For answering the question b) we note the following. In standard theory
the notion of binding energy (or mass deficit) means that if a state with the mass M
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is a bound state of two objects with the masses m1 and m2 then M < m1 + m2 and
the quantity |M − (m1 +m2)|c2 is called the binding energy. The binding energy is a
measure of stability: the greater the binding energy is, the greater is the probability
that the bound state will not decay into its components under the influence of external
forces. On the contrary, if two free particles with the masses m1 and m2 can create a
bound state with the mass M then the greater the quantity |M − (m1 +m2)| is, the
greater is the probability of the a reaction where this bound state is created.

If a massless particle is a composite state of two singletons, and the eigen-
values of the operators h1 and h2 for the singletons in GFQT are (p + 1)/2, (p +
3)/2, (p + 5)/2... then, since in GFQT the eigenvalues of these operators should be
taken modulo p, the corresponding eigenvalues for the massles particle are 1, 2, 3....
Hence an analog of the binding energy for the operators h1 and h2 is p, i.e. a huge
number. This phenomenon can take place only in GFQT: although, from the formal
point of view, the singletons comprising the massless state do not interact with each
other, the analog of the binding energy for the operators h1 and h2 is huge. In other
words, the fact that all the quantities in GFQT are taken modulo p implies a very
strong effective interactions between the singletons. It explains why the massless state
does not decay into singletons and why free singletons effectively interact pairwise for
creating their bound state.

Another interesting feature of singleton physics in GFQT follows. In stan-
dard theory the difference between the dS and AdS symmetries on quantum level is in
the choice of the scalar product in the Hilbert space of states. If in Eq. (1) η44 = 1 is
replaced by η44 = −1 then the Hermitian operators Ma4 become anti-Hermitian and
vice versa. The singleton IRs are the implementation of the IRs of the so(2,3) algebra
by Hermitian operators but there are no singleton IRs in the implementation of the
IRs of the so(1,4) algebra by such operators. In addition, the dS theory does not have
a supersymmetric generalization. On the other hand, the fact that the cosmological
constant is positive can be naturally explained from dS symmetry on quantum level
[3, 4] while in standard AdS theory this constant is negative.

As already noted, in GFQT the notions of positive definite scalar product
and Hermiticity can be only approximate. Hence the relations (1) in GFQT can be
treated as the GFQT generalization of dS and AdS symmetries simultaneously. In
different situations, a description of a physical system can be close to a description in
standard theory for the dS or AdS cases. The main results of the present paper are
purely algebraical and no choice of the scalar product has been involved. As already
noted, since in GFQT some quantum numbers characterizing singletons are of order p,
the singleton state vectors do not have the probabilistic interpretation and therefore
a choice of the scalar product for singletons does not have a physical meaning. Hence
the existence of singletons and supersingletons in GFQT does not contradict the fact
that the cosmological constant is positive.

The above discussion shows that singleton physics in GFQT is even more
interesting than in standard theory.
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