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Abstract 
 
In this paper we have obtained a new theorem that a nonlinear Lipschitz 

(Lip-) functional defined on the closed subset of Banach spaces can be 

extended to the whole space with Lip-continuity and maintenance of Lip-

constant, which would be called an extension theorem (ET). This theorem is 

a generalization to the Lip-functional of the famous Hahn-Banach theorem 

on the bounded linear functional. By the ET, we have completely solved the 

open problem on the relation of the invertibility between the Lip-operator 

and its Lip-dual operator.   
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1.  Introduction 
 

The Lipschitz (Lip-) operator is one of the most important nonlinear 

operators with the monotone operator, compact operator and convex 

function in Banach spaces. Recently, there have been published many 

research results on the nonlinear Lip-operator [1,2].  

In this paper we have obtained a new theorem that a nonlinear Lipschitz 

(Lip-) functional defined on the closed subset of Banach spaces can be 

extended to the whole space with Lip-continuity and maintenance of Lip-

constant, which would be called an extension theorem (ET). This theorem is 

a generalization to the Lip-functional of the famous Hahn-Banach theorem 

on the bounded linear functional. By the ET, we have completely solved the 

problem in [1] on the relation of the invertibility between the Lip-operator 

and its Lip-dual operator. This problem was considered also in [2]. The 

result obtained from [2] is the same with our, but the method is different 

each other. In the future, the ET will be used constantly in the several sides 

of the study of the Lip-operator.   

 

First, we recall the concepts on Lip- operator [1]. 

Let X and Y  be real or complex Banach spaces, M and D  closed subsets of 

X , Y  respectively. Let 0 M∈ , D∈0  and DMT →:  be an operator. Unless 

otherwise stated, in this paper we will not repeat above assumptions. If there 

exists a constant 0≥L  such that  

                                    Tx Ty L x y− ≤ −        for all My,x ∈ ,                       (1) 

then operator T is called a Lip-operator on M . And   

                                              
,

( ) supM
x y M
x y

Tx Ty
L T

x y∈
≠

−
=

−
                                       (2)   

is called a Lip-constant of  T on M .  We’ll often use the set ([2]): 
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          ( ) ( ){ TTDMTDMLip ,00:,0 =→= is an Lip-operator on M }. 

If the set D  is a linear subspace of Y , then the set ( )0 ,Lip M D  is a vector 

space and the Lip-constant )(TLM  is a norm of T in ( )0 ,Lip M D . Therefore 

if D  is a closed linear subspace, in short, a closed subspace, then the vector 

space ( )D,MLip0
 is a Banach space by the norm )(TLM . In particular, if KD =  

(real or complex field), then the space ( )DMLip ,0
 is called a Lip-dual space of 

M  ([2]). We will denote it by *
LM . And the element of *

LM  is called a Lip-

functional. In the case of XM = , we denote by *
lX  the ordinary dual space of 

Banach space X , which consists of all bounded linear functionals defined 

on X and would be called a linear dual space of X , in distinction from Lip-

dual space *
LX of X . Then it is clear that *

lX  is a closed subspace of *
LX . For 

any *, LDfMx ∈∈ , an operator defined by 

( )( ) ( )( ) ( )*
LT f x f T x f Tx= =  

is called a Lip-dual operator of T  and we denote it by *
LT  ([2]). Then it is 

clear that ),( ***
LLL MDBLT ∈  and )(TLM = *

LT , where ),( **
LL MDBL  is the Banach 

space consisting of all the bounded linear operators on *
LD  into *

LM ([2]). 

Since the space *
LM  is a Banach space and the operator *

LT  is a bounded 

linear, we can define a linear dual space **** )( lLLl MM =  of *
LM  and a linear dual 

operator **** )( lLLl TT =  of *
LT  respectively. Then it is easy to see that 

** ** **( , )Ll Ll LlT BL M D∈  and ***)( LlLM TTTL == .                              

 

 

2.  Extension theorem 
    

In the study of Lip-operator, the need to extend the Lip-functional satisfying 

certain conditions is presented frequently, but it is reduced to the possibility 
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of the extension to whole space of Lip-functional defined at a subset of 

Banach spaces. In this section we will consider a theorem on the extension 

to whole space with Lip-continuity and maintenance of Lip-constant of Lip-

functional defined at a closed subset of Banach spaces. As will be seen 

below, we can say that the extension theorem (ET) is a generalization of the 

Hahn-Banach theorem ([4]) on the extension of the bounded linear 

functional.     

 

Theorem 1. Let f be a real-valued Lip-functional defined on a closed subset 

M of a real Banach space X . Then there exists a real-valued Lip-functional 

F defined on X  such that 1) F is an extension of f , i.e., )()( xfxF =  for 

Mx∈ , and 2) )()( fLFL MX = .  

Proof. If MX ≠ , choose MXx \0 ∈ , and define }{ 01 xMM ∪= .   The first part of 

the proof is to extend the functional f  from M  to 1M  with Lip-continuity 

and maintenance of Lip-constant.  We define a functional 1f  on 1M  by  

                                           ( ) ( )
⎩
⎨
⎧

=
∈

=
0

1 ,
,

xxifC
Mxifxf

xf                                        (3) 

Here a constant C is determined concretely as follows. 

Since f  is Lip-functional on M , we have, for all Mxx ∈21 , , that  

.)()()()()( 02012121 xxfLxxfLxxfLxfxf MMM −+−≤−≤−  

Hence 022011 )()()()( xxfLxfxxfLxf MM −+≤−− .         

We now denote constants A  and B  by   

( )0)()(sup xxfLxfA M
Mx

−−=
∈

 , ( )0)()(inf xxfLxfB MMx
−+=

∈
,  

then we obtain that BA ≤  because Mxx ∈21,  are arbitrary. Therefore there 

exists a constant C  such that BCA ≤≤ . The constant C  in (3) is such. We’ll 

show that the functional 1f  defined by (3) is the Lip-functional on 1M  and 
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)()( 11
fLfL MM = . Choose any 1, Myx ∈ . If Myx ∈, , then it is clear 

that yxfLyfxfyfxf M −≤−=− )()()()()( 11 . If 
0, xyMx =∈ , then we have  

yxfLxxfLAxfCxfyfxf MM −=−≤−≤−=− )()()()()()( 011 , 

( ) ( ) ( ) ( ) ( ) ( ) yxfLxxfLxfBxfCxfyf MM −=−≤−≤−=− 011  . 

Hence yxfLyfxf M −≤− )()()( 11
. The same is true of 0xx,My =∈ . 

Therefore the functional 1f  is the real-valued Lip-functional on 1M  and 

)()(
1

fLFL MM ≤ . On the other hand, since 1f  is the extension of f  from M  to 

1M , we have that )()( 11
fLfL MM ≥ , hence )()( 11

fLfL MM = . Thus there exists a 

real-valued functional 1f  such that 1f  is the extension of f  from M  to 1M  

with Lip-continuity and maintenance of Lip-constant.  

The second part of proof, that is, the existence of a real-valued Lip-

functional defined on X satisfying conditions 1) and 2) can be proved by 

repeating the process of the Hahn-Banach theorem, which was done by 

Zorn’s lemma. So the below part may be omitted.   

Let now ℜ  be a collection of all functionals, which are extensions of f  from 

M  with Lip-continuity and maintenance of Lip-constant.  

We make this collection ℜ into a partially ordered collection by defining 

qp  in the sense that p  is an extension of q . Now let ℑ  be a totally 

ordered subset of ℜ  and we define F  by 

                                                
⎪⎩

⎪
⎨
⎧

=⇒ℑ∈∈

∪=
ℑ∈

).()(),(

)()(

xpxFppDx

pDFD
p                            (4) 

Then it is clear that the functional F  is an upper bound of ℑ . Thus every 

totally ordered subset ℑ  of the partially ordered set ℜ  have the upper bound. 

Therefore there exists a maximal element in ℜ  by Zorn’s lemma [4]. Let F  

be a maximal element of ℜ , then we have that XFD =)( . In fact, if it doesn’t, 

then there exists a point 0x  such that )(\0 FDXx ∈ .  Hence we can extend the 
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functional F  from )(FD  to { }0)( xFD ∪  as stated above, but this contradicts 

that F is the maximal element of ℜ . This completes the proof. � 

 

There are some notes for the theorem 1.  

① If X  is a separable Banach space, then the proof of the theorem, which 

does not use Zorn’s lemma, can be done as follows. 

First, if { }∞=1nnx  is the everywhere dense set of a countable number of MX \ , 

then we extend inductively the functional f  from M to 

{ } { } { },,,, 121211 nnn xMMxMMxMM ∪=∪=∪= − . 

Next, it is easy to extend F  to whole space, which is the closure of the set 

{ }∞=∪ 1nnxM , with Lip-continuity and maintenance of Lip-constant.   

 I② n general, because the constant C  such that BCA ≤≤  is not defined 

uniquely, the functional 1f  given by (3) is not unique.  

 In particular, the theorem is also valid by defining③  1 0( )f x A= or B , i.e.,  

( )001 )()(sup)( xxfLxfxf M
Mx

−−=
∈

  or  ( )001 )()(inf)( xxfLxfxf MMx
−+=

∈
. 

 As may be seen from process of the proof of the theorem 1, the problem ④

on the extension of given Lip-functional is related not that Banach space X is 

real or complex, but that the functional is real-valued or complex. In next 

corollaries we’ll show that there exist non-trivial, real-valued Lip-

functionals satisfying certain conditions defined on real or complex Banach 

space X . 

From the theorem 1 we could obtain some corollaries, which are similar to 

one of the Hahn-Banach theorem.   

 

Corollary 1.  Let 00 ≠x  be an element of X . Then there exists a real-valued 

Lip-functional f defined on X such that  

               
00)( xxf = and 1)( =fLX .                       
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Proof. We denote by M  a closed subset consisting of all points of form oxα , 

where α  is non-negative real. Define f on M  by xxf =)( . Then we have 

00 )( xxf =  and 1)( =fLM . In fact, it is clear that 
00)( xxf = . And, since, for 

all Myx ∈, , yxyxyfxf −≤−=− )()( , we have f  is Lip-functional on 

M and 1)( ≤fLM
. On the one hand, since there exist, for all Myx ∈, , real 

numbers 21 ,αα  such that 0201 , xyxx αα == , we have that    

,)(

)()(

0201021021

02010201

yxxxxx

xxxxyfxf

−=−=−=−=

=−=−=−

αααααα

αααα  

and so 1≥ML . Therefore we obtain that 1)( =fLM
. We now extend the 

functional f from M to X  by the theorem 1. � 

 

Corollary 2.  For all Xx∈ , we have 

                                          )(sup
)(

)(
sup

1)(0
**

xf
fL

xf
x

fL
XfX

f
Xf

X
LL
≤

∈
≠
∈

==                                   (5) 

Proof. Since if 0=x  then 0)( =xf , then equality (5) is trivial. So we assume 

that 0≠x . Since xfLxf X )()( ≤  for all *
LXf ∈ , if 0)( ≠fL X  then 

                                                 .
)(

)(
sup

0
*

x
fL

xf

X
f

Xf L

≤
≠
∈

                                           (6) 

 By the corollary 1, there exists a functional *
LXf ∈  such that 1)( =fLX  and 

xxf =)( , hence ( ) xfLxf X =)()( . Therefore  

                                                .
)(

)(
sup

0
*

x
fL

xf

X
f

Xf L

≥
≠
∈

                                             (7) 

 Thus the fist part of (5) follows from (6) and (7).  The same is also true of 

the proof of the second part of (5). � 
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Corollary 3. For any MXx \0 ∈ , there exists a real-valued Lip-functional f  

defined on X  such that 1) ( ) 0=xf  for Mx∈ , 2) ( ) dxf =0 , and 3) ( ) 1XL f = , 

where 0inf 0 >−=
∈

xzd
Mz

. 

Proof.  We denote by 1M  any closed subset of X , which includes given set 

M and the point 0x , and define a functional f on 1M  by ( ) xzxf
Mz

−=
∈

inf . Then 

it is not difficult to see that f  satisfies condition 1) and 2). We’ll show that 

f satisfies condition 3). To do that, we take any 1, Myx ∈ . Then it is clear that 

( ) ( ) .supinfinf yxyzxzyzxzyfxf
MzMzMz

−≤−−−≤−−−=−
∈∈∈

 

Hence f  is Lip- functional on 
1M  and ( ) 1

1
≤fLM

. On the other hand, since 

there exists a sequence{ } Mz nn ⊂∞
=1  such that dxzn →− 0  as ∞→n , we have  

( ) ( ) ( ) ( ) dfLxzfLxfzfd MnMn ⋅→−≤−=
11 00  as ∞→n  

and so ( ) 1
1

≥fLM
. Thus we must have that 1)( =fLM

. We now extend the 

functional f  from 1M  to X  by the theorem 1. � 

 

Note 1. As stated above, these corollaries are very similar to the corollaries 

of the Hahn-Banach theorem, but there are some essential differences. In 

fact, first, all the functionals given in corollaries are not linear but real-

valued. Actually, these corollaries would be used more often to apply than 

the ET. Second, the corollary 2 shows that the topology of Banach space X  

is not only defined on the unit sphere of the linear dual space *
lX , but also on 

the unit sphere of Lip-dual space *
LX  of X . In the future, the corollary 2 will 

be applied to the introduction of a new topology in Banach space, which 

would be called a L-topology. Finally, the corollary 3 shows that the closed 

subset M  of X  and the point M\Xx∈  may be separated by a real-valued 

nonlinear Lip-functional in *
LX . Except these, there are some more corollaries 

similar to the corollaries of the Hahn-Banach theorem. 
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Theorem 2. Let f  be a complex Lip-functional defined on a closed subset 

M of a complex Banach space X . Then there exists a complex Lip-

functional F defined on X  such that 1) )()( xfxF =  for Mx∈ , and 2) 

)(Im)(Re)( 222 fLfLFL MMX +≤ , where fRe  and fIm  are the real and imaginary 

parts of f  respectively 

Proof. If )()()( xhixgxf += , where )(Re)( xfxg =  and )(Im)( xfxh = , then g  and h  

are real-valued Lip-functionals defined on M . For all Myx ∈, , since 

))()(())()(()()( yhxhiygxgyfxf −+−=− , 

we have yxfLyfxfygxg M −≤−≤− )()()()()(  and  

yxfLyfxfyhxh M −≤−≤− )()()()()( . 

At the same time, we have )()( fLgL MM ≤  and )()( fLhL MM ≤ . On the other hand,   

222

222

))()((

)()()()()()(

yxhLgL

yhxhygxgyfxf

MM −+≤

≤−+−=−
 

implies that )()()( 222 hLgLfL MMM +≤ . Now the theorem may be proved similarly 

to the theorem 1. If MX ≠ , choose MXx \0 ∈ , and define }{ 01 xMM ∪= . First, 

we extend the functional f  from M  to 1M  with Lip-continuity.  We define a 

functional 1f  on 1M  by  

                                        ( ) ( )
⎩
⎨
⎧

=+
∈

=
.,

,

0
1 xxifDiC

Mxifxf
xf                                       (8) 

Here constants C  and D  are as follows. Since )(xg  and )(xh  are real-valued 

Lip-functional on M , it is clear that there exist, by repeating the same 

argument as the theorem 1, constants C and D  such that   

( ) ≤≤−−
∈

CxxgLxg M
Mx

0)()(sup ( )0)()(inf xxgLxg MMx
−+

∈
,  

( ) ≤≤−−
∈

DxxhLxh M
Mx

0)()(sup ( )0)()(inf xxhLxh MMx
−+

∈
. 
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The constant C  and D  in (8) are such. We’ll show that the functional 1f  

defined by (8) is the Lip-functional on 1M and )()()( 22
1

2 hLgLfL MMM +≤ . Choose 

any 1, Myx ∈ . If Myx ∈, , then it is clear that  

      yxfLyfxfyfxf M −≤−=− )()()()()( 11 . 

If 0, xyMx =∈ , then ( ) ( ) ( ) ( ) ( )( ) ( )( )DxhiCxgDiCxfyfxf −+−=+−=− 11 ,  

and, since ( ) ( ) ( ) ( ) 00 , xxhLDxhxxgLCxg MM −≤−−≤− , we have that   

( ) ( ) ( ) ( ) ( ) ( )( ) 2
0

22222

11 xxhLgLDxhCxgyfxf M −+≤−+−=− . 

The same is also true of 0xx,My =∈ . Thus there exists a Lip-functional 1f  

such that 1f  is the extension of f  from M  to 1M  with Lip-continuity. The 

second part of the proof, in other words, the existence of the complex Lip-

functional defined on X satisfying conditions 1) and 2) may be proved by 

repeating the process of the above theorem 1, which was done by Zorn’s 

lemma. � 

 

Note 2. If )()()( xhixgxf +=  and we take 22 )(,)( xxxhxxg −== , 2/10 ≤≤ x , then 

we have that )()()( 222 hLgLfL MMM +≠ . But, in many applications, it is frequently 

presented the need to extend the complex Lip-functiona with maintenance of 

not Lip-constant but only Lip-continuity. Moreover, the results of the 

theorem 2 would be equal to one of the theorem 1 if we define the Lip-

constant of the complex Lip-functional )()()( xhixgxf +=  by 

( ) 2/122 )()()( hLgLfL MMM +=′ . Then we could obtain the following theorem.  

Theorem 2P

/
P. Let f  be a complex Lip-functional defined on a closed subset 

M of a complex Banach space X . Then there exists a complex Lip-

functional F defined on X  such that 1) )()( xfxF =  for Mx∈ , and 2) 

)()( fLFL MX ′=′ .     
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3. Invertibility of Lip-operator  

and its Lip-dual operator 
     

The dual operator of the linear operator has played very important role in 

the linear operator theory. In general, to compose a dual operator 

corresponding to the nonlinear operator is impossible in a measure, but it is 

possible for Lipschitz (Lip-) operator. A concept of a Lip-dual operator of 

the nonlinear Lip-operator in Banach spaces was introduced in the paper [2]. 

That idea was based upon the Lip-dual space of Banach spaces ([1]). In this 

section we’ll consider the problem in [1] on the relation of invertibility 

between nonlinear Lip-operator and its Lip-dual operator. Invertibility of the 

Lip-operator is the important problem presented in several sides including 

its spectrum analysis.  

 

Proposition.  Let ( )DMLipT ,0∈ . Then M  is a certain subset of **
LlM  in 

isometric embedding sense. If an operator **: LlMMJ →  is such isometric 

mapping, then, for all Myx ∈, , we have 

                              )()(sup
1)(

*
yfxfJyJxyx

fL
Mf L

−=−=−
≤

∈

,                                  (9) 

                            )()( **** JyTJxTTyTx LlLl −=− .                                       (10) 

  Proof. Choose any Mx∈ and fix it.  Consider the functional )(xJ  defined 

on *
LM  by ( )( ) ( )xffxJ = . Then the functional )(xJ is a bounded linear on *

LM  

because xfLxffxJ )()()()( ≤= , that is, **)( LlMxJ ∈ . Now put 

{ }MxMxJJM Ll ∈∈= **)(  and we shall show that the operator JMMJ →:  is 

an isometric mapping. If My,x ∈ , then we obtain that  



 12

.)(sup

)()(sup)())()((sup)()(

1)(

1)(1)(

*

**

yxyxfL

yfxffyJxJyJxJ

fL
Mf

fL
Mf

fL
Mf

L

LL

−≤−≤

≤−=−=−

≤
∈

≤
∈

≤
∈  

  If yx ≠ , then, by the Hahn-Banach theorem, there exists a functional 

*
0 lXf ∈  such that yxyxffLf −=−== )(,1)( 000 .  Now we denote again by 0f  a 

contraction to M of 0f , then it is clear that *
0 LMf ∈ . Hence we have that  

.)()()())()((sup

)()(sup)()()(

1)(

1)(

000

*

*

yJxJfyJxJ

yfxfyfxfyxfyx

fL
Mf

fL
Mf

L

L

−=−=

=−≤−=−=−

≤
∈

≤
∈  

 This is proof of the equality (9). We shall show the equality (10). 

 For all Mx∈ and all *
LDf ∈ , since *

LMTf ∈  and **)( LlMxJ ∈ , we have that   

     
.)())(()())((

)()()()()()()(
***

**

fxJTfTxJ

fTxJxfTxTfTxf

LlL

LL

==

====
                

On the other hand, if operator **/ : LlDDJ →  is such an isometric mapping as J , 

then **/ )( LlDTxJ ∈ . Hence )()()( / fTxJTxf = .                                                                   

Thus we have )())(()()( **/ fxJTfTxJ Ll=  for all *
LDf ∈ , that is, 

))(()( **/ xJTTxJ Ll= .  Therefore, by the equality (10), we obtain 

))(())(()()( ****// yJTxJTTyJTxJTyTx LlLl −=−=− . 

This completes the proof. � 

 

We’ll here show the necessary and sufficient conditions for invertibility 

First, we recall the concept of invertibility of Lip- operator [5].  

Let ( )DMLipT ,0∈ . The operator T  is said to be invertible in ( )D,MLip0
, If 

DTR =)( , 1−T  exists, and ),(0
1 MDLipT ∈− , where )(TR  is a range of T . 

Similarly, the operator *
LT  is said to be invertible in ),( **

LL MDBL , if ** )( LL MTR = , 

1* )( −
LT exists.  It is to be noted here that the condition ),()( **1*

LLL DMBLT ∈−  

follows from that ** )( LL MTR =  and 1* )( −
LT exists by the open mapping theorem 
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([4]), because *
LT is the bounded linear operator defined on *

LD . We’ll always 

assume that ( )DMLipT ,0∈  below.  

 

Lemma 1. If 0)( >Tl , then )(TR  is a closed set, 1−T  exists, and 

)),((0
1 MTRLipT ∈− , where  

                                                
yx
TyTx

Tl
yx

Myx −
−

=
≠
∈,

inf)(  ,                                      (11) 

which was called a glb-Lipschitz constant of T ([3]). 

Proof. For all Myx ∈, , since ( ) TyTxyxTl −≤− , if 0)( >Tl , then 

TyTx = implies yx = . Therefore 1−T  exists.  

  On the one hand, for any ( )TRy,x ∈11  there exist Myx ∈, such that 

11 yTy,xTx == . Hence 1−T is a Lip-operator on )(TR  into M , i.e. 

)),((0
1 MTRLipT ∈−  and we have ( ) ( )TlTL 11 −− ≤ . We now show that ( )TR  is a 

closed set. To do that, we take any { }∞=1nny such that 

{ } ( )TRy nn ⊂∞
=1

and ∞→→ nasyyn 0 . Then there exists a sequence { } Mx nn ⊂∞
=1

 

such that nn Txy = , i.e., ( ),2,11 == − nyTx nn . Hence  

( ) 0111 →−≤−=− −−−
mnmnmn yyTlyTyTxx  as ∞→mn, . 

This shows that { }∞=1nnx  is Cauchy sequence of X . Since X is complete and 

M is closed, there exists a point Mx ∈0 such that 0xxn →  as ∞→n . By the 

continuity of T , we have that ( )TRTxTxlimylimy nnnn
∈===

∞→∞→ 00
. �    

It is easy to see that the same result for *
LT is true.  

 

Lemma 2. If )(TR  is a closed set, 1−T  exists, and )),((0
1 MTRLipT ∈− , then we 

have ( ) *
L

*
L MTR = .  

Proof. For any ( )TRy∈  and any *
LMf ∈ , set ( ) ( )yTfyg 1−= . Since both 1−T  and 

f are Lip-continuous on ( )TR  and M  respectively, the functional g  is also 
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Lip-continuous on )(TR . By the theorem 2, we can extend g  from ( )TR  to D  

with Lip-continuity.  We denote again by g  the extended functional, then it 

is clear that *
LDg∈ . Therefore, for   all Mx∈ ,  

( )( ) ( ) ( ) ( ) ( ) ( )xfTxTfyTfygTxgxgT*
L ===== −− 11 . 

Thus fgT *
L = . This shows that ( ) *

L
*
L MTR = . �  

 

Lemma 3.  If ( )TR  is a closed set and ( ) 1−*
LT  exists, then ( )TR = D .  

Proof. Assume that there exists a point ( )TR\Dy ∈0 . Because ( )TR  is the 

closed set, we have that 
( )

0inf 0 >−=
∈

yyd
TRy

. By the corollary 3 of theorem 1, 

there exists a functional *
LDf ∈0  such that ( ) 00 =yf  for ( )TRy∈ , ( ) dyf =00 and 

( ) 10 =fL . On the one hand, since ( )TRTx∈  for all Mx∈ , we have 

that ( ) ( )( ) 000 == xfTTxf *
L . So 00 =fT *

L . Since ( ) 1−*
LT exists, we have 00 =f , but 

this contradicts that ( ) 10 =fL .   

     It is easy to see that the following lemma is valid, but we shall check it 

for the sake of the proof of the next main theorem.  We need not only the 

lemma 4 but also the remark of it. � 

 

Lemma 4.  The operator T  is invertible in ( )D,MLip0
 if and only if 

( ) ( ) DTR,Tl => 0 . Then we have ( ) ( )11 −−= TLTl . 

Proof. First, we show that if T  is invertible in ( )D,MLip0
 then ( ) ( )11 −−= TLTl . If 

it be so, then it is clear that T  is one-to-one and +∞<< )(0 TL . Hence, for any 

Myx ∈, ( yx ≠ ), there exist Dyx ∈11 ,  ( 11 yx ≠ ) such that yyT,xxT == −−
1

1
1

1 . 

Conversely, for any Dyx ∈11 ,  ( 11 yx ≠ ), there exist Myx ∈, ( yx ≠ ) such that 

11 , yTyxTx == .  Therefore    
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( ) ( )

( )

1 1
1 1

1 1
1 1

11 1 1 1
1 1 1 1, ,

1

11 1 1 1
1 1 1 1

,

inf inf

sup .

x y M x y D
x y x y

x y D
x y

l T Tx Ty x y x y T x T y

T x T y x y L T

−− − − −

∈ ∈
≠ ≠

−

−− − − −

∈
≠

= − ⋅ − = − ⋅ − =

⎛ ⎞
⎜ ⎟= − ⋅ − =
⎜ ⎟
⎝ ⎠

            (12) 

  Next, we show the fore part of the theorem. If T  is invertible in ( )D,MLip0
, 

then ( ) 01 >−TL  and hence we have ( ) 0>Tl  and ( ) DTR = . Conversely, if 

0)( >Tl  and ( ) DTR = , then it is clear that T  is invertible in ( )D,MLip0
 by the 

lemma 1. � 

 

Note 3. It is easy to see that the same result for *
LT is true. In other words, we 

can obtain following result for *
LT  by repeating the same argument as the 

theorem 1. The operator *
LT  is invertible in ),( **

LL MDBL  if and only if 

( ) 0* >LTl and ( ) **
LL MTR = . 

  

The following theorem is the main result on the relation of invertibility 

between Lip-operator and its Lip-dual operator. This theorem gives us the 

complete answer to the question in [1].  

Theorem 3.   The operator T  is invertible in ( )D,MLip0
 if and only if the 

operator *
LT  is invertible in ),( **

LL MDBL . Then we have  

( ) ( ) .*11*
LL TT −−

=  

Proof. If T  is invertible in ( )D,MLip0
, then the lemma 4 implies 0)( >Tl . 

Hence we have that ( ) *
L

*
L MTR =  by the lemma 1 and lemma 2. On the one 

hand, since 1−T  belongs in the space ),(0 MDLip , Lip-dual operator ( )*1
LT −  of 

1−T  is defined on *
LM and ),()( ***1

LLL DMBLT ∈− . And, because 
11 , −− == TTITTI DM  are identity operators on M , D  respectively, we have  

                                     ( ) *1**1* )()( LLLLM TTTTI −− == ,                                   (13) 

                               ( ) **1*1* )()( LLLLD TTTTI −− == ,                                       (14) 
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where ( ) ( )** , LDLM II  are identity operators on *
LM , *

LD  respectively ([2]).  

Therefore, By (13) and (14), we have that ( )*1
LT −  exists and ( ) ( )*11*

LL TT −−
= . 

Hence ),()( **1*
LLL DMBLT ∈− , thus *

LT is invertible in ( )** , LL MDBL .  

Conversely, assume that *
LT is invertible in ( )** , LL MDBL . We have to prove 

( ) ( ) DTR,Tl => 0 . If *
LT is invertible, then it is true that the linear dual operator 

**
LlT of bounded linear operator *

LT defined on Banach space *
LD  is also 

invertible and ***
LlL TT = .  Therefore, by lemma 4, we have that 

))(()( 1*1* −−= LL TLTl . Hence ))(())(( 1**1* −− = LlL TLTL  and )())(()( **1*1*
LlLL TlTLTl == −−  

follows from ( ) *1*1** ))(( lLLl TT −−
=  and 1**1* )()( −− = LlL TT .   And by the lemma 4, 

the equality (9) and (10), we obtain that  

.)(inf

)()(inf

inf)()(0

1

,

1****

,

1****

,

***
**

TlyxTyTx

JyJxJyTJxT

yxyTxTTlTl

yx
Myx

LlLl
JyJx

JMJyJx

LlLl
Myx

LlL
Ll

=−⋅−=

=−⋅−≤

≤−⋅−==<

−

≠
∈

−

≠
∈

−

∈

   

 Next, since ( ) 1* −

LT  exists and ( )TR  is closed, by the lemma 3, we have 

that ( ) DTR = . Therefore  T  is invertible in ( )D,MLip0 . Finally, using 

1*1 )()( −− = LTTL  and the equality (13), we have that 

)())(())(()()( *1*1*1111
LLL TlTLTLTLTl ==== −−−−−− . 

This completes the proof. � 

 

Corollary.  The following statements are equivalent to each other:  

      1) The operator T  is invertible in ( )D,MLip0
,  

      2) ( ) 0>Tl  and ( ) 1* −

LT  exists,   

      3) 0)()( * >⋅ LTlTl .  
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Proof. If T  is invertible, then, by the lemma 4 and theorem 3, ( ) 0>Tl and 

( ) 1* −

LT  exists. And, since *
LT  is invertible, we also have that 0)( * >LTl . Thus 

0)()( * >⋅ LTlTl . On the other hand, if ( ) 0>Tl and ( ) 1* −

LT  exists, then, by the 

lemma 1 and lemma 3, T  is invertible in ( )D,MLip0
. �    

 

The results in this paper can be used effectively at the study of the topology 

of Banach space by the Lip-functional, and at the study of the operator 

equation with Lip-operator. In fact, the extension theorem 1 is important at 

the introduction and the consideration of a new topology in Banach space, 

and the theorem 3 is significant at the resolution of nonlinear Lip-operator 

equation by the linear Lip-dual operator equation.   
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