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Abstract

In this paper we have obtained a new theorem that a nonlinear Lipschitz
(Lip-) functional defined on the closed subset of Banach spaces can be
extended to the whole space with Lip-continuity and maintenance of Lip-
constant, which would be called an extension theorem (ET). This theorem is
a generalization to the Lip-functional of the famous Hahn-Banach theorem
on the bounded linear functional. By the ET, we have completely solved the
open problem on the relation of the invertibility between the Lip-operator
and its Lip-dual operator.
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1. Introduction

The Lipschitz (Lip-) operator is one of the most important nonlinear
operators with the monotone operator, compact operator and convex
function in Banach spaces. Recently, there have been published many
research results on the nonlinear Lip-operator [1,2].

In this paper we have obtained a new theorem that a nonlinear Lipschitz
(Lip-) functional defined on the closed subset of Banach spaces can be
extended to the whole space with Lip-continuity and maintenance of Lip-
constant, which would be called an extension theorem (ET). This theorem is
a generalization to the Lip-functional of the famous Hahn-Banach theorem
on the bounded linear functional. By the ET, we have completely solved the
problem in [1] on the relation of the invertibility between the Lip-operator
and its Lip-dual operator. This problem was considered also in [2]. The
result obtained from [2] is the same with our, but the method is different
each other. In the future, the ET will be used constantly in the several sides

of the study of the Lip-operator.

First, we recall the concepts on Lip- operator [1].

Let X and Y be real or complex Banach spaces, mand p closed subsets of
X, Y respectively. Let 0eM, 0eD and T:M — D be an operator. Unless
otherwise stated, in this paper we will not repeat above assumptions. If there
exists a constant L >0 such that

[x-Ty|<L [x-y| forall x,yem, 1)

then operator T is called a Lip-operator on m . And

L, (T)=sup [Tx-Ty] (2)
e Ix =yl

is called a Lip-constant of Ton m. We’ll often use the set ([2]):



Lip,(M,D)={T :M — D| T(0)=0, T is an Lip-operator on wm }.
If the set p is a linear subspace of v, then the set Lip,(M,D) is a vector

space and the Lip-constant L, (r) is a norm of Tin Lip,(M,D). Therefore
if p is a closed linear subspace, in short, a closed subspace, then the vector
space Lip,(m,D) is @ Banach space by the norm (, (r). In particular, if b=k
(real or complex field), then the space Lip,(m,p) is called a Lip-dual space of
M ([2]). We will denote it by m;. And the element of m; is called a Lip-
functional. In the case of m = x, we denote by x " the ordinary dual space of

Banach space X , which consists of all bounded linear functionals defined
on X and would be called a linear dual space of X , in distinction from Lip-

dual space x;of X . Then it is clear that x - is a closed subspace of x:. For
any xe M, f e D], an operator defined by

(TF)(x)=(feT)(x)=f(T)
is called a Lip-dual operator of T and we denote it by 1 ([2]). Then it is

clear that 1 cBL(D;,m;) and v, (r) =|r;|, where BL(D{,m]) is the Banach

space consisting of all the bounded linear operators on p; into m: ([2]).
Since the space m; is a Banach space and the operator 7, is a bounded
linear, we can define a linear dual space M7 = v) of m; and a linear dual

operator 1 —(r;); of T respectively. Then it is easy to see that

T eBL(M”, DY) and L, ) =[] =[7]-

L

m

2. Extension theorem

In the study of Lip-operator, the need to extend the Lip-functional satisfying
certain conditions is presented frequently, but it is reduced to the possibility



of the extension to whole space of Lip-functional defined at a subset of
Banach spaces. In this section we will consider a theorem on the extension
to whole space with Lip-continuity and maintenance of Lip-constant of Lip-
functional defined at a closed subset of Banach spaces. As will be seen
below, we can say that the extension theorem (ET) is a generalization of the
Hahn-Banach theorem ([4]) on the extension of the bounded linear

functional.

Theorem 1. Let f be a real-valued Lip-functional defined on a closed subset

M of a real Banach space X . Then there exists a real-valued Lip-functional

F defined on X such that 1) Fis an extension of f, i.e., F(x)= f(x) for
xeM,and 2) L, (F)=L,, (f).

Proof. If x #m, choose x, < x \m, and define m, =m {x,}- The first part of
the proof is to extend the functional ¢ from M to m, with Lip-continuity

and maintenance of Lip-constant. We define a functional f, on m, by

( (x):{ f(x), if xe M ©)

C, if x=x,

Here a constantc is determined concretely as follows.
Since f is Lip-functional on m, we have, for allx, x, e M , that

F ) = £(6) <Ly (F)]x =] < Ly (F) = x|+ Ly (F) %, = %]
Hence f(x,) - Ly, (F)[x — %, < F (%) + Ly (F)[%, = x|
We now denote constants A and B by

A=sup(f (0~ Ly (Dx=]) + B=Inf(f09+ Ly (D]x=])

then we obtain that A< because x,x,eM are arbitrary. Therefore there

exists a constant ¢ such that A<c<s. The constant c in (3) is such. We’ll

show that the functional f defined by (3) is the Lip-functional on m, and



L. (f)=L,(f) - Choose any xyem, . If xyem , then it is clear
that|f, 00— f, () =/ F9 - F ) <L (D)Jx—y| - If xeM,y=x,, then we have
B ,00) = f () -C< F()—A< Ly, (F)x—x] =Ly (F)|x—Y
fi(y)= i) =C = F(X)<B = F(x) < Ly (F)x =] =Lu(F)]x— -

Hence |f,(x)- f,(y)| <L, ()|x-y|- The same is true of yeM x=x,.

Therefore the functional f is the real-valued Lip-functional on m, and
Ly, (F)< Ly, (f)- On the other hand, since f, is the extension of ¢ from M to
M,, we have that |, (f,)>L,(f), hence ., (r,)=,(f). Thus there exists a
real-valued functional f, such that f is the extension of 1 from M to m,
with Lip-continuity and maintenance of Lip-constant.

The second part of proof, that is, the existence of a real-valued Lip-
functional defined on X satisfying conditions 1) and 2) can be proved by
repeating the process of the Hahn-Banach theorem, which was done by
Zorn’s lemma. So the below part may be omitted.

Let now % be a collection of all functionals, which are extensions of ¢ from
M with Lip-continuity and maintenance of Lip-constant.

We make this collection % into a partially ordered collection by defining
p>q in the sense that p is an extension of q. Now let 3 be a totally
ordered subset of % and we define F by

D(F)= 2 D(p) (4)
xeD(p), peI= F(X)=p((X).

Then it is clear that the functional F is an upper bound of 3. Thus every
totally ordered subset 3 of the partially ordered set % have the upper bound.
Therefore there exists a maximal element in % by Zorn’s lemma [4]. Let F

be a maximal element of %, then we have that p(r) = x . In fact, if it doesn’t,

then there exists a point x, such that x < x \p(F). Hence we can extend the



functional F from p(r) to p(Fyuix,} as stated above, but this contradicts

that F is the maximal element of %. This completes the proof. [

There are some notes for the theorem 1.
@ If x is a separable Banach space, then the proof of the theorem, which
does not use Zorn’s lemma, can be done as follows.
First, if {x,}", is the everywhere dense set of a countable number of x\m,
then we extend inductively the functional f from m to

M, =M uUix} M, =M, Ufx,}-, M, =M, U{x,},- -
Next, it is easy to extend F to whole space, which is the closure of the set
M U {x, |~ » with Lip-continuity and maintenance of Lip-constant.
@ In general, because the constant ¢ such that a<c<g is not defined
uniquely, the functional f, given by (3) is not unique.

@ In particular, the theorem is also valid by defining f(x)=A or B, i.e.,
fu (%) =sup(f () = Ly (F)x = xg]) OF 1, () = inf (£.(x) + Ly (F)[x = xo])-

@ As may be seen from process of the proof of the theorem 1, the problem
on the extension of given Lip-functional is related not that Banach space x is
real or complex, but that the functional is real-valued or complex. In next
corollaries we’ll show that there exist non-trivial, real-valued Lip-
functionals satisfying certain conditions defined on real or complex Banach
space X .

From the theorem 1 we could obtain some corollaries, which are similar to

one of the Hahn-Banach theorem.

Corollary 1. Let x -0 be an element of x . Then there exists a real-valued
Lip-functional ¢ defined on X such that

f(x) =[x and L (f)=1.



Proof. We denote by M a closed subset consisting of all points of form «ax_,
where « is non-negative real. Define fon M by f(x) =[x . Then we have

f(x,) =[x and ,(f)=1. In fact, it is clear that f(x)=|x|. And, since, for

ol

all x,yem , , we have f is Lip-functional on

o0 - f(y)|=[Ix|-
Mand L, (f)<1. On the one hand, since there exist, for allx,yem , real

numbers ¢, ,«, such that x = gx,, y = o, x, » We have that

[T = () :‘ oo ]| ez X ‘ = ‘alHXOH = a, [ ‘ =

=loy, — o] %] = (e = @) %o = erxo — e,

and so , >1. Therefore we obtain that ., (fy-1. We now extend the

functional f from mto x by the theorem 1. [

Corollary 2. For all xex, we have

=sup ")
o L (1)

= sup |13 (®)

Ly ()=t
Proof. Since if x=0 then f(x)=o, then equality (5) is trivial. So we assume

that x=0. Since |f(x)| <L, (f)[x| forall rex;, if L, (f)=0 then

p Oy (6)
fEXL x(f)

By the corollary 1, there exists a functional f < X such that L, (f)=1 and

(|f(0|/L. ())=|x|- Therefore

o O 1y ™
feXL L, (f)

f(x) =

Thus the fist part of (5) follows from (6) and (7). The same is also true of
the proof of the second part of (5). [



Corollary 3. For any x, < x\m, there exists a real-valued Lip-functional ¢
defined on X such that 1) f(x)=o0 for xem, 2) f(x,)=d, and 3) L (f)=1,
where 4 _ iZQLHZ_X”H 50-

Proof. We denote by m, any closed subset of x , which includes given set

M and the point x,, and define a functional on m, by f(x)= inf 2= Then

it is not difficult to see that ¢ satisfies condition 1) and 2). We’ll show that

f satisfies condition 3). To do that, we take any x,yem,. Then it is clear that

[F(d)-f(y) =

Hence f is Lip- functional on m, and | (f)<1- On the other hand, since

inf |z = x| ~inf |z - y]| <suplz ¥ [z — i <[~ v].
zeM zeM zeM

there exists a sequencez, |~ =M such that |z, — x| —>d as n— «, we have

d=[f(z,) = f(x )] <Ly, (F)]z0 %] 5Ly, (F)-d @S n >0

and so | (f)>1. Thus we must have that | (ry-1. We now extend the

functional ¢ from m, to x by the theorem 1. [

Note 1. As stated above, these corollaries are very similar to the corollaries
of the Hahn-Banach theorem, but there are some essential differences. In
fact, first, all the functionals given in corollaries are not linear but real-
valued. Actually, these corollaries would be used more often to apply than
the ET. Second, the corollary 2 shows that the topology of Banach space x

is not only defined on the unit sphere of the linear dual space x;, but also on
the unit sphere of Lip-dual space x; of x . In the future, the corollary 2 will

be applied to the introduction of a new topology in Banach space, which
would be called a L-topology. Finally, the corollary 3 shows that the closed
subset M of x and the point xe Xx\M may be separated by a real-valued

nonlinear Lip-functional in x; . Except these, there are some more corollaries

similar to the corollaries of the Hahn-Banach theorem.



Theorem 2. Let f be a complex Lip-functional defined on a closed subset

M of a complex Banach space x . Then there exists a complex Lip-

functional F defined on X such that 1) F(x)=f(x) for xeM , and 2)
L% (F)<L% (Ref)+ L2 (imf), where ref and im¢ are the real and imaginary
parts of f respectively
Proof. If f(x)=gx)+ih(x), Where gx)=Ref(x) and h(x)=Imf(x), then g and n
are real-valued Lip-functionals defined on m . For allx,y e M, since
F)—=1(y) =(9(x)-a(y)+i(h(x)-h(y)),
we have |g(x)-g(y)| <|f(x)- f(y)| < L, (f)[x-y| and
() =h(y) <|F ()~ F(y)| < Ly (F)x~y] -

At the same time, we have L, (g)<L, (f) and L, <L, (f). On the other hand,

00— F W =[g00 - g +h(0 - h)[” <

< (L (@) + L () x =y
implies that 12 (f)<L2, (g)+L2 (h). Now the theorem may be proved similarly
to the theorem 1. If x =M, choose x, e x \m, and define m =mu g} First,
we extend the functional ¢ from M to m, with Lip-continuity. We define a

functional f, on m, by

fl(X)={ f(x), if xeM (®)

C+iD, if x=x,.
Here constants ¢ and p are as follows. Since g(x) and n(x) are real-valued

Lip-functional on ™, it is clear that there exist, by repeating the same

argument as the theorem 1, constants ¢ and p such that

sup(n(x) - L, (h) [~ x,]) < D < Inf (1) + Lyy () =X}

sup(g(x) — Ly (@)x — %)< C < inflo()+ L, @)x %



The constant ¢ and p in (8) are such. We’ll show that the functional f,
defined by (8) is the Lip-functional on m, and 3(f,) <2 (g)+% (). Choose
any x,yeM,. If x,yeMm, thenitis clear that

1,00 - £, () = 00— F)f <Ly (Dx-Y]-
If xeM,y=x,, then £ (x)—f,(y)=f(x)—(C+iD)=(g(x)—C)+i(h(x)-D),

and, since |g(x)-C| < L, (9)[x— x|, [n(x)-D| < L, (h)[x - x,| » We have that

[, 00— £, () =900~ C[* +|n(x)- D < (L3 (9)+ L(M)x =
The same is also true of yeMm,x=x,. Thus there exists a Lip-functional f,
such that f, is the extension of ¢ from M tom, with Lip-continuity. The

second part of the proof, in other words, the existence of the complex Lip-
functional defined on X satisfying conditions 1) and 2) may be proved by
repeating the process of the above theorem 1, which was done by Zorn’s

lemma. [

Note 2. If f(x)=g(x)+ih(x) and we take g(x) = x> h(x) =x-x%, 0<x<1/2, then
we have that 12, (f)= 2 (g) + 2 (h). But, in many applications, it is frequently
presented the need to extend the complex Lip-functiona with maintenance of
not Lip-constant but only Lip-continuity. Moreover, the results of the
theorem 2 would be equal to one of the theorem 1 if we define the Lip-
constant of the complex Lip-functional f(x)=g(x)+ih(x) by
L, (f) = (L, (9) + 2, (n)}"*. Then we could obtain the following theorem.

Theorem 2. Let t be a complex Lip-functional defined on a closed subset
M of a complex Banach space X . Then there exists a complex Lip-

functional F defined on X such that 1) F(x)=f(x) for xeM , and 2)

L (F) = Ly (f)-

10



3. Invertibility of Lip-operator

and its Lip-dual operator

The dual operator of the linear operator has played very important role in
the linear operator theory. In general, to compose a dual operator
corresponding to the nonlinear operator is impossible in a measure, but it is
possible for Lipschitz (Lip-) operator. A concept of a Lip-dual operator of
the nonlinear Lip-operator in Banach spaces was introduced in the paper [2].
That idea was based upon the Lip-dual space of Banach spaces ([1]). In this
section we’ll consider the problem in [1] on the relation of invertibility
between nonlinear Lip-operator and its Lip-dual operator. Invertibility of the
Lip-operator is the important problem presented in several sides including

its spectrum analysis.

Proposition.  Let tcLip(m,p). Then m is a certain subset of y; in
isometric embedding sense. If an operator j:m - M is such isometric
mapping, then, for all x,y e M , we have

: C)

[x =yl =%~y = sup |£ ()~ £(y)
eM

L(f)&

[Tx=Ty[ = [T () -7 ()| (10)

Proof. Choose any x < M and fix it. Consider the functional j(x) defined
on m; by J(x)(f)= f(x). Then the functional J(x)is a bounded linear on m;
because |3(x)(f)|=|f(|<L(f)fx| » that is, Jyem; . Now put
M ={3(x)eM| xeMm | and we shall show that the operator J:M — JM is

an isometric mapping. If x,y e M, then we obtain that

11



[900) =3y = sup |30 =3y (F)] = fSl:AF{\ FO) - f(y)|<

L(P)<1 L(F)s1
< sup L(f)[x—y|<[x-y].
feM

L(H)$1
If x =y, then, by the Hahn-Banach theorem, there exists a functional
f, e X; such that |f]=L(f)=1 f,(x-y)=[x—y|- Now we denote again by f, a
contraction to m of £, then itis clear that f, e M. Hence we have that

[x =y =[fo(x=y)| = [f,(x) = fo(¥)] < fSUMPf\f(X)— f(y)] =

L(F)<1

= sup [(J(x) = I(YN () = [9(x) = I(y)-

feM|
L(f)<1

This is proof of the equality (9). We shall show the equality (10).

Forall xem andall f eD, since f.Tem; and J(x) e M;;, we have that

FM)=(f o)) =T F)(x) =I( )=
=) TO(H) =T GKX(F).
On the other hand, if operator J’: D — D;; is such an isometric mapping as J,
then J'(Tx) e D . Hence f(Tx)=J'(Tx)(f).
Thus we have J/(Tx)(f)=T,;Q()(f) for all fep; , that is,
J'(M)=T.(J(x)). Therefore, by the equality (10), we obtain

[T =Ty = |3 () - 3" ()| = [T QO - T ()] -

This completes the proof. [

We’ll here show the necessary and sufficient conditions for invertibility
First, we recall the concept of invertibility of Lip- operator [5].

LettcLip,(m,p). The operator T is said to be invertible in Lip(m p), If
R(T)=D , T exists, and T ¢ Lip,(D,M), Where r(r) is a range of T .
Similarly, the operator 1 is said to be invertible in BL(D;, M), If R(T)=M_,
aytexists. It is to be noted here that the condition (T)™* eBL(M_,D;)

follows from that r(t,)=Mm; and (1,")*exists by the open mapping theorem

12



([4]), because T is the bounded linear operator defined on p;. We’ll always

assume that 1 < Lip,(m, D) below.

Lemma 1. If I(T)>0, then Rr) is a closed set, T exists, and

T e Lip,(R(T),M), Where

(M= inf =D (11)

which was called a glb-Lipschitz constant of T ([3]).

Proof. For all x,yeM , since I(T)x-y|<[Tx-Ty|, if I(T)>0, then

Tx =Ty implies x=y. Therefore T exists.

On the one hand, for any x,y, eR(T) there exist x,yeM such that
Tx=x,Ty=y, . Hence T is a Lip-operator on Rr(r) into m , i.e.
T eLig(R(T),M) and we have L(T*)<I*T). We now show that R(T) is a
closed set. To do that, we take any {y}° ~such that
{y.}-, cR(m)andy, — y,asn—o. Then there exists a sequence {x |» =M

such that y, =Tx,, i.e., x =T"y,(n=12--). Hence

H)g}—me:HT’lyn —T’lym sl’l(T)Hyn—ymH —0 as nmow.
This shows that {x,}”, is Cauchy sequence of x. Since x is complete and
M is closed, there exists a point x, e M such that x —x, as n—. By the
continuity of T, we have that y - limy, = limTx, =Tx, € R(T). [

It is easy to see that the same result for T is true.

Lemma 2. If r(r) is a closed set, T exists, and T eLip(R(T), M), then we
have R(T)=M;.
Proof. For anyy cR(T) and any f e M;, set g(y)= f(T'y). Since both T* and

f are Lip-continuous on R(T) and m respectively, the functional g is also

13



Lip-continuous on Rr(r). By the theorem 2, we can extend g from r(t) to D
with Lip-continuity. We denote again by g the extended functional, then it
is clear that g e D . Therefore, for all xem,

(T 0)x)=9(m)=g(y)= F(Ty)= £(TTx)= £ (x).
Thus T,g = f . This shows that R(T; )=M; . [|

Lemma 3. If R(T) is a closed set and (T]" exists, then R(T)=D.
Proof. Assume that there exists a point y, < D\R(T). Because R(T) is the

closed set, we have that ¢ - in}c )HV— Yo > 0- By the corollary 3 of theorem 1,
yeR(T

there exists a functional f, eD; such that f (y)=o0 for yer(r), f,(y,)=dand
L(f,)=1. On the one hand, since TxeR(T) for all xem , we have
that f,(Tx)= (T, f,)(x)=0. So T, f, = 0. Since (T, )" exists, we have f, =0, but
this contradicts that L(f,)=1.

It is easy to see that the following lemma is valid, but we shall check it
for the sake of the proof of the next main theorem. We need not only the

lemma 4 but also the remark of it. [

Lemma 4. The operator T is invertible in Lip (v p) if and only if
I(T)>0,R(T)=D. Then we have I(T)=L*(T").

Proof. First, we show that if T is invertible in Lip (m,p) then I(T)=L*(T ). If
it be so, then it is clear that T is one-to-one and o < (1) < +. Hence, for any
x,yeM (x=y), there exist x,,y, e D (x, #y,) such that T7'x, =x, Ty, =y.
Conversely, for any x,,y, e D (x, =y,), there exist x,y e M (x = y) such that

Tx=x,,Ty=y,. Therefore

14



-1

I(T) = inf [Tx=Ty]-[x=y|" = inf (=" [T -T"y)

X, YD

X#Y X #Y; (12)

-1

=| sup [T =Ty oy | =L3(T7)

X #Y,
Next, we show the fore part of the theorem. If T is invertible in Lip (D),
then L(T)>0 and hence we have I(T)>0 and R(T)=D . Conversely, if
I(T)>0 and R(T)=D, then it is clear that T is invertible in ip (v D) by the

lemma 1. [J

Note 3. It is easy to see that the same result for 1.is true. In other words, we
can obtain following result for 1* by repeating the same argument as the
theorem 1. The operator 1 is invertible in Bi(p;,m;) if and only if

I(T;)>0and R(T)=M; .

The following theorem is the main result on the relation of invertibility
between Lip-operator and its Lip-dual operator. This theorem gives us the
complete answer to the question in [1].

Theorem 3.  The operator T is invertible in rip (v p) if and only if the
operator T, is invertible in BL(D;,m;). Then we have
()" =
Proof. If T is invertible in Lip (m,p), then the lemma 4 implies I(T)>0.
Hence we have that R(T,)=M; by the lemma 1 and lemma 2. On the one
hand, since T belongs in the space Lip,(D,Mm), Lip-dual operator (T 1)L of
T is defined on m; and (%), eBL(M;,D;) . And, because
I, =T "oT, 1, =ToT™ are identity operators on M, D respectively, we have
() =@ eT)L =T (T )L, (13)
(I =TT =TT, (14)

15



*

where (1), (1), are identity operators on M, D/

respectively ([2]).
Therefore, By (13) and (14), we have that (T), exists and (1, )" =(T ).
Hence (7)™ e BL(M;,D;), thus T, is invertible in BL(D;,M;).

Conversely, assume that T,"is invertible in BL(D:,ME). We have to prove
I(T)>0,R(T)=D. If T7is invertible, then it is true that the linear dual operator
T, of bounded linear operator T, defined on Banach space D, is also

invertible and HTL*H:HTLTH . Therefore, by lemma 4, we have that
I(T))=L*()™) - Hence L(T)™) =L(T)™) and I(T)=LY(T))=1(T)
follows from (T:f)flz((r:)‘l)f and (1) | =[(r) |-  And by the lemma 4,
the equality (9) and (10), we obtain that

0<I) =1(T) = inf [Tx-Ty|[x-7]" <

o
LI

<0t T @0 =T5 On)] fox-] =
Ix=#Jy

X, yeM
X£Y

Next, since (17)" exists and R(T) is closed, by the lemma 3, we have

L

that R(T)=D . Therefore T is invertible in Lip,(M,D). Finally, using
Lo =|r)?| and the  equality (13), we have that

M) =L =L ) =L @)Y =IT).
This completes the proof. [

Corollary. The following statements are equivalent to each other:

1) The operator T is invertible in Lip (D),
2) 1(T)>0 and (1;)* exists,

3) I(T)-1(T,") > 0.

16



Proof. If T is invertible, then, by the lemma 4 and theorem 3, I(T)>0and
(r7)* exists. And, since T, is invertible, we also have that I(1)>0. Thus
I(T)-1(T)>0. On the other hand, if I(T)>0and (r°)" exists, then, by the

lemma 1 and lemma 3, T is invertible in Lip (m,D). [

The results in this paper can be used effectively at the study of the topology
of Banach space by the Lip-functional, and at the study of the operator
equation with Lip-operator. In fact, the extension theorem 1 is important at
the introduction and the consideration of a new topology in Banach space,
and the theorem 3 is significant at the resolution of nonlinear Lip-operator
equation by the linear Lip-dual operator equation.
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