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Abstract: in this paper you will find a personal, practical and direct demonstration of the
Stokes’ Theorem.

The Stokes’ Theorem (practical proof-by Rubino!):

If we have a volume, we can hold it as made of many small volumes, as that in Fig. 1; for
every small volume, the following holds: (and so it holds also for the whole volume...)
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Fig. 1: For the Stokes’ Theorem (proof by Rubino).

Let’s figure out Il3>dll ;
Ondz BisB;; ondx BisByondy BisBy;

on-dz Bis B;de- 18,
fix iy
from the center of dz to that of —dz we go up along x, then we go down along y and

nothing along z itself.

dy , for 3-D Taylor's development and also because to go
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Similarly, on -dx Bis B,- 1B, dz+de and on -dy Bis B- hdx+hdz
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By summing up all contributions:
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= rotB>dél :|{|’ B>dS  whereas here dS has got components [ X(dydz) , y(dxdz) , z(dxdy) ]

that is, the statement: g‘j%mlll = (‘JotI'B «dS = @tl I'3>dé after having reminded of:
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Appendix) Divergence Theorem (a well known and practical proof):
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Fig. 2: For the Divergence Theorem.
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Namef the flux of the vector I'E; we have:
df pecp = EXAS =- E (X, Y, Z)dydz (ymeans y “mean”)
df .oy = E,(X+dX, y,Z)dydz , but we obviously know that also: (as a development):

E. (x+dx,¥,2) =E.(X,V,2) +de s0:
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dxdydz and so:

- = 1E,(X,Y,Z
df ey =E (XY, z)dydz+%

df sep O oy :%dv . We similarly act on axes y and z:
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And then we sum up the fluxes so found, having totally:

df =(

TE. . fE
ix 1
fs(E)= C)df = QE xS = QdivE dVv = Q(N xE)>dV that is the statement.
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Thank you for your attention.
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