


 

�
�

���������������������������
������������������������

�����������������
�
 

 

 

 

W. B. Vasantha Kandasamy 
Florentin Smarandache 

�
 
 
 
 
   
 

 
 
 
 
 

ZIP PUBLISHING  
Ohio  
2012 



 2

This book can be ordered from: 
 
   Zip Publishing  

1313 Chesapeake Ave.  
Columbus, Ohio 43212, USA 
Toll Free: (614) 485-0721 
E-mail: info@zippublishing.com 
Website: www.zippublishing.com 

 
 
Copyright 2012 by Zip Publishing and the Authors 
 
 
 
Peer reviewers:  
Florentin Popescu, Facultatea de Mecanica, University of Craiova, Romania. 
Dr. Sebastian Nicolaescu, 2 Terrace Ave., West Orange, NJ 07052, USA. 
Prof. Mihàly Bencze, Department of Mathematics,  
Áprily Lajos College, Bra�ov, Romania  
 
 
 

 
 
Many books can be downloaded from the following 
Digital Library of Science: 
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm 
 
 
 
 
 

 

ISBN-13: 978-1-59973-169-8 

EAN:  9781599731698 

 

 
 
 

Printed in the United States of America 



 3

�

 

 
 
 
 
�

���������

�
�
�
�
�������� ����5�
�
 
������������
������������� �� � �7�
 
 
������������
��������������������������������� �� ��13�
 
��������������
��������������������������������
���������������� � � � � � � � � � �� � 45�
�
3.1  Groupoids and Loops over the Complex Modulo Integer  
 Rings (Complex Rings)     45 
3.2  Complex Loops and Complex Groupoids over Real Rings 77 
 
 
��������������
�������������������������� �119�
 



 4

 
�������������
�����������������������������������������
����������� �155 
�
�
������������
������������������� �157 
 
 
�����������������   209 

  

�����  211 

 

�����������������  213 
 



 5

 

�
�
�
�
 
��������
 
 
 
 
 
 
 

Authors in this book for the first time have constructed nonassociative 

structures like groupoids, quasi loops, non associative semirings and 

rings using finite complex modulo integers. The Smarandache analogue 

is also carried out. We see the nonassociative complex modulo integers 

groupoids satisfy several special identities like Moufang identity, Bol 

identity, right alternative and left alternative identities. P-complex 

modulo integer groupoids and idempotent complex modulo integer 

groupoids are introduced and characterized.  

This book has six chapters. The first one is introductory in nature. 

Second chapter introduces complex modulo integer groupoids and 

complex modulo integer loops using C(Zn). This chapter gives 77 

examples and forty theorems. Chapter three introduces the notion of 

nonassociative complex rings both finite and infinite using complex 

groupoids and complex loops. This chapter gives over 120 examples 

and thirty theorems.  
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Forth chapter introduces nonassociative structures using complex 

modulo integer groupoids and quasi loops. This new notion is well 

illustrated by 140 examples.  

These can find applications only in due course of time, when these 

new concepts become familiar. The final chapter suggests over 300 

problems some of which are research problems.  

We thank Dr. K.Kandasamy for proof reading and being extremely 

supportive. 
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 In this chapter we for just recall some definitions and give 
the notations to make this book a self contained one. Zn, Z, Q, R 
and C denote the modulo integers, integers, rationals, reals and 
complex numbers respectively. 
 
 C(Zn) = {a + biF | a, b ∈ Zn, 

2
Fi  = n – 1} denotes the ring of 

complex modulo integers. 
 C(Z) = {a + bi | a, b ∈ Z, i2 = –1} denotes the ring of 
complex integers.  

C(Q) = {a + bi | a, b ∈ Q, i2 = –1} is the field of rational 
complex numbers.  

C(R) = C = {a + bi | a, b ∈ R, i2 = –1} is the field of 
complex numbers. 

 
R+ ∪ {0}, Q+ ∪ {0}, Z+ ∪ {0} denote the positive numbers 

and they form the semifield. 
However, since i2 = –1 we cannot have complex semifield.  
 
Now we proceed onto define groupoids and loops and for 

more about these concepts refer [14-5].  
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DEFINITION 1.1: Let  
G = {Zn, *, (t, u); t, u ∈ Zn \ {0, 1}, (t, u) = 1; 

t and u are primes} be a groupoid of type I. 
 

 If in this definition (t, u) = 1; t and u are not primes but 
relatively prime we get a groupoid of type II. If in this definition 
1.1 if we replace (t, u) = d ≠ 0; (t, u ∈ Zn \ {0}) we get groupoid 
of type III. (Also (t, t) gives a groupoid of type V), if t or u = 0 
then also (t, 0) or (0, t) will give a groupoid of type IV. 
 
 We give examples of them. 
 
Example 1.1: Let G = {Z45, (7, 13), *} be groupoid of type I. 
 
Example 1.2: Let G = {Z36, (15, 8), *} be groupoid of type II.  
 
Example 1.3: Let G = {Z40, (9, 24), *} be groupoid of type III. 
 
Example 1.4: Let G = {Z29, (12, 12), *} be groupoid of type IV. 
 
Example 1.5: Let G = {Z20, (13, 0), *} be groupoid of type V.  
 
Now we have several associated properties with them. For more 
please refer [14]. 
 
DEFINITION 1.2: Let (G, *) be a groupoid. If H ⊆ G and (H, *) 
is a groupoid then we call (H, *) to be a subgroupoid of G. If 
(H, *) is a semigroup we define (G, *) to be a Smarandache 
groupoid. 
 
 All groupoids in general are not Smarandache groupoids. 
We can define special identities on groupoids [14]. 
  
 Now we proceed onto recall the definition of the new class 
of loops. 
 
DEFINITION 1.3: Let Ln(m) = {e, 1, 2, …, n} be the set where  
n > 3, n is odd and m is a positive integer such that (m, n) = 1 
and (m–1, n) = 1 with m < n. 
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Define on Ln(m) a binary operation ‘o’ as follows. 
(i) e o i = i o e = i for all i ∈ Ln(m) 
(ii) i2 = i o i = e for all i ∈ Ln(m) 
(iii) i o j = t where t = (mj – (m – 1)i) 

for all i, j ∈ Ln(m), i ≠ j, i ≠ e and j ≠ e; then Ln(m) is a loop 
under the binary operation. 
 
We just give one or two examples. 
 
Example 1.6: Let L5(2) = {e, 1, 2, 3, 4, 5}. The table for L5(2) is 
as follows: 

0 e 1 2 3 4 5 
e e 1 2 3 4 5 
1 1 e 3 5 2 4 
2 2 5 e 4 1 3 
3 3 4 1 e 5 2 
4 4 3 5 2 e 1 
5 5 2 4 1 3 e 

 
L5(2) is a loop of order six. Clearly L5(2) is non associative and 
non commutative. 
 
Example 1.7: L9(8) be the loop given by the following table. 
 

0 e 1 2 3 4 5 6 7 8 9 
e e 1 2 3 4 5 6 7 8 9 
1 1 e 9 8 7 6 5 4 3 2 
2 2 3 e 1 9 8 7 6 5 4 
3 3 5 4 e 2 1 9 8 7 6 
4 4 7 6 5 e 3 2 1 9 8 
5 5 9 8 7 6 e 4 3 2 1 
6 6 2 1 9 8 7 e 5 4 3 
7 7 4 3 2 1 9 8 e 6 5 
8 8 6 5 4 3 2 1 9 e 7 
9 9 8 7 6 5 4 3 2 1 e 

 
L9(8) is a Smarandache loop [15]. 
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We can study the special identities satisfied by them. 
 Ln = {Ln(m) | 1 < m , n, (m, n) (m – 1, n) = 1, n odd n > 3} 
denotes the class of all loops of order n + 1. 
 
We just recall the definition of groupoid rings. 
 
DEFINITION 1.4: Let G be a groupoid. R be a commutative ring 
with unit or a field. The groupoid ring RG consists of all finite 
formal sums of the form �ri gi (i; running over a finite number) 
where ri ∈ R and gi ∈ G satisfying the following conditions.  
 

 (i)   
n n

i i i i
i 1 i 1

r g s g
= =

=� �  if and only 

 
if ri = si for i=1, 2, …, n 

 

 (ii)  
n n n

i i i i i i i
i 1 i 1 i 1

a g b g ( a b )g
= = =

+ = +� � �  

 

 (iii)  
n n n

i i i i k k
i 1 i 1 k 1

a g b g c g
= = =

� �� �
=� �� �

� �� �
� � �   

where gi gj = mk  ck = � ai bj 
 
 (iv)  ri gi = gi ri for all ri ∈ R and gi ∈ G. 
 

 (v)   
n n

i i i i
i 1 i 1

r r g ( rr )g
= =

=� �  for all r, ri ∈ R and gi ∈ G. 

Since 1 ∈ R and gi ∈ G we have G = 1.G ⊆ R G and R ⊆ RG if 
and only if G has identity, otherwise R ⊄ RG. 
 
 Clearly RG is a non associative ring with 0 ∈ R as the 
additive identity. The groupoid ring RG is an alternative ring if 
(x x) y = x (xy) and x (yy) = (xy) y for all x, y ∈ RG. 
 
 We just give some examples of groupoid rings.  
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Example 1.8: Let G = {Z9, *, (3, 8)} be a groupoid F = Z2 = {0, 
1} be the finite field. FG is the groupoid ring of G over F. 
Clearly FG is non commutative and non associative ring but of 
finite order. 
 
Example 1.9: Let G = {Z40, *, (3, 3)} be a groupoid Z = F be 
the ring of integers, FG is the groupoid ring of infinite order.  
 FG is commutative but a non associative ring. 
 
Example 1.10: Let G = {Z120, *, (23, 0)} be a groupoid.  
F = Z12 be the ring of modulo integers FG be the groupoid ring. 
FG has two sided ideals given by  
 

I = KG = i ia g
	


�
�  ai ∈ {0, 2, 4, 6, 8, 10} ⊆ Z12, gi ∈ G} ⊆ FG 

is an ideal of FG. Further FG has right ideals which are not left 
ideals.  
 
DEFINITION 1.5: Let R be a commutative ring with unit or a 
field. L be any loop. The loop ring of the loop L over the ring R 
denoted by RL consists of all finite formal sums of the form 
�aimi (i-runs over a finite number) where ai ∈ R and mi ∈ L 
satisfying the following conditions.  
 

 (i)   
n n

i i i i
i 1 i 1

a m b m
= =

=� �  if and only 

if ai = bi for i=1, 2, …, n 
 

 (ii)   
n n n

i i i i i i i
i 1 i 1 i 1

a m b m ( a b )m
= = =

+ = +� � �  

 

 (iii)  
k i j

n n

i i j j k k
i 1 j 1 m m m

a m b m c m
= = =

� �� �
=� �� �

� �� �
� � �   

where ck = � ai bj 
 
 (iv)  ri mi = mi ri for all ri ∈ R and mi ∈ L. 
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 (v)  i i i i
i i

r r m ( rr )m
� �

=� �
� �
� �  for all r ∈ R and �ri mi ∈ RL. 

RL is a non associative ring with 0 ∈ R as the additive identity. 
Since 1 ∈ R we have L = 1 . L ⊆ RL and R.e = R ⊆ RL where e 
is the identity element of L.  
 
 We will illustrate this situation by some examples. 
 
Example 1.11: Let F = Z2 = {0, 1} be the finite field L = L11(5) 
be the loop of order 12. FL be the loop ring. Clearly FL is non 
commutative and a non associative ring of finite order. 
 
Example 1.12: Let F = Z be the ring of integers. L = L19(10) be 
a loop of order 20. FL be the loop ring. FL is a commutative but 
non associative ring of infinite order.  
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 In this chapter we for the first time introduce the notion of 
complex modulo integer groupoids built using complex modulo 
integers C(Zn) = {a + biF | a, b ∈ Zn; 

2
Fi = n–1}.   

Clearly o (C(Zn)) = n2. 
 
DEFINITION 2.1:  Let G = {a + biF | a, b ∈ Zn; 

2
Fi = n–1} be the 

collection of complex modulo integers.  Define * on G as 
follows for every x, y in G where x = a + biF and y = c+diF 
 
 x*y  =   (a+biF) * (c + diF) 
  = (ta + sc) mod n + (tb + sd)iF (mod n)  
with  t, s ∈ Zn \ {0} (t, s) = 1, t and s are primes; (G, *, (t, s)) is 
defined as the complex modulo integer groupoid of type I. 
 
 If (t, u) = 1 but t and u are not primes then we define them 
as type II groupoids. 
 
 We will illustrate this situation by some examples. 
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Example 2.1:  Let (G, *, (7, 3)) = {a + iFb | a, b ∈ Z10, *, (7, 3)} 
be a complex modulo integer groupoid of type I.  Let x = 5 + 2iF 
and y = 1 + 9iF be in G.  Now  
 

x+y = (5 + 2iF) * (1+9iF)  
= (5*1) (mod 10) + (2*9) iF (mod 10)  

  = (35 + 3) (mod 10) + (14 + 27) iF (mod 10) 
  = 8 + iF.  Clearly x*y ∈ G. 
 
Example 2.2:  Let G = {C(Z12), *, (7, 8)} be a complex modulo 
integer groupoid of order 122. 
 
Example 2.3:  Let K = {C(Z3), *, (1, 2)} be a complex modulo 
integer groupoid of order 32. 
 
Example 2.4:  Let G = {C(Z14), *, (9, 5)} be a complex modulo 
integer groupoid of order 142. 
 
Example 2.5:  Let K = {C(Z19), *, (12, 11)} be a complex 
modulo integer groupoid of order 192. 
 
 All these groupoids are of type I. 
 
Now we can define type III complex modulo integer groupoids. 
 
DEFINITION 2.2:  Let  
 

G = {C(Zn), *, (t, s) = d ≠ 1, n ≥ 5, t, s ∈ Zn \ {0,1}}.  G is a 
complex  modulo integer groupoid of type III. 
 
 We will give examples of them. 
 
Example 2.6:  Let M = {C(Z12), *, (3, 9)} be a complex modulo 
integer groupoid of order 122. 
 
 It is clear from the very definition if (t, s) = d ≠ 0 then n 
must naturally be greater than or equal to 5 for type II 
groupoids. 
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Example 2.7:  Let G = {C(Z5), *, (2, 4)} be a complex modulo 
integer groupoid of order 5. 
 
Suppose x = 3 + 2iF and y = 1+iF are in G then  
 

x*y = (3+2iF) * (1+iF) = 3*1 + (2*1)iF 
= [(6+4)+ (4+4)iF) (mod 5) 
= 3iF ∈ G. 

 
It is interesting to note that the product can be a complex 
number with real part equal to zero. 
 
 Now if x = (2+3iF) and y = (4+iF) are in G then  
 

x*y = (2+3iF) * (4+iF) = (2*4) (3iF * iF) (mod 5)  
   = (4+16) mod 5 + (6 + 4) iF (mod 5) 
   = 0 + 0iF = 0 ∈ G.   
 

Thus we can have zero divisors in G.  Just like a semigroup 
we can in case of groupoids also have the notion of zero 
divisors. 
 Take x = 2+3iF and y = 1+iF in G, then  
 

x*y = (2.2 + 1.4 + (3.2 + 4) iF) (mod 5)  
   = 8+10iF (mod 5) = 3 ∈ G.   
 

We see the product is just a real value. 
 Thus we have seen a groupoid can have modulo integers  or 
imaginary modulo integers as elements.  It is also interesting to 
note that these groupoids can have zero divisors. 
 The concept of the definition of subgroupoid is a matter of 
routine, hence left as an exercise to the reader.  
 
Example 2.8:  Let G =  {C(Z5), *, (2, 4)} be a complex modulo 
integer groupoid.  
 
 Clearly H1 = {1, iF, 1 + iF) ⊆ G is a complex modulo integer 
subgroupoid of G. 
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 H2 = {2, 2iF, 2+2iF} ⊆ G is also a complex modulo integer 
subgroupoid of G. 
 H3 = {3, 3iF, 3+3iF} ⊆ G is again a complex modulo integer 
subgroupoid and H4 = {4, 4iF, 4+4iF} ⊆ G is again a complex 
modulo integer subgroupoid of G. 
 
Example 2.9:  Let G = {C(Z6), *, (2, 4)} be a complex modulo 
integer groupoid.  Consider  

H = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+4iF, 4iF + 2, 4iF + 4} ⊆ G is a 
complex modulo integer subgroupoid. 
 
Example 2.10:  Let G = {C(Z8), *, (2, 6)} be a complex modulo 
integer groupoid. Consider  
 

H = {0, 2, 4, 6, 2iF, 4iF, 6iF, 2+2iF, 2+4iF, 2+6iF, 6+6iF} ⊆ G; 
H is a complex modulo integer subgroupoid of G. 
 
Example 2.11:  Let G = {C(Z12), *, (2, 10)} be a complex 
modulo integer groupoid.  Consider  
 

H = {0, 2, 4, 6, 8, 10, 2+2iF, 2+4iF, 2+6iF, 2+8iF, 2+10iF, 
4+2iF,4+4iF, 4+6iF, 4+8iF, 4+10iF, 6+2iF, 6+4iF, 6+6iF, 6+8iF, 
6+10iF, 8+2iF, 8+4iF, 8+6iF, 8+8iF, 8+10iF, 10+2iF, 10+4iF, 
10+6iF, 10+8iF, 10+10iF, 2iF, 4iF, 6iF, 8iF, 10iF} ⊆ G, is a 
complex modulo integer subgroupod of G.  |H| = 36 and |G| = 
12 × 12.  Clearly |H| / |G|. 
 
Example 2.12: Let G = {C(Z12), *, (10, 8)} be a complex 
modulo integer groupoid.  Consider  
 

H1 =  {0, 4, 8, 4iF, 8iF, 4+4iF, 4+8iF, 8+4iF, 8+8iF} ⊆ G is a 
complex modulo integer subgroupoid of G.  H2 = {2, 6, 10, 2iF, 
6iF, 10iF, 2+2iF, 2+6iF, 2+10iF, 6+2iF, 6+6iF, 6+10iF, 10+2iF, 
10+6iF, 10+10iF} ⊆ G;  

 
H2 is a complex modulo integer subgroupoid of G.  

 
Example 2.13:  Let G = {C(Z10), *, (8, 4)} be a complex 
modulo integer groupoid.  Take H = {0, 2, 4, 8, 6, 2iF, 6iF, 4iF, 
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8iF, 2+2iF, 2+4iF, 2+6iF, 2+8iF, 4+2iF,  4 + 4iF, 4+6iF, 4+8iF, 
6+2iF, 6+4iF, 6+6iF, 6+8iF, 8+2iF, 8+4iF, 8+6iF, 8+8iF} ⊆ G; is a 
complex modulo integer subgroupod of G. 
 
 Next we proceed onto define type IV complex modulo 
integer groupoid. 
 
DEFINITION 2.3:  Let G = {C(Zn), *, (t, 0); t ∈ Zn}  be a 
complex modulo integer groupoid of type IV.  
 
Example 2.14:  Let G = {C(Z6), *, (0, 2)} be a complex modulo 
integer groupoid of type IV. 
 
Example 2.15:  Let G = {C(Z42), *, (0, 9)} be a complex 
modulo integer groupoid of type IV. 
 
Example 2.16:  Let G = {C(Z40), *, (11, 0)} be a complex 
modulo integer groupoid of type IV.  
 
 Now we give one example of a subgroupoid. 
 
Example 2.17:  Let G = {C(Z6), *, (0, 2)} be a complex modulo 
integer groupoid. Take  
 

H = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+4iF, 4+2iF, 4+4iF} ⊆ G is a 
complex modulo integer subgroupoid of G of type IV. 
 
Example 2.18:  Let G = {C(Z23), *, (0, 11)} be a complex 
modulo integer groupoid of order 232. 
 
 Now we have the fifth type of groupoid using modulo 
complex integers. 
 
DEFINITION 2.4:  Let G = {C(Zn), *, (t, t); t ∈ Zn \ {0, 1}} = G 
be the collection of elements.  For a = x+yiF and b = m+niF in 
G we define  
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a*b =  (x+yiF) * (m+niF) = x*m + (n*y)iF = (tx + tm) +  
(tn + ty) iF ∈ G.  (addition modulo n).  Thus G is a groupoid 
defined as the groupoid of modulo complex integers of type V. 
 
 We give examples of them. 
 
Example 2.19:  Let G = {C(Z5), *, (2, 2)} be a complex modulo 
integer groupoid of type V of order 5. 
 
 The only subgroupoids of G are H = {Z5, *, (2, 2)} ⊆ G, and 
P = {Z5 iF, *, (2, 2)} ⊆ G. 
 
Example 2.20:  Let G = {C(Z7), *, (3, 3)} be a complex modulo 
integer groupoid of type V of order 72. Clearly G has only two 
subgroupoids given by P = {Z7, *, (3, 3)} ⊆ G and T = {Z7 iF, *, 
(3, 3)} ⊆ G.  
 
Example 2.21:  Let G = {C(Z6), *, (2, 2)} be a complex modulo 
integer groupoid.  Take  
 

H = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+4iF, 4+2iF, 4+4iF} ⊆ G, H is a 
complex modulo integer subgroupoid of G. 
  
Example 2.22:  Let G = {C(Z6), *, (5, 5)} be a complex modulo 
integer groupoid.  Take H1 = {4, 4iF, 4+4iF} ⊆ G is a 
subgroupoid of G.  Also H2 = {2, 2iF, 2+2iF} ⊆ G is a 
subgroupoid of G. 
 
 These groupoids of type V are all commutative complex 
modulo integer groupoids.  Now we proceed onto define 
Smarandache complex modulo integer groupoids and groupoids 
that satisfy special class of identity. 
 
 Let G = {C(Zn), *, (u, v); u, v ∈ Zn} be a complex modulo 
integer groupoid.  If H ⊆ G (be a proper subset of G) is such 
that, H under the operations of G, is a semigroup then we define 
G to be a Smarandache complex modulo integer groupoid. 
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 We provide some examples from the three types of 
groupoids.  
 
Example 2.23:  Let G =  {C(Z10), *, (1, 5)} be a Smarandache 
complex modulo integer groupoid.  
 
 Clearly S = {0, 5, 5iF,  5+5iF} is a semigroup of complex 
modulo integer groupoid, G. 
 
Example 2.24:  Let G = {C(Z6), *, (4, 5)} be a complex modulo 
integer groupoid.  Take H = {3, 3iF} ⊆ G.  H is a complex 
modulo integer semigroup.  So G is a Smarandache complex 
modulo integer groupoid.  
 
Example 2.25:  Let G =  {C(Z6), *, (2, 4)} be a complex 
modulo integer groupoid.  H = {0, 3, 3iF, 3 +3iF} ⊆ G is a 
complex modulo integer semigroup.  Hence G is a Smarandache 
complex modulo integer groupoid.   

 
We see if G is Smarandache complex modulo integer 

groupoid then every subgroupoid of G need not be a 
Smarandache complex modulo integer subgroupoid of G. 
 
Example 2.26:  Let G = {C(Z6), *, (2, 4)} be a Smarandache 
complex modulo integer groupoid.  Consider  
 

H = {0, 2, 4, 2iF, 4iF, 2 +2iF, 4+2iF, 4+4iF, 2+4iF} ⊆ G.  H is 
only a complex modulo integer subgroupoid of G but H is not a 
Smarandache complex modulo integer subgroupoid of G.  
However G is a Smarandache complex modulo integer groupoid 
as  

 
S = {0, 3, 3iF, 3+3iF} ⊆ G is a complex modulo integer 

semigroup. 
 
Example 2.27:  Let G = {C(Z6), *, (4, 5)} be a complex modulo 
integer groupoid.  Take  
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H = {1, iF, 3, 3iF, 5, 5iF, 1+iF, 1+3iF, 1+5iF, 3+iF, 3+3iF, 
3+5iF, 5+iF, 5+3iF, 5 + 5iF} ⊆ G, is a complex modulo integer 
subgroupoid of G.  Clearly H is a Smarandache complex 
modulo integer subgroupoid of G as S = {3, 3iF, 3+3iF} ⊆ H is a 
complex modulo integer semigroup.  Hence the claim.  Since S 
⊆ G, G is also a Smarandache complex modulo integer 
groupoid. 
 
 However  

P = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+4iF, 4+2iF, 4+4iF} ⊆ G is only 
a complex modulo integer subgroupoid which is not 
Smarandache.   

 
Here on wards we do not mention the type of the groupoid 

by very inspection it is clear. 
 
 Inview of this we have the following interesting theorem.  
 
THEOREM 2.1:  Let G = {C(Zn), *, (t, u); t, u ∈ Zn}  be a 
complex modulo integer groupoid.  If H ⊆ G is such that H is a 
Smarandache modulo integer subgroupoid, then G is a 
Smarandache complex modulo integer groupoid.  But every 
subgroupoid of G need not be a  Smarandache complex modulo 
interger subgroupoid even if G is a Smarandache groupoid. 
 
 Proof is direct and hence is left as an exercise to the reader. 
 
Example 2.28:  Consider G = {C(Z8), *, (2, 4)}, a complex 
modulo integer groupoid.  Take  
 

P = {0, 3, 2, 4, 6, 2iF, 3iF, 4iF, 6iF, 3+2iF, 3+3iF, 3+4iF, 3+6iF, 
2+2iF, 2+3iF, 2+4iF, 2+6iF, 4+2iF, 4+3iF, 4+6iF, 4 + 4iF, 6+3iF, 
6+2iF, 6+6iF, 6+4iF} to be a Smarandache complex modulo 
integer subgroupoid of G.  Hence G itself is a Smarandache 
complex modulo integer groupoid.  
 
 We now just recall the definition of Smarandache ideal of a 
complex modulo integer groupoid G.  Let G = {C(Zn), *, (t, u)} 
be a Smarandache complex modulo integer groupoid.  A ⊆ G 
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(A ≠ φ or {0}) is said to be a Smarandache complex modulo 
integer left ideal of G if the following conditions are true. 
 

(i) A is a Smarandache complex modulo integer 
subgroupoid of G. 

(ii) For x ∈ G and a ∈ A, x * a ∈ A. 
 

Similarly we can define Smarandache right ideal.  If A is 
both a S-left ideal and S-right ideal of G then we define A to be 
a Smarandache ideal of G.   

 
We give examples of them. 

 
Example 2.29:   Let G = {C(Z6), *, (4, 5)} be a Smarandache 
complex modulo integer groupoid.  Let  

A = {1, 3, 5, iF,  3iF, 5iF, 1+ iF, iF+3,  1+ 3F, 1+5iF, 3+3iF, 
3+5iF, 5+5iF, 5+3iF} ⊆ V be a Smarandache left ideal of G.  
Clearly A is not a Smarandache right ideal of G. 
 
Example 2.30:  Let G = {C(Z6), *, (4, 5)} be a complex modulo 
integer groupoid.  Consider  

A = {1, 3, 5, iF, 3iF, 5iF, 1+iF, 1+3iF, 1+5iF, 3+iF, 3+3iF, 
3+5iF, 5+iF, 5+3iF, 5+5iF} ⊆ G; A is a Smarandache left ideal of 
G and is not a Smarandache right ideal of G. 
 
Example 2.31:  Let G = {C(Z6), *, (2, 4)} be a complex modulo 
integer groupoid.  Consider  

P = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+4iF, 4+2iF, 4+4iF} ⊆ G;  
 
Clearly P is an ideal of G but clearly P is not a Smarandache 

ideal of G; infact P is not even a Smarandache subgroupoid of 
G.   

 
Inview of this we have the following theorem. 

 
THEOREM 2.2:  Let G = {C(Zn), *, (t, s), t, s ∈ Zn} be a complex 
modulo integer groupoid.  If I is a Smarandache complex 
modulo integer ideal of G then I is a complex modulo integer 
ideal of G.  Conversely if I is a complex modulo integer ideal of 
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G, then I is general need not be a Smarandache complex 
modulo integer ideal of G.  
 
 We will just define the notion  of Smarandache seminormal 
groupoid. 
 
 Let G = {C(Zn), *, (t, s), t, s ∈ Zn} be a Smarandache 
complex modulo integer groupoid.  Suppose S ⊆ G be a 
Smarandache complex modulo integer subgroupoid of G; we 
say S is a Smarandache complex modulo integer seminormal 
subgroupoid of G if 
 

(i)  aS = X for all a ∈ G, 
(ii) Sa = Y for all a ∈ G, 

 
where either X or Y is a Smarandache subgroupoid of G; but 
both X and Y are subgroupoids of G. 

 
We will give one example of this definition. 

 
Example 2.32:  Let G = {C(Z6), *, (4, 5)} be a Smarandache 
complex modulo integer groupoid.   

A = {1, 3, 5, iF, 3iF, 5iF, 1+iF, 3iF+1, 1+5iF, 3+iF, 3+3iF, 
3+5iF, 5+iF, 5+3iF, 5+5iF} ⊆ G, A is also a Smaradache 
subgroupoid of G.  Clearly aA = A for all a ∈ G but  

 
Aa = {0, 2, 4, 2iF, 4iF, 2+2iF, 2+ 4iF, 4+2iF, 4+4iF} is not a 

Smarandache subgroupoid of G.  Thus A is a Smarandache 
seminormal subgroupoid of G. 
 
 Inview of this we have the following theorem. 
 
THEOREM 2.3: Every Smarandache complex modulo integer 
normal groupoid is a Smarandache complex modulo integer 
seminormal groupoid and not conversely.   

 
The proof is direct and hence is left as an exercise to the 

reader.  
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Example 2.33:  Let G =  {C(Z8), *, (2, 8)} be a complex 
modulo integer groupoid.  S = {0, 4, 4iF, 4+4iF} ⊆ G is a 
complex modulo integer semigroup under *.  Consider  
 

A = {0, 2, 4, 6, 2iF, 4iF, 6iF,  2+2iF, 2+4iF, 2+6iF, 4+2iF, 
4+4iF, 4+6iF, 6+2iF, 6+4iF, 6+6iF} ⊆ G is a Smarandache 
complex modulo integer subgroupoid.  It is easily verified for 
every x ∈ G, xA = A and Ax = A. 
 
 Thus A is a Smarandache complex modulo integer normal 
subgroupoid of G. 
 
 We now just recall the notion of Smarandache 
semiconjugate subgroupoid of complex modulo integers. 
 
 Let G = {C(Zn), *, (t, u), t, u ∈ Zn} be a Smarandache 
complex modulo integer groupoid.  
 
 Let I and J be any two complex modulo integer 
subgroupoids of G.  We say I and J are Smarandache 
semiconjugate subgroupoids of G if 
 

(i) I and J are Smarandache complex modulo integer 
subgroupoids of G. 

(ii) I = xJ or Jx  or 
(iii) J = xI or Ix for some x ∈ G.   
 

We give examples of Smarandache complex modulo integer 
subgroupoids of G which are semiconjugate. 
 
Example 2.34:  Let G = {C(Z8), *, (2, 4) be a complex modulo 
integer groupoid.  Consider  
 

J = {0, 2, 3, 4, 6, 2iF, 3iF, 4iF, 6iF, 2+2iF, 2+3iF, 2+4iF, 2+6iF, 
4+2iF, 4+3iF, 4+4iF, 4 + 6iF, 3+2iF, 3+3iF, 3+4iF, 3+6iF, 6+2iF, 
6+3iF, 6+4iF, 6+6iF} ⊆ G, J is a Smarandache complex integer 
subgroupoid of G.  Take  
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I = {0, 2, 4, 6, 2iF, 4iF, 6iF, 2+2iF, 2+4iF, 2+6iF, 4+2iF, 4+4iF, 
4+6iF, 6+2iF, 6+4iF, 6+6iF} ⊆ G; I is also a Smarandache 
complex modulo integer subgroupoid of G. 
  

Now TJ = I (or 7, 7iF, J = I or 7+7iF J = I).  Hence J and I 
are Smarandache complex modulo integer semiconjugate 
subgroupoids of G. 
  

Now we proceed onto define Smarandache complex modulo 
integer conjugate subgroupoids of a complex modulo integer 
groupoid G. 
 
 Let G = {C(Zn), *, (t, u); t, u ∈ Zn} be a Smarandache 
complex modulo integer groupoid.  H and P be complex modulo 
integer subgroupoids of G.  We say H and P are Smarandache 
conjugate complex modulo integer subgroupoids of G if  
 

(i)  H and P are Smarandache subgroupoids of complex  
      modulo integers of G. 

 (ii) H = xP or Px and 
 (iii) P = xH or Hx. 
 
 We will first illustrate this situation by an example. 
 
Example 2.35:  Let G = {C(Z12), *, (1, 3)} be a complex 
modulo integer groupoid. 
 S = {0, 6, 6iF, 6+6iF} ⊆ G is a complex modulo integer 
semigroup of G.  So G is a Smarandache complex modulo 
integer groupoid. Consider  
 

H1 = {0, 3, 6, 9, 3iF, 6iF, 9iF, 3+3iF, 3+6iF, 3+9iF, 6+3iF, 
6+6iF, 6+9iF, 9+3iF, 9+6iF, 9+9iF} ⊆ G and  
 

H2 = {2, 5, 8, 11, 2iF, 5iF, 8iF, 11iF, 2+2iF, 2+5iF, 2+8iF, 
2+11iF, 5+2iF, 5+5iF, 5+8iF, 5+11iF, 8+2iF, 8+5iF, 8+8iF, 8+11iF, 
11+2iF, 11+5iF, 11+8iF, 11+11iF} ⊆ G; are two Smarandache 
complex modulo integer subgroupoids of G. 
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 Now H1 = 3H2 (3iF H2, 3+3iF H2) 
 

Further H2 = 2H1 (2iF H1 or 2+2iF H1). 
So H1 and H2 are Smarandache conjugate complex modulo 

integer subgroupoids of G. 
  

In view of this we have the following theorem. 
 
THEOREM 2.4:  Let G be a Smarandache complex modulo 
integer groupoid.  If H1 and H2 are two Smarandache complex 
modulo integer subgroupoids of G which are Smarandache 
conjugate then they are Smarandache semiconjugate.  But if we 
have two subgroupoids to be Smarandache semiconjugate then 
they need not in general be Smarandache conjugate.  
 
 We give the following theorems proofs of which are left to 
be reader [  ]. 
 
THEOREM 2.5:  The complex modulo integer groupoids  

G = {C(Zn), *, (t, t), t < n} are commutative. 
 
THEOREM 2.6:  The complex modulo integer groupoids  

G = {C(Zp), *, (t, t), t , p, p a prime} are normal. 
 
THEOREM 2.7:   The complex modulo integer groupoids  

G = {C(Zn), *, (t, t); t < n} are P-groupoids.   
 
THEOREM 2.8:  The complex modulo integer groupoids  

G = {C(Zn}, *, (t, t), 1 < t < n} are not alternative 
groupoids if n is a prime. 
 
THEOREM 2.9:  The complex modulo integer groupoids  
G =  {C(Zn}, *, (t, t)}, n not a prime are alternative groupoids if 
and only if t2 ≡ t (mod n). 
 
THEOREM 2.10:  The complex modulo integer groupoids  

G = {C(Zn}, *, (t, u)} are simple if t + u = n and t and u are 
primes.   
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We will give examples of them.  
 
Example 2.36:  Let G = {C(Z2), *, (7, 13)} be complex modulo 
integer groupoid.  G is simple.   
 
Example 2.37:  Let G = {C(Z13), *, (7, 6)} be a complex 
modulo integer groupoid.  G is simple.   

Inview of this example we can easily prove the following 
theorem. 
 
THEOREM 2.11:  Let  

G = {C(Zp), *, (t, u) such that t + u = p;  p a prime and  
(t, u) = 1} be a complex modulo integer groupoid.  G is simple.  
 
THEOREM 2.12:  Let  

G = {C(Zn), *, (t, u); (t, u) = 1 and t, u ∈ Zn \ {0}} be a 
complex modulo integer groupoid.  In G, {0} is not an ideal. 
 
THEOREM 2.13:  P is a left ideal of G = {C(Zn), *, (t, u) = 1} 
the complex modulo integer groupoid if and only if P is a right 
ideal of G′ = {C(Zn), *, (u, t) = 1}, the complex modulo integer 
groupoid. 
 
 We will just give an example of this situation. 
 
Example 2.38:  Let G = {C(Z4), *, (2,3)} be a complex modulo 
integer groupoid.  Let P = {0, 2, 2iF, 2+2iF} and  
 

Q = {1, 3, iF, 3iF, iF+1, iF+3, 3iF+1, 3iF+3} be complex 
modulo integer left ideals of G.  Clearly P and Q are not right 
ideals of G.  Now consider the complex modulo integer 
groupoid  

 
H = {C(Z4), *, (3, 2)}.  Take T = {0, 2, 2iF, 2+2iF} ⊆ H and  
 
R = {1, 3, iF, 3iF, 1+iF, 1+3iF, iF+3, 3iF+3} ⊆ H.  Clearly T 

and R are complex modulo integer right ideals of H and not left 
ideals of  H. 
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 G(Zn) = {C(Zn), *, (0, t)},  is a complex modulo integer P-
groupoid and alternative groupoid if and only if t2 ≡ t mod n. 
 
 Proof is left as an exercise to the reader. 
 
Example 2.39:  Let G = {C(Z6), *, (0, 3)} be a complex modulo 
integer P-groupoid and alternative groupoid. 
 
Example 2.40:  Let G = {C(Z12), *, (0, 4)} be a complex 
modulo integer P-groupoid and alternative groupoid. 
 
Example 2.41:  Let G = {C(Z10), *, (0, 5)} be a complex 
modulo integer P-groupoid and alternative groupoid. 
 
 We can as in case of usual groupoids define Smarandache 
left ideals and Smarandache right ideals in case of complex 
modulo integer groupoids. 
 
Example 2.42:  Let G = {C(Z6), *, (4, 5)} be a Smarandache 
complex modulo integer groupoid. 
 
 A = {1, 3, 5, iF, 3iF, 5iF, 1+1iF, 1+3iF, 1+5iF, 3+iF, 3+3iF, 
3+5iF, 5+iF, 5+3iF, 5+5iF} ⊆ G is a Smarandache left ideal of G 
and is not a Smarandache right ideal of G.  Thus in general a 
Smarandache left ideal of G need not be a Smarandache right 
ideal of G.  Also every ideal (right or left) need not be 
Smarandache (right or left) ideal of G. 
 
 We can define all identities as in case of usual groupoids.  
Also the Smarandache analogue is done as in case of usual 
groupoids. 
 
Example 2.43:  Let G = {C(Z10), *, (5, 6)} be a complex 
modulo integer groupoid.  G is a Smarandache strong Moufang 
complex modulo integer groupoid. 
 
Example 2.44:  Let G = {C(Z12), *, (3, 9)} be a complex 
modulo integer groupoid, G is only a Smarandache complex 
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modulo integer Moufang groupoid and is not a Smarandache 
strong Moufang groupoid. 
 
 However this theorem can be easily proved. 
 
THEOREM 2.14:  Every Smarandache strong Moufang complex 
modulo integer groupoid is a Smarandache Moufang complex 
modulo integer groupoid and not conversely. 
 
Example 2.45:  Let G = {C(Z12), *, (3, 4)} be a complex 
modulo integer Smarandache strong Bol groupoid.  For if we 
take x, y,z ∈ G; then 
 
 (x*y)*z) *y   = [(3x + 4y) * z] * y = 3x + 4y 

(if x = 7+3iF . y = 2+5iF  and  z = 1+iF). 
 
Then (x*y)*z) *y  = 3 (7 + 3iF)  + 4 (2+5iF)   

= 21 + 9iF + 8 + 20iF = 5 + 5iF. 
 
 Also x * [(y*z) * y] = 5 + 5iF. 
 
Example 2.46:  Let G = {C(Z4), *, (2, 3)} be a complex modulo 
integer groupoid.  G is a Smarandache Bol groupoid but is not a 
Smarandache strong Bol groupoid.  
 
 It is left for the reader to prove that every Smarandache 
strong Bol groupoid of complex modulo integers is a 
Smarandache Bol groupoid and not conversely. 
 
Example 2.47:  Let G = {C(Z6), *, (4, 3)} be a complex modulo 
integer groupoid.  G is a Smarandache strong P-groupoid. 
 
Example 2.48:  Let G = {C(Z6), *, (3, 5)} be a complex modulo 
integer groupoid.  G is not a Smarandache strong P-groupoid.  
 
Example 2.49:  Let G = {C(Z14), *, (7, 8)} be a complex 
modulo integer groupoid which is a Smarandache strong 
alternative groupoid. 
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 Now we proceed onto find conditions on Smarandache 
complex modulo integer groupoids. 
 
Example 2.50:  Let  G = {C(Z9), *, (5, 3)} be a complex 
modulo integer groupoid.  G is not a Smarandache groupoid. 
 
Example 2.51:  Let G = {C(Z8), *, (1, 6)} be a complex modulo 
integer groupoid.  G is a Smarandache groupoid, as  

H = {4, 4iF,  4+4iF} ⊆ G is a semigroup. 
 
 The following theorems are simple and hence left as  
exercises to the reader. 
 
THEOREM 2.15:  Let G = {C(Z2p), *, (1, 2); p an odd prime} be 
the complex modulo integer groupoid.  G is a Smarandache 
groupoid.   
 
THEOREM 2.16:  Let  

G = {C(Z3p), *, (1, 3), p an odd prime, p ≠ 3} be the 
complex modulo integer groupoid.  G is a Smarandache 
groupoid.  
 
THEOREM 2.17:  Let  

G = {C(
1 2p pZ ), *, (1, p1), p1 ≠ p2} and H = {C (

1 2p pZ ), *, 

(1,p2), p1 ≠ p2} be two complex modulo integer groupoids.  H 
and G  are Smarandache groupoids. 
 
THEOREM 2.18:  Let G = {C(Zn), *, (1, p); p/n} be a complex 
modulo integer groupoid.  G is a Smarandache groupoid.  
 
THEOREM 2.19:  Let G = {C(Zn), *, (t, u), t + u ≡ 1 (mod n)} be 
a complex modulo integer groupoid.  G is a Smarandache 
idempotent groupoid. 
 
THEOREM 2.20:  Let G = {C(Zn), *, (t, u), t + u ≡ 1 (mod n)} be 
a complex modulo integer groupoid.  G is a Smarandache p-
groupoid if and only if t2 ≡ t (mod n) and u2 ≡ u (mod n). 
 
 The proofs are left as an exercise to the reader. 
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THEOREM 2.21:  Let  
G = {C(Zn), *, (t, u), t + u ≡ 1 (mod n)} be a complex 

modulo integer groupoid, G is a Smarandache alternative 
groupoid if and only if t2 ≡ t (mod n) and u2 ≡ u (mod n). 
 
THEOREM 2.22:  Let  

G = {C(Zn), *, (t, u), t + u ≡ 1 (mod n)} be a Smarandache 
complex modulo integer groupoid.  G is a Smarandache strong 
Bol groupoid if and only if t3 = t (mod n) and u2 ≡ u (mod n). 
 
THEOREM 2.23:  Let  

G = {C(Zn), *, t + u ≡ 1 (mod n)} be a Smarandache 
complex modulo integer groupoid.  G is a Smarandache strong 
Moufang groupoid if and only if t2 = t (mod n) and u2 ≡ u (mod 
n).   
 

The proof is direct and is left as an exercise to the reader. 
 
Example 2.52:  Let G = {C(Z6), *, (3, 4)} be a Smarandache 
complex modulo integer groupoid.  G is a Smarandache strong 
Bol groupoid. 
 
THEOREM 2.24:  Let  

G = {C(Zp), *, 
p 1 p 1

,
2 2

+ +� �
� �
� �

, p a prime} be a complex 

modulo integer groupoid.  G is a Smarandache groupoid.  
 
THEOREM 2.25:  Let  

G = {C(Zp), *, 
p 1 p 1

,
2 2

+ +� �
� �
� �

, p a prime} be a complex 

modulo integer groupoid.  G is a Smarandache groupoid.  
 
Example 2.53:  Let G = {C(Z12), *, (6, 6)} be a complex 
modulo integer groupoid.  S = {0, 6, 6iF,  6 + 6iF} ⊆ G is a 
semigroup.  So G is a Smarandache groupoid. 
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Example 2.54:  Let G = {C(Z9), *, (7, 7)} be a complex modulo 
integer groupoid.  S = {0, 7, 7iF,  7 +7iF} ⊆ G is a semigroup,  
so G is a Smarandache groupoid. 
 
 In view of this we have the following theorem. 
 
THEOREM 2.26:  Let G = {C(Zn), *, (m, m)}, n even m2 ≡ m 
(mod n) and m + m ≡ 0 (mod n) be a complex modulo integer 
groupoid. Then G is a Smarandache complex modulo integer 
groupoid of order n2.   
 

Proof  follows from the simple fact S = {0, m, miF, m+miF} 
⊆ G is a semigroup.  
 
 In general we have the following result, which is first 
illustrated by an example. 
 
Example 2.55:  Let G = {C(Z9), *, (5, 5)} be a complex modulo 
integer groupoid.   
 
 Hence G is a Smarandache complex modulo integer 
groupoid as every element r is such that r * r = r (mod n). 
 
THEOREM 2.27:  Let G = {C(Zn), *, (m, m)} be a complex 
modulo integer groupoid.  G is a Smarandache complex modulo 
integer groupoid only if m + m = 1 (mod n). 
 
 Proof is direct and hence left as an exercise to the reader. 
 
Example 2.56:  Let G = {C(Z15), *, (8, 8)} be a complex 
modulo integer groupoid. 
 
 Consider a + biF in G, now  
  (a + biF) * (a + biF)  = a * a + b * biF. 
       = (8a + 8a) + (8b + 8b)iF 
       = 16a (mod 15) + 16biF (mod 15) 
       = a + biF. 
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 Thus every element is also a semigroup.  Thus G is a 
Smarandache complex modulo integer groupoid.  We know 

every odd number m is such that 
(m 1) (m 1)

2 2

+ +
+  = 1 (mod m)  

thus the proof of the theorem trivial.  
 
 The following theorem is straight forward and uses only 
number theoretic techniques. 
 
THEOREM 2.28:  Let  
G = {C(Zn), *, (m, m); m+m ≡ 1 (mod n) and m2 = m (mod n) }  
be the Smarandache complex modulo integer groupoid. 
 

   (i)  G is a Smarandache idempotent groupoid of  
  complex modulo integers. 

 (ii)  G is a Smarandache strong P-groupoid. 
(iii) G is a Smarandache strong Bol-groupoid. 
(iv) G is a Smarandache strong Moufang groupoid. 
(v) G is a Smarandache strong alternative groupoid. 

 
It is interesting and important to mention here that,  
G = {C(Zn), *, (t, u)} is a complex modulo integer. 
 
We can build complex modulo integer groupoids with 

identity as follows: 
  

We known C(Zn) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1} is the 

complex modulo integers. 
 
 Now we adjoin an element e with C(Zn) as follows: 
 C(Zn) ∪ {e} = {a + biF | a, b ∈ C(Zn) ∪ {e}}.   
 

We define a binary non associative closed operation * on  
C(Zn ∪ e) = C(Zn) ∪ {e} as follows: 

 a * a  = e 
 a * e = e * a = a for all a ∈ C (Zn ∪ e).   
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For a ≠ b; a * b = ta + ub (mod n) 
 where a, b ∈ C(Zn ∪ e) and t, u ∈ Zn \ {0}. 
 {C(Zn ∈ e), *, (t, u)} is a groupoid called the groupoid with 
identity. 
 
Example 2.57:  Let G = {C (Z4 ∪ e), *, (t, u)} be a groupoid 
with identity of order 52. 

Every H = {e, g} ⊆ G is a semigroup for every g ∈  
C (Z4 ∪ e). 
 Thus G is a Smarandache groupoid. 
 
THEOREM 2.29:  Let G = {C (Zn ∪ e}, *, (t, u), t, u ∈ Zn \ {0}} 
be a complex modulo integer groupoid with identity.  G is a 
Smarandache groupoid. 
 
 Proof is straight forward as every pair of the form {e, g} =  
S for every g ∈ C (Zn ∪ e) is a semigroup, hence the claim. 
 
 Thus we say we can get a class of such groupoids for every 
fixed n as t, u ∈ Zn \ {0} can vary. 
 
THEOREM 2.30:  No groupoid in the class of groupoids  

G = {C (Zn ∪ e), *, (t, u), t, u ∈ Zn \ {0}} is a Smarandache 
complex modulo integer idempotent groupoid.  
 
 The proof is direct by using the fact in G, a*a = e for every 
a ∈ G, so no element in G can be an idempotent. 
 
Example 2.58:  Let G = {C (Z6 ∪ e), *, (5, 3)}  be a complex 
modulo integer groupoid.  It is easily verified that G is a 
Smarandache strong complex modulo integer right alternative 
groupoid.  Further it is important to note that G is not even a 
Smarandache modulo integer left alternative groupoid. 
 
Example 2.59:  Let G = {C (Z6 ∪ e), *, (4, 5)}  be a complex 
modulo integer groupoid.  Clearly G is a Smarandache strong 
left alternative groupoid. 
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 We have the following interesting theorems, the proof of 
which is direct [14, 19]. 
 
THEOREM 2.31:  Let G = {C (Zn ∪ e), *, (t, u)}  be a complex 
modulo integer groupoid with identity e.  G is a Smarandache 
strong right alternative groupoid if and only if t2 ≡ 1 (mod n) 
and tu + u ≡ 0 (mod n). 
 
THEOREM 2.32:  Let G = {C (Zn ∪ e), *, (t, u)}  be a 
Smarandache complex modulo integer groupoid with identity e.  
G is a Smarandache strong left alternative if and only if u2 ≡ 1 
(mod n) and (t + tu) ≡ 0 (mod n). 
 
THEOREM 2.33:  Let G = {C (Zn ∪ e), *, (t, u)} denote the class 
of complex modulo integer groupoids n not a prime.  G is a 
Smarandache strong Moufang groupoid and Smarandache 
strong P-groupoid only when t2 = t (mod n) and u2 = u (mod n). 
 
 Now we proceed onto define complex modulo integer 
loops. 
 
DEFINITION 2.5:  Let  

C(Zn) = {a + biF | a, b ∈ {1, 2, …, n}, 2
Fi = n–1} be the 

complex modulo integers.  We adjoin an element e called the 
identity with Zn and choose n > 3 and n odd. 
 
 Now consider C ( ( m )

nL ) = {0, a ∈ C(Zn) ∪ {e}; with * a 

binary operation on C (Ln(m)) where m ∈ Zn \ {0} such that (m, 
n) = 1 and (m–1, n) = 1 with m < n such that 
  

(i)  e * a = a * e = a for all a ∈ C ( ( m )
nL ). 

(ii)  a * a = a2 = e for all a ∈ C ( ( m )
nL ). 

(iii) a * b = (mb – (m–1)a) (mod n) 
      for all a, b ∈ C ( ( m )

nL ). 
 
C( ( m )

nL ) is defined as the new class of loops of complex 
modulo integers. 
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 We just show how operation is carried out. 
 
Example 2.60:  Let  
 

C (L5(2)) = {e, C(Z5)} = {e, 1, 2, …, 5, iF, 2iF, 3iF, 4iF, 5iF, 1 
+ iF, …, 5 + 5iF}.   For x = a + biF and y = c+diF in C(Z5) ∪ {e}; 
we have  

 
x * y = 2 (c + diF) –  1 (a+biF) = (2c – a) + (2d – b)iF is in  

C(Z5) ∪ {e}.   
 

Suppose we take 2 + 5iF, 4 + 2iF in C(L5(2)) then  
 

(2+5iF) * (4+2iF)  
= 2 (4+2iF) – 1 (2+5iF) 
= 3 + 4iF + 3 + 5iF 
= 1 + 4iF . 

 
Now we see the order of C (L5 (2)) is even and order of  
 

(C(L5(2)) = 52 +1 = 26. 
 
 We see these loops are different from usual loops built 
using {e, 1, 2, …, n} ≅ Zn ∪ {e}.  
 
 It is important to mention here that in case of complex 
modulo integer groupoids with identity ‘e’ serves a different 
role. 
 
 We can only say e acts as the identity element equidistantly 
placed on a circle with e as its centre. 
 
Example 2.61:  Let  
 

C(L7(3)) = {0, 1, 2, …, 7, iF, 2iF, …, 7iF, 1+iF, 2+iF, …, 
7+iF} ∪ {e} be the complex modulo integer loop of order 64. 
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Example 2.62:  Let  
 

C(L15(2)) = {(C(Z15) ∪ e}, *, 2} be the complex modulo 
integer quasi loop of order 256.  
 
 We see every loop built using the complex modulo integers 
is of even order.  
 
THEOREM 2.34:  Let C(Ln(m)) be a complex modulo integer 
loop.  (n > 3, n – odd). 2 / o (C(Ln(m)) and  4 / o C(Ln(m)). 
 
 Proof follows from the very fact if n is odd n = 2t + 1 and  
 

o (C(Ln(m))  =  (2t + 1)2 + 1 
    = 4t2 + 4t + 1 + 1 
    =  4t2 + 4t + 2. 
 

If 2 divides o (C(Ln(m)) then 4t2 + 4t + 2 / 2 = 2t2 + 2t + 1. 
Clearly 2 \  2t2 + 2t + 1 if t is odd or even.  Hence the 

claim. 
 
THEOREM 2.35:  Every complex modulo integer loop C(Ln(m)) 
is a Smarandache quasi loop. 
 
 Proof follows from the simple fact every pair (e, x) = H 
where x ∈ C(Ln(m)) \ {e} is a group.  Hence the claim. 
 We will denote by  
 

C(Ln) = {C(Ln(m)); m < n, (m, n) = 1 and (m – 1, n) = 1};  
(n > 3 and n odd) the class of complex modulo integer loops. 
 
THEOREM 2.36:  The class of complex modulo integer loops 
C(Ln) contains exactly one left alternative quasi loop and one 
right alternative quasi loop and does not contain any 
alternative loop. 
 
 The proof is direct by using simple number theoretic 
techniques, however we give examples of them. 
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Example 2.63:   Let C(L15(2)) be a complex modulo integer 
loop.  C(L15(2)) is the right alternative loop.  Infact C(L15(2)) is 
the only right alternative loop in C(L15). 
 
Example 2.64:  Let C(L9(2)) be a complex modulo integer loop 
in C(L9).  Clearly C(L9(2)) is a right alternative complex 
modulo integer loop. 
 
Example 2.65:  Let C(L19(18))  be a complex modulo integer 
loop.  C(L19(18)) is only a left alternative loop in the class of 
loops C(L19).  
 
Example 2.66:  Let C(L23(22)) be a complex modulo integer 
loop.  C(L23(22)) is only a left alternative loop in the class of 
loops C(L23).   
 
 These loops given in examples 2.66 and 2.67 are not right 
alternative. 
 The following theorem can be easily proved by using 
number theoretic techniques. 
 
THEOREM 2.37:  Let C(Ln) be the class of complex modulo 
integer loops. 

(i)   C(Ln) does not contain any Moufang loop. 
(ii)  C(Ln) does not contain any Bol loop. 
(iii) C(Ln) does not contain any Bruck loop. 

 
Example 2.67:  Let C(L7(3)) be a complex modulo integer loop. 
It is easily verified C(L7(3)) is a weak inverse property loop. 
 
It is important to observe.  32 – 3 + 1 = 9 – 3 + 1 ≡ 0 (mod n). 
 In view of this we have the following theorem. 
 
THEOREM 2.38:  Let C(Ln(m)) ∈ C(Ln) be the complex modulo 
integer loop.  C(Ln(m)) is a weak inverse property loop (WIP- 
loop) if and only if (m2 – m + 1) = 0 (mod n). 
 
 For proof refer [ 15, 19]. 
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 Recall the associator of a complex modulo integer loop  
A(C(Ln(m))) = �{t ∈ C(Ln(m) | t = (x, y, z) for some x, y, z ∈ 
(Ln(m)
. 
 The following theorem can be easily proved using simple 
number theoretic techniques. 
 
THEOREM 2.39:  Let C(Ln(m)) ∈ C(Ln) be a complex modulo 
integer loop.  The associator A (C(Ln(m))) = C(Ln(m)). 
 
Example 2.68:  Let C(L11(6)) be a complex modulo integer 
loop.  C (L11(6)) is a commutative loop. 
 
Example 2.69: Let C(L15(8)) be a complex modulo integer loop. 
 C (L15(8)) is a commutative loop. 
 
Example 2.70:  Let C(L21(11)) be a complex modulo integer 
loop.  C(L21(11)) is a commutative loop.   
 

Inview of these examples we have the following theorem 
the proof of which can be derived using simple number 
theoretic techniques. 
 
THEOREM 2.40:  Let  

C(Ln) = {C(Ln(m)) | (m, n) = 1 and (m–1, n) = 1, m < n} be 
the class of complex modulo integer loop. C(Ln) contains one 
and only one commutative loop. 
 

 This happens when m = 
( n 1)

,
2

+
 clearly for this m we have 

(m, n) = 1 and (m–1, n) = 1. 
 
Example 2.71:  Let C(L5(2)) be a complex modulo integer loop.  
C( (2)

5L ) has {e, 1}, {e, 4}, {e, 2} and {e, 2iF} as subgroups. 
 
Example 2.72:  Let  
 

C(L5(2)) = {e, 1, 2, 3, 4, 5, iF, 2iF, 3iF, 4iF, 5iF, 1+iF, 2 + 2iF, 
…, 4iF + 5, 5+5iF} be a complex modulo integer loop of order 
36. 
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 The number of subgroups of order two in C(L5(2)) is 25.  
Consider H = {e, 2, 2iF, 3iF+4, 4+3iF, 1+iF} ⊆ C(L5(2)). 
 

* e 2 2iF 3+4iF 4+3iF 1+iF 
e e 2 2iF 3+4iF 4+3iF 1+iF 
2 2 e 3+4iF 4+3iF 1+iF 2iF 

2iF 2iF 4+3iF e 1+iF 3+4iF 2 
3+4iF 3+4iF 1+iF 2 e 2iF 4+3iF 
4+3iF 4+3iF 2iF 1+iF 2 e 3+4iF 
1+iF 1+iF 3+4iF 4+3iF 2iF 2 e 

 
 Clearly H is a subloop and is non commutative.  Consider  
 

P = {e, iF, 1, 2iF + 4, 2 + 4iF, 3iF + 3} ⊆ C(L5(2)), P is again 
a non commutative subloop of order 6. 
 Clearly 6 \  26.   
 

T = {e, 3iF, 3, iF+2, 1+2iF, 4+4iF} ⊆ C(L5(2)) is a non 
commutative subloop of order 6.   

W = {e, 4iF, 4, 3iF + 1, 3+iF, 2+2iF} ⊆ C(L5(2)) is again a 
non commutative subloop of order 6. 

 
 M = {e, iF, 2iF, 3iF, 4iF, 5iF} ⊆ C(L5(2)) is a subloop of order 
six given by the following table. 
 

* e iF 2iF 3iF 4iF 5iF 
e e iF 2iF 3iF 4iF 5iF 
iF iF e 3iF 5iF 2iF 4iF 

2iF 2iF 5iF e 4iF iF 3iF 
3iF 3iF 4iF iF e 5iF 2iF 
4iF 4iF 3iF 5iF 2iF e iF 
5iF 5iF 2iF 4iF iF 3iF e 

 
 Clearly M is also a subloop of order 6 and is non 
commutative.  Now we consider the subloop generated by  

 
R = {2 + 3iF, 1 + 4iF}.  We just construct the table for it. 
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* e 2+3iF 1+4iF 3+2iF 5+5iF 4+iF 
e e 2+3iF 1+4iF 3+2iF 5+5iF 4+iF 

2+3iF 2+3iF e 5+5iF 4+iF 3+2iF 1+4iF 
1+4iF 1+4iF 3+2iF e 5+5iF 4+iF 2+3iF 
3+2iF 3+2iF 1+4iF 4+iF e 2+3iF 5+5iF 
5+5iF 5+5iF 4+iF 2+3iF 1+4iF e 3+2iF 
4+iF 4+iF 5+5iF 3+2iF 2+3iF 1+4iF e 

 
 We see R generates again a subloop of order six. 
 Consider W = {�1 + 2iF, 3+iF
} ⊆ C(L5(2)), the subloop 
generated by these two elements.  
   

* e 1+2iF 3+iF 4+3iF 5+5iF 2+4iF 
e e 1+2iF 3+iF 4+3iF 5+5iF 2+4iF 

1+2iF 1+2iF e 5+5iF 2+4iF 4+3iF 3+iF 
3+iF 3+iF 4+3iF e 5+5iF 2+4iF 1+2iF 
4+3iF 4+3iF 3+iF 2+4iF e 1+2iF 5+5iF 
5+5iF 5+5iF 2+4iF 1+2iF 3+iF e 4+3iF 
2+4iF 2+4iF 5+5iF 4+3iF 1+2iF 3+iF e 

 
is again a subloop of order 6.  We see subloops in general are of 
order six.  Further we see that so in general the Lagrange 
theorem for finite groups is not true in case of these finite loops. 
 
Example 2.73:  Let C(L5(4)) be a complex modulo integer loop 
of order 36.  To find subloops in C(L5(4)).  Consider  
 
H = �2 +2iF, iF + 3
 ⊆ C(L5(4)).  The table for H is as follows: 
    

* e 2+2iF 3+iF 1+3iF 4+5iF 5+4iF 
e e 2+2iF 3+iF 1+3iF 4+5iF 5+4iF 

2+2iF 2+2iF e 1+3iF 3+iF 5+4iF 4+5iF 
3+iF 3+iF 4+5iF e 5+4iF 2+2iF 1+3iF 
1+3iF 1+3iF 5+4iF 4+5iF e 3+iF 2+2iF 
4+5iF 4+5iF 1+3iF 5+4iF 2+2iF e 3+iF 
5+4iF 5+4iF 3+iF 2+2iF 4+5iF 1+3iF e 
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 H is a subloop of order 6.  K = �1 +2iF, 2+iF
 ⊆ C(L5(4)).  
The table for K is as follows: 
    

* e 1+2iF 2+iF 5+3iF 3+5iF 4+4iF 
e e 1+2iF 2+iF 5+3iF 3+5iF 4+4iF 

1+2iF 1+2iF e 5+3iF 2+iF 4+4iF 3+5iF 
2+iF 2+iF 3+5iF e 4+4iF 1+2iF 5+3iF 
5+3iF 5+3iF 4+4iF 3+5iF e 2+iF 1+2iF 
3+5iF 3+5iF 5+3iF 4+4iF 1+2iF e 2+iF 
4+4iF 4+4iF 2+iF 1+2iF 3+5iF 5+3iF e 

 
 Clearly K is a subloop of order 6.  Consider the subloop 
generated by P = �{1 + 3iF, 2+4iF, 2iF +1, 3+2iF}
 ⊆ C(L5(4)). 
 
 Consider the subloop generated by  
 

M = {�2+iF,  1+3iF, 4+2iF
} ⊆ C(L5(4)).  We see  
 
M = {e, 2+iF, 1+3iF, 4+2iF, 3+4iF, 5+5iF} ⊆ C(L5(4)) is a 

subloop of C(L5 (4)). 
 
 T = {e, 2+3iF, 1+4iF, 4+3iF, 5+2iF, 3+2iF, 5+3iF, 4+4iF, 2+iF,  
2+4iF, 4+2iF, 1+5iF, 3+4iF, 3+iF, 4+iF, 4+5iF, 3+3iF, 5+5iF, 5+iF, 
2+2iF, 1+iF, 1+2iF, 3+5iF, 1+3iF, 2+5iF, 5+4iF} ⊆ C(L5(4)); is a 
subloop of C(L5(4)). 
 
Example 2.74:  Let C(L7(3)) be a complex modulo integer loop.  
Clearly order of C(L7(3)) is 64. Take  

M = {�2+5iF, 3+2iF
} ⊆ C(L7(3)); to calculate M. 
 
 M = {e, 2+5iF, 3+2iF, 7+4iF, 5+3iF, 6+7iF, 1+iF, 2+6iF, 2+3iF, 
6+iF, 6+5iF, 1+5iF, 7+5iF,3+7iF, 5+6iF, 7+2iF, 7+7iF, 5+5iF, 
6+6iF, 3+3iF, 2+iF, 5+4iF, 4+6iF, 3+5iF, 1+4iF, …} ⊆ C(L7(3)) is 
a subloop of order 50 in C(L7(3)). 
 
Example 2.75:  Let C (L15(2)) be a complex modulo integer 
loop of order (225+1) + 30 = 256.  Consider  
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H = {�2 +4iF, 1+7iF
} ⊆ L15(2).  The subloop generated by 
H is as follows: 

 
 H = {e, 2+4iF,  1+7iF, 15+10iF, 3+iF, 4+13iF, 5+7iF, 14+iF, 
8+10iF, 12+7iF, 7+10iF, …} ⊆ C(L15(2)) is a subloop of 
C(L15(2)). 
 
 Likewise one can construct subloops of a loop. 
 
 We can also study special identities in these loops. 
 
 We will call a complex modulo integer loop to be a 
Smarandache complex modulo integer loop if C(Ln(m)) has a 
proper subset which is a group.  All loops C(Ln(m)) are 
Smarandache complex modulo integer loop as H = {e, x} for 
every x ∈ C(Ln(m) \ {e}) is a group. 
 
 We can define the notion of Smarandache cosets in complex 
modulo integer loops when the loops are S-loops. 
 
 For instance take the complex modulo integer loop 
C(L5(2)).  We know A = {e, 1} is a subgroup of the S-loop 
C(L5(2)). 
 
 The right coset of A is 
 A o1  = {e, 1}, A o 3 = {3, 5}, A o 4 = {4, 2}, A o 2 = {2, 
3}, A o 5 = {5, 4}, A o iF = {iF, 2iF + 4}, A o 2iF = {2iF , 4iF + 
4}, A o 3iF = {3iF, iF +4}, A o 4iF = {4iF, 3iF +4}, A o 5iF = {5iF, 
5iF + 4}, Ao 1 + iF = {iF + 1, 2iF + 1}, A o 1+2iF = {1+2iF, 
1+4iF}, A o 1+3iF  = {1+3iF , 1+iF }, A o 1+4iF = {1+4iF, 1+3iF}, 
A o 1+5iF  = {1 + 5iF , 5+5iF } and so on. 
 
 Similarly one can find the left coset of A,  1 o A  = {e, 1},  
2 o A = {5, 2}, 3 o A = {3, 4}, 4 o A = {4, 3}, 5 o A = {5, 2},  
iF o A = {iF,  2+4iF }, 3iF o A = {3iF , 2+2iF} and so on. 
 
 Clearly as in case of usual loops we cannot define partition 
on them. 
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Example 2.76: Let C(L7(4)) be a commutative complex modulo 
integer loop of order 72 + 1 + 14 = 7+2.7 + 1 = (7+1)2= 64. 
  

A = {e, 5} ⊆ C(L7(4)) be the group of C(L7(4)).   
 
1 o A = {1, 3}, 2 o A = {2, 7} and so on.  7 o A = {6, 7}.  

 
Example 2.77:  Let C(L9(8)) be a modulo complex integers.  
Take B = {e, 1, 4, 7} ⊆ C(L9(8)) be a subgroup of C(L9(8)). 
 
 The S-coset of B is as follows: 
 
 B o 2 = {e, 9, 6, 3}, …, B o 9 = {9, 2, 8, 5},  We say 
C(Ln(m)) be a S-loop of level II if L has a normal subgroup,  
A ⊆ C(Ln(m)); A is a subgroup if for all m ∈ C(Ln(m)); we have 
mA = Am. 
 
 The reader is expected to give examples of such normal 
subgroups. Interested reader can analyse about the first 
normalizer and second normalizer of the subloops of the 
complex modulo integer loop C(Ln(m)); n odd, n > 3.  m < n 
with (m, n) = (m, n – 1) = 1.  In general the first normalizer 
need not be equal to the second normalizer equal for every 
subloop of C(Ln(m)).  It is easily verified that C(Ln(m)) is a 
Smarandache strong cyclic loop.  The notion of Smarandache 
commutator subloop of a complex modulo integer loop is a 
matter of routine with appropriate changes. 
 
 We see Ln(m) are loops of order n+1 where as the complex 
modulo integer loops C(Ln(m)) are of order (n+1)2.  Both are of 
even order as n is odd.  Infact 2 / n+1 and 22 / (n+1)2. 
 
 C(Ln(m)) has Ln(m) as its subloop so C(Ln(m)) always 
contains subloops which are S-subloops.  So we can say 
C(Ln(m)) has subloops P, such that  

A (P) = Ln(m) = A
nL (m)     … I  

where P = Ln(m) ⊆ C(Ln(m)). 
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 Also if iF Ln(m) = {e, iF, …, iFn, *, (m, n) = (n–1, m) = 1} 
then also  
 

A (iF Ln(m)) = iF 
A
nL (m) = iF.Ln(m)    … II   

 
So infact C(Ln(m)) has S-subloops Ln(m) and iFLn(m) such 

that I and II true respectively. 
 
 I and II are true only when Ln(m) and iFLn(m) has no S-
subloops.  Otherwise I and I are not true.  
 
 Further C(Ln(m)) for n a prime has atleast two subloops 
which are not S-associative complex modulo integer subloops 
of C(Ln(m)).  Several other results enjoyed by the loops Ln(m) 
can be easily extended in case of complex modulo integer loops 
with appropriate modifications.  
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 In this chapter we proceed onto introduce the new notion of 
non associative complex modulo integer rings using the non 
associative complex modulo integer structures like groupoids 
and loops or using complex modulo integer ring and usual 
groupoids or loops.  This chapter has two sections.  The first 
section deals with groupoids and loops over the complex 
modulo integer rings and complex rings.  Second section deals 
with complex modulo integer groupoids (loops) over the 
complex ring or otherwise. 
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 In this section we use the groupoids (and loops) to construct 
non associative ring using the complex modulo ring C(Zn) or the 
usual complex numbers C(Z) or C(Q) or C(R) = C.  The 
notational convention has been already discussed in chapter one.  
 
DEFINITION 3.1.1:  Let G be any groupoid. F = C(Zn) (or C(Z)) 
be the complex modulo integer ring or field.   
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FG = 
n

i i
i 1

a g
=

	


�
� n < ∞, ai ∈ C(Zn) or C(Z); gi ∈ G} is the set 

of finite formal sums where addition and product are defined 
componentwise which is as follows: 
 

For x = 
n

i i
i 1

a g
=

�  and y = 
n

i i
i 1

b g
=

�  in FG 

 
 we have 
 

x + y  = 
n

i i
i 1

a g
=

�  + 
n

i i
i 1

b g
=

�  

 

= 
n

i i i
i 1

( a b )g
=

+�  

 

and x.y = i i j j
i j

a g b h
� �� �
� �� �

� �� �
� �  

 

= k k
k

c p� .   ck = � ai bj 

 
and pk = gi  hj . 

 
 It is easily verified that ‘+’ on FG is a commutative group.  
Further × is verified to be a non associative closed binary 
operation of FG. One can easily verify that product distributes 
over addition.  Further (FG, +, ×) is a non associative ring 
which may be commutative or otherwise depending on G.    

FG is defined as the complex modulo integer groupoid ring. 
When F is used as C(R) = C the complex ring of reals, that is  

 
C = {a + bi | a, b ∈ R} and C(Q) = {a + bi | a, b ∈ Q} and  
C(Z) = {a + bi | a, b ∈ Z} are all complex commutative 

rings with unit 1. The groupoid rings are in general non 
commutative non associative ring with unit or otherwise. 
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 We will first give some examples of them before we 
proceed to discuss about the properties enjoyed by them. 
 
Example 3.1.1:  Let G = {Z5, *, (2, 3)} be a groupoid of order 
five.  C(Z) = {a + bi | a, b ∈ Z} be the complex integers.  C(Z)G 
be the groupoid complex ring.    
 
 Clearly C(Z)G is of infinite order and is a non commutative 
and a non associative ring.  
 We will illustrate this situation by some more examples. 
 
Example 3.1.2:  Let G = {Z9, *, (3, 2)} be the groupoid.  C(Z) = 
{a + bi | a, b ∈ Z} be the complex integer ring.  C(Z)G is the 
complex integer groupoid ring. 
 We see C(Z)G is non associative and non commutative.  
 
Example 3.1.3:  Let G = {Z17, *, (8, 9)} be the groupoid.  C(Q) 
= {a + bi | a, b ∈ Q} be the complex integer ring.  C(Q)G is the 
groupoid complex rational ring.   
 
 We see C(Q)G is a non associative ring. 
 
Example 3.1.4:  Let G = {Z11, *, (0, 7)} be the groupoid.   
 

C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring. 
C(Z)G is the groupoid complex integer ring of the groupoid G 
over the complex integer ring C(Z). 
 
Example 3.1.5:  Let G = {Z16, *, (3, 7)} be the groupoid.  C be 
the complex field.  CG is the groupoid complex ring.  
 
Example 3.1.6:  Let G = {Z18, *, (11, 3)} be the groupoid of 
order 18.  C(Z11) be the complex modulo integer ring.  C(Z11)G 
is the groupoid complex modulo integer ring of finite order. 
 
 We just show how product is defined in C (Z11)G.  
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Suppose α = 3g0 + 5g7 + 8g5 + g3 and  
 β = 4g1 + 5g3 + 9g8 + g9 (where g0, g7, g1, g9, g3, g5, g8 ∈ Z17 
with gn = n ∈ Z17; so g7 = 7 (mod 17) and so on) are in C(Z11)G; 
to find  
 
 α + β   = (3g0 + 5g7 + 8g5 + g3) + (4g1 + 5g3 + 9g8 + g9)  

= 3g0 + 4g1 + (1+5)g3 + 9g8 + 5g7 + 8g5 + g9  
= 3g0 + 4g1 + 6g3 + 9g8 + 5g7 + 8g5 + g9. 

 
 Clearly α + β ∈ C (Z11)G 
 
 Now we find αβ = α × β = (3g0 + 5g7+8g5 + g3) × (4g1 + 
5g3 + 9g8 + g9) = 3.4 (g0 * g1) + 3.5 (g0 * g3) + 3.9 (g0 * g8) + 3.1 
(g0 * g9) + 5.4 (g7 * g1) + 5.5 (g7 * g3) + 5.9 (g7 * g8) + 5.1 (g7 * 
g9) + 8.4 (g5 * g1) + 8.5 (g5 * g3) + 8.9 (g5 * g8) + 8.1 (g5 * g9) + 
1.4 (g3 * g1) + 1.5 (g3 * g3) + 1.9 (g3 * g8) + 1.1 (g3 * g9) 
 

= 12g3 + 4g9 + 5g6 + 3g9 + 9g8 + 3g14 + g11 + 5g14 + 10g4  
+ 7g10 + 6g7 + 8g10 + 4g0 + 5g8 + 9g3 + g6 

 =  10g3 + 7g9 + 6g6 + 3g8 + 8g14 + g11 + 10g4 + 4g10 + 6g7  
+ 4g0 ∈ C (Z11) G.  

 
 Consider βα = (4g1 + 5g3 + 9g8 + g4) (3g0 + 5g7 + 8g5 + g3) 
 =  g1 * g0 + 9g1 * g7 + 10g1 * g5 + 4g1 * g3 + 4g3 * g0 + 3g3  

* g7 + 7g3 * g5 + 5g3 * g3 + 5g8 * g0 + g8 * g7 + 6g8 * g5 
+ 9g8 * g3 + 3g4 * g0 + 5g4 * g7 + 8g4 * g5 + g4 * g3. 

 =  g11 + 9g14 + 10g8 + 4g2 + 4g15 + 3g0 + 7g12 + 5g6 + 5g16  
+ g1 + 6g3 + 9g7 + 3g8 + 5g11 + 8g5 + g17 

 =  6g11 + 9g14 + 2g8 + 4g2 + 4g15 + 3g0 + 7g2 + 5g6 + 5g16 +  
g1 + 6g3 + 9g7 + 8g5 + g17. 

 
 We see clearly αβ ≠ βα. 
 Thus C(Z11)G is a non commutative groupoid ring of 
infinite order. 
 Clearly G ⊆ C(Z11) G but C(Z11) ⊄ C (Z11)G. 
 
Example 3.1.7:  Let G = {Z6, *, (0, 3)} be the groupoid and 
C(Q) = {a + bi | a, b ∈ Q} be the ring of complex rationals.  
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C(Q)G be the groupoid ring clearly C(Q)G is a non associative 
ring of infinite order.  
 
 The table for G is as follows: 
 

0 g0 g1 g2 g3 g4 g5 
g0 0 g3 0 g3 0 g3 
g1 0 g3 0 g3 0 g3 
g2 0 g3 0 g3 0 g3 
g3 0 g3 0 g3 0 g3 
g4 0 g3 0 g3 0 g3 
g5 0 g3 0 g3 0 g3 

 
 Thus C(Q)G has zero divisors. 
 For if α = g1 + g2 + g4 ∈ C(Q)G then α2 = 0.  If α1 = g3 then 

2
1α  = g3 so α1 is an idempotent of C(Q)G.  

 
Example 3.1.8:  Let G = {Z8, *, (3, 2)} be a groupoid.  F = C(Z) 
be the ring of complex integers.  FG the groupoid ring. 
 
 We see for α = (g0 + g2 + g4 + g6) and  

β = (g0 – g2 + g4 – g6); αβ = 0. 
    where α, β ∈ FG. 
 Further g2 o g2 = g2 is also an idempotent in FG.  Likewise 
g4 o g4 = g4 and g6 o g6 = g6 are also idempotents of FG. 
 
Example 3.1.9:  Let G = {Z4, (3, 1), *) be a groupoid given by 
the following table. 
 

* g0 g1 g2 g3 
G0 g0 g1 g2 g3 
G1 g3 g0 g1 g2 
G2 g2 g3 g0 g1 
G3 g1 g2 g3 g0 

 
 Let F = C(Q) = {a + bi | a, b ∈ Q} be the complex rational 
ring. FG be the groupoid ring of G over F.  Clearly  
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α = 1/4 (g0 + g1 + g2 + g3) in FG is such that α2 = α that is 
this non associative ring has idempotents. 
 We just illustrate how the notion of groupoids using Zn is 
represented symbolically. 
 
 Let Zn = {0, 1, 2, …, n–1} = {g0, g1, …, gn-1} and t, p ∈ Zn.  
Now for gi, gj ∈ Zn, 0 ≤ i, j ≤ n. gi * gj = tgi * pgj = gti+pj (mod n); 
thus {Zn, (t, p), *} is a groupoid; this will be the notation we 
will be using to make working with modulo integer groupoids in 
an abstract way. 
 
Example 3.1.10:  Let G = {Z7, *, (3, 4)} be a groupoid given by 
the following table. 
 

* g0 g1 g2 g3 g4 g5 g6 
g0 g0 g4 g1 g5 g2 g6 g3 
g1 g3 g0 g4 g1 g5 g2 g6 
g2 g6 g3 g0 g4 g1 g5 g2 
g3 g2 g6 g3 g0 g4 g1 g5 
g4 g5 g2 g6 g3 g0 g4 g1 
g5 g1 g5 g2 g6 g3 g0 g4 
g6 g4 g1 g5 g2 g6 g3 g0 

 
 We take F = C(Q) the complex rational field. FG is the 
groupoid complex non associative ring.  Infact  

α = 1/7 (g0 + g1 + … + g6) ∈ FG is an idempotent of FG.  If 
C(Q) is replaced by C(Z) then C(Z) has no idempotents. 
 
Example 3.1.11:  Let G = {Z6, *, (2, 4) be a groupoid given by 
the following table.  
  

0 g0 g1 g2 g3 g4 g5 
g0 g0 g4 g2 g0 g4 g2 
g1 g2 g0 g4 g2 g0 g4 
g2 g4 g2 g0 g4 g2 g0 
g3 g0 g4 g2 g0 g4 g2 
g4 g2 g0 g4 g2 g0 g4 
g5 g4 g2 g0 g4 g2 g0 
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 Let F = C(Q) = {a + bi | a, b ∈ Q} be the complex rational 
ring.  FG be the groupoid ring.  
 
 α = (g0 + g1 + g2 + g3 + g4 + g5) in FG is such that α2 ≠ α.  If 
we take β = 1/3 (g0 + g2 + g4) in FG then β2 = β, thus β is an 
idempotent in FG. 
 
Example 3.1.12 :  Let G = {Z8, *, (0, 4)} be a groupoid C(Q)G 
be the complex integer ring C(Q)G be the groupoid ring of G 
over the ring C(G).  Clearly α  = 1/2 (1+g4) is  such that  

α
2 = 1/4 (1+g4 * g4 + 2g4) = 1/4 (1 + g0 + 2g4) is not an 

idempotent. 
 
 However at this juncture it is pertinent to mention that we 
identify g0 with 0 so that 0 is the element in C(Q)G such that  
(a + bi) 0 = 0 for every a, b ∈ Q however gi . 0 = gi . g0 ≠ 0 in 
general.  Infact this groupoid table has only zero and four. 
 
Example 3.1.13:  Let G = {Z12, *, (3, 4)} be a groupoid and F = 
C(Z) be the complex integer ring FG is a groupoid complex ring 
with zero divisors. 
 
THEOREM 3.1.1:  Let G be a groupoid F = C(Z) be the complex 
integer ring (F = C(Q) or C can also be taken).  FG the 
groupoid complex ring.  H be a normal subgroupoid of G.  FH 
the subgroupoid ring is a subring of FG and is an ideal of FG.  
 
 Proof is direct from the very definition of normal 
subgroupoid. 
 
THEOREM 3.1.2:  Let G be a groupoid F = C(Z) (or F = C(Q) 
or F = C = C(R) be the complex ring; FG be the groupoid ring.  
In general {0} is not an ideal of FG. 
 
 Proof is clear from the following examples. 
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Example 3.1.14:  Let G = {Z15, *, (7, 6)} be a groupoid.  F = 
C(Z) be the complex ring.  FG be the groupoid ring; {0} is not 
an ideal of FG.   
 
Example 3.1.15:  Let G = {Z11, *, (3, 4)} be the groupoid.  F = 
C(Q) be the rational complex ring. FG be the groupoid ring.  
{0} is not an ideal of FG.  
 
Example 3.1.16:  Let G = {Z36, *, (7, 19)} be a groupoid. F = 
C(Z) be the complex integer ring. FG is be the groupoid 
complex ring.  {0} is not an ideal of FG. 
 
THEOREM 3.1.3:  Let  

G = {Zn, *, (t, u); t, u ∈ Zn \ {0, 1}; (t, u) = 1} be the 
groupoid F = C (Z) (or C (Q) or C) be the complex ring, FG be 
the groupoid complex ring.  {0} is not an ideal of FG.   

 
Proof follows from the fact {0} is not an ideal of G if G is 

of the form given in theorem. 
 
Example 3.1.17:  Let G = {Z4, *, (2, 3)} be the groupoid.  F = 
C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring.  FG be 
the groupoid ring.  P = {g0, g2} ⊆ G; FP is a left ideal of FG.  
Clearly FP is not a right ideal of FG. 
 
 Likewise for T = {g1, g2} ⊆ G; FT is only a left ideal of FG 
and FT is not a right ideal of FG. 
 
Example 3.1.18:  Let G′ = {Z4, (3, 2), *) be a groupoid.  F = 
C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring.   
 

P = {g0, g2} ⊆ G′ is such that FP is the right ideal of FG′; 
where FG′ is the groupoid complex ring of the groupoid G′ over 
the integer complex ring F.  Also H = {g1, g3} ⊆ G′, is such that 
FH is a right ideal of FG′ and both FP and FH are not left ideals 
of FG′. 
 
 Inview of this we have the following theorem, the proof of 
which is uses simple number theoretic techniques. 
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THEOREM 3.1.4:  Let G = {Zn, *, (t, u)} be the groupoid, F = 
C(Z) (or C(Q) or C(R) = C) be the complex ring of integers (or 
complex ring of rationals or complex ring of real). FG the 
groupoid complex ring.  P is a left ideal of FG if and only if P is 
the right ideal of FG′ where G′ = {Zn, *, (u, t)}.   
 

Here we give conditions for the groupoid ring FG with G = 
{Zn, *, (t, u)} to have left or right ideals.   

 
We show this by an examples. 

 
Example 3.1.19:  Let G = {Z10, *, (3, 7)} be a groupoid.  F = 
C(Q) be the rational complex ring.  FG the groupoid ring of G 
over F.  FG has no left ideals or right ideals in it. 
 
 When the groupoid ring has no ideals (left or right) we call 
them as simple rings. 
 
Example 3.1.20:  Let G = {Z15, *, (2, 13)} be the groupoid, F = 
C = C(R) be the complex ring.  FG be the groupoid ring of G 
over F.  FG is simple. 
 
THEOREM 3.1.5:  Let G = {Zn, *, (t, u)} be a groupoid F = C  
be the complex field of reals FG be the groupoid ring.  If t + u 
= n where both t and u are primes then FG is simple. 
 
THEOREM 3.1.6:  Let G = {Zp, *, (t, u)}, p a prime, be a 
groupoid, F = C be the complex field of reals.   

FG the groupoid ring;  
 
 if t + u = p and (t, u) = 1 then FG is simple. 
 
Example 3.1.21:  Let G = {Z13, *, (6, 7)} be a groupoid, C be 
the complex field CG is a simple groupoid complex ring. 
 
Example 3.1.22:  Let G = {Z17, *, (9, 6)} be a groupoid, F = C 
be the complex field. FG be the groupoid complex ring.  FG in 
general is not simple as (9, 6) ≠ 1. 
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Example 3.1.23:  Let G = {Z11, *, (7, 5)} be a groupoid C(Q) = 
F, be the rational complex ring.  FG be the groupoid ring, FG is  
not a simple non associative ring.   
 

We can define a Smarandache non associative ring to be a 
non associative ring which has a proper subset which is an 
associative ring. 
 We first give examples of this situation. 
 
Example 3.1.24:  Let G = {Z6, *, (4, 5)} be a groupoid.  F = 
C(Q) be the groupoid ring of G over F.  FG is a Smarandache 
ring. P = {1, 3, 5} ⊆ Z6 is such that FS where S = {P, *, (4, 5)} 
is a subring of FG.   
 
Example 3.1.25:  Let G = {Z8, *, (2, 8)} be a groupoid.  F = 
C(Z) be the complex integer ring.  FG the groupoid ring.  Take 
FT (where T = {0, 2, 4, 6,, *, (2, 8)}) is a proper subset of FG 
and infact FT is the ideal of FS. 
 
 This is obvious from the fact that T is a normal subgroupoid 
of G.  
 
 In view of this we have the following theorem. 
 
THEOREM 3.1.7:  Let G = {Zn, *, (t, p)} be a groupoid.  F = 
C(Z) (or  C(Q) or C) be the complex ring.  FG the groupoid 
complex ring. FG has an ideal if  G has a normal subgroupoid.   
 

The proof is direct and hence left as an exercise to the 
reader.  As in case of groupoids we can for groupoid ring of 
complex numbers define the notion of Moufang groupoid ring, 
Bol groupoid ring and so on.  
 
Example 3.1.26:  Let G = {Z12, *, (3, 9)} be a groupoid.  
F = C(Z) = {a + bi | a, b ∈ Z} be the ring of complex integers, 
FG be the groupoid ring. 
 
 FG is a Smarandache Moufang groupoid ring as G is a S-
Moufang groupoid.   
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 Thus we will say a groupoid ring FG is a Smarandache 
Moufang groupoid ring if the groupoid G is a Smarandache 
Moufang groupoid.  Likewise FG is a Smarandache strong 
Moufang groupoid ring if G is a Smarandache strong Moufang 
groupoid. 
 
Example 3.1.27:  Let G = {Z10, *, (5, 6)} be a groupoid.   

F = C(Q) = {a + ib | a, b ∈ Q} be the complex rational ring.  
FG be the groupoid ring.  FG is a Smarandache strong Moufang 
groupoid ring as G is a Smarandache strong Moufang groupoid. 
 
 We have seen examples of Smarandache strong Moufang 
groupoid ring and Smarandache Moufang groupoid ring.  
However we wish to state only subrings in FG which are of the 
form FH where H is the subgroupoid of G are taken as 
Smarandache rings while defining special identities in these 
rings.  For we can have subrings which may not satisfy the 
Moufang identity.  So based on the property of the groupoid 
only we define the Smarandache special identities.  
 
THEOREM 3.1.8:  Let G = {Zn, *, (t, u)} be a groupoid.   
 

F = C(Z) = {a + bi | a, b ∈ Z} (or C(Q) or C(R) = C} be the 
complex ring.  FG be the groupoid complex ring.   
 

If (x * y) * (z * x) = (x* (y*z))  * x is true for all x, y, z ∈ G 
and G is a Smarandache groupoid, then FG is a Smarandache 
strong Moufang groupoid complex ring.  
 
 The proof is obvious from the fact that every S-subring will 
satisfy the Moufang identity, hence the claim of the theorem. 
 
THEOREM 3.1.9:  Let FG be a groupoid complex ring if G is a 
Smarandache strong Moufang groupoid ring then FG is a 
Smarandache moufang groupoid ring, however a Smarandache 
Moufang groupoid ring in general is not a Smarandache strong 
Moufang groupoid ring. 
 
 We see the groupoid complex ring FG where  
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G = {Z12, *, (3, 9)} given in example 3.1.26 is only a 
Smarandache Moufang groupoid ring and is not a Smarandache 
strong Moufang groupoid ring. 
 
 A similar situation is true in case of Smarandache strong 
Bol groupoid ring. 
 
 This is exhibited by the following examples. 
 
Example 3.1.28:  Let G = {Z12, *, (3, 4)} be a groupoid, F = 
C(Z) be the complex integer ring.  FG be the complex groupoid 
integer ring.  For every x, y, z ∈ FG.  We see  
 

((x * y) * z)* y = 3x + 4y and x * [(y * z) * y] = 3x + 4y so 
((x * y) * z)* y = x * [(y * z) * y].  Thus FG is a 

Smaradache strong Bol groupoid ring. 
 
Example 3.1.29:  Let G = {Z4, *, (2, 3)} be a groupoid.   

F = {C(Q) = a + bi | a, b ∈ Q} be the complex rational ring.  
FG the groupoid complex rational ring. 
 
 We see A = {0, 2} ⊆ Z4, FA is a complex groupoid subring 
in FG.  However in general for x, y, z ∈ FG;  

((x * y) * z) * y = 2z + 3y and  
x * [(y * z) * y] = 2x + 2z + y.  Since  

2z + 3y ≠ 2x + 2z + y for all choices of x, y, z ∈ FG.  So FG 
is not a Smarandache strong Bol groupoid ring but only a 
Smarandache Bol groupoid ring.   
 

Thus we have the following theorem. 
 
THEOREM 3.1.10:  Let G = {Zn, *, (t, u)} be a groupoid. F = 
C(Z) (or C(Q) or R) be a complex ring.  FG the groupoid 
complex ring.  If FG is a Smarandache strong Bol groupoid 
ring then FG is a Smarandache Bol groupoid ring.  However if 
FG is a Smarandache Bol groupoid ring then FG in general is 
not a Smarandache strong Bol groupoid ring. 
 
 We give examples of Smarandache P-groupoid rings. 
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Example 3.1.30:  Let G = {Z6, *, (4, 3)} be a groupoid.   
F = C(Z) = {a + ib | a, b ∈ Z} be a complex integer ring.  FG be 
the groupoid complex integer ring.  For every x, y in FG. 
   (x * y) * x  = (4x + 3y) * x 
      = 16x + 12y + 5x 
      = x. 
 
  Also x * (y * x) = x * [4y + 3x] 
      = 4x + 12y + 9x  
      = x. 
 
 We see (x * y) * x = x * (y * x) so FG is a Smarandache 
strong P-groupoid complex ring.  
 
Example 3.1.31:  Let G = {Z4, *, (2, 3)} be a groupoid.  

F = C(Q) = {a + bi | a, b ∈ Q} be a complex rational ring.  
FG be the groupoid complex rational ring. 
  For every x, y ∈ FG we see  
   (x * y) * x = [2x + 3y] * x 
      = 4x + 6y + 3x 
      = 2y + 3x. 
 
   x * (y * x) = x * [2y + 3x] 
      = 2x + 6y + 9x  
      = 3x + 2y. 
 
 Since (x * y) * x = x * (y * x) for all x, y ∈ FG is a 
Smarandache strong groupoid complex P-ring.  
 
 Recall we say a non associative R to be a P-ring if  

x * (y*x) = (x*y)*x for all x, y ∈ R. 
 
 Now we give an example of a Smarandache P-groupoid ring 
or a Smarandache groupoid P-ring which is not a Smarandache 
P-ring. 
 
Example 3.1.32:  Let G = {Z6, *, (3, 5)} be a groupoid.   

F = C(Z) = {a + ib | a, b ∈ Z} be a complex integer ring.  
FG be the groupoid complex integer ring.  Clearly FG is only a 
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Smarandache P-groupoid ring as all elements in FG do not 
satisfy the P-groupoid identity. 
 
Example 3.1.33:  Let G = {Z12, *, (5, 10)} be a groupoid.   

F = C(Q) = {a + ib | a, b ∈ Q} be the complex rational ring.  
FG be the groupoid complex ring.  Consider x, y ∈ FG; we see 
 
   (x * y) * x = [5x + 10y] * x 
      = 25x + 50y + 10x 
      = 11x + 2x   and 
 
   x * (y * x) = x * [5y + 10x] 
      = 5x + 50y + 100x  
      = 9x + 2y. 
 
 Thus in general  

(x * y) * x ≠ x * (y * x) as 11x + 2y ≠ 9x + 2y for all x, y ∈ 
FG. 
 
 But if x, y ∈ FH where H = {{0, 6}, *, (5, 10)} ⊆ G then 
FH satisfies the P-identity.  Thus FG is only a Smarandache 
complex P-groupoid and not a Smarandache strong P-ring.   
 

We see a non associative ring R is right alternative if  
(xy) y = x (yy) for all x, y ∈ R. 

 
 Similarly left alternative if (xx)y = x (xy).  R is said to be 
alternative ring if it is both right alternative and left alternative.   
 
 If the groupoid is alternative so will be the groupoid 
complex ring likewise for right alternative and left alternative 
identity; we provide examples of them. 
 
Example 3.1.34:  Let G = {Z14, *, (7, 8)} be a groupoid.  

C = {a + ib | a, b ∈ R} be the complex ring CG be the 
groupoid complex ring. 
 We see G is a Smarandache strong alternative groupoid, 
hence CG is a Smarandache strong alternative ring. 
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Example 3.1.35:  Let G = {Z12, *, (1, 6)} be a groupoid.   
F = C(Z) = {a + ib | a, b ∈ Z} be a complex integer ring, FG 

be the groupoid ring.  FG is a Smarandache strong alternative 
groupoid ring as G is a Smarandache strong alternative 
groupoid. 
 Recall a non associative ring is a Smarandache ring if it has 
a subring which is associative. 
 We show by the following theorem we have a class of 
groupoid complex rings which are Smarandache rings.   
 
THEOREM 3.1.11:   Let G = {Zn, *, (t, u)} be a groupoid (n > 
5); F = C(Z) (or C(Q) or C(R) = C) be a complex ring.  FG is a 
Smarandache ring if (t, u) = 1 and t ≠ u with t + u ≡ 1 (mod n). 
 
 All groupoid rings are not in general Smarandache.  The 
following examples substantiate them. 
 
Example 3.1.36:  Let G = {Z5, *, (1, 3)} be a groupoid.  F = 
C(G) be the complex integer ring.  FG be the groupoid complex 
ring.  FG is not a Smarandache ring. 
 
Example 3.1.37:  Let  G = {Z5, *, (2, 1)} be a groupoid.  F = 
C(Q) = {a + bi | a, b ∈ Q} be a complex rational ring.  FG be 
the groupoid ring.  FG is a Smarandache ring. 
 
Example 3.1.38:  Let G = {Z9, *, (5, 3)} be a groupoid.  F = C 
be the complex field.  FG the groupoid complex ring.  FG is not 
a Smarandache ring. 
 
THEOREM 3.1.12:  Let G = {Zn, *, (1, p), p a prime, p / n} be a 
groupoid F = C(Z) (or C(Q) or R) be the complex ring FG the 
groupoid complex ring.  FG is a Smarandache ring.   

 
The proof easily follows from the fact G is a S-groupoid.  

 
THEOREM 3.1.13:  Let G = {Zn, *, t + u ≡ 1 mod n, (t, u)} be a 
groupoid.  F = C(Z) (or C(Q) or C} be the complex integer ring.  
FG the groupoid complex ring.  FG is a Smarandache groupoid 
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P-ring (Smarandache P-groupoid ring) if and only if t2 ≡ t  
(mod n) and u2 ≡ u (mod n).   

 
The proof is straight forward and hence left as an exercise 

to the reader. 
 
THEOREM 3.1.14:  Let G = {Zn, *, (t, u); t + u ≡ 1 (mod n)} be 
a groupoid.  F = C (Z) (or C (Q) or C) be the complex ring.  FG 
be the groupoid ring.  FG is a Smarandache alternative ring if 
and only if t2 ≡ t (mod n) and u2 ≡ u (mod n).   
 

This proof is simple for one can easily show  
(x * y) * y = (x) * (y * y) and (x * x) * y = x * (x * y) for all 

x, y ∈ FG. 
 
THEOREM 3.1.15:  Let  

G = {Zn, *, (m, m); m + m ≡ 1 (mod n) and m2 = m (mod n)} 
be a groupoid.  F = C (Z) (or C (Q) or C) be the complex ring.  
FG be the groupoid complex ring.   

(i)  FG is a Smarandache strong P-groupoid ring  
      (groupoid P-ring). 
(ii) FG is a Smarandache strong Bol groupoid ring  
     (groupoid Bol ring). 
(iii) FG is a Smarandache strong Moufang groupoid  

ring (groupoid Moufang ring). 
(iv) FG is a Smarandache strong alternative groupoid  

ring (groupoid alternative ring). 
 
The proof is direct exploiting only number theoretic 
techniques. 
 

Example 3.1.39:  Let G = {Z2n, *, (2, 0)} be a groupoid. F = 
C(Z) (or C(Q) or R) be the complex ring. FG is a Smarandache 
ring. 
 In view of this we have a class of Smarandache rings. 
 
THEOREM 3.1.16:  Let G = {Z2n, *, (0, 2)} be a groupoid and F 
= C(Z) (or C(Q) or C) be the complex ring. FG is a groupoid 
complex ring which is a S-ring. 
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Example 3.1.40:  Let G = {Z14, *, (0, 7)} be a groupoid, F = 
C(Z) (or C(Q) or C) be the complex ring.  FG be the groupoid 
ring, FG is a S-ring. 
 
 Inview of this we have the following theorem. 
 
THEOREM 3.1.17:  Let G = {Z2m, *, (0, m)} be a groupoid,.  F = 
C(Z) (or C(Q) or C) be the complex ring, FG the groupoid 
complex ring is a S-ring.  
 
 Now we can define finite complex modulo integer non 
associative rings using groupoids and complex modulo integers 
C(Zn) = {a + biF | 

2
Fi  = n–1, a, b ∈ Zn}.  Let G = {Zm, *, (t, u)} 

be a groupoid C(Zn) be the complex modulo integer  
 

C(Zn)G = 
t

i i
i 1

a g
=

	


�
�  t < ∞, ai ∈ C(Zn) and gi ∈ G} is the 

groupoid complex modulo integer ring which is non associative 
and is of finite order. 
 
 We will give examples of them and discuss their properties.  
 
Example 3.1.41:  Let G = {Z3, *, (1, 2)} be a groupoid given by 
the following table. 
 

* g0 g1 g2 
g0 g0 g2 g1 
g1 g1 g0 g2 
g2 g2 g1 g0 

  
Let F = C(Z2) = {0, 1, iF, 1+iF} be the complex modulo 

integer ring of characteristic two.   
 

FG = {0, g0, g1, g2, g0 + g1, g0 + g2, g1 + g2, g0 + g1 + g2, iFg0, 
iFg1, iFg2, iF (g0 + g1), iF (g0 + g2), iF (g1 + g2), iF (g0 + g1 + g2), g0 
+ iF g1, iFg0 + g1, g1 + iF g2, iFg1 + g2, iFg0 + g2, g0 + iF g2, g0 + g1 
+ iF g2, g0 + iFg1 + g2, iF g0 + g1 + g2, g0 + iFg1 + iFg2, iFg0 + iFg1 + 
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g2, iFg0 + g1 + iF g2 (1 + iF) g0, (1+iF) g1, 1+iF g2, …, (1+iF) (g0 + 
g1 + g2)} is the groupoid complex modulo integer ring. 

 
Consider  
(g0 + g1 + g2) = 2 2 2

0 1 2g g g+ +  + g0 g1 + g0 g2 + g1 g2 + g2 g1 + 
g1 g0 + g2 g0 = g0 + g0 + g0 + g2 + g1 + g1 + g2 + g2 + g1 = g0 + g1 
+ g2 is an idempotent in FG.  

 
Further FG is non commutative and non associative of finite 

order.  
α = 1 + g0 ∈ FG, (1 + g0)

2 = 1 + g0 is again an idempotent in 
FG.  (1 + g1)

2 = 1+g0 is not an idempotent in FG.  Further 
(1+g2)

2 = 1+g0 is again not an idempotent of FG. 
 
Let α = 1 + iF g0 ∈ FG,  
α

2 = (1+iFg0)
2 = 1 + (iFg0)

2 = 1+g0 is not an idempotent in 
FG. 
Consider (1 + g1 + g2) = α in FG. 
α

2 = 1 + g0 + g0 + g2 + g1 = 1 + g1 + g2 is again an 
idempotent in FG.   

Let α = 1+g1 and β = 1+g2 be in FG.   
 

αβ  = (1+g1) (1+g2)  
= 1 + g1 + g2 + g1 g2 
= 1 + g1 + g2 + g2 
= (1 + g1) is not a zero divisor. 

 
(1 + g1) g2 = 0 is a zero divisors.   
g2 (1+g1) ≠ 0 is not a zero divisors. 

 
 Consider 1 + g2 = α and β = g1 ∈ FG.  
 
   βα = (1+ g2)  = g1 + g1 g2 
       = g1 + g2 ≠ 0. 
  
   Consider αβ  = (1+g2) g1 
       = g1 + g2 g1 
       = g1 + g1 = 0. 
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 Thus αβ = 0 is a zero divisor and βα ≠ 0 so is not a zero 
divisor. 
 
 These are only either left zero divisor or right zero divisor. 
 
Example 3.1.42:  Let G = {Z4, *, (3, 1)} be the groupoid.   

F = C(Z3) = {a + biF | a, b ∈ Z3, 
2
Fi  = 2} be the complex 

modulo integer ring. FG be the groupoid complex modulo 
integer ring. 
 
 The table for G is as follows: 
 

0 g0 g1 g2 g3 
g0 g0 g1 g2 g3 
g1 g3 g0 g1 g2 
g2 g2 g3 g0 g1 
g3 g1 g2 g3 g0 

 
 Consider α = 2g0 + iF g1 ∈ FG; α2 = (2g0 + iF g1)

2 = g0 + 2g0 
+ 2iF g1 + 2iF g3  = 3g0 + 2iF g1 + 2iF g3 is in FG. 
 
    α = g0 + g2 + g1 + g3 ∈ FG. 
 
    α

2  = (g0 + g2 + g1 + g3)
2 

     = g0 + g0 + g0 + g0 + g1 + g3 + g2 + g3 + g1 +  
   g2 + g2 + g3 + g1 + g1 + g2 + g3 = α. 

 
 Thus α is an idempotent element. 
 
 Consider α = g0  + iF g1 + g2 + iF g3 and β  = g0 + iF g2 in 
FG. 
 αβ  =  (g0 + iFg1 + g2 + iFg3) (g0 + iF g2) 
  = g0 + iFg3 + g2 + iF g1 + iFg2 + 2g1 + iFg0 + 2g3 is in FG. 
 
 Let α = (1+iF)g0 + (2+iF)g1 be in FG.  To find α2. 
 
   α

2 = ((1 + iF)g0 + (2+iF)g1)
2 



 64

 = (1+iF)
2 g0 + (2+iF)

2 g0 + (iF+1) (2+iF)g1 + 1+iF) (2+iF) g3 
 = (1+2+2iF)g0 + (4+2+2iF)g0 + (2+2)g1 + (2+2)g3 
 = iF g0 + g1 + g3 ∈ FG. 
 
 Let α = g0 + g1 and β = g2 + g3 be in FG.   

αβ  = (g0 + g1) (g2 + g3)  
     = g2 + g1 + g3 + g2 = g1 + g3. 
 
 Consider α = g0 and β = g1 + g2 + g3 in FG. 
    αβ  = g0 (g1 + g2 + g3) 
     = g1 + g2 + g3 ∈ FG. 
 
 Let β = g0 + 2 and α = g1 + g2 + g3 then 
 βα     = (g0 + 2) (g1 + g2 + g3) 
     = (g1 + g2 + g3 + 2g1 + 2g2 + 2g3 
     = 0.  So βα is a zero divisor. 
 
 Consider αβ   = (g1 + g2 + g3) (g0 + 2) 
       = g3 + g2 + g1 + 2g1 + 2g2 + 2g3 
       = 0. 
 

Thus αβ = βα = 0 is a zero divisor in FG. 
 
 Let α   = g0 + g1 + g2 + g3 and 
  β   = g0 + g1 + g2 + g3 + 2 be in FG.  
 αβ  = (g0 + g1 + g2 + g3) (g0 + g1 + g3 + g2 + 2) 
  = g0 + g1 + g3 + g2 + 2g0 + g3 + g0 + g1 + g2 + 2g1  

   + g2 + g3 + g0 + g1 + 2g2 + g1 + g2 + g3 + g0 + 2g3 = 0;  
thus αβ is a zero divisor in FG. 

 
 Now we proceed onto describe some more properties about 
groupoid complex modulo integer rings.  We can define the 
concept of S-rings, subrings and ideals of groupoid complex 
modulo integer rings.  
 
Example 3.1.43:  Let G = {Z12, *, (2, 10)} be the groupoid.   

F = C (Z11) = {a + biF | a, b ∈ Z11, 
2
Fi  = 11} be a ring of 

complex modulo integers.  FG the groupoid ring.   
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H = {{0, 2, 4, 6, 8, 10} ⊆ Z12, *, (2, 10)} ⊆ G be a 
subgroupoid of G.  FH ⊆ FG is a groupoid subring of FG. 
 
Example 3.1.44:  Let G = {Z12, *, (3, 9)} be a groupoid.   

F = C(Z12) = {a + biF | a, b ∈ Z12, 
2
Fi  = 11} be a complex 

modulo integer ring.  FG the groupoid ring.   
H = {{0, 3, 6, 9} ⊆ Z12, *, (3, 9)} ⊆ G; be a subgroupoid.  

FH be the groupoid subring. 
 
Example 3.1.45:  Let G = {Z12, *, (10, 8)} be the groupoid.   

F = {a + iFb| a, b ∈ Z9, 
2
Fi  = 8} be the complex modulo 

integer ring.  FG be the groupoid ring.   
K = {{0, 4, 8} ⊆ Z12, *, (10, 8)} ⊆ G be the subgroupoid  

of G. 
 FK ⊆ FG is a groupoid subring of FG.  Let  

H = {{2, 6, 10} ⊆ Z12, (10, 8)} ⊆ G be the subgroupoid of 
G.  FH ⊆ FG; FH is a groupoid subring of FG. 
 
 We see number of elements of FH and FK are equal. 
 
Example 3.1.46:  Let G = {Z4, *, (2, 3)} be a groupoid.   

F = C(Z5) = {a + biF | a, b ∈ Z5, 
2
Fi  = 4} be the modulo 

integer complex ring.  FG be the groupoid ring.  Take  
H = {{1, 3} ⊆ Z4, *, (2, 3)} ⊆ G be the subgroupoid of G.  
FH be the groupoid ring.  FH is a groupoid subring of FG. 

 Further FH is a left ideal of FG.  Clearly FH is not a right 
ideal of FG. 
 
Example 3.1.47:  Let G = {Z4, *, (3, 2)} be the groupoid.   

F = C(Z12) = {a + biF | a, b ∈ Z12, 
2
Fi  = 11} be the modulo 

complex ring.  FG be the groupoid ring.   
 
Take H = {{0, 2} ⊆ Z4, *, (3, 2)} ⊆ G to be a subgroupoid.  

FH ⊆ FG; FH is a groupoid subring of FG and infact right ideal 
of FG.  Clearly FH is not a left ideal of FG.  
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 We cannot always claim that every groupoid ring built 
using the complex modulo integer ring has right ideals and left 
ideals. 
 
 Thus is shown by some examples. 
 
Example 3.1.48:  Let G = {Z10 *, (3, 7)} be the groupoid of 
order 10.  C(Z2) = {a + biF | a, b ∈ Z2, 

2
Fi  = 1} = F be the 

complex modulo integer ring.  FG be the groupoid ring.  FG has 
no ideals be it right or left.  It has no left or right ideals. 
 
 In view of these facts we have the following theorem the 
proof of which is direct and simple.  
 
THEOREM 3.1.18:  Let G = {Zn, *, (t, u)} be a groupoid and 
 F = C(Zn) = {a + biF | a, b ∈ Zm, 2

Fi  = m–1} be a complex 
modulo integer ring.  FG be the groupoid complex modulo 
integer ring of the groupoid G over the complex modulo integer 
ring F.  P is a left ideal in FG if and only if P is right ideal in 
FG′ where G′ = {Zn, *, (u, t)} is the groupoid.  
 
 We can also say when the groupoid rings do not have ideals 
that is they are simple.  
 
Example 3.1.49:  Let G = {Z12, *, (5, 7)} be a groupoid.   

F = C(Z3) = {a + biF | a, b ∈ Z3, 
2
Fi  = 2} be a complex 

modulo integer ring, FG be the groupoid ring.  FG has no ideals 
hence simple. 
 
Example 3.1.50:  Let G = {Z7, *, (2, 5)} be a groupoid.   

F = C(Z5) = {a + biF | a, b ∈ Z5, 
2
Fi  = 4} be the complex 

modulo integer ring. FG be the groupoid ring.  FG is simple for 
it has no ideals. 
 
Example 3.1.51:  Let G = {Z19, *, (13, 6)} be a groupoid.   
 

F = C(Z7) = {a + biF | a, b ∈ Z7, 
2
Fi  = 6} be the ring of  

complex modulo integer. 
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 FG be the groupoid ring of G over F.  FG is simple. 
 Inview of this we have the following theorem. 
 
THEOREM 3.1.19:  Let G = {Zn, *, (t, u)} be a groupoid.   

F = C(Zm) = {a + biF | a, b ∈ Zm, 2
Fi  = m–1} be a complex 

modulo integer ring.  FG be the groupoid modulo complex 
integer ring.  FG is simple if t + u = n and both t and u are 
primes.   
 

The proof is simple for one can verify the result using 
simple number theoretic techniques. 
 
THEOREM 3.1.20:  Let G = {Zp, *, (t, u)} be a groupoid.   

F = C(Zn) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1} be the complex 

modulo integer.  FG be the groupoid ring.  If t + u = p; (t, u) = 
1 then also FG is a simple ring. 

  
 The proof is simple and hence left as an exercise to the 
reader.  
 
 Now we proceed onto define and study groupoid rings for 
which the groupoid has identity.   
 
 Recall G = Zn ∪ {e} be a modulo integers with e ∉ Zn.  
Define a operation * on G by ai * ai = e for all ai ∈ Zn and  
 

ai * e = e * ai = ai for all ai ∈ Zn.  For any ai, aj ∈ Zn; ai * ai 
= e and ai * aj = tai + uaj (mod n); t, u ∈ Zn.  {G, *, (t, u)} is a 
groupoid with identity. 
 
 Let C = {a + bi | a, b ∈ R} be the complex field.  CG be the 
groupoid ring where 1.e = e.1 = 1 is called the identity of CG.  
 
Example 3.1.52:  Let G = {Z9 ∪ {e}, *, (2, 3)} be the groupoid 
with identity e.F = C(Z) = {a + bi | a, b ∈ Z} be the complex 
integer ring.   
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FG = 
n

i i
i 1

a g
=

	


�
�  ai ∈ Z, gi ∈ G} be the groupoid ring.  

Clearly 1.G  ⊆ FG and F.e = F.1 ⊆ FG. 
 
 All properties for FG can be derived as in case of usual 
groupoid ring when the groupoid does not contain the identity. 
Using complex modulo integers or complex field C or complex 
rational ring all properties can be derived. 
 
Example 3.1.53:  Let G = {Z5 ∪ {e}, *, (3, 2)} be a groupoid 
ring with identity.  F = C(Z2) = {a + biF | a, b ∈ Z2, 

2
Fi  = 1} be 

the complex modulo integer.  FG be the groupoid ring.   
FG = {� ai gi | gi ∈ G and ai ∈ F}.  Consider α = 1+g4 in 

FG.  α2 = 1+2g4 + g0. 
 
 Suppose α = 1 + g0 + g1 + g2 + g3 + g4 in FG. 

α
2  =  (1 + g0 + g1 + g2 + g3 + g4)

2 
  =  1 + g0 + g1 + g2 + g3 + g3 + g0 + 1 + g2 + g4 + g1 + g3  

+ g1 + g3 + 1 + g2 + g4 + g1 + g2 + g1 + g3 + 1 + g2 +  
g4 + g3 + g4 + g1 + g3 + 1 + g2 + g4 + g2 + g4 + 1 + g3  
+ g1  

=  g1 + g2 + g3 + g4. 
 
So α2 is neither an idempotent nor a nilpotent element of FG.  
 
 More properties of groupoid rings using complex rings can 
be studied or analysed as a matter of routine.  Now we proceed 
onto define loop rings where rings are complex modulo integer 
ring or complex modulo rational ring or complex ring and the 
loops are real loops built using Zn ∪ {e}. 
 
DEFINITION 3.1.2:  Let Ln(m) = {e, 1, 2, …, n} be a set where  
n > 3, n odd and m is a positive integer such that (m, n) = 1 and 
(m–1, n) = 1 with m < n.  Define on Ln(m) a binary operation * 
such that  
 

(i) e * i = i * e = i for all i ∈ Ln(m) 
(ii) i2 = i*i = e for all i ∈ Ln(m) 



 69

(iii) i * j = t where t = (mj – (m–1)i) (mod n) for all i, j  
∈ Ln(m); i ≠ j, i ≠ e loop under the binary  
operation *. 
 

For more about these loops refer [15]. 
 
Example 3.1.54:  Let L13(5) be a loop of order 14. 
 
Example 3.1.55:  Let L17(8) be a loop of order 18. 
 
Example 3.1.56:  Let L15(8) be a loop of order 16. 
 
 We shall be using only these types of loops to construct non 
associative complex rings. 
 
DEFINITION 3.1.3:  Let L = Ln(m) be a loop.   
 

F = C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring.   

FL = 
n

i i
i 1

a g
=

	


�
� ai ∈ C(Z) and gi ∈ Ln(m)} denote the finite 

formal sums.  
 
 Addition is defined componentwise,  for a, b ∈ FL where  
 

a = 
n

i i
i 0

a g
=

�  and b = 
n

i i
i 0

b g
=

� ; 

a+b = 
n

i i
i 0

a g
=

�  + 
n

i i
i 0

b g
=

�  = 
n

i i i
i 0

( a b )g
=

+�  

 
we see a + b  ∈ FL. 

 

For a, b in FL, ab = 
n

i i
i 0

a g
=

�  
n

i i
i 0

b g
=

�  = 
k

j j
j 0

c h
=

�  

 
where hj = gi gt and cj = � ai bt. 
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 Clearly e.1 = 1.e = 1 acts as the multiplicative identity.  We 
see (FL, +, ×) is a non associative ring with identity, known as 
the complex non associative loop ring of the loop L over the 
integer complex ring C(Z).  Infact C(Z) can be replaced by  
 

C(Q) = {a + ib | a, b ∈ Q} or C = {a + ib | a, b ∈ R} which 
are the complex rational ring or complex real ring or complex 
field respectively. 
 
 Still the loop ring would be a non associative complex ring.  
We will first illustrate this situation by some examples.  
 
Example 3.1.57:  Let L = L9(8) be the loop.   

F = C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring.  
FL be the loop complex ring. 
 
Example 3.1.58:  Let L = L5(2) = {e, 1, 2, 3, 4, 5} be the loop 
given by the following table. 
 
 We will denote gi by i; 1 ≤ i ≤ 5. 
 

* e g1 g2 g3 g4 g5 
e e g1 g2 g3 g4 g5 
g1 g1 e g3 g5 g2 g4 
g2 g2 g5 e g4 g1 g3 
g3 g3 g4 g1 e g5 g2 
g4 g4 g3 g5 g2 e g1 
g5 g5 g2 g4 g1 g3 e 

 
 Clearly L is a non associative non commutative loop of 
order six.  Consider F = C(Z) = {a + bi | a, b ∈ Z} be the 
complex integer ring.   
 

FL = 
n

i i
i 0

a g
=

	


�
� ai ∈ C(Z) and gi ∈ L; go = e ∈ L}. 

 Now we show how addition and multiplication are 
performed on FL. 
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Let α = 8e – 12g1 + 14g2 – 5g5 and 

b = 7e + 20g1 – 3g3 + 4g4 + g5 be in FL. 
  

To find α+β ; α+β = 8e – 12g1 + 14g2 – 5g5 + 7e + 20g1 – 
3g3 + 4g4 + g5 = 15e + 8g1 + 14g2 – 3g3 + 4g4 – 4g5 ;  

α + β is in FL.  
 
 Now consider  

αβ  = (8e – 12g1 + 14g2 – 5g5) (7e + 20g1 – 3g3 + 4g4 + g5)  
= 56e – 84g1 + 98g2 – 35g5 + 160g1 – 240e + 280g5 –  
   100g2 – 24g3 – 36g5 – 42g4 + 15g1 + 32g4 – 48g2 +  
    56g1 – 20g3 + 8g5 – 12g4 + 14g2 – 5e. 

  = –189e + 147g1 – 50g2 + 217g5 – 30g3 – 22g4 is in FL. 
 
 Consider  

βα = (7e + 20g1 – 3g3 + 4g4 + g5) (8e – 12g1 + 14g2 – 5g5)  
  = 56e + 160g1 – 24g3 + 32g4 + 8g5 – 84g1 – 240e + 36g4  

    – 48g3 – 12g2 + 98g2 + 280g3 – 42g1 + 56g5 + 14g4 –  
    35g5 – 100g4 + 15g2 – 20g1 – 5e 

  = –189e + 14g1 + 208g3 – 18g4 + 29g5. 
 
 We see αβ ≠ βα, but both αβ and βα are in FL.  Thus FL is 
a non commutative non associative loop ring of infinite order. 
 Thus we see the loop ring FL is non commutative if and 
only if L is a non commutative loop. 
 
 We now give examples of commutative loop rings. 
 
Example 3.1.59:  Let L = L5(3) be a loop.   

F = C(Q) = {a + bi | a, b ∈ Q} be a complex rational ring.  
FL be the loop ring.  FL is a commutative complex loop ring as 
L is a commutative loop. 
 
Example 3.1.60:  Let L = L13(7) be a loop of order 14.  F = C be 
the complex ring FL be the complex loop ring.  FL is a 
commutative complex loop ring. 
 
 In view of this we have the following theorem. 
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THEOREM 3.1.21:  Let L = Ln
n 1

2

+� �
� �
� �

 be a loop.  F = C(Z) (or 

C(Q) or C) be the complex ring FL be the complex loop ring.  
FL is a commutative complex loop ring. 
 
 Proof follows from the fact that L = Ln(m) is a commutative 

loop if and only if m =
n 1

2

+� �
� �
� �

.  

 We see using the above statement we can get a 
characterization theorem for a complex loop ring to be 
commutative. 
 
 We can also get a class of complex loop rings using the 
loops of order n+1, n > 3. 
 
 We know from [15]; Ln = {Ln(m) | m < n, (m, n) = 1, (m–1, 
n) = 1} denotes the class of loops of order n+1. 
 
 Now FLn = {FLn(m) | Ln(m) ∈ Ln} denotes the class of loop 
rings.  We give the properties associated with this class of loop 
rings. 
 
THEOREM 3.1.22:  The class of loop complex rings (complex 
non associative rings) FLn contains one and only one 
commutative, non associative complex ring. This happens when 

Ln(m) in Ln is such that m = 
n 1

2

+� �
� �
� �

. 

 
 Proof easily follows from the fact that the class of loops Ln 
contains one and only one commutative loop. 
 We say a loop ring FL is a left alternative loop ring if 
(αα)β = α (αβ) for all α, β in FL. 
 
 Likewise the loop ring FL is right alternative if and only if 
(αβ)β = α (ββ) for all α, β in FL. 
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 If in a loop ring both the identities left alternative identity as 
well as right alternative. Identity is satisfied then we say FL is 
an alternative non associative ring. 
 
 We call the loop ring FL where F is a complex modulo 
integer ring and L is a loop of the form Ln(m). If (xy) z = e = 1 
imply x (yz) = e = 1 for all x, y, z ∈ FL, then FL is a weak 
inverse property loop ring. 
 
 We can also define a loop complex ring FL to be a Jordan 
ring if ab = ba; a2 (ba = (a2 b) a for all a, b ∈ FL.  We give in the 
following conditions for the loop L where  

L ∈ Ln = {Ln(m) | m < n; (m, n) = 1, (m–1, n) = 1}.   
 

We first give some examples of them. 
 
Example 3.1.61:  Let L = L7(5) be a loop and  

F = C(Z) = {a + bi | a, b ∈ Z} be a complex integer ring.  
FL be the loop complex integer ring, clearly FL satisfies the 
weak inverse property condition. 
 
Example 3.1.62:  Let L = L43(7) be a loop and  

F = C(Q) = {a + bi | a, b ∈ Q} be the complex rational ring.  
FL be the loop ring, FL is a weak inverse property ring.   

 
Inview of this we give the following theorem.  

 
THEOREM 3.1.23:  Let L = Ln(m) be a loop in Ln.   

F = {C(Q) = a + bi; a, b ∈ Q} be the complex rational ring.  
FL be the loop ring.  FL is a weak inverse property complex non 
associative ring if and only if (m2 – m + 1) = 0 (mod n). 
 
 Proof follows from the fact that a loop Ln(m) ∈ Ln is a weak 
inverse property loop if and only if (m2 – m+1) ≡ 0 (mod n).  
 
THEOREM 3.1.24:  Let L = Ln(m) be a loop.   
F = {C(Z) (or C(Q) or C) be the complex integer ring. (complex 
rational ring or complex real field).  FL be the loop complex 
ring.  FL is a right alternative loop complex ring if m = 2. 
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COROLLARY 3.1.1:  Let L = Ln(m) be a loop with m = 2 and F 
be the complex ring.  FL is a right alternative complex loop 
ring. 
 
 Thus we have the following characterization  theorem. 
 
THEOREM 3.1.25:  Let L = Ln(m) be a loop of order n+1.  F = 
C(Z) (or C(Q) or C); the complex loop ring is a right alternative 
loop ring if and only if m = 2. 
 
Example 3.1.63:  Let L = L19(2) be the loop of order 20. F = C 
the complex field. FL the loop ring is a complex right 
alternative loop ring.  Clearly FL is not a left alternative loop 
ring.  
 
Example 3.1.64:  Let L = L23(2) be the loop of order 24. F = 
C(Z) be the complex integer ring. FL be the complex loop ring 
which is right alternative but is not left alternative.  
 

We now give examples of left alternative loop rings. 
 Further using L = Ln(m) ∈ Ln we see no FL is alternative.  
 
Example 3.1.65:  Let L = L13(12) be a loop.  F = C(Q) be the 
complex ring.  FL be the complex loop ring.  FL is a left 
alternative complex loop ring.  
 
Example 3.1.66:  Let L = L25(24) be a loop.  F = C be the 
complex field.  FL the complex loop ring is a left alternative 
loop ring.  
 
Example 3.1.67:  Let L = L23(22) be the loop.  F = C(Q) be the 
complex ring.  FL the complex loop ring is a left alternative ring 
which is clearly not a right alternative ring. 
 
THEOREM 3.1.26:  Let L = Ln(m) be a loop.  F be a complex 
ring.  FL the complex loop ring is left alternative if and only if 
m = n–1.   
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The proof follows from the simple fact that a loop Ln(m) is 
left alternative if and only if m = n–1. 
 
 Let R be a non associative ring, the associator  

A (R) = �{x ∈ R | x = (t, u, v) for some t, u, v ∈ R}
. 
 
Example 3.1.68:  Let L = L9(5) be a loop.  C(Z) = F be the 
complex ring of integers.  FL be the loop ring.  The associator 
of FL denoted by A(FL) = FL. 
  
Example 3.1.69:  Let L = L13(7) be a loop.  C(Q) = F be the 
complex rational ring. FL be the loop ring.  A(FL) = FL.  
 Inview of this we have the following theorem. 
 
THEOREM 3.1.27:  Let Ln(m) ∈ Ln be a loop.  F be a complex 
ring.  FL the complex loop ring.  The associator of FL is FL; 
that is A(FL) = FL. 
  
 Follows from the simple fact if Ln(m) ∈ Ln is a loop of 
order n+1 then the associator A(Ln(m)) = Ln(m). 
 
 Recall let L be a loop, H a subloop of L. H is a normal 
subloop of L is 

(i)  xH = Hx  
(ii) (Hx) y = H (xy) and 
(iii) y(xH) = (yx)H for all x, y ∈ L. 

 
A loop is simple if it has no normal subloops. 
 

Example 3.1.70:  Let L = L5(2) be a loop of order six.   
F = C(Z) = {a + ib | a, b ∈ Z} be the complex integer ring.  

FL is the complex integer loop ring.  Clearly FL is non 
associative. 
 Let H = {e, g1} ⊆ L be a subgroup of L.  FH is a group 
complex ring and FH ⊆ FL; so FL is a S-ring. 
 
Example 3.1.71:  Let L = L9(7) be a loop.  

F = C(Q) = {a + ib | a, b ∈ Q} be the complex rational ring.  
FL be a complex rational loop ring.  Consider KL where  
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K = C(Z) = {a + ib | a, b ∈ Z} ⊆ F; KL is a complex 

rational loop subring of FL.  Clearly FL is also a S-ring.  
 
Example 3.1.72:  Let L = L21(11) be a loop.  

F = C(Q) = {a + ib | a, b ∈ Q} be a ring.  FL is a loop 
complex ring of the loop L over the ring F. FL is a commutative 
loop complex ring.  This ring is also a S-ring.   

We want to study about ideals in these rings.  Infact these 
rings have a class of subrings which are not complex but non 
associative and are just subrings and not ideals.  First we give 
examples of them. 
 
Example 3.1.73:  Let L = L25(8) be a loop.  

F = C(Z) = {a + ib | a, b ∈ Z} be the complex integer ring.  
FL be the complex loop ring of the loop L over the complex 
ring F.  Let Z ⊆ F, ZL be the loop ring.  ZL is a subring of FL; 
ZL is not associative but is a non complex or real subring.  
Clearly ZL is not an ideal of FL. 
 
Example 3.1.74:  Let L = L37(7) be a loop.  

F = C(Q) be the complex ring.  FL be the loop complex 
ring.  Take H = {e, g12} ⊆ L, FH is a complex loop ring which is 
associative.  Clearly FH ⊆ FL is an associative subring of FL.  
Further FH is not an ideal of FL but a complex associative 
subring.  Thus the complex loop ring FL can have non complex 
non associative subrings that is real non associative subrings 
which are not complex, so are not ideal of FL.  
 FL can have associative complex subrings which are also 
not ideals of FL. 
 
Example 3.1.75:  Let L = L15(2) be a loop.  

F = C(Q) = {a + ib | a, b ∈ Q} be the complex rational ring.  
FL be  the loop complex ring of the loop L over the complex 
ring F.  FL is a non associative ring.  Take H = {e, g1, g4, g7, g10, 
g13} ⊆ L, H is a subloop of L so FH is a loop subring of the ring 
FL which is complex as well as non associative. FH is also not 
an ideal of FL.  
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THEOREM 3.1.28:  Let L = Ln(m) be a loop in F = C(Q) (or C) 
be the complex ring.  FL be the loop complex ring.  FL is 
simple.   

Follows from the fact every L ∈ Ln is a simple loop.  
Further we see C(Q) has no ideal.  However if in the theorem 
C(Z) is replaced by K = C(2Z) = {a + bi | a, b ∈ 2Z}.  KL is a 
loop complex subring of FL.  Clearly KL is also an ideal of FL.  
P = C(3Z) = {a + bi | a, b ∈ 3Z} be a complex subring of F. PL 
is also an ideal of FL.  Now we see FL is not simple if  

F = C(Z) = {a + bi | a, b ∈ Z}.  Further if F = C(Q) or C 
then FL has loop complex subrings which are not ideals.  
 Take P = C(Z)  ⊆ F, PL is a subring of FL but is not an 
ideal of FL. 
 
Example 3.1.76:  Let L = L43 (7) be a loop.  F = C(Q) be the 
complex ring.  H1(13)  be its S-subloop.  FL be the loop 
complex ring.  SN1(FH1(13)) = SN2(FH1(13))  where FHi(13) is 
a loop complex subring of FL, 1 ≤ i ≤ 2. 
 
Example 3.1.77:  Let L = L45 (8) be a loop and   
 

F = C = {a + ib | a, b ∈ R} be a complex ring.  FL the loop 
complex ring.  H1(15) = {e, 1, 16, 31} ⊆ L be a subloop of L.  
FH1(15) is a loop complex subring of FL.  

 
We see SN1 (FH1(15)) ≠ SN2 (FH1(15)). 
Similar results in this direction can be derived by any 

interested reader. 
All results studied for loop rings and groupoid rings of non 

complex rings can be easily extended to the case of complex 
loop rings with appropriate modifications.  Most of the results 
are a matter of routine and hence is left as an exercise to the 
reader to solve.  
 
���������
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 In this section we for the first time introduce the new notion 
of complex loop rings, here complex loops are used in the place 
of loops.  Likewise complex groupoid rings are those rings 
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where complex groupoids are used in the place of groupoids.  
Both the notions of complex groupoids and complex loops are 
introduced in chapter II of this book.  Properties about these two 
new structures are discussed.  
 
DEFINITION 3.2.1:  Let G = {C(Zn), *, (t, u)}  

(where C(Zn) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1) be a complex 

groupoid.  F = R (or Zn or Z or Q) be the field (or ring). FG be 
the groupoid ring of G over F.  FG is a non associative complex 
ring. 
 
 Groupoid ring have been defined earlier.  Further these 
groupoid rings may or may not have identity.  Also groupoid 
rings are non associative may or may not be commutative.  
 
 We first give examples of groupoid rings of all types and 
derive some properties related with them. 
 
Example 3.2.1:  Let G = {C(Z89), *, (5, 4)} be the complex 
groupoid.  Z = F be the ring of integers FG is a groupoid ring.  
 G = C (Z9) = {gi + iFgj | i, j ∈ Z9  

2
Fi  = g8}. 

 
 Now we show how product and addition of FG are made. 
 Let α  =  9g1 + 8g3 – 5g2 + 10g7 
 and β   = –19g0 + g1 – 2g2 + 5g3 + g8 be in FG.   

α + β  = 9g1 + 8g3 – 5g2 + 10g7  + (–19g0 + g1 – 2g2 + 5g3  
   + g8) 

   = –19g0 + 10g1 – 7g2 + 13g3 + 10g7 + g7 and  
α  + β ∈ FG. 
 

 Let us now find  
 

αβ  = (9g1 + 8g3 – 5g2 + 10g7) (–19g0 + g1 – 2g2 + 5g3 + g8) 
  =  –171g1g0 – 152g3 g0 – 95g2g0 – 190g7g0  

    + 9g1g1 +  8g3g1 + 5g2g1 + 10g7g1 – 18g1g2  
    – 16g3g2 – 10g2g2 – 20g7 g2 + 45g1g3 + 40g3g3  
    + 25g2g3 + 50g7g3 + 9g1g8 + 8g3g8 + 5g2g8 + 10g7g8 
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 =  –171g5 – 152g6 – 95g1 – 190g8 + 9g0 + 8g1 + 5g5  
   + 10g7 – 18g4 – 16g5 – 10g0 – 20g7 + 45g8 + 40g0  
   + 25g4 + 50g2 + 9g1 + 8g6 + 5g7 + 10g4 

 = –182g5 – 144g6 – 78g1 – 145g8 + 39g0 – 5g7 + 17g4 + 50g2  
   is in FG. 

 That is gi * gj = g5i+4j (mod 9) where 0 ≤ i, j ≤ 8 is the 
operation performed on G. 
 
Example 3.2.2:  Let G = {C(Z8), *, (4, 5)} be a complex 
groupoid.  F = Z8 be the ring of integer modulo 8.  FG is the 
complex modulo integer groupoid ring of finite order.  
 
Example 3.2.3:  Let G = {C(Z7), *, (0, 4)} be a complex 
modulo integer groupoid.  F = Q be the field of rationals FG be 
the groupoid rings. FG is a complex non associative ring of 
infinite order.  
 
Example 3.2.4:  Let G = {C(Z49), *, (9, 9)} be a complex 
groupoid and  F = R be the field of reals, FG be the complex 
groupoid ring of infinite order. 
 
Example 3.2.5:  Let G = {C(Z42), *, (11, 22)} be a complex 
modulo integer groupoid.  F = Z be the integer ring.  FL be the 
complex groupoid ring which is of infinite order both non 
commutative and nonassociative.  
 
Example 3.2.6:  Let G = {C(Z11), *, (3, 3)} be a complex 
groupoid.  F = Z11 be the modulo integer ring. FG be the 
complex groupoid ring of finite order which is commutative but 
non associative.  
 
Example 3.2.7:  Let G = {C(Z14), *, (8, 6)} be a complex 
modulo integer groupoid.  L = Z10 be the ring of modulo integer 
10.  LG is a complex modulo integer groupoid ring of finite 
order.  
 
Example 3.2.8:  Let G = {C(Z40), *, (7, 14)} be the complex 
modulo integer groupoid.  L = Z10 be the ring of modulo integer.  
FG be the groupoid complex modulo integer ring.  
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Example 3.2.9:  Let G = {C(Z49), *, (9, 18)} be a complex 
modulo integer groupoid.  F = R be the field of reals. FG is the 
complex groupoid (modulo integer) ring of infinite order non 
commutative and non associative. 
 
Example 3.2.10:  Let G = {C(Z20), *, (10, 3)} be a complex 
modulo integer groupoid.  F = Z25 be the ring of modulo 
integers. FG be the complex groupoid ring.  
 
Example 3.2.11:  Let G = {C(Z3), *, (2, 1)} be a complex 
modulo integer groupoid.  F = Z3 be the ring of modulo integers.  
FG be the complex modulo integer groupoid ring.  
 
Example 3.2.12:  Let G = {C(Z), *, (m, n)} be a complex 
groupoid.  F = Z be the ring of integers.  FG be the complex 
groupoid ring.  
 
Example 3.2.13:  Let G = {C(Q), *, (8, 9)} be a complex 
groupoid.  F = Q be the ring of integers.  FG be a complex 
groupoid ring.  
 
Example 3.2.14:  Let G = {C(Q), *, (2, 4)} be a complex 
groupoid.  F = Z12 be the ring of modulo integers.  FG be the 
complex groupoid ring.  
 
 We can define subrings of these complex groupoid rings. 
 
DEFINITION 3.2.2:  Let  G be a complex groupoid, F be any 
real field or a commutative ring. FG be the complex groupoid 
ring. Suppose H ⊆ FG; and if H is itself a complex non 
associative ring then we define H to be a complex groupoid 
subring of FG. 
 
 We will illustrate this situation by some examples. 
 
Example 3.2.15:  Let G = {C(Z12), *, (8, 9)} be a complex 
groupoid. F = Z be the ring of integers. FG be the complex 
groupoid ring.  Take H = 3ZG be the complex non associative 
ring. H ⊆ FG so H is a subring of FG. 



 81

 
Example 3.2.16:  Let G = {C(Z4), *, (3, 1)} be a complex 
groupoid. F = Z12 be the ring of modulo integers. FG be the 
complex groupoid ring.   
 
 Consider K = {0, 2, 4, 6, 8, 10} ⊆ F, KG is the complex 
groupoid subring of FG. 
 
Example 3.2.17:  Let G = {C (Z40), *, (10, 3)} be a complex 
groupoid. R be the field of reals.  RG be the complex groupoid 
ring.  
 Consider QG ⊆ RG; QG is the complex groupoid subring of 
RG. 
 
Example 3.2.18:  Let G = {C (Z43), *, (0, 13)} be a complex 
groupoid. F = Q, the field of rationals.  QG be the complex 
groupoid ring. Consider ZG (Z ⊆ Q the ring of integers); ZG is 
the complex groupoid subring of QG. 
 Now we see H = {Z43, *, (0, 13)} ⊆ G is also a subgroupoid 
of G and H is not a complex modulo integer groupoid.  
Consider QH; QH ⊆ QG is a modulo integer groupoid ring 
which is not complex so we define QH to be a pseudo complex 
modulo integer groupoid subring of QG. 
 
 We give examples of them before we proceed to define 
other properties about these complex groupoid rings.  
 
Example 3.2.19:  Let G = {C (Z14), *, (0, 7)} be a complex 
groupoid ring. Z be the ring of integers. ZG be the complex 
groupoid ring.  Consider H =  {Z14, *, (0, 7)} ⊆ G.  ZH is the 
pseudo complex groupoid subring.  5ZG is the complex 
groupoid subring.  Both the subrings are non associative and 
non commutative.  
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Example 3.2.20:  Consider the complex groupoid  
G = {C (Z4), *, (2, 3)}.  Take F = R the reals, RG be the 

complex groupoid ring. Take H = {g0, g2, 
F F2i 2 2ig ,g

+
} ⊆ G; RH 

is a complex groupoid subring of RG which is not an ideal of 
RG. 
 
Example 3.2.21:  Let G = {C (Z10), *, (1, 5)} be a complex 
groupoid of modulo integers.  F = Z12 be the ring of modulo 
integers. FG be the complex groupoid ring. FG is a non 
associative complex modulo integer ring.  FG has both subrings, 
pseudo subrings and ideals.  

Take SG ⊆ FG where S = {0, 2, 4, 6, 8, 10} ⊆ Z12 = F; 
clearly SG is a subring which is also an ideal of FG.  Consider 
FT where T = {g0, g5} ⊆ G, FT is only a subring which is a 
pseudo complex subring of FG and is not an ideal of FG.  Infact 
FG is a S-ring.  Further FT is an associative subring of FG. 
 
Example 3.2.22:  Let G = {C(Z6), *, (4, 5)} be a groupoid of 
complex modulo integers, F = Z20 be the ring of modulo 
integers FG be the complex groupoid ring.   

Let H = {g0, g2, g4} ⊆ G, FH be the non complex non 
associative subring of FG.  FH is a pseudo complex non 
associative subring which is not an ideal of FG.  
 
Example 3.2.23:  Let G = {C(Z12), *, (1, 3)} be a complex 
modulo integer groupoid. F = Z5 be the ring of modulo integers.  
FG be the complex groupoid ring. A = {0, 3, 6, 9} ⊆ G be a 
pseudo complex groupoid.   

FA is the pseudo complex groupoid subring of FA.  Clearly 
FG is not an ideal but FA, we see is an ideal over F.  
 
 This type of ideals we call as pseudo basic ring ideals for 
they are ideals over the basic ring F over which the structures is 
defined.  
 
Example 3.2.24:  Let G = {C(Z11), *, (2, 3)} be a groupoid of 
complex modulo integers.  F = Z2 = {0, 1} be the field of 
characteristic two.  FG be the groupoid ring.  Clearly FG is a 
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non commutative non associative complex groupoid ring of 
finite order.   

 
Take FH where H = {0, 2} and FT where T = {1, 3} be 

pseudo groupoid subrings of FG.  They are pseudo basic ring 
ideals.  Both the rings are non commutative.  Table for H is 
given below: 

 
* g0 g2 
g0 g0 g2 
g2 g0 g2 

 
and the  table for T is as follows: 
 

* g1 g3 
g1 g1 g3 
g3 g1 g3 

 
 Now FH = {0, 1, g0, g2, 1+g0, 1+g2, g0 + g2, 1+g0 + g2} and  
 
FT = {0, 1, g1, g3, g1+1, g3+1, g1+g3, 1+g1 + g3}.  These are non 
commutative rings of order 8 of characteristic two.  
 
 They are also pseudo basic ring ideal of FG. 
 We can also define pseudo basic subring ideals if the ring is 
replaced by a subring and over the subring the structure is a 
ring.  This has more relevance when we use our basic rings as Q 
or R. 
 We give only examples of these structures. 
 
Example 3.2.25:  Let G = {C(Z12) *, (1, 3)} be a complex 
modulo integer groupoid.  F = R be the field of reals.  FG be the 
complex groupoid ring.  Consider QG (Q ⊆ R, the field of 
rationals).  QG is a subring of FG.  However QG is also a 
pseudo basic subring ideal over the subring Q.  We see QG is 
not an ideal over FG.  
 Also if ZG (Z ⊆ R, Z the ring of integer is taken), ZG is a 
subring of FG, but ZG is not an ideal in FG; however ZG is a 
pseudo basic subring ideal over Z. 
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 Now consider A ⊆ G the subgroupoid given by the 
following table. 
 

* g0 g3 g6 g9 
g0 g0 g9 g6 g3 
g3 g3 g0 g9 g6 
g6 g6 g3 g0 g9 
g9 g9 g6 g3 g0 

 
 Now FA is a subring which is a pseudo complex subring of 
FG.  Clearly FA is also non associative FA is a pseudo basic 
ring ideal over R. 
 Now having seen examples of these structures we proceed 
onto relate other properties.  
 We have the following theorem. 
 
THEOREM 3.2.1:  Let G = {C(Zn), *, (m, m); 1 < m < n} be a 
complex modulo integer groupoid. R be the field of reals.  RG is 
a commutative but non associative complex ring. 
  

Proof is direct using simple number theoretic techniques. 
 
THEOREM 3.2.2:  Let G = {C(Zn), *, (m, t); 0 < t < n} be a 
complex modulo integer groupoid.  R the field of reals. RG the 
complex groupoid ring.  If RG has a S-subring then RG is a S-
ring.  Further if RG is a S-ring every subring of RG need not be 
a S-subring. 
 
 The converse part can be proved by using counter examples. 
All results studied for usual groupoids over ring / complex rings 
can be easily extended in case of complex groupoids over rings 
with appropriate modifications. This task is also left as an 
exercise. We now proceed onto define the notion of complex 
loop ring FL where L is the complex loop and F is a real field or 
a real commutative ring with identity. 
 
DEFINITION 3.2.3:  Let  

L = C(Ln(m)) = {a + iFb | a, b ∈ Ln = {e, g1, g2, …, gn}, 2
Fi  

= gn-1} be a complex loop.  F = R (or Q or Z or Zn) be the ring 
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or a field. FL is the complex loop ring consisting of finite formal 
sums of the form i i

i

g�α ; i - varies over a finite index αi ∈ F 

and gi ∈ L; satisfying the following conditions.  
  

(i) If α = i i
i

g�α  and β = i i
i

g�β  are in FL,  

    α = β if and only if αi = βi for every i. 
 
(ii) α + β  = i i

i

g�α  + i i
i

g�β  

= i i i
i

( )g+� α β   is in FL. 

 
  (iii) αβ  = i i

i

g�α i i
i

g�β  

 
    = k k

i

h�γ   gi gj = hk 

   with hk ∈ L and γk ∈ F. 
 
  (iv) g.1 = 1.g = g for all g ∈ L and 1  ∈ F. 
 

(v) e. α = α .e = α as 1.e = e.1 = 1 for all α ∈ F. 
 

FL is a non associative ring called the loop ring. 
We give examples of them. 

 
Example 3.2.26:  Let  

L = {C(L9(5)}= {a + biF | a, b ∈ {e, g1, g2, …, g9}, 2
Fi  = g8} 

be the complex loop.  F = Z be the ring.  FL is the loop ring.   
 
If α = 7 (g1 + iF g2) + 3 (g3 + iF g6) – 2 (g7 + iF g1) and  
β =   3(g3 + iF g6) – 2 (g7 + iF g1) + 3 (g3 + g4 iF)  

– 4 (g6 + iF g3) is in FL. 
 

 αβ =  (7 (g1 + iFg2) + 3 (g3 + iFg6) – 2 (g7 + iFg1))  
          × (3 (g3 + g3iF) – 4 (g6 + g3iF)) 
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 =  21 (g1 + iFg2) * (g3 + g3 iF) + 9 (g3 + g6iF) (g3 + g4 iF)  
    – 6 (g7 + iFg1) (g3 + g4iF) – 28 (g1 + iFg2) (g6 + g3iF)  
    – 12 (g3 + iFg6) (g6 + g3iF) + 8 (g7+iFg1) (g1 + g3 iF) 

 
 = 21 [5 (g3 + g4iF) – 4 (g1 + iFg2)] + 9 [5 (g3 + g4iF)  
       – 4 (g3 + g6iF)] – 6 [5 (g3 + g4 iF) – 4 (g7 + iF g1)]  
         – 28 [5 (g6 + g3iF) – 4 (g1 + iFg2)] – 12 [5 (g6 + g3iF)  

   – 4 (g3 + iFg6)] + 8 [5 (g6 + g3iF) – 4 (g7 + iFg1)]  
 
 =  21 [g6 + g2iF + g5 + g8iF] + 9 [g6 + g2iF + g6 + g3iF]  

    – 6 [g6 + g2iF + g8 + g5iF] – 28 [g3 + g6iF + g6 + g3iF]  
    + 8 [g3 + g6iF + g8 + g5 iF] 

 
 =  21 [g2 + g1iF] + 9 [g3 + g5iF] – 6 [g5 + g7iF]  

    – 28 [g8 + g5iF] – 12 [g9 + g9iF] + 8 [g2 + g2 iF]. 
 
Example 3.2.27:  Let L = C(L13(7)) be a loop of complex 
modulo integers. F = Z13 be the ring of modulo integers. FL be 
the loop ring.  FL is a commutative and non associative ring. 
 
Example 3.2.28:  Let L = C(Z25(8)) be a complex modulo 
integer loop.  F = Z25 be the ring of modulo integers.  FL be the 
loop ring.  
 
Example 3.2.29:  Let L = C(L27(14)) be the complex modulo 
integer loop.  F = Z be the ring of integers, FL is the complex 
loop ring of infinite order. 
 
Example 3.2.30:  Let L = C(Z29(17)) be a complex modulo 
integer loop.  Z17 = F be the ring of modulo integers.  FL is the 
complex loop ring.  
 
Example 3.2.31:  Let C(Z21(11)) = L be the loop.  F = Z15 be the 
ring of modulo integers.  FL be the loop ring of L over F. 
 
Example 3.2.32:  Let L = C(Z11(7)) be the complex loop.  F = 
Z11 be the field of modulo integers. FL be the complex modulo 
integer loop ring of finite order. 
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Example 3.2.33:  Let L = C(Z13(5)) be the complex modulo 
integer loop.  F = Z13 be the modulo integer field.  FL is the 
complex modulo integer loop ring of finite order which is non 
commutative.  
 
Example 3.2.34:  Let L = C(Z43(2)) be a complex modulo 
integer loop.  Z2 = F be the ring of modulo integers.  FL is the 
loop ring of finite order. 
 
Example 3.2.35:  Let L = C(Z43(2)) be a complex modulo 
integer loop.  FL is the complex loop ring of finite order.  
 
Example 3.2.36:  Let L = C(Z43(2)) be the complex modulo 
integer loop.  F = Z be the ring of integers.  FL is the loop ring 
of infinite order.  
 
THEOREM 3.2.3: Let L = C(Ln(m)) be a complex modulo 
integer loop.  Z = F the ring of integers, FL the complex loop 
ring is a S-loop ring. 
 
 Proof is direct and hence left as an exercise to the reader. 
 
THEOREM 3.2.4:  Let L be a finite complex modulo integer 
loop.  R be the field of reals.  RL be the loop ring.   

Then J (RL 
≠

⊂ W (RL).   

All concepts related with non associative rings can be 
defined and derived in case of complex non associative rings 
also with simple modifications.  Now we proceed onto define 
the notion of double complex non associative rings.  
 
DEFINITION 3.2.4:  Let  
G = C(Zn) =  {a + biF | 2

Fi  = n–1, a, b ∈ Zn, (t, u); t, u ∈ Zn, *} 
be the complex modulo integer groupoid.  F = C(Z) (or C(Q) or 
C(R) = C) be the ring of complex integers (or ring of rational 
complex numbers or complex field).  The double complex 
groupoid ring FG consists of all finite formal sums of the form 
� ri gi (i- running over finite index) where ri ∈ F and gi ∈ G 
satisfying the following conditions. 
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 (i) 
n

i i
i 1

r g
=

�  = 
n

i i
i 1

s g
=

�   ⇔ ri = si for i=1, 2, …, n. 

 

 (ii) 
n

i i
i 1

r g
=

�  + 
n

i i
i 1

s g
=

�   = 
n

i i i
i 1

( r s )g
=

+� . 

 

(iii) 
n

i i
i 1

r g
=

� �
� �
� �
�   

n

j j
j 1

s g
=

� �
� �
� �
�   = � tk gk where gk = gi gj where  

tk = � ri sj.  
 
 (iv) rigi = gi ri  for all gi ∈ G and ri ∈ F. 
 
 (v) r (� rigi) = � rrigi for r, ri ∈ F and gi ∈ G as 1 ∈ F and 
mi ∈ G we have 1.G ⊆ FG but F ⊄ FG and F ⊆ FG if and only 
if G has identity. 
 
 Clearly FG is a non associative ring with 0 ∈ F as the 
additive identity. 
 
 The groupoid ring FG is defined to be a alternative ring if 
and only if (xx) y = x(xy) and x (yy) = (xy)y for all x, y ∈ FG.   
 We first proceed onto give examples of such ring. 
 
Example 3.2.37:  Let  

G = C(Z7) =  {a + biF | 
2
Fi  = 6 = g6, a, b ∈ Z7, *, (3, 4)} be 

the complex groupoid of modulo  integers, C(Z) = F be the 
integer complex ring FG is the double complex groupoid ring. 
 For we will use the following notation. 
G = {g0, …, g6, 

F F F F F Fi 2i 6i 2 i 1 i 6 6ig ,g ,...,g ,g ,g ,...,g ,
+ + +

*, (3, 4)}. 

 For any gt, gp ∈ G we see gt * gp = gt = g3t+4p(mod 7). 
 That is if 

F3 4ig
+

 and 
F2 ig

+
 are in G, then  

F3 4ig
+

 * 
F2 ig

+
 = 

F F3(3 4i ) 4(2 i )(mod 7)g
+ + +

 

     = 
F F(9 12i 8 4i )(mod7)g

+ + +
  

     = 
F(3 2i )g

+
∈ G. 
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 Now if α = (3+2i) 

F3 ig
+

+ (2–i)g3 + 4ig0 and  

β = (7–4i) 
F2 ig

+
 + (7+4i) 

F3 ig
+

 + (9+2i) g3 is in FG then  

α+β =  ((3+2i) 
F3 ig

+
+ (2–i)g3 + 4ig0) + ((7–4i) 

F2 ig
−

   

+ (7+4i) 
F3 ig

+
 + (9+2i) g3)  

  =  (2–i + 9+2i)g3 + 4ig0 + (7–4i) 
F2 ig

+
  

     + (3+2i+7+4i)
F3 ig

+
 

  =  4ig0 + (7–4i) 
F2 ig

+
 + (11+i)g3 + (10+6i) 

F3 ig
+

. 

 
 Now we see α+β  ∈ FG. 
 
 Consider  

αβ  =   ((3+2i) 
F3 ig

+
+ (2–i)g3 + 4ig0) ((7–4i) 

F2 ig
+

  

+ (7+4i) 
F3 ig

+
 + (9+2i) g3) 

  =  (3+2i) (7–4i)
F3 ig

+ F2 ig
+

+ (3+2i) (7+4i)
F3 ig

+ F3 ig
+

  

+  (3+2i) (9+2i) 
F3 ig

+
g3 + (2–i) (7–4i)g3 

F2 ig
+

 

+ (2–i) (7+4i)g3, 
F3 ig

+
 + (2–i) (9+2i)g3. g3. 

  =  4i (7–4i)g0 
F2 ig

+
+ 4i (7+4i)g0 

F3 ig
+

+4i (9+2i)g0 g3 

  = (21 + 8 – 12i + 14i)
F F9 3i 8 4ig

+ + +
   

+ (21+14i+12i–8)
F F9 3i 12 4ig

+ + +
   

+ (27–4+6i+18i)
F9 3i 12g

+ +
+ (14–4–7i–8i) 

F9 8 4ig
+ +

  

+  (14–7i + 8i + 4)
F9 12 4ig

+ +
+ (18+4i–9i+2) 

F8 4ig
+

  

+  (28–16i)
F12 4ig

+
 + (36i–8)g12. 

  =  (29+2i)g3 + (13+26i) g0 + (23+24i) 
F3ig    

+ (10–15i)
F3 4ig

+
+ (18+i)

F4ig + (20–5i)g0   

+ (28i+16)
Fi 4ig

+
+(28–16i)

F5 4ig
+

+ (36i–8)g5  

is in FG. 
 
 Thus we have shown how product and sum are defined on 
FG.  
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Example 3.2.38:  Let G = {C(Z40), *, (3, 8)} be a complex 
modulo integer groupoid.  F = C(R) = C the complex field. FG 
be the double complex complex modulo integer groupoid ring. 
 
Example 3.2.39:  Let G = {C(Z27), *, (7, 8), 2

Fi  = 26} be the 
complex groupoid.  F = C (Z27)   be the complex ring of modulo 
integers.  FG the double complex complex modulo integer 
groupoid ring.  
 
Example 3.2.40:  Let G = {C(Z10), *, (3, 8), 2

Fi  = 9} be a 
complex modulo integer groupoid.   

F = C (Z2)  = {a + biF | 
2
Fi  = 1, a, b ∈ Z2} be the complex 

modulo integer ring.  FL be the double complex complex 
modulo integer groupoid ring.  
 
Example 3.2.41:  Let G = {C(Z13), *, (3, 9), 2

Fi  = 12} be a 
complex modulo integer groupoid. C(Z10) = F be the complex 
modulo integer ring FG be the double complex complex modulo 
integer groupoid ring.  
 
 We can get both finite and infinite double complex complex 
modulo integer groupoid rings.  
 
 Now we can define double complex complex modulo 
integer loop rings.  
 
 In the definition if we replace the groupoid C(Zn) by  
C(Ln(m)) the resulting ring is a non associative ring defined as 
the double complex complex modulo integer loop ring. 
 We give examples of this situation.  
 
Example 3.2.42:  Let C(L9(8)) = G be a complex modulo 
integer loop ring.  F = C(Z) be the complex modulo integer ring.  
FG is the double complex complex modulo integer loop ring of 
infinite order. 
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Example 3.2.43:  Let C(L17 (8)) = L be the complex loop ring of 
modulo integers.  F = C be the complex field. FL is the double 
complex complex modulo integer loop ring of infinite order. 
 
Example 3.2.44:  Let C(L23(7)) be a complex modulo integer 
loop.  F = C(Z5) be the complex ring of modulo integers.  FL is 
the double complex complex loop ring of finite order. 
 
Example 3.2.45:  Let C(L29(2)) be a complex modulo integer 
loop.  F = C(Z2) be the complex modulo integer ring.  FL is the 
double complex complex modulo integer loop ring of finite 
order. 
 
Example 3.2.46:  Let C(L29(28)) be a complex modulo integer 
loop ring.  F = C(Z2) be the complex modulo integer ring.  FL is 
the double complex complex modulo integer loop ring of finite 
order. 
 
Example 3.2.47:  Let C(L43(2)) be a complex modulo integer 
loop.  F = C(Z) be the complex modulo integer ring.  FL is the 
double complex complex modulo integer loop ring of infinite 
order. 
 
Example 3.2.48:  Let C(L43(42)) be a complex modulo integer 
loop.  F = C(Z20) be the complex modulo integer ring.  FL is the 
double complex complex modulo integer loop ring of finite 
order. 
 
Example 3.2.49:  Let C(L25(9)) be the complex modulo integer 
loop ring.  F = C(Z20) be the complex modulo integer ring.  FL 
is the double complex complex modulo integer loop ring of 
finite order. 
 
 All properties true in case of usual non associative rings / 
loop rings can be easily extended to the case of these double 
complex complex loop rings with simple modifications. Also 
interested reader can study the special identities satisfied by the 
double complex complex loop ring depending on the nature of 
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the loop under consideration.  These are left as simple 
extensions and exercises to the reader. 
 
 Finally we proceed onto define complex modulo integer 
matrix groupoids.  These also only form a special class of 
groupoids built using complex modulo integers. 
 Throughout our discussion  

G = C(Zn) = {a + biF | 
2
Fi  = n–1, a, b ∈ Zn, (t, u), *} will 

denote a complex modulo integer groupoid t, u ∈ Zn. 
 

 Let  
M = {g1, …, gm) | gi = a +biF;  a, b ∈ Zn,

2
Fi  = n–1, *, (t, u)}.  We 

define for x = (g1, g2, …, gm) and y = (h1, h2, …, hm) ∈ M. x*y = 
(g1, g2, …, gm) * (h1, h2, …, hm) = (g1 * h1, g2 * h2, …, gm * hm)  

= (tg1 + uh1 (mod n), …, tgm + uhm (mod n)); x*y ∈ M.  M 
is defined as the complex modulo integer row matrix groupoid.  
 We will first provide some examples of them. 
 
Example 3.2.50:  Let  

G = {(g1, g2, g3, g4, g5) | gi ∈ C(Z10), *, (3, 8)} 
be the complex modulo integer row matrix groupoid. 
 
Take x = (3+2iF, iF, 7, 3iF+1, 2) and y = (0, 2+5iF, 8iF, 9, 0) ∈ G. 
 
 x*y = (3+2iF, iF, 7, 3iF+1, 2) 8 (0, 2+5iF, 8iF, 9, 0)  
 
  = (3+2iF * 0, iF*2+5iF, 7*8iF, 3iF+1*9, 2*0) 
 
  = (9+6iF, 3iF + 16 + 40iF, 21 + 74iF, 3+9iF + 72, 6) 
 
  = (9+6iF, 3iF + 6, 1+4iF, 5+9iF, 6) ∈ G. 
 
 In this way G is a non associative structure and is a 
groupoid of finite order. 
 



 93

Example 3.2.51:  Let  
G = {(g1, g2, g3) | gi ∈ C(Z40), 1 ≤ i ≤ 3, *, (12, 0)} 

be the complex modulo integer row matrix groupoid of finite 
order. 
 
Example 3.2.52:  Let  

G = {(g1, g2, …, g16) | gi ∈ C(Z240), 1 ≤ i ≤ 16, *, (28, 28)} 
be the complex modulo integer row matrix groupoid of finite 
order. 
 
 We have subgroupoids, ideals and special identities satisfied 
by these groupoids also. This is a matter of routine and the 
reader is requested to refer [14]. 
 
Example 3.2.53:  Let  

G = {(g1, g2, …, g28) | gi ∈ C(Z), 1 ≤ i ≤ 28, *, (20, –17)} 
be the complex modulo integer row matrix groupoid of infinite 
order. 
 
Example 3.2.54:  Let  

G = {(g1, g2, …, g10) | gi ∈ C (R) = a+ib with a, b ∈ R, i2 =  

–1, *, (20, – 3 , 19+ 5 )} be a complex modulo integer row 
vector (matrix) groupoid of infinite order. 
 
 
Example 3.2.55:  Let  

G = {(g1, g2, g3, …, g45) | gi ∈ C (Q), *, (3/7, 19/10)} 
be a complex modulo integer row matrix groupoid of infinite 
order. 
 
Example 3.2.56:  Let  

G = {(g1, g2, g3, g4) | gi ∈ C (Z), *, (26, –43), 1 ≤ i ≤ 4} 
be a complex modulo integer row matrix groupoid of infinite 
order. 
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 Now let L = 

1

2

9

g

g

g

	� �
�� �
�� �
� ��� ��� ��

�
 gm ∈ C (Z41), *, (3, 8), 1 ≤ i ≤ m}, L 

can be defined as the complex groupoid of column vectors 
(matrix). 
 

We see if x = 

1

2

9

g

g

g

� �
� �
� �
� �
� �
� �

�
 and y = 

1

2

9

h

h

h

� �
� �
� �
� �
� �
� �

�
 are in L then 

 

x*y = 

1

2

9

g

g

g

� �
� �
� �
� �
� �
� �

�
*

1

2

9

h

h

h

� �
� �
� �
� �
� �
� �

�
 = 

1 1

2 2

9 9

g * h

g * h

g * h

� �
� �
� �
� �
� �
� �

�
 

 
 

= 

1 1

2 2

9 9

3g 8h (mod 41)

3g 8h (mod 41)

g 8h (mod 41)

+� �
� �

+� �
� �
� �

+� �

�
. 

L is a complex column matrix groupoid of finite order. 
 

Example 3.2.57:   Let  

P = 

1

2

12

g

g

g

	� �
�� �
�� �
� ��� ��� ��

�
 gi ∈ C (Z12), *, 1 ≤ i ≤ 12, (3, 3)} 

be a complex modulo integer column matrix groupoid of finite 
order.  P is commutative. 
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Example 3.2.58:   Let  

P = 

1

2

20

g

g

g

	� �
�� �
�� �
� ��� ��� ��

�
 gi ∈ C (Z5)  

 
= {a + biF | a, b ∈ Z5, 

2
Fi  = 4, *, (3, 0), 1 ≤ i ≤ 20}} 

be a complex column matrix groupoid.  Clearly P is non 
commutative and is of finite order. 
 
 
Example 3.2.59:   Let  

P = 

1

2

7

g

g

g

	� �
�� �
�� �
� ��� ��� ��

�
 gi ∈ C (Z25) 

= {a + biF | a, b ∈ Z25, 
2
Fi  = 24, *, (20, 6)}, 1 ≤ i ≤ 7}} 

be a complex column matrix groupoid of finite order.   
 
 Now we can just indicate how complex m × n matrix 
groupoids of finite order is defined. 
 

Let  
G = {A = (mij) where A is m × n matrix groupoid with  

mij ∈ C(Zn) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1}, (t, u), *}  

be a complex  m × n matrix groupoid (t, u ∈ Zn). 
 
Example 3.2.60:   Let  

P = 1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ C (Z40)  

= {a + biF | a, b ∈ Z40, 
2
Fi  = 39, *, (7, 19)}} 

be a complex modulo integer 2 × 2 groupoid.  
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We show how operations are carried out on G. 
 

 Let x = 1 2

3 4

a a

a a

� �
� �
� �

 and y = 1 2

3 4

b b

b b

� �
� �
� �

 be in G,  

 

x*y = 1 2

3 4

a a

a a

� �
� �
� �

* 1 2

3 4

b b

b b

� �
� �
� �

 

 

= 1 1 2 2

3 3 4 4

a * b a * b

a * b a * b

� �
� �
� �

 

 

= 1 1 2 2

3 3 4 4

7a 19b (mod 40) 7a 19b (mod 40)

7a 19b (mod 40) 7a 19b (mod 40)

+ +� �
� �

+ +� �
 is in G. 

 
 We can use also usual multiplication only when the 
matrices are square matrices.  
 

 If x = 1 2

3 4

a a

a a

� �
� �
� �

 and y = 1 2

3 4

b b

b b

� �
� �
� �

 

 

 x*y = 1 1 2 3 1 2 2 4

3 1 4 3 3 2 4 4

a *a a * b (mod n) (a * b a b )(mod n)

a * b a * b (mod n) a * b a *b (mod n)

+ + +� �
� �

+ +� �
 

 
 x*y ∈ G; this operation will have meaning only when they 
are square matrices).  Thus according to need one can use any 
type of operation in case of square matrices. 
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Example 3.2.61:  Let  

G = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

	� �
�� �
�� ��� �

� ��
� ��� ��� ��

 ai ∈ C (Z45)  

= {a + biF | a, b ∈ Z45, 
2
Fi  = 44}; 1 ≤ i ≤ 15; (3, 17), *}}, 

be a complex modulo integer matrix groupoid of finite order. 
 
Example 3.2.62:  Let  

G = 1 2 3 4 5 6

7 8 9 10 11 12

a a a a a a

a a a a a a

	� ��

� �
� ���

 ai ∈ C (Z20) = 

{a + biF; a, b ∈ Z20, 1 ≤ i ≤ 12; 2
Fi   = 19, (13, 0), *}} 

be a complex modulo integer matrix groupoid of finite order. 
 
Example 3.2.63:  Let  

G = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C (Z23) =   

{a + biF | a, b ∈ Z23, 
2
Fi  = 22; (9, 0), *}} 

be a complex modulo integer matrix groupoid of finite order. 
 
Example 3.2.64:  Let  

G = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

	� �
�� �

� �
�� �� ��

 ai ∈ C (Z28) = 

{a + biF | a, b ∈ Z28, 
2
Fi  = 27; (11, 11), *}} 

be a complex modulo integer matrix groupoid of finite order. 
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Example 3.2.65:  Let  

G = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

	� �
�� �
�� ��� �

� ��
� ��� ��� ��

 ai ∈ C (Z120) =  

{a + biF | a, b ∈ Z120, 
2
Fi  = 119; (49, 0), *}} 

be a complex modulo integer matrix groupoid of finite order. 
 
Example 3.2.66:  Let  

G = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

	� �
�� �
�� ��� �

� ��
� ��
� ��� ��

 ai ∈ C (Z30) = 

{a + biF | a, b ∈ Z30, 
2
Fi  = 29; (8, 16), *}} 

be a complex modulo integer matrix groupoid of finite order. 
 
 Now having seen examples of them we can now proceed 
onto define complex modulo integer polynomial groupoids.  
 
 Let G = C(Zn) = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1} be the 

collection of complex modulo integers.   
 

Let G [x] = i i
i 0

g x
∞

=

	


�
�  gi ∈ G, *, (t, u)} be the complex 

polynomial modulo integer groupoid. 
 
Here if p(x) and q(x) are in G[x] then  
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p(x) * q(x) = (g0 + g1x + … + gn x
n) * (h0 + … + hm xm)  

(gi, hj ∈ G, 1 ≤ i ≤ n, 1 ≤ j ≤ m). 
 
 =  g0 * h0 + g1 * h0x + g0 * h1 x + gn * hm xm+n 
 =  (tg0 + uh0) + (tg1 + uh0)x + (tg0 + uh1)x + … +  

(tgn+ uhm)xm+n 
 =  (tg0 + uh0) + (tg1 + uh0 + tg0 + uh12)x + … +  

(tgn + uhm)xm+n ∈ G[x]. 
 We give some examples of them. 
 
Example 3.2.67:  Let  

G = i i
i 0

g x
∞

=

	


�
�  gi ∈ C(Z20) = {a + biF | a, b ∈ Z20, 

2
Fi  = 19} *, (8, 

7)} be a complex modulo integer polynomial groupoid. 
 
Example 3.2.68:  Let  

G[x] = i
i

i 0

g x
∞

=

	


�
�  gi ∈ C(Z4) = {a + biF | a, b ∈ Z4, 

2
Fi  = 3} *, (2, 

1)} be a complex modulo integer polynomial groupoid. 
 
 Let p(x) = (2+iF)x

3 + 3x2 + 1 and  
q(x) = (3+2iF)x

7 + (3iF+1)x2 + iF be in G [x].  
 
 p(x) * q(x) =  ((2+iF)x

3 + 3x2 + 2iFx + 1) * ((3+2iF)x
7  

    + (3iF+1)x2  + iF)  
= (2+iF) * (3+2iF)x

10 + (2+iF) * (3iF + 1)x5 +  
    (2+iF) * (iF)x

3 + 3 * (3+2iF)x
9 + 3 * (3iF+1)x4  

    + 3* iF x
2 + 1* (3+2iF)x

7 + 1 * (3iF+1)x2 +  
    1*iF 

 
 = [2 (2+iF) + (3+2iF)]x

10 + (4+2iF + 3iF + 1)x5 +  
   (4+2iF + iF)x

3 + (6+3+iF)x
9 + (6 + 3iF+1)x4 +  

   (6+iF)x
2 + (3+3+2iF)x

7 + (3+3iF+1)x2 + 3+iF 
 
 = 3x10 + (iF+1)x5 + 3iF x

3 + (1+iF)x
9 + (3+3iF) x

4  
   + (2+iF) x

2 + (2+2iF) x
7 + 3iF x

2 + 3+iF ∈G[x]. 
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 This is the way the product of two polynomials are 
determined. 
 
Example 3.2.69: Let  

G[x] = i
i

i 0

g x
∞

=

	


�
�  gi ∈ C(Z14) = {a + biF | a, b ∈ Z14, 

2
Fi  = 13}, 0 ≤ i ≤ ∞, *, (9, 9)} 

be a complex modulo integer polynomial groupoid of infinite 
order.  G [x] is a commutative groupoid.  
 
Example 3.2.70: Let  

G[x] = i
i

i 0

g x
∞

=

	


�
�  gi ∈ C(Z10) = {a + biF | a, b ∈ Z10, 

2
Fi  = 9}, *, (5, 7)} 

be a complex modulo integer polynomial groupoid. 
 
Example 3.2.71: Let  

G[x] = i
i

i 0

g x
∞

=

	


�
�  gi ∈ C(Z19) = {a + biF | a, b ∈ Z19,  

2
Fi  = 18},  (11, 8), *} 

be a complex modulo integer polynomial groupoid. 
 
Example 3.2.72: Let  

G[x] = i
i

i 0

g x
∞

=

	


�
�  gi ∈ C(Z8) 

= {a + biF | a, b ∈ Z8, 
2
Fi  = 7}, (2, 4), *} 

be a complex modulo integer polynomial groupoid. 
 
 We have seen several types of complex modulo integer 
polynomial groupoids of infinite order.  Finding or defining 
subgroupoids, ideals, zero divisors, idempotents or S-zero 
divisors etc. are a matter of routine for these modulo integer 
complex polynomial groupoids and hence is left as an exercise 
to the reader. 
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 Likewise study of substructures and special elements in case 
of complex modulo integer matrix groupoids is also matter of 
routine and hence is left as  an exercise to the reader.  However 
we just give some examples of them. 
 
Example 3.2.73:  Let  

G = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z10) 

= {a + biF | a, b ∈ Z10, 
2
Fi  = 9}; 1 ≤ i ≤ 8, *, (3, 10)} 

be a complex modulo integer matrix groupoid.   
 

Take  

W = 

1 2

3 4

a a

0 0

a a

0 0

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z10) = {a + biF | a, b ∈ Z10,  

2
Fi  = 9}; 1 ≤ i ≤ 4, *, (3, 10)} ⊆ G 

is a complex modulo integer matrix subgroupoid of G and is not 
an ideal of G. 
 
Example 3.2.74:  Let  

G = 

1

2

10

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
 ai ∈ C(Z19)  

={a + biF | a, b ∈ Z19, 
2
Fi  = 18}; 1 ≤ i ≤ 10, *, (10, 0)} 

be a complex modulo integer column matrix groupoid.   
Consider  
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P = 

1

2

3

a

0

0

a

0

a

0

0

0

0

	� �
�� �
�� �
�� �
�� �
�� �
�� ��� �

� ��
� ��
� ��
� ��
� ��
� ��
� ��� ��

 ai ∈ C(Z19); 1 ≤ i ≤ 3, *, (10, 0)} ⊆ G; 

 
P is only a complex modulo integer column matrix 

subgroupoid of G; which is not an ideal of G. 
 
Example 3.2.75:  Let  

G = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z11)  

= {a + biF | a, b ∈ Z11, 
2
Fi  = 10}, 1 ≤ i ≤ 12,  (9, 9), *} 

be a complex modulo integer groupoid of finite order.   
 

Take  
 

X =

1

2 3

4

5 6

0 a 0

a 0 a

0 a 0

a 0 a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z11); 1 ≤ i ≤ 6,  (9, 9), *} ⊆ G 

 
is a complex modulo integer subgroupoid of G. 
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Example 3.2.76:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ C(Z2)  

= {a + biF | a, b ∈ Z2, 
2
Fi  = 1}, 1 ≤ i ≤ 4,  (1, 0), *} 

be a complex modulo integer groupoid.   
 

Take  
 

H = 1

2

a 0

0 a

	� ��

� �
� ���

 ai ∈ C(Z2); 1 ≤ i ≤ 2,  (1, 0), *} ⊆ G 

is a complex modulo integer matrix subgroupoid of G.  Clearly  
H is also only one sided ideal of G.  
 Clearly H is not a two sided ideal of G. 
 Inview of this we have the following theorem. 
 
THEOREM 3.2.5:  Let  
G = {A = (mij) | mij ∈ C(Zn)  = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1}; 

A a n × n matrix with 1 ≤ i, j ≤ n, *, (t, 0) (or (0, t))} be a 
complex modulo integer matrix groupoid.  
 
 Take P = {A = (mii) | mii ∈ C(Zn) , *, (t, 0) (or (0, t))} ⊆ G; 
P is only a one sided ideal of G.  
 
 We have an immediate corollary. 
 
COROLLARY 3.2.1:  Let  

G ={A = (mij) | mij ∈ C(Zn)  = {a + biF | a, b ∈ Zn,
2
Fi  = n–1}; 

1 ≤ i, j ≤ m} be the complex matrix; *, (t, 0); t ∈ Zn \ {0, 1}} 
be the complex modulo integer matrix groupoid.   

 
Let  H = {A = (mii) | mii ∈ C(Zn) , *, (t, 0)} ⊆ G be the 

collection of diagonal m × m matrices in G.  H is a right ideal of 
G if and only if P = {B = (mii) | mii ∈ C(Zn) , *, (0, t)} ⊆ G′  
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= {A = (mij) | mij ∈ C(Zn)  1 ≤ i, j ≤ m, *, (0, t)} is a left 
ideal of G′. 
 
 This proof is also direct hence left as an exercise to the 
reader.  However we will illustrate this situation by a simple 
example. 
 
Example 3.2.77:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ C(Z10)  

= {a + biF | a, b ∈ Z10, 
2
Fi  = 9}, 1 ≤ i ≤ 4,  (3, 0), *} 

be a complex modulo integer matrix groupoid.   
 
Consider  
 

P = 1

2

a 0

0 a

	� ��

� �
� ���

 ai ∈ C(Z10); *, (3, 0), 1 ≤ i ≤ 2} ⊆ G 

be a complex modulo integer matrix subgroupoid.  
 
 Consider  
 

x = 1 2

3 4

b b

b b

� �
� �
� �

 ∈ G and a = 1

2

a 0

0 a

� �
� �
� �

 ∈ P; 

 

find x * a= 1 2

3 4

b b

b b

� �
� �
� �

 * 1

2

a 0

0 a

� �
� �
� �

 

 

= 1 1 2

3 4 2

b *a b *0

b *0 b *a

� �
� �
� �

 = 1 2

3 4

3b 3b

3b 3b

� �
� �
� �

. 

 
 Thus x * a ∉ P. 
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Consider a*x = 1

2

a 0

0 a

� �
� �
� �

 * 1 2

3 4

b b

b b

� �
� �
� �

 

 

= 1 1 2

3 2 4

a * b 0* b

0* b a * b

� �
� �
� �

  = 1

2

3a 0

0 3a

� �
� �
� �

 ∈ P. 

 
Thus we see P is not a two sided ideal only a right ideal of 

the groupoid.  
 
Example 3.2.78:  Let  

G = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

	� �
�� �

� �
�� �� ��

 ai ∈ C(Z40);  

{a + biF | a, b ∈ Z40, 
2
Fi  = 39}; (0, 12), *} 

be a complex modulo integer matrix groupoid.   
 

H = 
1

2

3

a 0 0

0 a 0

0 0 a

	� �
�� �

� �
�� �� ��

 ai ∈ C(Z40); 1 ≤ i ≤ 3,  (0, 12), *} ⊆ G; 

H is only a complex modulo integer matrix subgroupoid and not 
a two sided ideal of G.   

 
However H is a right ideal of G for take  
 

x = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

� �
� �
� �
� �� �

 ∈ G and 

 

b = 
1

2

3

b 0 0

0 b 0

0 0 b

� �
� �
� �
� �� �

 in H. 
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Consider x*b = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

� �
� �
� �
� �� �

 * 
1

2

3

b 0 0

0 b 0

0 0 b

� �
� �
� �
� �� �

 

 

= 
1 1 2 3

4 5 2 6

7 8 9 3

a * b a *0 a *0

a *0 a * b a *0

a *0 a *0 a * b

� �
� �
� �
� �� �

 = 
1

2

3

12b 0 0

0 12b 0

0 0 12b

� �
� �
� �
� �� �

 ∈ H; 

 
so H is a left ideal of G.  
 

Consider b * x = 
1

2

3

b 0 0

0 b 0

0 0 b

� �
� �
� �
� �� �

 * 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

� �
� �
� �
� �� �

 

 

= 
1 1 2 3

4 2 5 6

7 8 3 9

b *a 0 *a 0 *a

0*a b *a 0*a

0*a 0* a b *a

� �
� �
� �
� �� �

 

 

= 
1

5

9

12a 0 0

0 12a 0

0 0 12a

� �
� �
� �
� �� �

 ∈ H. 

 
 However it is easily verified H is not an ideal. 
 
Example 3.2.79:  Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z20) 

= {a + biF | a, b ∈ Z20, 
2
Fi  = 1}, *, (3, 2)} 

 
be a complex modulo integer polynomial groupoid of infinite 
order.  
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Take  

H = 2i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z20), *, (3, 2)} ⊆ G; 

H is a complex modulo integer polynomial subgroupoid of G.  
Clearly H is not an ideal of G. 
 
Example 3.2.80:  Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z40) 

= {a + biF | a, b ∈ Z40, 
2
Fi  = 39}, *, (5, 0)} 

be a complex modulo integer polynomial groupoid of infinite 
order.  
 

Consider  

H = 3i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z40), *, (5, 0)} ⊆ G; 

H is a complex modulo integer subgroupoid of infinite order of 
G.  Clearly H is not an ideal of G. 
 
 For if x = 5x2 + (3+iF) x + 7iF ∈ G 
 and y  = (iF + 3) x3 + (7+iF) ∈ H 
 x*y  = (5x2 + (3+iF)x + 7iF) * ((iF+3)x3 + 7+iF) 
   = 5 (iF+3)x3 + 5 (3+iF)x = 5.7iF)  

          + 0 ((iF+3)x3 + 7+iF) 
   = (5iF+15)x3 + (15 + 5iF)x + 35iF ∈ H. 
 
Now H is a right ideal of G and is not a left ideal of G.  
 We will give a related theorem. 
 
THEOREM 3.2.6:  Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn)  

= {a + biF | a, b ∈ Zn, 
2
Fi  = n–1}, *, (p, 0), p ∈ Zn \ {0}} 

be a complex modulo integer polynomial groupoid.  
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Take  

W = si
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn), *, (p, 0), s a positive integer} 

to be a complex modulo integer subgroupoid of G.  Clearly W is 
not an ideal; however W is not a left ideal but W is only a right 
ideal.  
 
 Proof is obvious from the very definition and direct and 
hence left for the reader as an exercise. 
 
THEOREM 3.2.7:  Let  

G =  i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn)  

= {a + biF | a, b ∈ Zn, 
2
Fi  = n–1}, *, (0, t), t ∈ Zn \ {0}} 

be a complex modulo integer polynomial groupoid.  
 

Take  
 

H = mi
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn), *, (0, t), m a positive integer} ⊆ G; 

 
H is a left ideal of G.  

 
 This proof is also simple and hence left as an exercise to the 
reader. 
 
 We see it is very difficult to find ideals of these complex 
modulo integer polynomial groupoids. 
 
 Now having seen these structure we see all these structures 
we can easily find zero divisors, idempotents etc in these 
complex groupoids. 
 
 We will give one or two examples.  
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Example 3.2.81:  Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z12)  

= {a + biF | a, b ∈ Z12, 
2
Fi  = 11}, *, (3, 0)} 

be a complex modulo integer polynomial groupoid.  
 
 Take  

p(x) = (4 + 8iF)x
7 + (8+4iF)x

3 + 4iF and 
 

q(x) = 3iF x
9 + (10+5iF)x

8 + 3iF x
4 + iFx + (2+5iF) in G. 

 
 We see p(x) * q(x) = 0 is a zero divisor in G.  We can have 
zero divisors in polynomial groupoids.  
 
Example 3.2.82: Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z7)  

= {a + biF | a, b ∈ Z7, 
2
Fi  = 6}, *, (3, 4)} 

be a complex polynomial groupoid.  
 
 Consider  

p(x) = x3 + x + 1 in G then  
p(x) * p(x)  = (x3 + x + 1) * (x3 + x + 1)  

= 3x3 + 3x + 3 + 4x3 + 4x + 1 = 0. 
 
 Thus this groupoid has nilpotents elements also. 
 In view of this we have the following theorem. 
 
THEOREM 3.2.8:  Let  
 

G =  i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zp) = {a + biF | a, b ∈ Zp, 

2
Fi  = p–1}, 

p a prime, *, (t, u) such that t + u ≡ p = 0 (mod p)} be a 
complex modulo integer polynomial groupoid.  
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Every polynomial p (x) =
=

�
n

i

i 0

x  in G is such that  

p(x) * p(x) = 0. 
  

 This proof is also simplex and exploits only easy number 
theoretic techniques.  
 
Example 3.2.83: Let  
 

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn) = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1}, 

*, (t, u) such that t + u ≡ 0 (mod n)} 
be a complex modulo integer polynomial groupoid.  
 

 G has non trivial nilponents for take p(x) = i

i 0

x
∞

=

�  in G and 

p(x) * p(x) = 0. 
 
Example 3.2.84: Let  

G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z9)  

= {a + biF | a, b ∈ Zn, 
2
Fi  = n–1}, *, (6, 4) } 

be a complex modulo integer polynomial groupoid.  
 

p(x) = i

i 0

x
∞

=

�  ∈ G; is such that p (x) * p(x) = p(x).   

For take  
 p(x) = x5 + x3 + x2 + x + 1 in G 
 p(x) * p(x) = 6(x5 + x3 + x2 + x + 1) + 4(x5 + x3 + x2 + x + 1)  
        = x5 + x3 + x2 + x + 1 
        = p(x). 
 
 In view of this we have the following nice theorem which 
guarantees idempotents in complex modulo integer polynomial 
groupoids.  
 



 111

THEOREM 3.2.9:  Let  

G =  i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Zn) = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1}, *, 

(t, u) such that t + u ≡ 1 (mod n)} be a complex modulo integer 
polynomial groupoid.  
 

Every polynomial p(x) =
n

i

i 0

x
=

�  (for every positive integer) 

in G is an idempotent in G. 
 
Thus we have seen in case of complex modulo integer 

polynomial groupoids also G has zero divisors, nilponents and 
idempotents.  

 
Now we can use these complex matrix modulo integer 

groupoids to build complex groupoids ring.  The definition is a 
matter of routine and hence we give examples of them. 

 
Example 3.2.85: Let  
 

G =  {(a1, a2, a3) | ai ∈ C(Z14) = {a + biF | a, b ∈ Z14,  
2
Fi  = 13, 1 ≤ i ≤ 3; (9, 8), *} 

be the complex modulo integer row matrix groupoid.  
 
 Z10 be the ring.  Z10G  is the groupoid complex ring. Clearly 
G is non commutative non associative and is of finite order.  G 
has subrings.  
 
Example 3.2.86: Let  
 

G =  {(a1, a2, …, a10) | ai ∈ C(Z5) = {a + biF | a, b ∈ Z5,  
2
Fi  = 4, 1 ≤ i ≤ 10; (3, 0), *} 

be the complex modulo integer row matrix groupoid.  
 
 F = Z be the ring.  FG is the groupoid ring. FG is a non 
associative non commutative infinite ring having zero divisors 
and subrings.  
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Example 3.2.87: Let  
 

G =  {(a1, a2, a3, …, a20) | ai ∈ C(Z40) = {a + biF | a, b ∈ Z40,  
2
Fi  = 39,  1 ≤ i ≤ 20; (9, 9), *} 

be a groupoid. 
 F = Z2 be the field of characteristics two. FG be the 
groupoid ring.  FG is a commutative complex non associative 
ring of finite order. 
 Inview of this we have the following theorem the proof of 
which is simple. 
 
THEOREM 3.2.10:  Let  
 

G =  {(a1, …, am) | ai ∈ C(Zn) = {a + biF | a, b ∈ Zn,  
2
Fi  = n–1}, 1 ≤ i ≤ m,  (t, t), t ∈ Zn \ {0, 1}, *} 

be a groupoid.  R any commutative ring. RG is a non 
associative commutative complex groupoid ring, finite or 
infinite depending on R. 

 
Example 3.2.88: Let  
 

G =  {(a1, a2, a3, …, a10) | ai ∈ C(Z12) = {a + biF | a, b ∈ Z12,  
2
Fi  = 11},  1 ≤ i ≤ 10; (8, 0), *} 

be a complex modulo integer row matrix groupoid of finite 
order.  
 
 Let F = Z3 be the field of characteristic three FG is the 
groupoid ring of finite order has right ideals which are not left 
ideals. If (8, 0) is replaced by (0, 8) then if G′ be that groupoid 
ring. FG′ has left ideals that are not right ideals. 
 
 Inview of this we have the following theorem. 
 
THEOREM 3.2.11:  Let  

G =  {(a1, …, am) | ai ∈ C(Zn) = {a + biF | a, b ∈ Zn,  
2
Fi  = n–1},  1 ≤ i ≤ m,  (t, 0), t ∈ Zn \ {0, 1}}  and  
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G′ = {(a1, …, am) | ai ∈ C (Zn) = {a + biF | a, b ∈ Zn,  
2
Fi  = n–1}, 1 ≤ i ≤ n,  (0, t), *, t ∈ Zn \ {0, 1}} a complex modulo 

integer groupoid.  F be a field or a commutative ring.  FG and 
FG′ be complex modulo integer groupoid rings.  If H is a left 
ideal of FG then H′ (with H′ the same subset as that of H) is a 
right ideal of FG′. 
 
 Proof is simple and direct hence left as an exercise to the 
reader.  Now these theorem are true in general when the row 
matrix complex groupoid is replaced by column matrix 
groupoid or any m × n complex matrix groupoid.  We will 
illustrate these situations by some simple examples.  
 
Example 3.2.89:  Let  
 

G = 

1

2

8

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
 ai ∈ C(Z7) = {a + biF | a, b ∈ Z7, 

2
Fi  = 6};  

1 ≤ i ≤ 8,  *, (3, 4)} 
 

be a complex modulo integer groupoid of column matrices. F = 
Z7 be the field of characteristic seven.  FG is a complex modulo 
integer groupoid ring.  FG is non commutative, non associative 
and is of finite order. 
 
Example 3.2.90:  Let  
 

G = 

1 2

3 4

21 22

a a

a a

a a

	� �
�� �
�� �
� ��� ��� ��

� �
 ai ∈ C(Z25)  

= {a + biF | a, b ∈ Z25, 
2
Fi  = 24}; 1 ≤ i ≤ 22,  *, (3, 3)} 
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be a complex modulo integer matrix groupoid. Let F = Q be the 
rational field.  FG be the complex groupoid ring.  FG is a 
commutative complex groupoid ring of infinite order. 
 
Example 3.2.91:  Let  
 

G = 

1 2 3

4 5 6

22 23 24

a a a

a a a

a a a

	� �
�� �
�� �
� ��� ��� ��

� � �
 ai ∈ C(Z198) = {a + biF | a, b ∈ Z198,  

2
Fi  = 197}; 1 ≤ i ≤ 24,  *, (13, 0)} 

be a complex modulo integer matrix groupoid. Let F = Z20 be 
the ring.  FG is a complex groupoid ring which is finite but non 
commutative and non associative and has right ideals which are 
not left ideals.  
 
Example 3.2.92:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ C(Z3)  

= {a + biF | a, b ∈ Z3, 
2
Fi  = 2}; 1 ≤ i ≤ 4,  *, (2, 0)} 

be the complex modulo integer matrix groupoid. F = Z3 be the 
finite field.  FG is a non commutative, non associative complex 
ring of finite order.  FG has left ideals which are not right ideals.  
Several results about these rings can be derived as in case if any 
non associative rings.  
 
Example 3.2.93:  Let  
 

G = {all 7 × 7 upper triangular matrices with entries from 
C(Z42) = {a + biF | a, b ∈ Z42, 

2
Fi  = 41};  *, (21, 21)} be a 

complex modulo integer matrix groupoid of finite order. Let F = 
Z21 be the ring.  FG is a complex commutative, non associative 
groupoid of finite order. G has subgroupoids which are not 
ideals. 
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Example 3.2.94:  Let  
 

G = {all 10 × 10 lower triangular matrices with entries from 
C(Z23) = {a + biF | a, b ∈ Z23, 

2
Fi  = 22};  *, (7, 15)} be the 

complex modulo integer groupoid. 
 
 F = Z23 be the field.  FG is the complex groupoid ring which 
is both non commutative and non associative of finite order.  
 
Example 3.2.95:  Let  

 
G = {all 8 × 8 matrices with entries from  

C(Z5) = {a + biF | a, b ∈ Z5, 
2
Fi  = 4};  *, (2, 4)} 

 
be the complex modulo integer matrix groupoid. F = R be the 
field of reals. FG is a non commutative non associative ring of 
infinite order. 
 
Example 3.2.96:  Let  
 

G = {all 5 × 5 matrices with entries from C(Z), *, (3, –7)} 
be a complex integer matrix groupoid.  F = Z2 be the finite field.  
FG is the groupoid ring which is non associative and non 
commutative of infinite order.  
 
Example 3.2.97:  Let  
 

P = {all 7 × 10 matrices with entries from C, *, (12, 3)} be a 
complex matrix groupoid.  F = Z be the ring. FP is an infinite  
non commutative non associative complex ring.  
 
Example 3.2.98:  Let  

G = {all 3 × 11 matrices with entries from  
C(Q) = a+ib, a, b ∈ Q, i2 = –1;  (7, 7), *} 

be a complex matrix groupoid.  F = Z3 be the finite field.  FG be 
the complex groupoid ring.  FG is non associative but 
commutative ring of infinite order.  
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Example 3.2.99:  Let  
G = {all 10 × 8 matrices with entries from  
C(Z) = a+ib with a, b ∈ Z, i2 = –1, (8, 0), *} be the complex 

integer matrix groupoid.  F = Z4 be the ring. FG be the complex 
groupoid ring FG is non commutative non associative complex 
ring of infinite order.  FG has infinite number of right ideals 
which are not left ideals.  FG also has subrings which are not 
ideals.  
 
Example 3.2.100:  Let  
 

G = {all 4 × 4 matrices with entries from C(Z) = a+ib with 
a, b ∈ Z, i2 = –1, (0, 12), *} be the complex matrix groupoid 
ring.  F = Z5 be the finite field FG be the complex matrix 
groupoid ring. FG has left ideals which are not right ideals. We 
can also define the notion of complex groupoid semiring for 
which we give some examples.  
 
Example 3.2.101:  Let  
 

G = {all 2 × 3 matrices with entries from C(Q) = a+ib | a, b 
∈ Q, i2 = –1, *, (12, –10)} be a complex rational groupoid.  F = 
Z+ ∪ {0} be the finite field. FG be the groupoid semiring which 
is a complex non associative, non commutative infinite 
semiring. 
 
Example 3.2.102:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ C(Z9); 1 ≤ i ≤ 4, *, (3, 7)} 

be a complex modulo integer matrix groupoid.  F = Q+ ∪ {0} be 
the semifield.  FG be the groupoid semiring.  FG is a non 
associative non commutative complex semiring of infinite 
order. 
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Example 3.2.103:  Let  
 

G = {(a1, a2, …, a9) where ai ∈ C(Z15); {a + biF | a, b ∈ Z15, 
*, 2

Fi  = 14};1 ≤ i ≤ 9, *, (3, 3)} be a complex modulo integer 

groupoid.  F = Z+ ∪ {0} be the semifield.  FG be the complex 
modulo integer groupoid semiring of infinite order. 
 
Example 3.2.104:  Let  
 

G = {all 10 × 10 matrices with entries from C(Z7) =   
{a + biF | a, b ∈ Z7, *, 2

Fi  = 6}, *, (4, 0)} be the complex modulo 

integer matrix groupoid.  F = R+ ∪ {0} be the semifield.  FG be 
the complex groupoid ring.  FG is a non associative non 
commutative ring which has right ideals which are not left 
ideals. 
 
Example 3.2.105:  Let   
 

G = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z12) =  

{a + biF | a, b ∈ Z12, 
2
Fi  = 11}, 1 ≤ i ≤ 12, *, (0, 11)} 

be the complex modulo integer matrix groupoid. F = Z+ ∪ {0} 
be the semifield FG be the groupoid ring. FG is a complex non 
commutative non associative semiring of infinite order having 
left ideals which are not right ideals.  
 
Example 3.2.106:  Let  
 

G = 
1 2 15

16 17 30

31 32 45

a a ... a

a a ... a

a a ... a

	� �
�� �

� �
�� �� ��

 ai ∈ C(Z8) = {a + biF | a, b ∈ Z8, 

 
2
Fi  = 7}, 1 ≤ i ≤ 45,  *, (3, 3)} 
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be the complex modulo integer matrix groupoid. F = Z+ ∪ {0} 
be the semifield.  FG be the groupoid ring. FG is a non 
associative, commutative complex ring of infinite order.  
 
Example 3.2.107:  Let  
 

G = {all 10 × 10 matrices with entries from C(Z7); {a + biF | 
a, b ∈ Z7, 

2
Fi  = 6}, *, (3, 3)} be the complex modulo integer 

groupoid. F = C5 = {0 < a1 < a2 < a3 < 1} be the chain lattice 
which is a semiring.  FG is a groupoid semiring of finite order. 
 

This method gives us infinite number finite semirings which 
are non associative.  Several result in this direction can be 
derived with no difficulty and is left for the reader as exercise.  
For  more about semirings please refer [18]. 
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 In this chapter we define groupoids and quasi loops in 
which we use complex modulo integers on which operation are 
performed using complex numbers. Also in this chapter we 
define complex modulo integer groupoids over complex ring 
which we call as strong complex rings.  Also complex modulo 
loop over complex rings which are strong complex loop rings. 
 
DEFINITION 4.1:  Let  

S(C(G)) = {a + biF | a, b ∈ Zn,  
2
Fi  = n–1, (miF, tiF); m, t ∈ 

Zn, *} be the set with *,  a closed binary operation on S(C(G)) 
such that for any x, y ∈ SC(G); 

 x * y = xmiF + ytiF (mod n).  S(C(G)) is defined as the 
strong complex modulo integer groupoid of type I if (miF, tiF) = 
1.  
 

We can denote S(C(G)) by S(C(Zn)) also.  Mostly we use 
S(C(Zn)) as it gives the specific Zn used.  
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Example 4.1:  Let  
S(C(Z8)) = {a + biF | a, b ∈ Z8, 

2
Fi  = 7, *, (3iF, 4iF)} 

be the strong complex modulo integer groupoid of type I.   
 
Example 4.2:  Let  

S(C(Z7)) = {a + iFb | a, b ∈ Z7, 
2
Fi  = 6, *, (3iF, 2iF)} 

be the strong complex modulo integer groupoid.   
 

Take x = 3 + 5iF and y = 2+iF in S (Z7).  
 

x*y =(3+5iF) * (2+iF) 
    = [3iF (3+5iF) + (2+iF) 2iF] (mod 7) 
    = [(9iF + 15 2

Fi ) + (4iF + 2 2
Fi )] (mod 7) 

    = [(2iF+6) + (4iF+5)] (mod 7) 
    = 6iF + 4 is in S(C(Z7)). 
 
 We see S(C(Z7)) is a strong complex a modulo integer 
groupoid of type I. 
 
Example 4.3:  Let  

S (C (Z48)) = {a + biF | a, b ∈ Z8, *, 2
Fi  = 47} 

be the strong complex modulo integer groupoid of type I. 
 
Example 4.4:  Let  

S (C (Z91)) = {a + biF | a, b ∈ Z91,*, 2
Fi  = 90} 

be the strong complex modulo integer groupoid of type I. 
 
Example 4.5:  Let  

S (C (Z27)) = {a + biF | a, b ∈ Z27,*, 2
Fi  = 26} 

be the strong complex modulo integer groupoid of type I. 
 
Example 4.6:  Let  

S (C (Z120)) = {a + biF | a, b ∈ Z120,*, 2
Fi  = 119} 

be the strong complex modulo integer groupoid of type I. 
 
DEFINITION 4.2:  Let  

S(C(Zn)) = {a + biF | a, b ∈ Zn,*, 2
Fi  = n–1, (miF, tiF)} 



 121

be the strong complex modulo integer groupoid of type II if 
(miF, tiF) ≠ 1.   
 
 We give examples of them. 
 
Example 4.7:  Let  

S(C(Z48)) = {a + biF | a, b ∈ Z48,*, 2
Fi  = 47, (3iF, 9iF)} 

be the strong complex modulo integer groupoid of type II. 
  
Example 4.8:  Let  

S(C(Z47)) = {a + biF | a, b ∈ Z47,*, 2
Fi  = 46, (9iF, 36iF)} 

be the strong complex modulo integer groupoid of type II. 
 
Example 4.9:  Let  

S(C(Z12)) = {a + biF | a, b ∈ Z12,*, 2
Fi  = 11, (2iF, 4iF)} 

be the strong complex modulo integer groupoid of type II. 
 
Example 4.10:  Let  

S(C(Z45)) = {a + biF | a, b ∈ Z45,*, 2
Fi  = 44, (8iF, 24iF)} 

be the strong complex modulo integer groupoid of type II. 
 
 Now we proceed onto define strong complex modulo 
integer groupoid of type III. 
 
DEFINITION 4.3:  Let  

G = S(C(Zn)) = {a + iFb | a, b ∈ Zn, 
2
Fi  = n–1, (miF, miF)} 

be a strong complex modulo integer groupoid of type III. 
 
 We call S(C(Zn)) to be the type III groupoid if miF = tiF   
∈ C(Zn) \ {0, 1}.  
 
 We will give some examples of them. 
 
Example 4.11:  Let  

G = S(C(Z91)) = {a + biF | a, b ∈ Z91, 
2
Fi  = 90; (10iF, 10iF), *} 

be the strong complex modulo integer groupoid of type III. 
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Example 4.12:  Let  

G = S(C(Z49)) = {a + biF | a, b ∈ Z49, 
2
Fi  = 48; (2iF, 2iF), *} 

be the strong complex modulo integer groupoid of type III. 
 
Example 4.13:  Let  

G = S(C(Z25)) = {a + biF | a, b ∈ Z25, 
2
Fi  = 24; (12iF, 12iF), *} 

be the strong complex modulo integer groupoid of type III. 
 
Example 4.14:  Let  

G = S(C(Z27)) = {a + biF | a, b ∈ Z27, 
2
Fi  = 26; (7iF, 7iF), *} 

be the strong complex modulo integer groupoid of type III. 
 
Example 4.15:  Let  

G = S(C(Z29)) = {a + biF | a, b ∈ Z29, 
2
Fi  = 28; (19iF, 19iF), *} 

be the strong complex modulo integer groupoid of type III. 
 
Example 4.16:  Let  

G = S(C(Z12)) = {a + biF | a, b ∈ Z12, 
2
Fi  = 11; (3iF, 3iF), *} 

be the strong complex modulo integer groupoid of type III. 
 
 Now we proceed onto define type IV strong complex 
modulo integer groupoid.  
 
DEFINITION 4.4:  Let  

G = S(C(Zn)) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1, (miF, 0)} 

be the groupoid. G is a strong complex modulo integer 
groupoid of type IV.  
 
 We give examples of them. 
 
Example 4.17:  Let  

G = S(C(Z40)) = {a + biF | a, b ∈ Z40, 
2
Fi  = 39; (3iF, 0), *} 

be the strong complex modulo integer groupoid of type IV. 
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Example 4.18:  Let  
G = S(C(Z28)) = {a + biF | a, b ∈ Z28, 

2
Fi  = 27; (8iF, 0), *} 

be a strong complex modulo integer groupoid of type IV. 
 
Example 4.19:  Let  

G = S(C(Z20)) = {a + biF | a, b ∈ Z20, 
2
Fi  = 19; (0, 7iF), *} 

be a strong complex modulo integer groupoid of type IV. 
 
Example 4.20:  Let  

G = S(C(Z120)) = {a + biF | a, b ∈ Z120, 
2
Fi  = 119; (8iF, 0), *} 

be a strong complex modulo integer groupoid of type IV. 
 
 Now we proceed onto define type IV strong complex 
modulo integer groupoid of type V. 
 
DEFINITION 4.5:  Let  

G = S(C(Zn)) = {a + biF | a, b ∈ Zn, 
2
Fi  = n–1, (miF, t)  

where (m, t) = 1; *} 
be a groupoid. G is defined as the strong complex modulo 
integer groupoid of type V.  
  

We will give examples of such situations. 
 
Example 4.21:  Let  

G = S(C(Z40)) = {a + biF | a, b ∈ Z40, 
2
Fi  = 39; (8iF, 7), *} 

be the strong complex modulo integer groupoid of type V. 
 
Example 4.22:  Let  

G = S(C(Z42)) = {a + biF | a, b ∈ Z42, 
2
Fi  = 41; (3, 13iF), *} 

be a strong complex modulo integer groupoid of type V. 
 
Example 4.23:  Let  

G = S(C(Z31)) = {a + biF | a, b ∈ Z31, 
2
Fi  = 30; (29iF, 2), *} 

be the strong complex modulo integer groupoid of type V. 
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Example 4.24:  Let  
G = S(C(Z148)) = {a + biF | a, b ∈ Z148, 

2
Fi  = 147; (28iF, 15), *} 

be a strong complex modulo integer groupoid of type V. 
 
Example 4.25:  Let  

G = S(C(Z280)) = {a + biF | a, b ∈ Z280, 
2
Fi  = 279; (9iF, 10), *} 

be a strong complex modulo integer groupoid of type V. 
 
 If in the type V strong complex modulo integer groupoids 
(miF, t) ≠ 1 then we define those groupoids to be type VI 
groupoids. 
 
 We give only examples of type VI groupoids. 
 
Example 4.26:  Let  

G = S(C(Z25)) = {a + biF | a, b ∈ Z25, *, 2
Fi  = 24, (9iF, 18)} 

be a strong complex modulo integer groupoid of type VI. 
 
Example 4.27:  Let  

G = S(C(Z11)) = {a + biF | a, b ∈ Z11, *, 2
Fi  = 10, (10iF, 5)} 

be the strong complex modulo integer groupoid of type VI. 
 
Example 4.28:  Let  

G = S(C(Z29)) = {a + biF | a, b ∈ Z29, *, 2
Fi  = 28, (12iF, 3)} 

be the strong complex modulo integer groupoid of type VI. 
 
Example 4.29:  Let  

G = S(C(Z45)) = {a + biF | a, b ∈ Z45, *, 2
Fi  = 44, (5iF, 15)} 

be the strong complex modulo integer groupoid of type VI. 
 
Example 4.30:  Let  

G = S(C(Z40)) = {a + biF | a, b ∈ Z40, 
2
Fi =39, (10iF, 30), *} 

be the complex strong modulo integer groupoid of type VI. 
 
Example 4.31:  Let  

G = S(C(Z13)) = {a + biF | a, b ∈ Z13, *, 2
Fi  = 12, (8iF, 4)} 

be the strong complex modulo integer groupoid of type VI. 
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 We see we need not in general mention to which type the 
groupoid belongs to for by the pair of elements used as the 
operation on G one can easily find the type of the groupoid.  All 
these six type of groupoids are of finite order. 
 
 We can now define infinite groupoids of these six types.  
 
 Let  

G = S (C(Z)) (or S (C(R)) or 
S C(Q)) = {a + ib | a, b ∈ Z, i2 = –1, *, (mi, ni)} 

be a strong complex groupoid of infinite order. 
 
 If (mi, ni) = 1 then we call G the type I groupoid. 
 If (mi, ni) = d ≠ 1 then we call G the type II groupoid. 
 If in (mi, ni); m = n we call G the type III groupoid.  
 If in (mi, ni) one of m or n is zero then we call G to be type 
IV groupoid.  
 
 If we replace (miF, n), n ∈ Z (or Q or R) with (miF, n) = 1 
then we say G is a type V groupoid.  
 
 If (miF, n) = d ≠ 0 then we call those groupoids as type VI 
groupoid.  We give two examples of each type of groupoids of 
infinite order. 
 
Example 4.32: Let  
 

G = S(C(Z)) = {a + bi | a, b ∈ Z,  i2 = –1, (8i, 27i), *} 
be a strong complex type I groupoid of infinite order.  
 
Example 4.33: Let  
 

G = S(C(Z)) = {a + bi | a, b ∈ Z,  i2 = –1, (9i, 25i), *} 
be a strong complex modulo integer groupoid of infinite order 
of type I.  
 
 If x = 3+4i and y = 2–7i then  

x*y = (3+4i) * (2–7i) = 9i (3+4i) + (2–7i) 25i 
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  = 27i – 36 + 50i + 175 = 77i + 139 is in G.   
 
This is the way operation of G is performed. 
 
   If x = 2 and y = –11 
 
   then x*y  =  9i (2) + (25i)11 
       = 18i + 275i = 293 I is in G.   
 

Thus we see for every real x, y in G we get their product 
x*y to be a complex number. 
 
 Take x = –5i and y = 3i in G, now  

 
x*y = –5i * 3i = 9i (–5i) + 3i × 25i = 45 – 75 = –30 is in G.  

Thus the product of two complex numbers under * is a real 
number.   

 
Let x = –2i and y = 7 be two elements in G.   

 
x*y = 9i (–2i) + 25i × 7 = +18 + 175i is a mixed complex 

number in G.  
 
Example 4.34:  Let  

S (C (Q)) = G = {a + bi | a, b ∈ Q, i2 = –1, (9i, –18i), *} 
be the strong complex groupoid of infinite order of type II. 
 
Example 4.35:  Let  

S(C(R)) = S (C) = {a + bi | a, b ∈ R, i2 = –1, (5 3 i, 125 2 i)} 
be the strong complex groupoid of type II of infinite order. 
 
Example 4.36:  Let  

S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, (13/9i, 65/12i), *} 
be the strong complex groupoid of infinite order of type II. 
  
Example 4.37:  Let  

S(C(Z)) = {a + bi | a, b ∈ Z, *, (6i, 6i)} 
be the strong complex groupoid of type III of infinite order. 
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Example 4.38:  Let  
 

S(C(Q)) = {a + bi | a, b ∈ Q, *, (8/27i, 8/27i)} 
be the strong complex groupoid of type III of infinite order. 
 
Example 4.39:  Let  

 
G = S(C) = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, 

(
29i

7
,

29i

7
), *} 

be a strong complex groupoid of type III of infinite order. 
 
Example 4.40:  Let  

G = S (C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (7i, 7i), *} 
be the strong complex groupoid of infinite order of type III. 
 
 Clearly all type III groupoids are commutative but non 
associative.   
 
For take x = 3, y = –2i, and z = 1+i in G in example 4.40 
 

x*y = 3*2i  = 7i3 + (–2i) 7i 
       = 21i + (–14)i2  
       = 21i + 14     (i) 
 
    y*x = –2i*3 = –2i × 7i + 3.7i 
       = –14i2 + 21i 
       = +14 + 21i     (ii) 
  
 I and II are the same so x*y = y*x 
 
   Now (x*y) *z  = (3*–2i) * (1+i)  
       = (3 × 7i = 7i × –2i)  (1+i) 
       = (21i + 14) * (1+i) 
       = 7i (21i + 14) + (1+i) 7i 
       = (–147 + 98i) + 7i – 7 
       = –154 + 105 i     (i) 
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    x* (y*z) = 3 * (–2i * (1+i)) 
       = 3 * (–2i × 7i + 7i (1+i)) 
       = 3 * (14 + 7i – 7) 
       = 3 * (7 + 7i) 
       = 7i × 3 + (7 + 7i) 7i 
       =  21i + 49i – 49   (ii) 
 
 Clearly (i) and (ii) are not equal so in general the * 
operation on G is non associative. 
 
Example 4.41:  Let  

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, (9/7i, 9/7i), *} 
be a strong complex groupoid of  infinite order of type III. 
 
 Now we proceed onto give examples of type IV groupoid. 
 
Example 4.42:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (8i, 0), *} 
be a strong complex groupoid of  infinite order of type IV. 
 
Example 4.43:  Let  

G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, (9i, 0)} 
be the strong complex groupoid of infinite order of type IV. 
 
Example 4.44:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (0, 4i)} 
be the strong complex groupoid of infinite order.   
 

Take x = 3–4i and y = –2+5i. 
 

  x*y = (3–4i) * (–2+5i) 
   = (3–4i) 0 + (–2+5i) 4i 
   = 0 + (–8i – 20) (� i2 = –1) 
   = –20 – 8i  is in G.   
 
 Now we proceed onto give examples of strong complex 
groupoids of type V.  
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Example 4.45:  Let  
G = S (C (Z)) = {a + bi | a, b ∈ Z, i2 = –1, (9i, 7), *} 

be the strong complex groupoid of type V.  Consider x = 17 and 
y = –2 in G.   
 
  x * y =  17 * (–2) 
     = 17 × 9i + –2 × 7 
     = 153 i – 14 
     = –14 + 153i is in G.  
 
Example 4.46:  Let  

 

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, 
19i 29

,
7 3

� �
� �
� �

, *} 

 
be the strong complex infinite groupoid of type V. 
 
Example 4.47:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (25i, 31), *} 
be the strong complex integer groupoid of type V. 
 
 
Example 4.48:  Let  

 

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, 
20i 19

,
13 7

� �
� �
� �

, *} 

be a strong complex groupoid of rationals of type V. 
 
Example 4.49:  Let  

 

G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, ( )3i, 7 / 3 , *} 

be  the  strong  complex groupoid of reals of infinite order of 
type V. 
 
 Now we proceed onto give examples of the notion of strong 
complex infinite groupoids of type VI. 
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Example 4.50:  Let  
 

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (20i, 45), *} 
be the strong complex infinite groupoid of type VI. 
 
Example 4.51:  Let  

 

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, 
30 15i

,
7 8

� �
� �
� �

, *} 

be the strong complex infinite groupoid of type VI. 
 
Example 4.52:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (27, 9i), *} 
be the strong complex infinite groupoid of type VI. 
 
Example 4.53:  Let  

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, (15, 40i), *} 
be the strong complex rational groupoid of type VI. 
 
 Now we define strong mixed complex groupoid of both 
infinite and finite order of type VII. 
 
DEFINITION 4.6:  Let  
G  = {S(C(Z)) or S(C(Zn)) or S(C(Q)) or S(C)  
 

= S(C(R))} = {a + bi (or a + biF) | a, b ∈ Z or Q or R (or a, 
b ∈ Zn, 

2
Fi  = n–1) with i2 = –1, (m+ni, c+id) where m, n, c, d, ∈ 

Z \ {0} (or Q \ {0} or R \ {0}, ((m +niF, c+iFd) | m, n, c, d ∈ Zn \ 
{0}), *} be a groupoid.  G is defined as the strong mixed 
complex number groupoid or just strong complex groupoid of 
type VII. 
 
 If in (m+ni, c+id) n or d is zero or used in the mutually 
exclusive sense then we call the groupoid to be a type VIII 
strong complex groupoid.  If m or c is zero or used in the 
mutually exclusive sense we call G to be a type IX strong 
complex groupoid. 
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 If m+ni = c+id, we call G to be a type X strong complex 
groupoid.  If m +ni = 0 or c +id = 0 we call G the type XI 
strong complex groupoid. 
 
 We will illustrate all these situations by some examples. 
 
Example 4.54:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (3+4i, 8–3i), *} 
be the strong complex groupoid of type VII of infinite order.  
 
Example 4.55:  Let  
G = S(C (Q)) = {a + bi | a, b ∈ Q, i2 = –1, (4+7/3i, 8/7+3/5i), *} 
be the strong complex groupoid of type VII. 
 
 Take x = 3 and y = 1–i in G. 
 
   x*y  = 3* (1–i) 
     = 3 (4+7/3i) + (1–i) (8/7 + 3/5i) 
     = 12 + 7i + 8/7 + 3/5i – 8/7i + 3/5) 
     = 13   26/35  + 226i / 35 
     = 455/35  + 226/35i ∈ G. 
 
Example 4.56:  Let  

G = S(C (Z10)) = {a + biF | a, b ∈ Z10, 
2
Fi  = 9, *, (2+3i, 7+5i)} 

be the strong complex groupoid of type VII of finite order.  
 
   Let x = 3 + iF and y = 2iF be in G. 
 
    x*y = (3+iF) * 2i (mod 10) 
     = (2+3iF) (3+iF) + (7+5iF) 2iF (mod 10) 
     = 6 + 2iF + 9iF + 27 + 14iF + 10 × 9 
     = 3 + 5iF ∈ G. 
 
Example 4.57:  Let  

 
G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, 

( 3 + 7 /5 i, 17 – 3 5 i), *} 
be the strong complex groupoid of type VII of infinite order.  
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 Now we proceed onto give examples of type VIII groupids.  
 
Example 4.58:  Let  

G = S(C (Z20)) = {a + biF | a, b ∈ Z20, 
2
Fi  = 19, (10+3iF, 3), *} 

be the strong complex modulo integer groupoid of type VIII. 
 
 Suppose x = 3 and y = 7+3iF are in G then  
 

x * y  =  3 * 7+3iF 
      = 3 (10+3iF) + (7+3iF) × 3 
      = 30 + 9iF + 21 + 9iF 
      = 11 + 18iF which is in G. 
 
Example 4.59:  Let  

G = S(C (Z)) = {a + bi | a, b ∈ Z, i2 = –1, *, (8, 3–4i)} 
be the strong complex groupoid of type VIII. 
 
 Take x = –7+i and y = 3–4i in G. 
 
 Now x*y = (–7+i) * (3–4i) 
     =  8 (–7+i) + (3–4i) (3–4i) 
     =  –56 + 8i + 9 – 12i – 12i 
     =  – 63 – 16i ∈ G. 
 
Example 4.60:  Let  
G = S (C (Q)) = {a + bi | a, b ∈ Q, i2 = –1, (7/9 + 3/8i) 12/7), *} 
be the strong complex rational groupoid of type VIII.  
 
 Consider x = 3 and y = i then 
 
  x*y  = 3 (7/9 + 3/8i) + i  12/7 
    = 7/3 + 9/8i + 12/7 i 
    = 7/3 + 152/56i ∈ G. 
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Example 4.61:  Let  
 

G = {S (C) = S(C(R))} = {a + bi | a, b ∈ R, i2 = –1,  

(
19 12 5

, i
10 7 2

� �
+� �� �

� �
, *}  

be the strong complex real groupoid of type VIII. 
 
Example 4.62:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (30, 26 – 16i),*} 
be the strong complex modulo integer groupoid of type VIII.  
 
Example 4.63:  Let  

G = S(C(Z8)) = {a + biF | a, b ∈ Z8, 
2
Fi  = 7, (6, 3+2iF), *} 

be the strong complex modulo integer groupoid of type VIII.  
 
 Let x = 3 + iF and y = 4+3iF ∈ G. 
   x*y  = (3+iF) * (4+3iF)  
     = 6 (3+iF) + (4+3iF) (3+2iF) 
     = 18 + 6iF + 12 + 9iF + 8iF + 6.7 
     = 2 + 6iF + 4 + iF + 2 
     = 7iF ∈ G. 
 
This is the way the operation * on G is defined.  
 
 Now we proceed onto give examples of type IX groupoids. 
 
Example 4.64:  Let  

G = S(C(Z)) = {a + bi | a, b ∈ Z, i2 = –1, (8i, 9–2i), *} 
be the strong complex integer groupoid of type IX.  We show 
how product is carried out.  Let x = 3 and y = –7 ∈ G. 
   x*y =  3 * (–7) 
    = 3 × 8i + (–7) (9–2i) 
    = 24i – 56 + 14i 
    = 38i – 56  

= –56 + 38i ∈ G. 
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Example 4.65:  Let  
G = S (C (Q)) = {a + bi | a, b ∈ Q, i2 = –1, (1+3/7i, –9/17i),*} 

be the strong complex rational groupoid of type IX.  Let x = 7/3i 
and y = 2 ∈ G. 
 
   x*y =  7/3i * 2 
    =  7/3i (1+3/7i) + 2 (–9/17i) 
     =  7/3i + i2 – 18/17i  

     = –1 + i 
7 17 3 18

3 17

× − ×� �
� �

×� �
 

     = –1 +  
i65

3 17×
 ∈ G. 

 
Example 4.66:  Let  

G = S(C(Z13)) = {a + biF | a, b ∈ Z13, 
2
Fi  = 12, (3iF, 1+2iF), *} 

be a strong complex modulo integer groupoid of type IX.   
 
 For x = 5iF + 2 and y = 1+iF ∈ G 
 
   x*y = (5iF+2) * (iF+1) 
    = 3iF (2+5iF) + (1+iF) (1+2iF) 
    = 6iF + 15 × 12 + 1 + 2iF + iF + 2 × 12 
    = 10iF + 9 ∈ G. 
 
Example 4.67:  Let  
G = S (C (Q)) = {a + bi | a, b ∈ Q, i2 = –1, (8/3i, 3/7 + 2/5i),*} 

be the strong complex rational groupoid of type IX.   
 

Let x = 3/4 and y = 35i + 70 ∈ G. 
x*y =  3/4 * (35i + 70)  = 8/3i × ¾ + (35i + 70) × (3/7 + 2/5i) 
 = 6i + 35i × 3/7 + 70×3/7 + 35i × 2i / 5 + 70 × 2i/5 
 = 6i + 15i + 30 + 14i2 + 28i 
 = 49i + 16 ∈ G. 
 
Example 4.68:  Let  

G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, ( 3 i, 3–4i),*} 
be the strong complex real groupoid of type IX.   
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Let x  = – 3  and y = 3– 7 i  

x*y  = 3 i × (– 3 ) + (3 – 7 i) (3–4i) 

= –3i + (9 + 3 7 i – 12i – 4 7 ) 

= (9–4 7 ) + i (15i – 3 7 ) 

= (9–4 7 ) – i (15 + 3 7 ) ∈ G. 
 Now we proceed onto give type X groupoids. 
 
Example 4.69: Let  

G = S(C(Z7)) = {a + biF | a, b ∈ Z7, 
2
Fi  = 6, (3+4iF, 0), *} 

be a strong complex modulo integer groupoid of type X.   
 
 Let x = 3+2iF and y = 4iF ∈ G 
 
   x*y = (3+2iF) * (4+iF)  
    = (3 +2iF) (3+4iF) + 0 (4+iF) 
    = 9 + 8 × 6 + 12iF + 6iF + 0 
    = 1 + 4iF ∈ G. 
 
Example 4.70: Let  

G = S(C(Z15)) = {a + biF | a, b ∈ Z15, 
2
Fi  = 14, (0, 2+10iF), *} 

be a strong complex modulo integer groupoid of type X.   
 
 Let x = 3 + 4iF and y = 8 ∈ G. 
 
   x*y = 3+4iF * 8 = 0 (3+4iF) + 8 (2+10iF) 
    = 16 + 80iF 
    = 1 + 5iF ∈ G. 
 
 
Example 4.71: Let  

G = S(C(Q)) = {a + bi | a, b ∈ Q, i2 = –1, (0, –3 + 8i), *} 
be the strong complex modulo integer groupoid of type X.   
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Example 4.72: Let  

G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, (0, 3 5 7i− ), *} 
be a strong complex groupoid of real of type X.     

 

Let x = 7i – 3 and y = 5  + 4i ∈ G now  
 

x*y = 7i – 3 * 5  + 4i = (7i-3) 0 + ( 5 +4i) ( 3 – 5 7 i)  

= 0 + 5  3  + 4i 3  – 5 5  7 i + 20 7  

  = 20 7  + 15 +i (4 3   – 5 35 ). 
 
Example 4.73: Let  

G = S(C(Z10)) = {a + biF | a, b ∈ Z10, 
2
Fi  = 9, (9+2iF, 0), *} 

be a strong complex modulo integer groupoid of type X.   
 

Let x = 8+4iF and y = 5iF be in G.   
   
   x*y = 8+4iF * 5iF  
    =  (8+4iF) (9 + 2iF) + 5iF × 0 
    = 72 + 36iF + 16iF + 8.9 + 0 
    = 4 + 6iF ∈ G. 
 
 Now having seen ten types of groupoids both infinite and 
finite we just leave the task to the reader of studying the related 
properties as it is considered as a matter of routine and simple 
number theoretic calculations will lead to easy characterizations 
and one can use [  ] as a reference. 
 We now proceed onto define the concept of quasi complex 
loops using the set  

 
{e, 1, 2, …, n, eiF, iF, …, niF, a + biF, a, b ∈ {e, 1, 2, …, n}}.  

  
Our main motivation would be using these concepts in 

building non associative complex rings of both finite and 
infinite order, which will be carried out in the later part of this 
chapter. 
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DEFINITION 4.7:  Let  
L = S(C( (m)

nL )) = {a + biF | a, b ∈ {e, 1, 2, …, n}; 2
Fi  = n–1  

and m = a+biF and (m–1) = (a–1) + (b–1) iF, *} 
be the set with binary operation * defined as follows.  

(i) e o x = x o e = x.  
(ii) x o x = x2 = e for all x ∈ L. 
(iii) for every x and y in S (C(Ln(m))  

x*y = [(a+biF)y – ((a–1)+(b–1)iF)x ] (mod n) 
   x≠ y and x ≠ e or y ≠ e. 
  L is defined as the strong complex quasi loop. 
 
 We will illustrate this situation by some examples. 
 
Example 4.74:  Let  
 

L = S(C( (m)
nL ))  = S(C(L11 (7 + 4iF))  

= {a + iFb | a, b ∈ L11 (7 + 4iF), 
2
Fi  = 10, *} 

be a strong complex modulo integer quasi loop of finite order. 
 
 Let x = 3 + 5iF and y = 9 + 8iF in L. 
 
  x*y = (9+8iF) * (3+5iF) 
   = (7 + 4iF) (3+5iF) – 6+3iF) (9 + 8iF) (mod 11) 
   = (21+12iF + 35iF + 20 × 10) –  

   (54 + 27iF + 48iF + 24 × 10) (mod 11) 
   = 4+5iF ∈ L. 
 
 It is easily verified x*y ≠ y * x and x * (y*z) ≠ (x*y) * z. 
 
Example 4.75: Let  
 

G = S (C (Z25 (2+5iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 25},  
2
Fi  = 24,  m = (2 + 5iF)} 

be the strong complex modulo integer quasi loop of finite order.   
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Example 4.76: Let  
 

G = S(C(Z27 (3+3iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 27},  
2
Fi  = 26,  m = (3 + 3iF)} 

be the strong complex modulo integer quasi loop of finite order.   
 
Example 4.77: Let  
 

L = S(C(Z33 (4+iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 33},  
2
Fi  = 32,  m = (4+ iF)} 

be the strong complex modulo integer quasi loop of finite order.   
 
Example 4.78: Let  
 

L = S(C(Z29 (3+3iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 29},  
2
Fi  = 28,  m = (3 + 3iF)} 

be the complex strong modulo integer quasi loop of finite order.   
 
Example 4.79: Let  
 

L = S(C(Z21(2+2iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 21}, 
*,   m = (2+2iF)} 

be the strong complex modulo integer quasi loop of finite order.   
 
Example 4.80: Let  
 

L = S(C(Z31(30+30iF)) = {a + biF | a, b ∈ {e, 1, 2, …, 31}, *,  
2
Fi  = 30,  m = (30+30iF)} 

be the strong complex modulo integer quasi loop of finite order.   
 
 We shall define now the notion of strong complex modulo 
integer complex matrix groupoids. 
 
 Let G  = {(a1, …, an) | ai ∈ C (Zn)  

= {a + biF where a, b ∈ Zn, 
2
Fi  = n-1}, *, (tiF + u, riF 

+ s)} be defined as the strong complex modulo integer row 
matrix groupoid. 
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 We will give examples of them. 
 
Example 4.81:  Let  
 

G = {(a1, a2, …, a10) | ai ∈ C (Z40) = {a + biF | a, b ∈ Z40,  
2
Fi  = 39}; 1 ≤ i ≤ 10, *, (3 + 4iF, 30 + 15iF)} 

be the strong complex modulo integer row matrix groupoid. 
 
Example 4.82:  Let  
 
G = {(a1, a2, a3, a4) | ai ∈ C (Z10) = {a + biF | a, b ∈ Z10, 

2
Fi  = 9};  

1 ≤ i ≤ 4, *, (3 + 4iF, 8iF)} 
be the strong complex modulo integer row matrix groupoid. 
 
Example 4.83:  Let  
 

M = {(a1, a2, …, a10) | ai ∈ C (Z9)  
= {a + biF | a, b ∈ Z9, 

2
Fi  = 8}; 1 ≤ i ≤ 10, *, (4iF+5, 5iF)} 

be the strong complex modulo integer row matrix groupoid. 
 
Example 4.84:  Let  
 

M = {(a1, a2, …, a15) | ai ∈ C (Z25) = {a + biF | a, b ∈ Z25,  
2
Fi  = 24}; 1 ≤ i ≤ 15, *, (6iF+6, 6iF)} 

be the strong complex modulo integer row matrix groupoid. 
 
Example 4.85:  Let  
 

T = {(a1, a2, a3, a4) | ai ∈ C (Z15) = {a + biF | a, b ∈ Z15,  
2
Fi  = 14}; 1 ≤ i ≤ 4, *, (10+5iF, 10)} 

be the strong complex modulo integer row matrix groupoid of 
finite order. 
 
Example 4.86:  Let  

T = {(a1, a2, …, a28) | ai ∈ C (Z48) = {a + biF | a, b ∈ Z48, 
2
Fi  = 47}; 1 ≤ i ≤ 28, *, (47, 47iF+1)} 



 140

be the strong complex modulo integer row matrix groupoid of 
finite order. 
 
Example 4.87:  Let  
 

P = 
1

10

a

a

	� �
�� �

� �
�� �� ��

� ai ∈ C (Z50) = {a + biF | a, b ∈ Z50, 
2
Fi  = 49}; 

1 ≤ i ≤ 10, *, (48iF, 4)} 
be the strong complex modulo integer column matrix groupoid. 
 
Example 4.88:  Let  
 

P = 

1

2

50

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
ai ∈ C (Z24) = {a + biF | a, b ∈ Z24, 

2
Fi  = 23}; 

1 ≤ i ≤ 50, *, (14, 10iF+14)} 
be the strong complex modulo integer column matrix groupoid 
of finite order. 
 
Example 4.89:  Let  
 

P = 

1

2

3

15

a

a

a

a

	� �
�� �
�� ��� �

� ��
� ��
� ��� ��

�
ai ∈ C (Z12) = {a + biF | a, b ∈ Z12, 

2
Fi  = 11}; 

1 ≤ i ≤ 15, *, (10iF, 10)} 
be the strong complex modulo integer column matrix groupoid. 
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Example 4.90:  Let  
 

P = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

	� �
�� �

� �
�� �� ��

ai ∈ C (Z14) = {a + biF | a, b ∈ Z14,  

2
Fi  = 13}; 1 ≤ i ≤ 9, *, (8, 8iF+8)} 

be the strong complex modulo integer square matrix groupoid. 
 
Example 4.91:  Let  
 

M = 

1 2 12

13 14 24

25 26 36

37 38 48

a a ... a

a a ... a

a a ... a

a a ... a

	� �
�� �
�� �
� ��� ��� ��

ai ∈ C (Z7) 

= {a + biF | a, b ∈ Z7, 
2
Fi  = 6}; 1 ≤ i ≤ 48, *, (3iF, 2)} 

be the strong complex modulo integer 4 × 12 matrix groupoid of 
finite order. 
 
Example 4.92:  Let  
 

M = 
1 2 6

7 8 12

13 14 18

a a ... a

a a ... a

a a ... a

	� �
�� �

� �
�� �� ��

ai ∈ C (Z43) = {a + biF | a, b ∈ Z43,  

2
Fi  = 42}; 1 ≤ i ≤ 18, *, (3iF+7, 0)} 

be the strong complex modulo integer 3 × 6 matrix groupoid of 
finite order. 
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Example 4.93:  Let  
 

M = 
1 2 10

11 12 20

21 22 30

a a ... a

a a ... a

a a ... a

	� �
�� �

� �
�� �� ��

ai ∈ C (Z10) = {a + biF | a, b ∈ Z10,  

2
Fi  = 9}; 1 ≤ i ≤ 30, *, (9iF, 2)} 

be the strong complex modulo integer 3 × 10 matrix groupoid of 
finite order. 
 
Example 4.94:  Let  
 

M = 

1 2 10

11 12 20

21 22 30

91 92 100

a a ... a

a a ... a

a a ... a

a a ... a

	� �
�� �
�� ��� �

� ��
� ��
� ��� ��

� � �
ai ∈ C (Z25) = {a + biF | a, b ∈ Z25,  

2
Fi  = 24}; 1 ≤ i ≤ 100, *, (22iF, 0)} 

be the strong complex modulo integer square matrix groupoid.  
G has right ideals which are not left ideals.  

 
We can also define strong complex modulo integer 

polynomial groupoids.  The definition is a mater of routine we 
only give examples of them. 
 
Example 4.95:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z27) = {a + biF | a, b ∈ Z27, 

2
Fi  = 26}; 

(2iF+3, 9iF+20), *} 
be the strong complex modulo integer polynomial groupoid.  
Clearly G is non commutative and is of infinite order.  
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Example 4.96:  Let  
 

M = i
ia x

	


�
� ai ∈ C (Z41) = {a + biF | a, b ∈ Z41, 

2
Fi  = 40}; 

(8iF+2, 25+23iF), *} 
be the strong complex modulo integer polynomial groupoid of 
infinite order and is non commutative.  
 
Example 4.97:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z12) = {a + biF | a, b ∈ Z12, 

2
Fi  = 11}; 

(2iF+4, 4iF+8), *} 
be the strong complex modulo integer polynomial groupoid of 
infinite order. 
 
Example 4.98:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z250) = {a + biF | a, b ∈ Z250, 

2
Fi  = 249}; 

(15+15iF, 15+15iF), *} 
be the strong complex modulo integer polynomial groupoid 
which is commutative of infinite order. 
 
Example 4.99:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z20) = {a + biF | a, b ∈ Z20, 

2
Fi  = 19}; 

(3iF+17, 17iF), *} 
be the strong complex modulo integer polynomial groupoid of 
infinite order. 
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Example 4.100:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z121) = {a + biF | a, b ∈ Z121, 

2
Fi  = 120};  

(19iF, 120+3iF), *} 
be the strong complex modulo integer polynomial groupoid of 
infinite order. 
 
Example 4.101:  Let  
 

M = i
i

i 0

a x
∞

=

	


�
� ai ∈ C (Z2) = {a + biF | a, b ∈ Z2, 

2
Fi  = 1};  

(iF, 1+iF), *} 
be the strong complex modulo integer polynomial groupoid of 
infinite order. 
 
Example 4.102:  Let  

 

P = 

1 2

3 4

25 26

a a

a a

a a

	� �
�� �
�� �
� ��� ��� ��

� �
ai ∈ C (Z7) = {a + biF | a, b ∈ Z7, 

2
Fi  = 6};  

1 ≤ i ≤ 26, *, (3+4iF, 2+5iF)} 
be the strong complex modulo integer matrix groupoid of finite 
order. 
 
Example 4.103:  Let  
 

G = 

1 2 12

13 14 24

97 98 108

a a ... a

a a ... a

...

a a ... a

	� �
�� �
�� �
� ��� ��� ��

� � �
ai ∈ C (Z11) = {a + biF | a, b ∈ Z11,  

2
Fi  = 10}; 1 ≤ i ≤ 108, *, (6+6iF, 4+8iF)} 
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be the strong complex modulo integer matrix groupoid of finite 
order. 
 
Example 4.104:  Let  

G = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

	� �
�� �

� �
�� �� ��

ai ∈ C (Z8) = {a + biF | a, b ∈ Z8, 
2
Fi  = 7};  

1 ≤ i ≤ 9, *, (3+5iF, 3+5iF)} 
 

be the strong complex modulo integer matrix groupoid of finite 
order. 
 
Example 4.105:  Let  
 

G = 1 2 40

41 42 80

a a ... a

a a ... a

	� ��

� �
� ���

ai ∈ C (Z6) = {a + biF | a, b ∈ Z6,  

2
Fi  = 5}; 1 ≤ i ≤ 80, *, (2+3iF, 5)} 

be the strong complex modulo integer matrix groupoid of finite 
order. 
 
Example 4.106:  Let  
 

G = {all 6 × 6 matrices with entries from C (Z18) = {a + biF | 
a, b ∈ Z18, 

2
Fi  = 17}; *, (3, 3iF+3)} be the strong complex 

modulo integer matrix groupoid of finite order. 
 
Example 4.107:  Let  
 

G = {all 4 × 4 matrices with entries from C (Z15) = {a + biF | 
a, b ∈ Z15, 

2
Fi  = 14}; *, (8iF+7, 0)} be the strong complex 

modulo integer matrix groupoid of finite order. 
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Example 4.108:  Let  
 

G = {all 8 × 5 matrices with entries from C (Z27) = {a + biF | 
a, b ∈ Z27, 

2
Fi  = 26}; *, (0, 14iF+25)} be the strong complex 

modulo integer matrix groupoid of finite order. 
 
Example 4.109:  Let  
 

G = {all 8 × 16 matrices with entries from C (Z8) = {a + biF| 
a, b ∈ Z8, 

2
Fi  = 7}, *, (3iF, 2iF)} be the strong complex modulo 

integer matrix groupoid of finite order. 
 
Example 4.110:  Let  
 

G = {all 3 × 15 matrices with entries from C (Z4) = {a + biF| 
a, b ∈ Z4, 

2
Fi  = 3}, *, (3iF, 3iF)} be the strong complex modulo 

integer matrix groupoid of finite order. 
 
Example 4.111:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

C (Z13) = {a + biF | a, b ∈ Z13,  

2
Fi  = 12}, *, (10iF, 0)} 

be the strong complex modulo integer matrix groupoid of finite 
order. G has right ideals which are not left ideals. 
 
Example 4.112:  Let  
 

G = {all 5×8 matrices with entries from C (Z19) = {a + biF | 
a, b ∈ Z19, 

2
Fi  = 18}, *, (0, 18iF)} be the strong complex modulo 

integer matrix groupoid of finite order. G has left ideals which 
are not right ideals. 
 
 Now we can define doubly strong complex groupoid rings 
which is a matter of routine.  However we supply some 
examples of them. 
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Example 4.113:  Let  
 

G = 1 2

3 4

a a

a a

	� ��

� �
� ���

C (Z3) = {a + biF | a, b ∈ Z3, 
2
Fi  = 2}, 

1 ≤ i ≤ 4, *, (2+iF, iF+1)} 
be the strong complex matrix groupoid. F = Z3 be the ring. FG is 
a groupoid ring which is a doubly strong complex matrix 
groupoid ring of finite order.  FG is non commutative and non 
associative. 
 
Example 4.114:  Let  

 

P = 

1 2

3 4

19 20

a a

a a

a a

	� �
�� �
�� �
� ��� ��� ��

� �
ai ∈ C (Z12) = {a + biF | a, b ∈ Z12, 

2
Fi  = 11};  

1 ≤ i ≤ 20, *, (3iF, 4iF)} 
be the strong complex modulo integer matrix groupoid.  Z4 = F 
be the ring. Z4G be the strong complex modulo integer matrix 
groupoid ring. 
 

(1) Find order of G. 
(2) Prove G has zero divisors 
(3) Prove G is non commutative 
(4) Prove G has ideals.  

 
Such study will make the reader under this concept.  

However we have given several problems for the reader in the 
final chapter. 
 
Example 4.115:  Let  
 

G = {all 6 × 6 matrices with entries from C (Z48) = {a + biF | 
a, b ∈ Z48, 

2
Fi  = 47}; *, (19iF, 12+36iF)} be the strong complex 

modulo integer matrix groupoid. 
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 F = Z48 be the ring.  FG is the doubly strong complex 
modulo integer groupoid ring of finite order which is both non 
commutative and non associative.  
 
Example 4.116:  Let  
 

G = {all 3 × 12 matrices with entries from C(Z6) = {a + biF | 
a, b ∈ Z6, 

2
Fi  = 5}; *, (4iF, 1+3iF)} be the strong complex 

modulo integer matrix groupoid. 
 
 F = Z3 be the finite field.  FG be the groupoid ring of finite 
order which is both non commutative and non associative. 
 
Example 4.117:  Let  
 

G = {all 5×2 matrices with entries from C(Z30) = {a + biF | 
a, b ∈ Z30, 

2
Fi = 29}; *, (3iF, 0)} be the strong complex groupoid.  

F = Z10 be the ring. FG be the groupoid ring of G over F.  
 
 FG has right ideals.  Now we can say the following result. 
 
THEOREM 4.1:  Let  

G = {n × m matrices with entries from C (Zs) (tiF, 0);  
t ∈ Zs \ {0}, *} be the groupoid.  F = 

nmZ  be the ring.  FG be 

the groupoid ring.  (i) FG has right ideals. (ii) FG has ideals. 
 
 Proof is direct and hence left as an exercise.  If (tiF, 0) is 
replaced by (0, tiF) FG has left ideals which are not right ideals.  
 
 Now we proceed onto give examples of strong quasi loop 
rings.  The definition of strong quasi loop rings is direct hence 
left as an exercise. 
 
Example 4.118:  Let G = {S (C(L7(3iF))} be the strong complex 
modulo integer quasi loop.  F = Z7 be the field.  FG is the 
complex quasi loop ring of G over F of finite order.  FG is a 
complex non associative non commutative ring. 
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Example 4.119:  Let G = {S(C(L9(7iF+1))} be the strong 
complex modulo integer quasi loop.  F = Z9 be the ring.  FG is 
the strong complex modulo integer quasi loop ring which has 
ideals. 
 
Example 4.120:  Let G = {S(C(L43 (8iF+17))} be the strong 
complex modulo integer quasi loop.  Z be the ring of integers.  
ZL be the strong complex quasi loop ring of infinite order.  
 
Example 4.121:  Let G = {S (C(L47 (46+iF))} be the strong 
complex modulo integer quasi loop.  Z12 = F be the ring.  FL be 
the strong complex modulo integer quasi loop.  FL has zero 
divisors and ideals.  
 
 Inview of this we have the following theorem. 
 
THEOREM 4.2:  Let L = (C(Lt(a+biF))) with a, b ∈ Zt \ {0} 

be a strong complex quasi loop.  F = Zn (n a composite 
number) be a ring.  FL be the strong complex modulo integer 
quasi loop.  FL has zero divisors and ideals.  

 
 Proof is direct and hence is left as an exercise to the reader. 
 
Example 4.122:  Let G = {S(C(L51 (27+30iF))} be the strong 
complex modulo integer quasi loop.  Z210 = F be the ring.  FL is 
the loop ring.  Clearly FL is non associative non commutative 
and of finite order. 
 
 Clearly FL has zero divisors and ideals.  
 
Example 4.123:  Let G = {S(C(L31 (16+16iF))} be the strong 
complex modulo integer quasi loop.  F = Z3 be the ring.  FL is 
the commutative quasi loop ring.   
 

Having seen examples of non commutative / commutative 
non associative finite and infinite ring we can replace the real 
field / ring by complex ring / field and define super doubly 
strong complex non associative rings. 
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 The definition is a matter of routine.  However we give 
examples of them. 
 
Example 4.124:  Let M = {S(C(L12)), *, (3iF+4, 8iF+7)} be the 
strong complex groupoid.  F = C(Z6) = {a + iFb | a, b ∈ Z6,  

2
Fi  = 5} be the ring of complex modulo integers.  FM the 

groupoid ring is defined as the super doubly strong complex non 
associative ring of finite order, which is also non commutative.  
 
Example 4.125:  Let G = {C(Z40), *, (8iF, 12iF+4)}  be the 
strong complex modulo integer groupoid.  F = C(Z3) = {a + biF | 
a, b ∈ Z3, 

2
Fi  = 2} be the complex modulo integers ring.  FG is 

the super doubly strong complex groupoid ring.  
 
Example 4.126:  Let G = {C(Z19), *, (9iF, 8+3iF)} be the strong 
complex modulo integer groupoid.  F = C(Z12) = {a + biF | a, b 
∈ Z12, 

2
Fi  = 11} be the complex modulo integers ring.  FG  is 

the super special doubly strong groupoid ring.  FG has zero 
divisors.  
 
Example 4.127:  Let G = {C(Z24), *, (3, 17iF+11)} be the strong 
complex modulo integer groupoid.  F = C(Z120) = {a + biF | a, b 
∈ Z120, 

2
Fi  = 119} be the complex modulo integers ring.  FG be 

the super doubly strong complex groupoid ring.   
 
Example 4.128:  Let G = {C(Z40), *, (8iF, 7iF)} be the strong 
complex groupoid.  F = C(Z12) be the complex modulo integer 
ring.  FG be the super strong complex groupoid ring. 
 
Example 4.129:  Let G = {C(Z60), *, (9iF+11, 9iF+11)} be a 
strong complex groupoid.  F = C(Z12) be the complex modulo 
integer ring.  FG is the super doubly strong complex modulo 
integer groupoid ring which is commutative but non associative.  
 
Example 4.130:  Let G = {C(Z12), *, (9iF+7, 0)} be the strong 
complex groupoid.  F = C(Z12) be the complex modulo integer 
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ring.  FG is the super doubly strong complex modulo integer 
groupoid ring.  
 
 This groupoid ring has right ideals which are not left ideals.  
 
Example 4.131:  Let G = {C(Z10), *, (0, 7iF+4)} be the strong 
complex groupoid.  F = C(Z10) be the complex ring.  FG is the 
super strong doubly complex groupoid ring.  This non 
associative non commutative ring has left ideals which are not 
right ideals.   
 

Now having seen examples of super strong doubly complex 
ring of finite / infinite order we can derive several related 
properties.  This task is left as an exercise to the reader.  Now 
we give examples of super strong complex matrix groupoid 
rings of finite / infinite order. 
 
Example 4.132:  Let  
 

G = {(a1, a2, …, a9) | ai ∈ C(Z24) = {a + biF | a, b ∈ Z24,  
2
Fi  = 23}; 1 ≤ i ≤ 9, *, (3 + 4iF, 10+8iF)} 

be the strong complex modulo integer row matrix groupoid.   
F = C(Z2) be the complex modulo integer ring.  FG is the super 
strong double complex row matrix groupoid ring.  FG has zero 
divisors and subrings.  Clearly FG is a non associative non 
commutative ring of finite order. 
 
Example 4.133:  Let  

G = {(a1, …, a12) | ai  ∈ C (Z40); *, (3iF + 4, 3iF+4)} 
be the strong complex row matrix groupoid.  F = C(Z10) be the 
complex ring, FG is the super complex doubly strong groupoid 
ring which is commutative but non associative and of finite 
order. 
 
Example 4.134:  Let  

G = {(a1, …, a40) | ai ∈ C (Z3), *, (3iF, 4), 1 ≤ i ≤ 40} 
be the strong complex row matrix groupoid.  F = C (Z2) be the 
ring, FG is the super doubly strong complex groupoid ring.  
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Example 4.135:  Let  
 

G = 

1

2

40

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
ai  ∈ C(Z25), 1 ≤ i ≤ 40, *, (4iF + 3, 0)} 

be the strong complex groupoid.  F = C(Z20) be the complex 
ring. FG is the super doubly strong complex column matrix 
groupoid ring, which has  right ideals which are not left ideals. 
 
Example 4.136:  Let  
 

G = 

1

2

10

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
ai  ∈ C(Z20), 1 ≤ i ≤ 10, *, (0, 14iF)} 

be the strong complex groupoid.  F = C(Z20) be the complex 
ring. FG is the super strong complex modulo integer groupoid 
ring, which has left ideals which are not right ideals. 
 
Example 4.137:  Let  
 

G = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

	� �
�� �

� �
�� �� ��

ai ∈ C(Z21), 1 ≤ i ≤ 9, *, (3iF, 9iF)} 

be the strong complex modulo integer groupoid.  F = C (Z21) be 
the complex ring.  FG is the super complex doubly strong 
groupoid ring. 
 
Example 4.138:  Let  
 
G = {all 10 × 8 matrices with entries from C (Z12), *, (4iF+3, 2)} 
be the strong complex groupoid.  F = C(Z12) be the complex 
ring.  FG is the super strong doubly complex modulo integer 
groupoid ring. FG has ideals and zero divisors.   
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We give two theorems the proof of which is straight 

forward.  
 
THEOREM 4.3:  Let  
 
G = {all m × t matrices with entries from C (Zn), *, (r + siF, 0)} 
and G′ = {all m × t matrices with entries from C(Zn), *,  
(0, r+siF)} be strong complex groupoids.  F = C(Zp) (or C(Z) or 
C(R) or C(Q) or C(Zn)) be the complex ring.  FG and FG′ are 
super strong doubly complex groupoid ring. If P is any right 
ideal in FG then P is a left ideal in FG′ and vice versa.  
 
THEOREM 4.4:  Let 

G = {all m × t matrices with entries from C(Zn), *, for a, b, 
c, d in Zn, (a + biF, c+diF)} 
be the strong complex groupoid.  F = C(Zs) (s a composite 
number). FG be the super complex doubly strong groupoid ring 
FG has subrings which are not ideals. 
 
 Several other related results true in case of non associative 
rings [  ] can be derived in case of super strong double complex 
groupoid rings also with simple modifications.  
 
Example 4.139: Let G = {S(L25 (3+2iF))} be the strong complex 
quasi loop of modulo integers.  F = C(Z5) be the complex 
modulo integer ring.  FG be the super strong doubly complex 
modulo integer ring. 
 
Example 4.140:  Let G = S(C(L19 (3iF))) be the strong complex 
quasi loop of modulo integers.  F = C(Z19) be the complex 
modulo integer ring.  FG is the super strong doubly complex 
modulo integer quasi loop ring of finite order which is non 
commutative.  
 
Example 4.141:  Let G = S(C(Z15 (8+8iF))) be the strong 
complex modulo integers quasi loop.  F = C(Z) be the complex 
ring of integers.  FG is the super strong complex modulo integer 
quasi loop ring of infinite order.  
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Example 4.142:  Let G = S(C(Z7 (4iF))) be the strong complex 
modulo integers quasi loop.  F = C(Q) be the complex rational 
ring.  FG is the super strong quasi loop ring of infinite order.  
 
Example 4.143:  Let G = S(C(Z121 (10iF+111))) be the complex 
modulo integers quasi loop.  F = C(Z11) be the complex ring.  
FG is the super strong complex modulo integer quasi loop ring.   
 

We can study all related properties of these structures and 
derive results as in case of non associative rings.  
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 We have studied complex non associative structures like 

complex modulo integer groupoids of several types of finite 

order and complex groupoids of infinite order.  Certainly these 

structures will find applications in places of groupoids were 

some imaginary or complex value is involved.  As the subject is 

very new only in due course of time we can certainly see 

researchers finding appropriate applications of these.  

 Likewise we have introduced the notion complex loops and 

strong complex quasi loops.  These are non associative and also 

very specially constructed.  It is a challenging problems to find 

appropriate applications as these complex quasi loops may be 

like loops only under special conditions.  These also satisfy 

several special identities.  We using these structures construct 
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non associative rings of finite and infinite order.  Several special 

identities are satisfied by these complex non associative rings. 

 Using these complex groupoids we built complex matrix 

groupoids of finite and infinite order and also complex 

polynomial groupoids of finite and infinite order.  They also 

will find several applications once this field becomes popular.  
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 In this chapter we suggest around  300  problems, some of 
them are easy, some difficult and some of them are at research 
level. 
 
1. Give an example of a complex modulo integer groupoid 

of order 82. 
 
2. Find subgroupoids (complex) of  
 P = {a + biF | a, b ∈ Z21, (8, 3), 2

Fi = 20}  
    = {C(Z21), *, (8, 3)}. 

i) What is the order of P? 
ii) Does the order of complex subgroupoid divide the   
     order of P? 
iii) Can {C(Z11), *, (8, 3)} have real subgroupoids? 
 

3. Obtain some interesting properties enjoyed by complex 
groupoids by type I. 
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4. Let G = {C(Z50), *, (8, 7)} be a complex groupoid of  
type I. 
i) Find ideals of G. 
ii) What is the order of G? 
iii) Can G have complex subgroupoids which are not  
      ideals of G? 

 
5. Compare the usual groupoid G = {Zn, *, (t, u)} with  
 G′ = {C(Zn),  *, (t, u)}. 
 
6. Does there exists a complex modulo integer Bol 

groupoid? 
 
7. Give an example of a complex modulo integer Moufang 

groupoid (if it exists). 
 
8. Does there exists a complex modulo integer P-groupoid? 
 
9. Give an example of a Smarandache strong complex 

modulo integer Bol groupoid.  
 
10. Obtain some interesting properties enjoyed by complex 

modulo integer groupoids of type II. 
 
11. Give an example of a complex modulo integer groupoid 

of type II which is not Moufang. 
 
12. Does there exists a complex modulo integer groupoid of 

type II which is Bol? 
 
13. Does there exist a complex modulo integer groupoid of 

type II which is S-strong Moufang? 
 
14. Does there exist a modulo integer groupoid of type I 

which is a Smarandache Bol and not S-strong Bol? 
 
15. Give an example of a S-strong P-groupoid of complex 

modulo integers. 
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16. Characterize all those complex modulo integer groupoids 
which has ideal in them of type I and type II. 

 
17. Is every complex modulo integer groupoid of type I a S-

groupoid? 
 
18. Does there exists a complex modulo integer groupoid of 

type II which is not a S-groupoid? 
 
19. Can a complex modulo integer groupoid be a S-

alternative groupoid of type II? 
 
20. Can a complex modulo integer groupoid of type I have S-

right ideals which are not S-left ideals? 
 
21. Does there exist a complex modulo integer groupoid of 

type II (or type I) which has S-ideals? 
 
22. Can type I complex modulo integer groupoids have zero 

divisors? 
 
23. Can type II complex modulo integer groupoids have S-

zero divisors? 
 
24. Characterize all those complex modulo integer groupoids 

of type I (or type II) which have only zero divisors and no 
S-zero divisors. 

 
25. Does there exists a modulo integer complex groupoid of 

type I (or type II) which has no zero divisors? 
 
26. Characterize those complex modulo integer groupoids of 

type I (or type II) which has no S-subgroupoids.  
 
27. Characterize all those complex modulo integer groupoids 

of type I (or type II) in which every subgroupoid is a S-
subgroupoid. 
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28. Characterize all those complex modulo integer groupoids 
of type I (or type II) which are not S-groupoids. 

 
29. Characterize all those complex modulo integer groupoids 

of type I (or type II) which are S-groupoids. 
 
30. Characterize all those complex modulo integer groupoids 

of type I (or type II) which are S-strong P-groupoids. 
 
31. Does there exist a complex modulo integer groupoid 

which is a S-strong idempotent groupoid? 
 
32. What are the special / distinct features between complex 

modulo integer groupoids of type I and type II? 
 
33. Obtain some special properties related with type III 

complex modulo integer groupoids. 
 
34. Let G = {C(Z42), *, (13, 0)} be a complex modulo integer 

groupoid of type III.  
 

i) Find all subgroupoids of G. 
ii) Find S- subgroupoids of G. 
iii) Can G have S-ideals? 
iv) Does G contain zero divisors? 
v) Does G satisfy any of the special identities? 
vi) Can G have right ideals which are not left ideals? 
 

35. Prove the class of type III complex modulo integer 
groupoids are never commutative but with zero divisors if 
n is not a prime (n2 is the order of groupoid). 

 
36. What are the special features enjoyed by type IV complex 

modulo integer groupoids? 
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37. Let G = {Z53, *, (11, 11)} be a complex modulo integer 

groupoid of order 532 of type IV. 
 

i) Find subgroupoids in G. 
ii) Is G a S-groupoid? 
iii) Can G have zero divisors? 
iv) Is G a commutative groupoid? 
v) Does G satisfy the associative law? 
vi) Can G have S-ideals? 
vii) Does G satisfy any of the special identities? 
viii) Is G a S-strong P-groupoid? 
 

38. Characterize those complex modulo integer groupoids of 
type III and type IV which are S-groupoids. 

 
39. Characterize those complex modulo integer groupoids of 

type III and type IV which are S-strong alternative 
groupoids.  

 
40. Prove or disprove in case complex modulo integer 

groupoids of type IV every right ideal is also a left ideal. 
 
41. Does type IV complex modulo integer groupoids enjoy 

any special or distinct properties from type I, type II and 
type III groupoids? 

 
42. Obtain some interesting properties about Smarandache 

semi conjugate subgroupoids of complex modulo integer 
type IV groupoids. 

 
43. Does every complex modulo integer groupoid of all types 

have semi conjugate subgroupoids?  Justify. 
 
44. Obtain some special properties enjoyed by complex 

modulo integer Smarandache conjgate subgroupoids of 
type I, II, III and IV. 
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45. Is every type IV groupoid of complex modulo integers a 
P-groupoid?  Justify your claim. 

 
46. Characterize those complex modulo integer simple 

groupoids of type I, type II, type III and type IV. 
 
47. Characterize those complex modulo integer groupoids of 

type IV which are alternative groupoids. 
 
48. Prove G = {C(Z40), *, (11, 11)} is not an alternative 

complex modulo integer groupoid. 
 
49. Prove G = {C(Z12), *, (4, 4)} is an alternative complex 

modulo integer groupoid. 
 
50. Prove G = {C(Z43), *, (3, 3)} is not an alternative complex 

modulo integer groupoid. 
 
51. Is G ={C(Z53), *, (13, 13)} a complex modulo integer 

normal groupoid? 
 
52. Characterize complex modulo integer groupoids of all 

types which are simple. 
 
53. Is the complex modulo integer groupoid G = {C(Z10), *, 

(4, 0)} a P-groupoid? 
 
54. Can G = {C(Z43), *, (0, 9)}, the complex modulo integer 

groupoid be a P-groupoid? 
 
55. Let G = {C(Z10), *, (5, 6)} be a complex modulo integer 

groupoid. 
 

i) What is the order of G? 
ii) Is G simple? 
iii) Is G a S-groupoid? 
iv) Is G a S-moufang groupoid? 
v) Is G a S-strong Moufang groupoid? 
vi) Is G a S-strong Bol groupoid? 
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vii) Is G a S-strong P-groupoid? 
viii) Can G have S-subgroupoids? 

 
56. Let G = {C(Z12), *, (3, 4)} be a complex modulo integer 

groupoid. 
 

i) Is G a G-groupoid? 
ii) Find subgroupoids of G. 
iii) Does G have subgroupoids which are not S- 
    subgroupoids? 
iv) Find S-ideals if any in G. 
v) Find S-zero divisors if any in G. 
vi) Is G a S-Moufang groupoid? 
vii) Is G a S-strong Bol groupoid? 
viii) Find any other interesting properties enjoyed by G. 
 

57. Let G = {C(Z49), *, (3, 12)} be a complex modulo integer 
groupoid. 

 
i) Is G a S-groupoid? 
ii) Does G have S-subgroupoids which divides the order 

of G? 
iii) Is G a S-strong Bol groupoid? 
iv) Can G hae S-zero divisors? 
v) What are the special features enjoyed by G? 
vi) Can G have zero divisor which are not S-zero 

divisors? 
vii) Is G a normal subgroupoid? 
 

58. Obtain condition for a complex modulo integer groupoid 
to be a Smarandache idempotent groupoid. 

 
59. Let G = {C(Z19), *, (12, 8)} be a groupoid of complex 

modulo integers. 
 

i) Find order of G. 
ii) Is G a S-groupoid? 
iii) Is G a S-idempotent groupoid? 
iv) Can G have S-subgroupoid? 
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v) Is G a S-P- groupoid? 
vi) Can G have zero divisors? 
vii) Can G have ideals? 
 

60. Let G ={C(Z12), *, (4, 9)} be a complex modulo integer 
groupoid. 

 
i) Is G a S-strong Bol groupoid? 
ii) Is G a S-strong Moufang groupoid? 
iii) Can G have S-zero divisors? 
iv) Does G contain subgroupoids which are not S-

subgroupoids? 
v) Does G contain normal subgroupoids? 
vi) Can G have S-ideals? 
vii) Is G simple? 

 
61. Let G = {C(Z13), *, (7, 7)} be a complex modulo integer 

groupoid. 
 

i) Is G a Smarandache idempotent groupoid? 
ii) Does G have S-subgroupoids H such that o(H)/o(G)? 
iii) Is G a S-strong Bol groupoid? 
iv) Can G be a simple? 
v) Is G a S-alternative groupoid? 
vi) Can G have zero divisors? 
vii) Can G have normal S-subgroupoids? 
 

62. Characterize those complex modulo integer groupoids 
which are S-idempotent groupoids. 

 
63. Describe some unique properties enjoyed by complex 

modulo integer groupoids with identity {e} adjoined to it. 
 
64. Are these new class of groupoids of complex modulo 

integers S- groupoids? 
 
65. Can these groupoids G be S-idempotent groupoids? 
 (G = {C(Zn ∪ {e}), *, (t, u)}) 
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66. Find condition on G = {C(Zn ∪ e), *, (t, u)} be a 
Smarandache strong right alternative modulo complex 
integer groupoid. 

 
67. If n in problem (66) is a prime number, can G be a 

Smarandache strong right alternative complex modulo 
integer groupoid? 

 
68. Find some properties enjoyed by C(Ln(m)); complex  

modulo integer loops. 
 
69. Find the order of the complex modulo integer loop 

C(Ln(m)). 
 
70. Let C(L19(3)) be a complex modulo integer loop. 

 
i) Find order of L. 
ii) Is L a S-loop? 
iii) Can L have S-subloops? 
iv) Is L a WIP loop? 
v) Can L have normal subloops? 
vi) Does L contain subloops which are not S-subloops? 
vii) Is L simple? 

 
71. Show  
 C(Ln) = {C(Ln(m) | n odd, n < m, (m–1, n) = 1, (m, n) = 

1} the class of complex modulo integer loops has one and 

only one commutative loop when, m = 
n 1

2

+
. 

 
72. Obtain the number of complex modulo integer loops in 

the class C(Ln). 
 
73. Is every complex modulo integer loop in C(Ln) simple? 
 
74. Is every complex modulo integer loop in C(Ln) a S-loop? 
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75. Let L = C(L43(42)) be a complex modulo integer loop. 
 
 i) Find order of C(L43(42)). 
 ii) Is L left alternative? 
 iii) Is L S-simple? 
 iv) Can L be right alternative? 
 v) Can L have proper S-subloops? 
 vi) Is L a S-loop? 
 vii) Can L have subloops other than subgroups of order  
  four or two? 
 
76. Prove C(Ln) cannot contain any Bol loop. 
 
77. Prove in a complex modulo integer loop L = C(Ln(m)), 

the order of a subloop of L in general need not divide 
order of L. 

 
78. Let L = C(Ln(m)) be a complex modulo integer loop.  Is L 

a S-strong cyclic loop? 
 
79. Let L = C(L13(2)) be a complex modulo integer loop. 
 
 i) Is L a right alternative loop? 
 ii) Is L a left alternative loop? 
 iii) Is L a S-loop? 
 iv) Is L a simple loop? 
 
80. Let C(L9(8)) = L be a complex modulo integer loop. 
 
 i) Does L contain S-subloops? 
 ii) Does L satisfy any special identity? 

iii) Is L S-simple? 
iv) Is L a S-strong Bol loop? 
v) Can L be S-strong Moufang loop? 
vi) Find in L two conjugate S-subloops.  
 (Is it possible? Justify). 
vii) Can L have normal subloops? 
viii)  Is it possible to verify Lagranges theorem for this  
   loop? 
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81. Let L = C(L7(3)) be a loop of complex modulo integers. 

 
i) Is L a S-commutative loop? 
ii) Is L a S-strongly commutative loop? 
iii) Is L a S-strongly cyclic loop? 
iv) Is L a power associative loop? 
v) Is L S-pseudo commutative? 
vi) Is L a S-strongly pseudo commutative? 
vii) Find S-commutator subloop of L. 
viii) Is L a S-weakly Lagrange loop? 
 

82. Give an example of a S-weakly Lagrange loop of 
complex modulo integers. 

 
83. Give an example of a complex modulo integer loop which 

is a S-Lagrange loop. 
 
84. Give an example of a complex modulo integer loop which 

is a S-Cauchy loop. 
 
85. Give an example of a Smarandache strong 2-Sylow loop. 
 
86. Give an example of a complex modulo integer loop which 

is left semi alternative. 
 
87. Find the Moufang centre of C(L17(5)). 
 
88. Find the commutator subloop of C(L17(2)). 
 
89. Give an example of a strictly non commutative loop in  

C(L325) 
 
90. Show C(L19(8)) is not a Bruck loop. 
 
91. Prove C(L43(2)) is not a Moufang loop. 
 
92. Find all subloops of C(L27(8)). 
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93. Find all S-subloops of C(L125(2)). 
 
94. Find all cyclic groups in C(L13(4)). 
 
95. Is C(L25(2)) a S-diassociative loop? 
 
96. Find all S-centres of the complex modulo integer loop 

C(L55(13)). 
 
97. Find SN1 and SN2 for all subloops in C(L59(10)). 
 
98. Find for the complex modulo integer loop L = C(L5(4)) 

the S-left and S-right coset decomposition relative to any 
subgroup in L. 

 
99. Find for the group A = {e, 10} in C(L19(2)) the S-right 

coset representation. 
 
100. Find a S-hyperloop of C(L17(9)). 
 
101. Is it true for a complex modulo integer loop C(L23(7));  

NZ (L23(7)) = Z (L23(7)) = e? 
 
102. Obtain some nice properties enjoyed by C(Z9)G where G 

= {Z10, *, (3, 7), the complex modulo integer groupoid 
ring. 

 
103. Let F = C(Z12) = {a + biF | a, b ∈ Z12, 

2
Fi  = 11} be  the 

complex modulo integer ring.  G = {Z19, *, (7, 2)} be the 
groupoid.  FG be the groupoid ring. 

 
i) Find the number of elements of FG. 
ii) Does FG have ideals? 
iii) Is FG a S-ring? 
iv) Can FG have subrings which are not S-subrings? 
v) Can FG have S-ideals? 
vi) Does FG contain S-zero divisors? 
vii) Find right ideals in FG which are not left ideals. 
viii)Using a two sided ideal find the quotient ring.  
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104. Let G = {Z25, *, (8, 0)}  be a groupoid  
 F = C(Z15) = {a + biF | 

2
Fi  = 14} be the complex modulo 

integer ring.  FG be the groupoid ring.  FG is a non 
associative complex ring of finite order. 

 
i) Is FG a S-ring? 
ii) Is FG a S-strong Bol ring? 
iii) Does FG satisfy any special identity? 
iv) Can FG have zero divisors which are not S-zero  
 divisors? 
v) Can FG have ideals which are not S-ideals? 
 

105. Let G = {Z9, *, (0, 5)} be a groupoid.   
 F = C(Z) = {a + bi | a, b ∈ Z} be the complex field.  FG 

be the groupoid ring.  FG is the non associative complex 
ring of characteristic zero. 

 
i) Find ideals in FG. 
ii) Is FG have zero divisors? 
iii) Can FG have zero divisors? 
iv) Can FG have idempotents? 
v) Can FG have S-ideals? 
vi) Can FG have subrings which are not ideals? 
vii) Does FG satisfy any of the special identities? 

 
106. Let G = {Z40, *, (3, 3)} be a groupoid.   
 F = {a + ib | a, b ∈ Q} = C(Q) be the rational complex 

ring. FG be the groupoid ring. 
 

i) Is FG a S-ring? 
ii) Can FG have zero divisors? 
iii) Is FG a commutative ring? 
iv) Can FG have ideals which are not S-ideals? 
v) Can FG have subrings which are not ideals? 
vi) Can FG have S-dempotents? 
vii) Can FG have nilpotent elements. 
viii) Does FG satisfy any special identity? 
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107. Let G = {Z140, *, (9, 0)} be a groupoid.   
 F = {a + biF | a, b ∈ Z2, 

2
Fi  = 1} be the complex modulo 

integer ring.  FG be the groupoid ring. 
 

i) Is FG have S-ideals? 
ii) Can FG have S-ideals? 
iii) What is the order of FG? 
iv) Find zero divisors in FG which are not S-zero  
    divisors. 
v) Can FG have ideals which are not S-ideals? 
vi) Find S-idempotents if any in FG.  
 

108. Let G = {Z17, *, (9, 8)} be a groupoid.  F = C the complex 
field.  FG be the groupoid complex ring. 

 
i) Show FG is non associative. 
ii) Prove FG is non commutative. 
iii) Find ideals if any in FG. 
iv) Prove FG satisfies some special identities. 
v) Is FG a S-strong right alternative ring? 
vi) Is FG a S-strong idempotent ring? 
vii) Can FG have S-zero divisors? 
 

109. Let G = {Z6, *, (5, 2)} be a groupoid.   
 F = C(Z) = {a + bi | a, b ∈ Z} be a complex integer ring.  

FG the groupoid ring. 
 

i) Prove FG has left ideals which are not right ideals. 
ii) Can FG have two sided ideals? 
iii) Is FG a S-ring? 
iv) Does FG satisfy any of the special identities? 
v) Prove FG is a non associative ring. 
vi) Can FG have zero divisors and S-zero divisors? 
 

110. Let L = L9 (8) be a loop of order 10.   
 F = C(Z) = {a + bi | a, b ∈ Z} be the complex integer ring.  

FL be the loop ring. 
 

i) Is FL a S-ring? 
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ii) Prove FL is non associative? 
iii) Is FL a commutative ring? 
iv) Can FL be a S-commutative ring? 
v) Can FL have zero divisors? 
vi) Can FL have idempotents? 
vii) Can FL have ideals? 
viii) Can FL be simple? 
 

111. Let L = L21(20) be a loop and  
 F = {C(Z3) = {a + biF | a, b ∈ Z3, 

2
Fi  = 2} be the complex 

modulo integer ring.  FL be the loop ring. 
 

i) Prove FL is non associative. 
ii) Prove FL satisfies some special identities. 
iii) Is FL a S-ring? 
iv) Can FL have subrings which are not ideals? 
v) Prove FL is non commutative. 
vi) Prove FL has associative subrings. 
vii) Can FL have S-ideals? 
 

112. Let L = L12(2) be a loop.   
 F = {C(Z3) = {a + biF | a, b ∈ Z2, 

2
Fi  = 2} be the complex 

modulo integer ring.  FL be the loop ring. 
 

i) Prove FL is non associative. 
ii) Prove FL is not alternative. 
iii) Is FL right alternative? 
iv) Can FL be left alternative? 
v) Can FL have zero divisors? 
vi) Is FL simple? 
vii) Can FL have S-ideals? 
viii) Is FL a S-ring? 
ix)  Can FL have associative subrings? 

 
113. Give an example of a right alternative ring using the loops 

in L19 over any complex field F. 
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114. Give an example of a left alternative ring using the loop 
in L43 = {L43(m) | m < 43, (m, 43) = 1 and (m–1, 43) = 1} 
and any complex ring F.  

 
115. Let L = L25(8) be a loop and  
 F = {C(Z25) = {a + biF | a, b ∈ Z25, 

2
Fi  = 24} be a complex 

modulo integer ring.  FL be the loop ring. 
 

i) Prove FL is non associative. 
ii) Prove FL is non commutative. 
iii) Prove FL is a S-ring. 
iv) Find ideals in FS. 
v) Show FL has atleast 24 complex subrings which are   
       associative. 
vi) Can FL have ideals? 
vii) Show FL has subrings which are not subideals? 
viii) Does FL satisfy any of  the special identities? 
 

116. Let L = L11(6) be the loop.   
 F = {C(Z5) = {a + biF | a, b ∈ Z5, 

2
Fi  = 4} be a complex 

modulo integer ring.  FL be the complex modulo integer 
loop ring. 

 
i) Prove FL is commutative. 
ii) Prove FL is non associative 
iii) Is FL a S-ring? 
iv) Can FL have S-zero divisors? 
v) Can FL have ideals? 
vi) Does FL satisfy any of the special identities? 
vii) Show FL has associative subrings. 
viii) Can FL have subrings which are not S-subrings? 
 

117. Let L = L7(2) be a loop.   
 F = {a + biF | a, b ∈ Z7, 

2
Fi  = 6} be the complex modulo 

integer ring.  FL be the complex modulo integer loop ring. 
 

i) What is the order of FL? 
ii) Is FL a S-ring? 
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iii) Can FL have ideals? 
iv) Can FL have S-subrings? 
v) Can FL have zero divisors? 
vi) Show FL cannot have S-zero divisor. (verify) 
vii) Can FL have S-idempotents? 
 

118. Let L = Ln(m) be a loop.   
 F = C(Zn) = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1} be the complex 

modulo integer ring.  FL be the loop ring.  
 

i) What is the order of FL? 
ii) When is FL a left alternative ring? (that is for what 

value of m) 
iii) For what value of m, is FL a right alternative ring? 
iv) Does there exist a m for which FL is alternative? 
v) For what value of m; FL is commutative? 
vi) For what values of m, FL is WIP ring? 

 
119. Let L = L17(3) be a loop.   
 F = C(Z3) = {a + biF | a, b ∈ Z3, 

2
Fi  = 2} be a complex 

modulo integer ring.  FL be the complex modulo integer 
loop ring. 

 
i) Find order of FL 
ii) Is FL a S-ring? 
iii) Can FL have zero divisors? 
iv) Is FL simple? 
 

120. Let L = Ln(m) be a loop of order n+1.   
 F = C(Zm) = {a + biF | a, b ∈ Zm, 2

Fi  = m–1} be a complex 
modulo integer ring.  FL be the loop ring. 

 
i) Prove FL is non associative. 
ii) What is the order of FL? 
iii) Does FL have ideals? 
iv) Is FL a S-ring? 
v) Can FL have zero divisors? 
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vi) Study (1) to (v) for n = 5 and m = 2 and F = C(Z2).   
vii) If n = 5 and m = 3, what is the speciality about FL. 
 

121. Let L = L9 (5) be a loop and  
 F = C(R) = {a + ib | a, b ∈ R} be the complex field.    FL 

be the complex loop ring. 
 

i) Prove FL is non associative. 
ii) Can FL have zero divisors? 
iii) Is FL simple? 
iv) Prove FL have subrings which are not ideal. 
v) Prove FL has real loop subring. 
vi) Is FL a S-ring? 
vii) Does FL satisfy any of the special identities? 
viii) Is FL commutative? 
 

122. Let L = L13(12) be a loop.   
 F = C(Q) = {a + bi | a, b ∈ Q} be the rational complex 

ring.  FL be the loop ring. 
 

i) Is FL associative? 
ii) Is FL commutative? 
iii) Can FL be right alternative? 
iv) Find zero divisors if any in FL. 
v) Is FL a S-ring? 
vi) Can FL have ideals? 
vii) Is FL simple? 
viii) Can FL have subrings which are not ideals? 
 

123. Let L = L11(3) be a loop.   
 F = {C(Z11) = {a + biF | a, b ∈ Z11, 

2
Fi  = 10} be a complex 

modulo integer ring.  FL be the complex modulo integer 
ring. 

 
i) Prove FL is non associative. 
ii) Is FL a S-ring? 
iii) Find in FL zero divisors or S-zero divisors. 
iv) What is the order of FL? 
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v) Can FL have ideals? 
vi) Can FL have subrings which are non associative? 
 

124. Let G = {C(Z3), *, (1, 2)} be a complex groupoid.  F = Z3 
be the ring of modulo integer FG be the complex 
groupoid ring. 

 
i) Prove G is non associative.  
ii) Find the number of elements in FG. 
iii) Is FG a S-ring? 
iv) Can FG have S-ideals? 
v) Can FG have zero divisors? 
vi) Find S-subrings in any in FG. 
vii) Does FG contain pseudo basic ring ideals? 
viii) Does FG satisfy any of the special identities? 
 

125. Let G = {C(Z8), *, (7, 7)} be a complex modulo integer 
groupoid.  F = R be the field of reals.  FG be the complex 
groupoid ring. 
 
i) Prove FG is non associative. 
ii) Prove FG is commutative. 
iii) Find S-ideals if any in FG. 
iv) Can FG have S-subrings which one not ideals in FG? 
v) Prove FG has pseudo basic ring ideals. 
vi) Can FG have subrings which are not ideals? 
vii) Can FG have S-zero divisors and S-idempotents? 
 

126. Let G = {C(Z12), *, (6, 3)} be a complex modulo integer 
groupoid.  F = Z10 be the ring of modulo integers.  FG be 
the complex modulo integer groupoid ring. 
 
i) Prove FG is non associative. 
ii) Find the number of elements in FG. 
iii) Can FG have zero divisors? 
iv) Does FG have S-subrings?  
v) Is FG a S-ring? 
vi) Can FG have S-ideals? 
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vii) Is PG where P = {0, 2, 4, 6, 8} = Z15 be a subring an 
ideal of FG? 

viii) Can  FH  where  H = {Z12, *, (6, 3)} be an ideal  
   of FG? 
 

127. Obtain some interesting properties enjoyed by the 
compelx modulo integer groupoid ring, FG where F is 
real and G is a complex modulo integer groupoid. 

 
128. Distinguish between the complex modulo integer 

groupoid rings and groupoid complex rings. 
 
129. Let G = {C(Z10), *, (5, 8)} be a complex modulo integer 

groupoid and F = Z10 be the real ring.  FG the complex 
groupoid ring.  Let H = {Z10, *, (5, 8)} be a groupoid.   

 K = {C(Z10) = {a + biF | a, b ∈ Z10, 
2
Fi  = 9} be the 

complex ring of modulo integer KH be the groupoid 
complex ring. 

 
 i) Find order of KH. 
 ii) Find order of FG. 
 iii) Is FG ≅ KH? 
 iv) Give any striking differences between KH and FG. 
 v) Prove both KH and FG are associative. 
 vi) Can both KH and FG have ideals? 
 vii) Are these two rings, S-rings? 
 viii) Can these rings have S-zero divisors? 
 ix) Determine any special features enjoyed in common  
  between them.  
 
130. Let G = {C(Zn), *, (t, u)} be a complex modulo integer 

groupoid.  F = R the field of reals.  FG be the complex 
groupoid ring.  FG is a Smarandache strong Moufang 
groupoid ring if and only if t2 ≡ t (mod n)  and u2 = u 
(mod n), n a non prime. 
 
i) Is the claim true? 
ii) Is FG Smarandache Moufang groupoid ring? 
iii) Can FG have zero divisors? 



 177

iv) Prove FG is a S-ring. 
v) Can FG have S-ideals?  
 

131. Let G = {C(Z6), *, (3, 4)} be the complex groupoid ring 
of modulo integers.  F = R, the field of reals. FG be the 
groupoid ring. 
 
i) Prove FG is non associative. 
ii) Prove FG is non commutative. 
iii) Is FG a S-ring? 
iv) Does FG have S-zero divisors? 
v) Can FG have S-ideals? 
vi) Prove FG have S-subrings which are not S-ideals? 
vii) Prove FG has a Smarandache strong Moufang  
 subring. 
viii) Can FG satisfy any other special identity? 
 

132. Let G = {C(Z17), *, (8, 8)} be a complex modulo integer 
groupoid.  R = F be the reals.  FG be the complex 
groupoid ring. 
 
i) Prove FG is non associative. 
ii) Is FG a commutative ring? 
iii) Can FG have a-S-idempotents subring? 
iv) Is FG a S-ring? 
v) Can FG have S-ideals? 
vi) Can FG have S-subrings which are not S-ideals? 
vii) Is FG simple? 
viii) Can FG have S-zero divisors? 
ix)  Can FG be isomorphic with any other ring? 
 

133. Let G = {C(Z40), *, (10, 3)} be a complex modulo integer 
groupoid.  F = Z40 be the ring of modulo integers FG be 
the complex groupoid ring. 
 
i) Find order of FG. 
ii) Prove FG is non associative. 
iii) Prove FG is non commutative. 
iv) Is FG a S-ring? 



 178

v) Can FG have S-ideals? 
vi) Can FG has S-zero divisors? 
vii) Can FG have S-subrings which are not ideals? 
viii) Can FG have pseudo basic ring ideals? 
 

134. Let G = {C(Z25), *, (12, 13)} be the complex modulo 
integer groupoid.  F = Z5 be the field of characteristic Z5 
be the field of characteristic five. FG the complex 
groupoid ring. 

 i)  Answer the questions (1) to (viii) of problem (133) for 
this FG. 

 
135. Let G = {C(Zn), *, (m, t)} be the complex modulo integer 

groupoid.  F = Zt when t/n, n = tp be the ring of modulo 
integers.  FG be the groupoid ring. 
 
i) Find order of FG.  
ii) Prove FG is non associative. 
iii) Can FG be a S-strong Moufang ring? 
iv) Find condition on m and t so that FG is a S-strong  
 Bol ring. 
v) If n = t2 find order of FG. 
vi) If n = t find order of FG. 
vii) If n = 3t find order of FG 
viii) If n = 6t find order of FG. 
ix) Compare the properties enjoyed by FG for n = 2t,  
 n = t and n = 6t. 

 
136. Let G = {C(Zn), *, (m, m)} be a complex modulo integer 

groupoid ring.  F = Zt where n/t be the ring of modulo 
integers.  FG be the complex groupoid ring. 
 
i) Find order of FG if t = 3n. 
ii) Find order of FG if t = n2. 
iii) Find order of FG if t = 10n. 
iv) Is FG a commutative ring? 
v) Is FG a S-ring? 
vi) Find S-ideals if any in FG. 
vii) Does FG contain S-subrings which are not ideals? 
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137. Let G = {C(Z36), *, (7, 7)} be a complex modulo integer 

groupoid.  F = Z3 be the field of characteristic three.  FG 
be the complex groupoid ring. 

 
i) Find order of FG. 
ii) Is FG commutative?. 
iii) Prove FG is associative. 
iv) Is FG a S-ring? 
v) Is FG simple? 
vi) Does FG satisfy any of the special identities? 
vii) Can FG have S-ideals? 
viii) Can FG have pseudo basic ring ideals? 
 

138. Give an example of Smarandache strong Bol complex 
modulo integer groupoid ring. 

 
139. Give an example of a Smarandache strong Moufang 

complex modulo integer ring. 
 
140. Give an example of a Smarancahe strong alternative 

complex modulo integer groupoid ring. 
 
141. Give an example of a Smarandache strong right 

alternative complex modulo integer groupoid ring which 
is not a Smarandache strong left alternative complex 
modulo integer ring. 

 
142. Given an example of Smarandache idempotent complex 

modulo integer groupoid ring. 
 
143. Give an example of a Smarandache Moufang complex 

modulo integer groupoid ring. 
 
144. Give examples of Smarandache strong complex modulo 

integer groupoid P-rings. 
 
145. Give an example of a complex modulo integer groupoid 

ring which is not a S-ring. 
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146. Give an example of a complex modulo integer groupoid 

ring which has no ideals. 
 
147. Give an example of a complex modulo integer groupoid 

ring in which every subring is a S-subring. 
 
148. Give an example of a complex modulo integer groupoid 

ring FG in which no subring is a S-subring but FG is a S-
ring. 

 
149. Give an example of a complex modulo integer groupoid 

ring FG in which every subring in an ideal. 
 
150. Give an example of a complex modulo integer groupoid 

ring FG which has only right ideals and no left ideals.  
 
151. Does there exists a complex modulo integer groupoid ring 

FG in which every zero divisor is a S-zero divisor? 
 
152. Does there exists a complex modulo integer groupoid ring 

FG with no zero divisors? 
 
153. Does there exists a complex modulo integer groupoid ring 

FG with no idempotents? 
 
154. Does there exist a complex modulo integer groupoid ring 

FG which has principal ideals? 
 
155. Find any interesting properties enjoyed by complex 

modulo integer ring FG where F = R or Q or Z. 
 
156. Let FG be a complex modulo integer groupoid ring where 

F = Zn. 
 Determine  the  special  properties enjoyed by this FG = 

ZnG. 
 
157. Let L = C(L11(8)) be a complex modulo integer loop.  F = 

Z11 be the field of characteristic eleven.  FL be the 
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complex modulo integer loop ring.  Find the special 
features enjoyed by FL. 

 
158. Let L = C(L13(11)) be a complex modulo integer loop.  F 

= Z13 be the field of characteristic thirteen.  FL be the 
complex modulo integer loop ring.  Determine the special 
properties satisfied by FL. 

 
159. Let L = C(L7(3)) be a complex modulo integer loop.  F = 

Z7 be the field of characteristic seven. FL the complex 
modulo integer loop ring. 

 
i) Find order of FL. 
ii) Prove FL is a non associative ring. 
iii) Prove FL is a non commutative finite ring. 
iv) Is FL a S-ring? 
v) Is FL S-Moufang ring? 
vi) Is FL a S-alternative ring? 
vii) Can FL have S-ideals? 
viii) Can FL have zero divisors which are not S-zero  

  divisors? 
 
160. Let L = C(L7(3)) be a complex modulo integer loop.  F = 

Z3 be the finite field with three elements.  FL the complex 
modulo integer loop ring. 

 
i) Find order of FL. 
ii) Compare it with order of FL in problem (159). 
iii) Can FL be S-commutative? 
iv) Can FL have subrings? 
v) Can FL have S-ideals? 
vi) Find zero divisors if any in FL. 
vii) Can FL have S-idempotents? 
viii) Is FL simple? 
ix) Find the special identity satisfied by FL. 
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161. Let L = Z(L7(4)) be a loop of complex modulo integers.  F 

= Z4 be the ring of modulo integers.  FL be the loop ring. 
 

i) Find order of FL. 
ii) Prove FL is non associative. 
iii) Prove FL is commutative. 
iv) Prove FL has ideals. 
v) Can FL have S-ideals? 
vi) Can FL have S-subrings which are not S-ideals? 
vii) Does FL satisfy any of the special identities? 

 
162. Give an example of a complex modulo integer loop ring 

of finite order which is right alternative. 
 
163. Give an example of a complex modulo integer loop ring 

of infinite order which is left alternative. 
 
164. Does there exists a non associative alternative complex 

loop ring of finite order? 
 
165. Give an example of a complex loop ring which satisfies 

the Moufang identity. 
 
166. Give an example of a complex loop ring FL of finite order 

which satisfies the Bol identity (L is a complex modulo 
integer loop). 

 
167. Obtain any striking property enjoyed by complex loop 

rings FL where L is a complex modulo integer loop. 
 
168. Is every complex modulo integer loop ring FL a S-ring? 
 
169. Give an example of a complex modulo integer loop L 

over the real field F = R, (RL the loop ring) in which 
every subring is a S-ring.  
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170. Let L = C(L15(8)) be the complex modulo integer loop.  F 
= Z15 be the ring of characteristic fifteen.  FL be the 
complex modulo integer loop ring. 

 
i) Find order of FL. 
ii) Prove FL is commutative. 
iii) Does FL satisfy any of the special identities? 
iv) Find S-ideals if any in FL. 
v) Find S-subrings if any in FL which are not S-ideals. 
vi) Find S-zero divisors in FL. 
vii) Prove FL has ideals.  
 

171. Let L = C(Z45(8)) be a complex modulo integer loop.  F = 
Z2 be the field of characteristic two.  FL be the loop ring. 

 
i) Find order of FL. 
ii) Is FL a S-ring? 
iii) Find ideals if any in FL. 
iv) Find S-subring if any in FL. 
v) Is FL simple? 
vi) Can FL have S-subrings? 
vii) Does FL satisfy any special identity? 
viii) Is FL commutative? 
 

172. Let L = C(Z55(11)) be a complex modulo integer loop.  F 
= Z11 be the field.  FL the complex modulo integer loop 
ring. 

 
i) Show FL is finite order. 
ii) Find S-zero divisors if any. 
iii) Find S-ideals if any FL. 
iv) Find S-subrings in FL. 
v) Is FL a S-ring? 
vi) Does FL satisfy any special identities? 
vii) Is FL simple? 
viii) Find S-idempotents if any in FL. 
ix) Prove FL is non associative.  
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173. Let L = C(L21(11)} be a complex loop.  F = Z11 be the 
field of characteristic eleven.  FL the complex modulo 
integer ring. 

 
i) Is FL non associative? 
ii) Find order of FL. 
iii) Find S-zero divisors in FL 
iv) Find S-ideals. 
v) Find S-subrings if any in FL. 
vi) Can FL satisfy any special identity? 
vii) Prove FL is non commutative. 

 
174. Let L = C(L19(9)) be a complex modulo integer ring.  F = 

Z19 be the field of characteristic zero.  FL be the complex 
loop ring.  

 
i) Find some interesting properties associated with FL 
ii) Is FL commutative? 
iii) Prove FL is non associative. 
iv) Find order of FL. 
v) Since basically both the loop L19(9) and the loop  

ring, where the ring is also Z19, the loop ring enjoy 
any special properties.  Hence or otherwise what is 
the special property enjoyed by C (Lp(m)) the 
complex modulo integer loop built over the ring Zp? 

 
175. Let L = C (Z9(8)) be a complex modulo integer loop.  F = 

Z8 be the ring.  FL be the complex loop ring. 
 

i) Find order of FL. 
ii) What is the special property enjoyed by FL as both  

m = 8 and the ring F over which L is defined is also 
Z8. Hence or otherwise derive some special properties 
associated with the complex modulo integer loop 
ring.  FL where L = C(Zn(m)) is the complex modulo 
integer loop and F = Zm. 
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176. Let L = {C(L27(11)} be a complex modulo integer loop.  F 
= Z11 be the field.  FL be the complex modulo integer 
loop ring. 

 
i) Find order of FL. 
ii) Is FL a S-ring? 
iii) Can FL have S-zero divisors? 
iv) Is FL simple? 
v) Prove FL is non associative. 
vi) Can FL have S-subrings which are not S-ideals? 
vii) Can FL have subrings which are not S-subring? 
viii) Prove FL is non commutative. 
ix) Does FL enjoy any special property because L =  
      C(L27(11)) and F = Z11? 

 
177. Let L = C(L13(7)) be a complex modulo integer loop.  F = 

Z13 be the ring.  FL the complex loop ring. 
 

i) Is FL a commutative loop ring? 
ii) Find order of FL. 
iii) Can FL be a S-ring? 
iv) Can FL have subrings S such that o (S) / o (FL)? 
v) Is FL simple? 
vi) Can FL have subrings which are not ideals? 
vii) What will be order of FL if Z13 = F is replaced by Z7? 
viii) Answer all the questions (i) to (vi) 
 

178. Let L = C(L21(11)) be a complex modulo integer loop.   
F = Z be the ring.  FL the complex modulo integer loop 
ring. 

 
i) Prove FL is non associative. 
ii) Is FL a S-ring? 
iii) Can FL be simple? 
iv) Can FL satisfy a.c.c. condition on ideals? 
v) Can FL have idempotents? 
vi) Can FL have zero divisors? 
vii) Can FL have S-subrings which are not ideals? 
viii) Can FL have subrings which are not S-subrings? 
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179. Enumerate some special properties enjoyed by strong 

complex modulo integer groupoids of type I. 
 
180. Let G = S(C(Z11)) = {a + biF | a, b ∈ Z11, 

2
Fi  = 10, *, (8iF, 

3iF)} be the strong complex modulo integer groupoid of 
type I. 

 
i) Find order of S(C(Z11)). 
ii) Is G a commutative groupoid? 
iii) Can G have S-zero divisors? 
iv) Is G a S-groupoid? 
v) Compare G with H = {C(Z11), *, (8, 3)}. 
vi) What is the main difference between H and G? 

 
181. Obtain some interesting properties of strong complex 

modulo integer groupoids of type II. 
 
182. Let G = (C(Z29)) = {a + biF | a, b ∈ Z29, 

2
Fi  = 28, *, (10iF, 

12iF)} be the strong complex integer groupoid of type II. 
 

i) Is G = S (C(Z29)) a S-groupoid? 
ii) Find order of G. 
iii) Find subgroupoids if any in G. 
iv) Does G have S-subgroupoids? 
v) Is G simple? 
vi) Is G a commutative groupoid? 
vii) Does G satisfy any special identity? 

 
183. Prove all strong complex modulo integer groupoids of 

type IV are commutative. 
 
184. Obtain some special properties enjoyed by strong 

complex modulo integer groupoids of type V. 
 
185. Characterize those strong complex modulo integer 

groupoids of type I which are Moufang.  
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186. Obtain those strong complex modulo integer groupoids 
which are S-strong Moufang groupoids. 

 
187. Does there exists Bol groupoids from the class of strong 

complex modulo integer groupoids of type III? 
 
188. Characterize strong complex Smarandache strong 

Moufang groupoid built using C(Zn). 
 
189. Give a characterization theorem for strong complex 

Smarandache strong Bol groupoids. 
 
190. Obtain conditions for a strong complex modulo integer 

groupoids to be a Smarandache strong P-groupoid. 
 
191. Give an example of a strong complex modulo integer 

groupoid which is a Smarandache strong right alternative 
groupoid. 

 
192. Give an example of a Smarandache Bol groupoid from 

the class of strong complex modulo integer groupoids. 
 
193. Give an example of a Smarandache Moufang groupoid 

from the class of strong complex modulo integer 
groupoids. 

 
194. Does there exists a Smarandache strong Bol groupoid 

from the class of strong complex modulo integer 
groupoids of type IV? 

 
195. Give some interesting properties enjoyed by strong 

complex modulo integer groupoids of type VI. 
 
196. Distinguish the properties enjoyed by type IX and type X 

strong complex groupoids of modulo integers. 
 
197. Can type X strong complex modulo integer groupoids be 

commutative? 
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198. Can type X strong complex modulo integer groupoids 
have zero divisors? 

 
199. Can type IX strong complex modulo integer groupoids 

have ideals? 
 
200. Will every strong complex modulo integer groupoid of 

type IX be simple? 
 
201. Can all type VIII strong complex modulo integer 

groupoids be Smarandache P-groupoids? 
 
202. Can type VII strong complex modulo integer groupoids 

be S-strong idempotent groupoids? 
 
203. Establish some special features enjoyed by type VI strong 

complex modulo integer groupoids.  
 
204. Compare type II and type IV strong complex modulo 

integer groupoids. 
 
205. Which type of strong complex groupoids satisfy several 

special identities? 
 
206. What type of groupoids are simple strong complex 

groupoids? 
 
207. Does there exist any type of strong complex groupoids of 

modulo integers which has no S-subgroupoids? 
 
208. Characterize those type of strong complex groupoids 

which are S-groupoids. 
 
209. Characterize those type of strong complex groupoids 

which are normal. 
 
210. Characterize those types of strong complex groupoids 

which are simple. 
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211. Characterize those type of strong complex groupoids 
which has  S-ideals. 

 
212. Characterize those types of strong complex groupoids 

which has S-zero divisors. 
 
213. Characterize those types of strong complex groupoids 

which has no zero divisors. 
 
214. Characterize those types of strong complex groupoids has 

no S-idempotents. 
 
215. Characterize those strong complex groupoids which are 

Smarandache strong idempotent groupiods. 
 
216. Does there exists much difference between a complex 

groupoid and a strong complex groupoid? 
 
217. Does any of the strong complex groupoid of infinite order 

satisfy any of the special identities? 
 
218. Can we say strong complex groupoids  of infinite order 

are S-groupoids? 
 
219. Can we say strong complex groupoids of infinite order are 

simple? 
 
220. Does strong complex groupoids of infinite  order have 

zero divisors? 
 
221. Can strong complex groupoids of infinite order have S-

idempotents? 
 
222. Let G = {S(C(Z20), * (8iF, 3iF+1), *} be a strong complex 

modulo integer groupoid. 
 

i) Find order of G. 
ii) Is G simple? 
iii) Is G a S-groupoid? 
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iv) Find S-zero divisors if any in G. 
v) Find S-ideals if any in G. 
vi) Find S-subgroupoids in any in G. 
vii) Find the types of identities satisfied by G. 

 
223. Let 

 G = S(C(R)) = {a + bi | a, b ∈ R, i2 = –1, (3i, – 7 ,  

4– 19i ), *} be a strong complex groupoid of infinite 
order. 

 
i) Is G commutative? 
ii) Prove G is non associative. 
iii) Is G simple? 
iv) Can G have S-ideals? 
v) Can G have S-subgroupoids? 
vi) Can G have S-zero divisors? 
vii) Can G satisfy any of the special identities? 
 

224. Let  
 G = {S(C(Z)) = {a + bi | a, b ∈ R, i2 = –1,  
 (3iF, 20 – 7iF), *} be the strong complex  
 integer groupoid  of infinite order. 
 

i) Find S-ideals if any in G. 
ii) Is G a S-groupoid? 
iii) Can G have S-idempotents? 
iv) Will G satisfy Bol identity? 
v) Can G be simple? 
vi) Will G be Smarandache strong Moufang groupoid? 
vii) Can G have zero divisors? 

 
225. Let  
 G = S(C(Z40)) = {a + biF | a, b ∈ Z40, 

2
Fi  = 39, 

 (3iF, 20+19iF), *} be the strong complex modulo integer 
groupoid. 

 
i) Find order of G. 
ii) Prove G is non commutative. 
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iii) Prove G is non associative.  
iv) Is G simple? 
v) Is G S-simple? 
vi) Can G have S-ideals? 
vii) Can G have S-zero divisors? 
viii) Can G have S-idempotents? 

 
226. Let G = S(C(Z29)) = {a + biF | a, b ∈ Z29, 

2
Fi  = 28,  

 (3 + 2iF, 14iF), *} be the strong complex modulo integer 
groupoid. 

 
i) Find order of G. 
ii) Can G have S-subgroupoids? 
iii) Is G a S-groupoid? 
iv) Is G simple? 
v) Does G have S-ideals? 
vi) Can G have S-zero divisors? 
vii) Find S-idempotents if any in G. 
viii) Is G a S-strong Bol groupoid? 
ix) Is G a S-strong Moufang groupoid? 

 
227. Obtain some interesting properties enjoyed by strong 

complex modulo integer groupoids. 
 
228. Distinguish between the strong complex modulo integer 

groupoid  
 G = {a + biF | a, b ∈ Z13, 

2
Fi  = 12, (10iF + 3, 3iF + 10), *} 

and H = {a + biF | a, b ∈ Z13, 
2
Fi  = 12, (10, 3) *}, the 

complex modulo integer groupoid. 
 
229. Let  
 G = S(C(Z43)) = {a + biF | a, b ∈ Z43, 

2
Fi  = 42, 

 (40iF , 3), *} be a complex strong groupoid.  Does G 
satisfy any of the stricking properties? 

 
230. If in problem (229) (40iF, 3)  is replaced by (40, 3iF); what 

are different properties S(C(Z43)) enjoys or it does not 
give any distinct properties? (Justify your claim). 
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231. Let G = S(C(Z15)) = {a + biF | a, b ∈ Z15, 
2
Fi  = 14, 

 (3iF, 12iF), *} be a strong complex groupoid.  
 H = S(C(Z15)) = {a + biF | a, b ∈ Z15, 

2
Fi  = 14, (3, 2), *} be 

the complex groupoid. 
 

i)     Is G ≅ H? 
ii) Does both satisfy same set of special identities? 
iii) Distinguish between G and H. 
iv) In what ways G is different from H? 
v) Is o(G) = o(H)? 
vi) Find subgroupiods of same order in both H and G. 
vii) Can G and h have S-ideals of same order? 

 
232. Let  
 G = {(a1, a2, …, a9) | ai ∈ S(Z20))  
 = {a + biF | a, b ∈ Z20, 

2
Fi  = 19, (3iF , 10+7iF), *}  

 be a strong complex modulo integer groupoid. 
 

i) Find order of G. 
ii) Is G a S-groupoid? 
iii) Is G simple? 
iv) Find S-subgroupoids. 
v) Does G satisfy any special identities? 
vi) Does G contain S-subgroupoids which are not S-

ideals? 
 
233. Let  
 G = S(C(Z49))) = {a + biF | a, b ∈ Z49, 

2
Fi  = 48,  

 (3iF + 46, 40iF + 7), *} be a strong complex  
 modulo integer finite groupoid. 
 

i) Find order of G. 
ii) Prove G is non commutative. 
iii) Prove G is non associative.  
iv) Does G have S groupoids? 
v) Does the order of every subgroupoids divide order of 

G? 
vi) Does G contain S-zero divisors? 
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234. Let  
 G = S(C(Z11)) = {a + biF | a, b ∈ Z11, 

2
Fi  = 10, (7iF, 3), *} 

be a strong complex modulo integer groupoid. 
 

i) Find order of G. 
ii) Is G commutative? 
iii) Find some special properties associated with G. 
iv) If G = {a + biF | a, b ∈ Z11, *, (7, 3)} is  H ≅ G  (where 

H is a complex groupoid)? 
v) Can G be a Smarandache P-groupoid? 
vi) Is G a S-groupoid? 
 

235. Let  
 G = S(C(Zp)) = {a + biF | a, b ∈ Zp, p a prime,*,  2

Fi  = p–1, 
  (p+1/2 iF,  p+1/2) } be a strong complex modulo integer 

groupoid. 
 

i) Find o (G). 
ii) Is G commutative? 
iii) Does G satisfy any special identities? 
iv) Can G be a S-groupoid? 
v) Can G have S-ideals? 
vi) Show G is non associative. 
vii) Find S-zero divisors if any in G. 
 

236. Let  
 G = S(C(Zn)) = {a + biF | a, b ∈ Zn, 

2
Fi  = n–1, (piF, qiF),  

where p/n and q/n. p and q primes, *}  
 be a strong complex modulo integer groupoid. 
 

i) Find order of G. 
ii) Is G a S-Moufang groupoid? 
iii) Does G enjoy any special property? 
iv) Can G be a S-groupoid? 
v) Is G -S simple? 
vi) If p and q are non primes with (p, q) = d ≠ 1, what 

will be the nature of G? 



 194

 
237. Let  
 G = S(C(Z120)) = {a + biF | a, b ∈ Z120, 

2
Fi  = 119, 

 (60, 60iF), *} be a strong complex groupoid. 
 

i) Find order of G. 
ii) Prove G is non commutative. 
iii) Is G a S-groupoid? 
iv) If (60, 60iF) is replaced by (20iF, 81iF+20); what      
 will be the special property enjoyed by G. 
v) Can G be simple? 
vi) Can G have left ideals which are not right ideals? 

 
238. Let  

 M = 1 2 5 7 9

3 4 6 8 10

a a a a a

a a a a a

	� ��

� �
� ���

 ai ∈ C(Z10)  

 = {a + biF | a, b ∈ Z10, 
2
Fi  = 9, *, (3, 5)} 

 be a complex modulo integer matrix groupoid. 
 

i) Find order of G. 
ii) Is M commutative? 
iii) Show M can have subgroupoids which are not ideals? 
iv) Can M have S-ideals? 
v) Is M simple? 
vi) Can M satisfy any of the special identities? 

 
239. Let  

 M = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

	� �
�� �
�� ��� �

� ��
� ��
� ��� ��

 ai ∈ C(Z3)  

 = {a + biF | a, b ∈ Z3, 
2
Fi  = 2; 1 ≤ i ≤ 25; *, (2, 0)} 

 be a complex modulo integer matrix groupoid. 
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i) Prove T is finite 
ii) Prove T has left ideals. 
iii) Can T have S-zero divisors? 
iv) Can T be simple? 
v) Can T have S-ideals? 
vi) Prove T has zero divisors. 
 

240. Does there exist a complex modulo integer matrix 
groupoid which has no ideals? 

 
241. Does there exists a complex modulo integer matrix 

groupoid which has no S-ideals? 
 
242. Give an example of a complex modulo integer matrix 

groupoid which has S-ideals. 
 
243. Does there exist complex modulo integer matrix 

groupoids which has S-zero divisors? 
 
244. Give an example of a complex modulo integer matrix 

groupoid which has no S-subgroupoids.  
 
245. Let  
 

 G = 

1 2 10

11 12 20

21 22 30

31 32 40

a a ... a

a a ... a

a a ... a

a a ... a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C (Z43)  

 = {a + biF | a, b ∈ Z43, 
2
Fi  = 42; 1 ≤ i ≤ 40; *, (10, 0)}  

 be a complex modulo integer matrix groupoid. 
 

i) Find order of G. 
ii) Is G a S-groupoid? 
iii) Does G contain right ideals or left ideals? 
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iv) Is M = 

1

2

3

4

a 0 ... 0

a 0 ... 0

a 0 ... 0

a 0 ... 0

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C(Z43), *, (10, 0)} ⊆ G 

a left ideal or a right ideal? 
 
246. Prove all complex modulo integer matrix groupoids  
 G = {M | M is a n × m matrix with entries from C(Zt);  
 2

Fi  = t–1, *, (s, 0) (or (0, r))} always has only one sided 
ideals.  Can G have two sided ideals? 

 
247. Let  

 M = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C (Z25) = {a + biF | a, b ∈ Z25, 

2
Fi  = 24; 

 *, (10, 9)} be a complex modulo integer polynomial 
groupoid. 

 
i) Can M have ideals? 
ii) Can M be a S-groupoid? 
iii) Does M have subgroupoids? 
iv) Can M have zero divisors? 
v) Prove M is a non associative groupoids. 
vi) Can M have nilpotent elements? 
vii) Does M satisfy any of the special identities? 
viii) Is M a S-strong Bol groupoid? 
ix)   Can M ever be a S-Moufamg groupoid? 
x)    What are the special features enjoyed by this  
       polynomial groupoid M? 
 

248. Study the special properties enjoyed by complex modulo 
integer polynomial groupoids. 

 
249. Obtain some special properties enjoyed by complex 

modulo integer matrix groupoids. 
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250. Characterize those complex modulo integer polynomial 
groupoids which has ideals. 

 
251. Characterize those complex modulo integer polynomial 

groupoids which has no ideals. 
 
252. Characterize those complex modulo integer matrix 

groupoids which has S-ideals.  
 
253. Let  

 G = 1 2 10

11 12 20

a a ... a

a a ... a

	� ��

� �
� ���

 ai ∈ C (Z10)  

 = {a + biF | a, b ∈ Z10, 
2
Fi  = 9}; 1 ≤ i ≤ 20; *, (9, 7)}  

 be a complex matrix groupoid. 
 

i) Find number of elements in G. 
ii) Prove G is non commutative. 
iii) Prove G is non associative. 
iv) Does G contain ideals? 
v) Is G a S-groupoid? 
vi) Can G have zero divisors? 
vii) Does G satisfy any of the special identities? 

 
254. Let  

 G = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a

a a a a a

a a a a a

a a a a a

	� �
�� �
�� �
� ��� ��� ��

 ai ∈ C (Z40)  

 = {a + biF | a, b ∈ Z40, 
2
Fi  = 39}, (3+5iF, 8+10iF), *}  

 be a strong complex modulo integer matrix groupoid of 
finite order. 

 
i) Prove G is non commutative. 
ii) Find the number of elements in G. 
iii) Is G a S-groupoid? 
iv) Prove G is non associative. 
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v) Can G have S-ideals? 
vi) Is S simple? 
vii) Can G have S-zero divisors? 
viii) Find right ideals if any in G. 
 

255. Let  

 G = 1 2 3

4 5 6

a a a

a a a

	� ��

� �
� ���

 ai ∈ C (Z12)  = {a + biF | a, b ∈ Z12, 

2
Fi  = 11}, 1 ≤ i ≤ 6, (3iF+7, 7+3iF), *}  

 be a strong complex modulo integer matrix groupoid.  
 

i) Find order of G. 
ii) Prove G is non commutative. 
iii) Prove G is non associative. 
iv) Is G a S-groupoid? 
v) Does G have S-ideals? 
vi) Can G have zero divisors? 
vii) Is G simple? 
viii) Does G satisfy any of the special identities? 
 

256. Let G = 1 2 3

4 5 6

a a a

a a a

	� ��

� �
� ���

 ai ∈ C(Z10), *, (3iF, 9+5iF)} be a 

strong complex modulo integer matrix groupoid. Take F = 
C(Z5) be the complex modulo integer ring.  FG be the 
super complex double strong groupoid ring of G over F. 

 
i) Find order of G. 
ii) Prove FG is non associative. 
iii) Is FG non commutative? 
iv) Is FG a S-groupoid ring? 
v) Find ideals of FG. 
vi) Can FG have S-ideals? 
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257. Let  
 G = S(C(Z35)) = {a + biF | a, b ∈ Z35, 

2
Fi  = 34},  

 (3iF+7, 21+14iF), *}  
 be the strong complex groupoid.  F = C(Z7) be the prime 

complex ring of characteristic seven.  FG be the super 
doubly strong complex groupoid ring. 

 
i) Find order of FG. 
ii) Does FG satisfy any special property as o (F) / o (G)? 
iii) Is FG a S-groupoid? 
iv) Can FG have S-zero divisors? 
v) Can FG satisfy any of the special identities? 
 

258. Let G = {S(C(Z12)) = (8 + 4iF, 3+9iF), *} be the strong 
complex groupoid.  F = C(Z48) be the complex modulo 
integer ring.  FG be the super doubly strong complex 
groupoid ring. 

 
i) Find order of FG. 
ii) Since o (G) / o (F) does FG enjoy any nice algebraic  
 structure? 
iii) Is FG a S-ring? 
iv) Is FG S-simple? 
v) Prove FG has zero divisors. 
 

259. Let G = {S(C(Zn)), (a+biF, c+diF), *, such that a+b = 0 
(mod n) c+d = 0 (mod n) a, b, c, d ∈ Zn \ {0})  

 be a strong complex groupoid of modulo integers.  F = 
C(Zm) such that o (F) / o (G) be the complex modulo 
integer ring FG be the super complex doubly strong 
groupoid ring.   

 
i) Characterize FG. 
ii) If o (G) / o (F) distinguish between thoso two rings. 
iii) If a+b ≡ 1 (mod n) and c+d = 1 (mod n);what are the 

changes in properties of FG? 
 
260. Let  G = {(a1, …, a10)/ ai ∈ S(C(Z24)), *, (12iF, 12)} be the 

strong complex modulo integer groupoid.  F = C(Z12) be 
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the complex modulo integer ring.  FG be the super strong 
doubly comply modulo integer groupoid ring. 

 
i) Find order of FG. 
ii) Is FG commutative? 
iii) Prove FG is associative. 
iv) Find zero divisors if any in FG. 
v) Can FG be simple? 
vi) Is FG a S-ring? 

 
261. Let  

 G = 

1

2

20

a

a

a

	� �
�� �
�� �
� ��� ��� ��

�
 ai ∈ C(Z19), 1 ≤ i ≤ 20, *, (3iF+9, 0)} be a 

strong complex modulo integer groupoid.  F = C(Z19) be 
the complex modulo integer ring.  FG be the super doubly 
strong complex modulo integer groupoid ring. 

 
i) Find order of FG. 
ii) Is FG a S-ring? 
iii) Find any special property enjoyed by FG. 
iv) Prove FG has one sided ideals (right ideals). 
v) Can FG have zero divisors? 
vi) Can FG have S-subrings? 
vii) Prove FG has several subrings. 

viii) Is H = 

1

2

a

a

0

0

	� �
�� �
�� ��� �

� ��
� ��
� ��� ��

�
 ai ∈ C (Z19), 1 ≤ i ≤ 2, *, (3iF+9, 0)}  

      ⊆ G is such that FH is a subring?   
 Can FH be an ideal? 
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262. Let G = {S(C(Z28)), *, (0, 7iF)} be the strong complex 
groupoid.  F = C(Z7) be the complex ring.  FG be the 
super strong doubly a complex groupoid ring. 

 
i) Find order of G. 
ii) Since o (F) / o (G) what is the special property 
 enjoyed by FG? 
iii) Is FG a S-ring? 
iv) Is FG S-simple? 
v) Can FG have S-zero divisors? 
vi) Can FG have S-subrings which are not S-ideals? 
vii) Can FG satisfy any type of special identity? 
 

263. Let G = {3 × 3 matrices with entries from  
S(C(Z12)), *, (3iF, 4)} 

 be the complex matrix groupoid.  F = C(Z12) be the 
complex modulo integer ring.  FG be the super doubly 
complex modulo integer groupoid ring.  

 
i) Find order of FG. 
ii) Prove FG has zero divisors.  
iii) Is FG a S-ring? 
iv) Can FG have S-ideals? 

 
264. Obtain some special features enjoyed by super doubly 

complex groupoid rings of finite order. 
 
265. Can these rings mentioned in (264) be S-simple? 
 
266. Does these rings mentioned in (264) be S-rings? 
 
267. Give a ring mentioned in problem (264) which is a S-

strong Bol ring. 
 
268. Can rings mentioned in problem 264 be S-strong 

Moufang ring? 
 
269. Obtain some special properties enjoyed by quasi loops 

SC(L2n+1 (a+biF)).  
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270. Can these quasi loops mentioned in problem 269 be S-

quasi loops? 
 
271. What are the special features of these quasi loops which 

are different from usual loops? 
 
272. Let H = {All 3 × 7 matrices with entries from  

S(C(Z23)),. *, (22iF+1, iF+22)} 
 be the strong complex modulo integer groupoid.  F = 

C(Z23) be the complex ring.  FH be the super doubly 
strong complex modulo integer groupoid ring. 

 
i) Find order of FH. 
ii) Is FH a S-ring? 
iii) Is FH S-simple? 
iv) Is FH a S-strong Bol ring? 
v) Can FH be a S-strong alternative? 
 

273. Let G = SC(L27 (3+11iF)) be the complex modulo integer 
quasi loop.  Enumerate the properties enjoyed by G. 

 
274. Let G = {SC(L2n+1 (t+uiF)) n > 2, (t, u) ∈ Z2n+1 \ {0},  

t+u = 2n+1} be a complex modulo integer quasi loop.  
 What is the special identity satisfied by G? 
 
275. Characterize those complex modulo integer quasi loops 

which are loops. 
 
276. Make a comparative study between complex quasi loops 

and complex loops.  
 
277. Can any of the complex quasi loops be S-Moufang quasi 

loops? 
 
278. Can any of the strong complex quasi loop be alternative? 
 
279. Can any of the strong complex groupoids be Moufang 

groupoids? 
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280. Does there exists a strong complex quasi loop which is 
not a S-quasi loop?  

 
281. Does there exists a strong complex groupoid which is not 

a S-groupoid? 
 
282. Does there exists a super strong doubly complex groupoid 

ring which is not a S-ring? 
 
283. Does there exist a super doubly strong complex groupoid 

ring which is S-simple? 
 
284. Characterize those super doubly strong complex groupoid 

ring which has S-ideals. 
 
285. Let P = SC(Z(3+13iF)) be a strong complex groupoid. 
 

i) Does P satisfy any of the special identities? 
ii) Is P a S-groupoid? 

 

286. Let S = SC(R 3 7+ iF)) be a strong complex groupoid. 
 

i) Is S a S-groupoid? 
ii) Prove S-is non associative. 
iii) Does S-satisfy any of the special identities? 
iv) Is S, S-simple? 
 

287. Let  

 G = 1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

	� ��

� �
� ���

 ai ∈ C(Z4); 1 ≤ i ≤ 10,  

 (3iF, 2), *}  
 be a strong complex groupoid.  F = C(Z4) be the complex 

ring. FG be the super doubly strong complex groupoid 
ring. 

 
i) Find order of FG. 
ii) Is FG simple? 
iii) Is FG a S-ring? 
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iv) Is P = 1 2 3

4 5

a 0 a 0 a

0 a 0 a 0

	� ��

� �
� ���

 ai ∈ C(Z4); 1 ≤ i ≤ 5, 

(3iF, 2), *} ⊆ G an ideal of G?  
 Will FP ⊆ FG the groupoid subring of FG be an 

ideal? 
v) Does FG have ideals? 
vi) Dies FG contain zero divisors? 

 
 
288. Let P = {S(C(L23 (2+5iF))) be a strong complex quasi 

loop. 
 

i) Find order of P. 
ii) Is P a S-quasi loop? 
iii) Can P have subsets which are S-loops? 
iv) Does P satisfy any of the special identities? 
v) Can P have normal subloops? 

 
289. Let R = {all 7 × 7 matrices with entries from C(Z2), *, 

(1+iF, 0)} be a strong complex groupoid.  F = Z2 be the 
finite field.  FR be the complex groupoid ring. 

 
i) Find order of FR. 
ii) Is FR a S-ring? 
iii) Can FR have ideals? 
iv) Prove FR has right ideals. 
v) Can FR have S-zero divisors? 

 
290. Obtain some nice applications of complex quasi loops. 
 
291. Can a complex quasi loop be a Bruck quasi loop? 
 
292. Can a complex quasi loop contain a subloop which is 

Moufang? 
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293. Obtain some nice applications of complex matrix 
groupoids. 

 
294. Does there exist a compelx matrix groupoid which is a P-

groupoid? 
 
295. Let  
 

 G = 

1 2 3

4 5 6

28 29 30

a a a

a a a

a a a

	� �
�� �
�� �
� ��� ��� ��

� � �
 ai ∈ C(Z12); 1 ≤ i ≤ 30, (3iF, 0), *} 

be a complex modulo integer groupoid.  F = Z be the ring 
of integers. FG be a complex groupoid ring. 

 
i) Is FG S-simple? 
ii) Is FG a S-ring? 
iii) Does FG satisfy any of the special identities? 
iv) Can FG have zero divisors? 
v) Prove FG has right ideals. 
vi) Can FG have S-idempotents? 
 

296. Let G = C(L23(8)) be a complex loop of modulo integers  
F = Z23 be the field of characteristic 23.  FG be the 
complex loop ring.  

 
i) Find order of FG. 
ii) Is FG a S-ring? 
iii) Is FG S-simple? 
iv) Does FG satisfy any of the special identities? 
 

297. Let G = C(Lp(t)) be a complex loop of modulo integers p 
a prime F = Zp be the finite filed.  FG be the complex loop 
ring. 

 
i) Is FG a S-ring? 
ii) Find order of FG.  
iii) If t = p–1, does FG satisfy any of the special  
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 identities? 
iv) If t = 2 does FG satisfy any of the special identities? 
 

298. Let G = {C(Zn(t)), n a compositve odd number greater 
than 30 < n such that (t, n) = (t–1, n) = 1} be a complex 
loop.  F = Zn be the ring of modulo integers FG be the 
complex loop ring. 

 
i) Find order of FG. 
ii) Is FG a S-ring? 
iii) If t = 2, does FG satisfy any of the special identities? 
iv) If t = n–1, does FG satisfy any of the identities? 
v) If Zn is replaced by Zm with o (Zm) / o (Zn); what are  
    the special features enjoyed by Zm G? 
 

299. Let  

     G =  1 2

3 4

a a

a a

	� ��

� �
� ���

 ai ∈ Z12; 1 ≤ i ≤ 12, (2iF, 10), *}  

 be a strong complex modulo integer groupoid. F = Z3 be 
the ring FG be the complex groupoid ring. 

 
i) Find order of FG. 
ii) Is FG a S-ring? 
iii) Does FG have S-ideals? 
iv) Is FG simple? 
v) Can FG satisfy any of the special identities? 
vi) If Z3 is replaced by Z4 study the problems (i) to (v)? 
vii) If Z3 is replace by Z12 study the question (i) to (v)? 
viii) If Z3 is replaced by Z24 study the question (i) to (v)? 

 
300. Let G = {C(Z40), *, (20iF, 0)} be the complex groupoid.   

F = Z20 be the ring of modulo integers.  FG be the 
complex groupoid ring. 

 
i) Is FG a S-ring? 
ii) Find order of FG. 
iii) Prove FG has right ideals. 
iv) Can FG have left ideals? 
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v) Is FG simple? 
 
301. Let G = {C(Z11), *, (0, 8iF)} be the complex groupoid,  

G = Z20 be the ring of modulo integers FG be the complex 
groupoid ring.  Study questions (i) (ii) (iv) and (v) given 
in problem 300 for this FG. 

 
302. Find some special properties enjoyed by complex loops 

C(Ln(m)). 
 
303. Find some applications of polynomials of complex 

groupoids. 
 

304. Let G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z3), *, (2iF, 1+iF)} be the 

complex groupiod polynomials. 
 

i) Find ideals if any in G. 
ii) Is G a S-groupoid? 
iii) Can G has zero divisors? 
 

305. If C(Z3) is replaced by C(Z12) in problem (304) prove G 
has zero divisors. 

 

306. Let G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(R), ( 3 iF, 2), *} be a complex 

polynomial groupoid. 
 

i) Can G have S-ideals? 
ii) Is G a S-groupoid? 
iii) Find any special features enjoyed by G. 
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307. Let G = i
i

i 0

a x
∞

=

	


�
�  ai ∈ C(Z24), *, (0, 8iF)} be a complex 

polynomial groupoid.  
 

i) Prove G has zero divisors. 
ii) Can G have S-ideals? 
iii) Is G a S-groupoid? 
iv) Is a S-Moufang groupoid? 
v) Is G simple? 
vi) Prove G has left ideals. 
vii) Can G have subgroupoids which are not ideals? 
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