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Abstract

It is rigorously shown how the static spherically symmetric solutions of Einstein’s
equations can furnish a null naked singularity associated with a point mass source
at r = 0. The construction relies in the possibility of having a metric discontinuity
at the location of the point mass. This result should be contrasted with the spacelike
singularity described by the textbook black hole solution. It has been argued by
some authors why one cannot get any information from the null naked singularity so
it will not have any undesirable physical effect to an outside far away observer and
cannot cause a breakdown of predictability. In this way one may preserve the essence
of the cosmic censorship hypothesis. The field equations due to a delta-function
point-mass source at r = 0 are solved and the Euclidean gravitational action (in
h̄ units) corresponding to those solutions is evaluated explicitly. It is found that
it is precisely equal to the black hole entropy (in Planck area units). This result
holds in any dimensions D ≥ 3. We finalize by arguing why the Noncommutative
Gravity of the spacetime tangent (co-tangent) bundle is the proper arena to study
point masses.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m, 04.65.+e, 11.15.-q,
11.30.Ly

1 Static Spherically Symmetric Solutions and Null

Naked Singularities

To prove how null naked singularities can be associated to point mass sources, let us
begin by writing down the class of static spherically symmetric (SSS) vacuum solutions
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of Einstein’s equations [1] in D = 4 and given by a family of metrics parametrized by the
area radial functions R(r) ( in c = 1 units )

(ds)2 = (1− 2GM

R
) (dt)2 − (1− 2GM

R
)−1 (dR)2 − R2(r) (dΩ)2. (1.1)

where (dR)2 = (dR/dr)2(dr)2 and the solid angle infinitesimal element is (dΩ)2 =
(dφ)2 + sin2(φ)(dθ)2. This expression of the metric is given in terms of the area radial
function R(r) (a radial gauge) and does not violate Birkoff’s theorem since the metric
(1.1) expressed in terms of the area radial function R(r) has exactly the same functional
form as that required by Birkoff’s theorem. The values of r span the region 0 ≤ r ≤ ∞.

There are two interesting cases to study based on the boundary conditions obeyed
by R(r) : ( i ) the Hilbert textbook (black hole) solution [4] when R(r) = r obeying
R(r = 0) = 0, R(r → ∞) → r. And : ( ii ) the Abrams-Brillouin [3] radial gauge
R(r) = r + 2GM based on choosing the cutoff R(r = 0) = 2GM such that gtt(r = 0) = 0
which apparently seems to ”eliminate” the horizon and R(r →∞)→ r. This was also the
salient feature behind the original solution of 1916 found by Schwarzschild. However, the
choice R(r = 0) = 2GM has a serious flaw and is : How is it possible for a point-mass
at r = 0 to have a non-zero area 4π(2GM)2 and a zero volume simultaneously ?; so it
seems that one is forced to choose the Hilbert gauge R(r = 0) = 0. Nevertheless it was
shown in [8] how by slecting a judicious choice of R(r) one can cure this flaw and have the
correct boundary condition R(r = 0) = 0, while displacing the horizon from r = 2GM to
a location arbitrarily close to r = 0 as one desires, rh → 0, and where stringy geometry
and Quantum Gravitational effects begin to take place.

There are two ways to shift the horizon away from the known 2GM value. One way
is by assigning an infinite family of everywhere smooth area radial functions R(r) such
that R(r = 0) = 0; R(r → ∞) → r, so the value of the shifted horizon rh, defined by
the condition R(r = rh) = 2GM , obeys 0 < rh ≤ 2GM . In this case one has an infinite
family of metric solutions that are diffeomorphic to the Hilbert text book solution defined
by R(r) = r.

There is another choice for the area radial function R(r) leading to a metric solution
which is not diffeomorphic to the above Hilbert text book solution because R(r) and the
metric is discontinuous at r = 0. This was attained in [8] when the area radial function,
was chosen to be R(r) = r + 2G|M |Θ(r), where the Heaviside Step function is defined
Θ(r) = 1 when r > 0, Θ(r) = −1 when r < 0 and Θ(r = 0) = 0 (the arithmetic mean of
the values at r > 0 and r < 0). The area radial function becomes R ∼ r when r >> 2GM
and one recovers the correct Newtonian limit in the weak field limit regime. It is now, via
the Heaviside step function, that we may maintain the correct behaviour R(r = 0) = 0,
when r = 0, consistent with our intuitive notion that the spatial area and spatial volume
of the point mass at r = 0 has to be zero. The area radial function R(r) = r+2G|M |Θ(r)
also obeys R(r < 0) = −R(r > 0) < 0 such that the solutions with r < 0, M > 0 have a
one-to-one correspondence to the solutions with r > 0, M < 0 ( ”white hole” ) because
| −M | = |M |. The latter M < 0 repulsive gravity regime is what it is called a ”white”
hole.

The metric in eq-(1.1) associated with our choice of the areal radial function R(r) =
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r + 2G|M |Θ(r) is continuous everywhere except at the singularity r = 0, the location
of the point mass source. Because this is an infinitely compact source there is noth-
ing wrong with having a discontinuity of the metric at r = 0. The study of Einstein
equations and the joining of discontinuous metrics when these are discontinuous across
the joining (hyper) surface was studied by [6] in the static spherically symmetric case.
These discontinuous metrics obey Einstein equations with an energy-momentum tensor
which has a delta function type of singularity on the (hyper) surface of discontinuity. It
was found that a surface tension is always associated to the cases where the metrics are
discontinuous. The kind of metric discontinuity which follows by our choice of the areal
radial function R(r) above is of a different type than the ones studied by [6]. In section
2 we shall study explicitly the case where it is a delta function type of singularity for
the energy-momentum tensor (mass density and pressure) associated with the point mass
which is the source of a curvature discontinuity at r = 0.

Due to the discontinuity of the metric at r = 0, the location r = 0, R(r = 0) = 0
corresponds to a spacelike singularity since gtt(r = 0) = −∞ < 0 : it changes sign.
Whereas grr(r = 0) = 0 because the quantity r(1+2GMδ(r))2 = 0, when r = 0, due to the
fact that it is an odd function of r so the latter expression vanishes at r = 0. Furthermore,
because gtt(r = 0) = −∞ < 0 has changed sign, and grr = 0, the displacement ds2 < 0
is now spacelike, so there is no violation of the cosmic censorship conjecture (that rules
out timelike singularities).

Secondly, despite that the metric is not continuous nor differentiable at r = 0, it is
explicitly shown in the Appendix that despite the derivatives dR

dr
= 1 + 2G|M |δ(r) and

(d2R/dr2) = 2G|M |δ′(r) are singular at r = 0, there is an exact and precise cancellation
of these singular derivatives (involving delta functions) in the evaluation of the Ricci
curvature tensor components yielding a zero Ricci tensor Rµν = 0 and a zero Ricci scalar
R = 0. What is not zero is the Riemann curvature tensorRµνρτ . Therefore, the conditions
Rµν = 0 and R = 0 are satisfied for any area radial function R(r), irrespective if it has
singular derivatives at r = 0 or not.

Since r = ±
√

x2 + y2 + z2, a negative r branch is mathematically possible and is
compatible with the double covering inherent in the Fronsdal-Kruskal-Szekeres [5] ana-
lytical continuation in terms of the U, V coordinates. Each point of spacetime inside
r < 2GM is represented twice ( black hole and white hole picture). However there is
a fundamental difference (besides others) with the Fronsdal-Kruskal-Szekeres extension
into the interior of r = 2GM , their metric description is no longer static in r < 2GM ,
whereas in our case the metric is static for all values of r.

To sum up, because R(r) = ε + 2G|M |, when r = ε > 0, the horizon to be can
the be displaced from r = 2G|M | to a location as arbitrarily close to r = 0 as desired
rHorizon → 0. To be more precise, the horizon occurs at r = 0+ and at r = 0 one hits the
singularity due to the discontinuity of the metric. In the r-coordinates picture there is a
discontinuity of the metric (and scalar curvature) at r = 0, the location of the point mass
source. In the R-coordinate picture, due to the correct condition R(r = 0) = 0 consistent
with the fact that a point must have zero area (since Θ(r = 0) = 0), one can interpret
the discontinuity of the metric as if the region of 0 < R < 2GM were eliminated from the
spacetime manifold to make the surface at R = 2GM a boundary of the spacetime while
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leaving the singularity at r = 0 behind.
Having R(r = 0) = 0 and R(r = 0+) = 2GM (we shall omit the absolute symbol

in M for simplicity), our solutions can be described by focusing on the right and left
regions (quadrants) of the Rindler-wedge formed by the straight (null) lines U = ±V ,
corresponding to r = 0+, t = ±∞, and whose slope is +45,−45 degrees respectively.
This is attained after performing the Fronsdal-Kruskal-Szekeres change of coordinates [5]
in the exterior region R > 2GM

U = (
R

2GM
−1)

1
2 eR/4GM cosh (

t

4GM
), V = (

R

2GM
−1)

1
2 eR/4GM sinh (

t

4GM
); R > 2GM

(1.2)
and the change of coordinates in the interior region R < 2GM

U = (1− R

2GM
)

1
2 eR/4GM sinh (

t

4GM
), V = (1− R

2GM
)

1
2 eR/4GM cosh (

t

4GM
); R < 2GM

(1.3)
In the overlap R = 2GM , one has that U = ±V and t = ±∞; and U = V = 0 for finite
t. The coordinate transformations lead to a well behaved metric (except at R(r = 0) = 0)

ds2 =
4(2GM)3

R(U, V )
e−R(U,V )/2GM (dV 2 − dU2 ) −R(U, V )2(dΩ)2. (1.4)

the functional form R(U, V ) is defined implicitly by the equation

U2 − V 2 = (1− R

2GM
) eR/42GM ⇒ R

2GM
= 1 + W (

V 2 − U2

e
) (1.5)

where W is the Lambert function defined implicitly by z = W (z)eW (z). When R = 2GM
and dΩ = 0, the above interval displacement ds2 = 0 is null along the lines U = ±V ⇒
dU = ±dV . It is singular at R(r = 0) = 0 along the (spacelike) lines V 2 − U2 = 1 ⇒
dV 6= ±dU .

The picture proposed in [8] was that a radially incoming photon, starting at point
P in the right region (quadrant) of the Rindler wedge, moves upwards parallel to the
−45 degrees (U = −V ) null-line and reaches the null-line branch ( U = V ), given by
R(r = 0+) = 2GM and t = ∞, at point P ′. Then it ”tunnels” through the interior
region R < 2GM and reaches the spacelike singularity r = 0, R(r = 0) = 0 at point P ′′

and whose value of t(P ′′) is finite. This ”tunneling” behaviour from P ′ to P ′′ is a direct
consequence of the discontinuity of the metric at r = 0 resuting in a separation between
the points P ′ = (r = 0+, t =∞) and P ′′ = (r = 0, t = finite).

In essence, the singularity r = 0, R(r = 0) = 0, for all values of t, has been spliced-
off from the rest of spacetime by carving out the future and past regions (quadrants)
of the Rindler wedge (creating a spacetime void) leaving only the right and left regions
(quadrants) bounded by the null lines U = ±V , corresponding to R(r = 0+) = 2GM at
t = ±∞. The fact that we end up only with the left and right regions of the Rindler
wedge might have some relationship to the factor of two discrepancy of the Hawking
radiation temperature which appears when working with the left-right versus the future-
right regions of the Rindler wedge [10].
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The purpose of this letter is to considerable improve the findings in [8] due to the fact
that this ”tunneling” behavior through the interior region R < 2GM described above is
not fully satisfactory since there is a discontinuity/disconnect in the geodesics resulting
in the separation of the singularity from the points of the geodesic lines inside the region
R ≥ 2GM . The correct procedure goes as follows. Firstly, one retains the Kruskal-
Szekeres change of coordinates in the exterior region R ≥ 2GM , but one replaces the
change of coordinates in the interior region R < 2GM in eqs-(1.3) by the following one

V = (
R

2GM
)

1
2 cosh(

t

4GM
); U = (

R

2GM
)

1
2 sinh(

t

4GM
); R < 2GM (1.6)

leading to V 2 − U2 = R
2GM

and U
V

= tanh(t/4GM). In doing so one has that the points
R(r = 0) = 0 and t = ±∞ are mapped to the straight lines U = ±V with a ±45 degree
slope, respectively. While R(r = 0) = 0 is mapped to the origin of coordinates U = V = 0
for arbitrary but finite values of t. In this fashion there is geodesic completeness and
there are no disconnected points along the geodesics. The incoming radial null geodesics
(and future-oriented time like geodesics) all end up in the null singularity described now
by the straight line U = V , instead of the (spacelike) hyperbola V 2−U2 = 1, and without
”tunneling” through the interior region R < 2GM .

To show that now one has a null singularity at U = ±V one inserts the above change
of coordinates (1.6) for the region R < 2GM into the metric (1.1), such that it leads to
a different expression for the metric than in eq-(1.4) and given by

ds2 = gUU dU2 + gV V dV 2 + 2 gUV dU dV + R2(U, V ) dΩ2, R < 2GM (1.7)

where

gUU = (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMU)2 (1.8a)

gV V = (1− 1

V 2 − U2
) (

4GMU

V 2 − U2
)2 − (1− 1

V 2 − U2
)−1 (4GMV )2 (1.8b)

gUV = gV U = − (1− 1

V 2 − U2
) (

4GMV

V 2 − U2
) (

4GMU

V 2 − U2
) +(4GM)2 (1− 1

V 2 − U2
)−1 U V

(1.8c)
Despite the different expression for the metric components in eqs-(1.7) from those in eq-
(1.4) , one still has a null interval displacement ds2 = 0 along the lines U = ±V , and
which correspond to the values R(r = 0) = 0 and t = ±∞, respectively. Therefore, one
has now a null singularity along the lines U = ±V instead of a spacelike singularity along
the hyperbola V 2 − U2 = 1. One can verify explicitly that when U = ±V, dU = ±dV
there is an exact cancellation of the singular terms
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2
(4GM)2UV

(V 2 − U2)3
dUdV − (4GM)2U2

(V 2 − U2)3
dV 2 − (4GM)2V 2

(V 2 − U2)3
dU2 (1.9a)

and

−2
(4GM)2UV

(V 2 − U2)2
dUdV +

(4GM)2U2

(V 2 − U2)2
dV 2 +

(4GM)2V 2

(V 2 − U2)2
dU2 (1.9b)

in the above infinitesimal interval ds2 of eqs-(1.7,1.8). Whereas there is also an exact
cancellation of the non-singular terms when U = ±V, dU = ±dV . Since R(r = 0) = 0,
one obtains a net zero value for the displacement ds2 = 0 in eq-(1.7) furnishing then a null
interval. 1 Because the curvature-squared Kretschmann invariant blows up RµνρτRµνρτ ∼
(2GM)2/R(r)6 → ∞ when R(r) = 0 at r = 0, one has then a null singularity at r = 0,
as opposed to a spacelike singularity in the traditional solutions.

The physical insignificance of null naked singularities within the context of Penrose’s
cosmic censorship conjecture was analyzed by [12] in the study of gravitational collapse of
general forms matter in the most general of spacetimes. It was shown that the energy is
completely trapped inside the null singularity and therefore these null singularities cannot
be experimentally observed and cannot cause a breakdown of predictability. This conclu-
sion strongly supports and preserves the essence of the cosmic censorship hypothesis. A
timelike singularity is in principle likely to be visible to an outside observer as the redshift
is always finite for the light rays emerging from it. For the null singularity surface, the
redshift basically diverges as the proper time goes to zero on the null surface. It was
argued by [12] that despite that the null singularity is geometrically naked (null geodesics
can come out of it) essentially it is not physically visible (naked) as no energy can come
out of it due to the infinite redshift. Because one cannot get any information from the null
naked singularity it will not have any undesirable physical effect to an outside observer.

Having made these remarks one should emphasize that we have a point-mass source at
r = 0 and which may, or may not, arise from gravitational collapse. Secondly, the point-
mass singularity is described by a null world-line, instead of a null surface. One could study
the scenario where gravitational collapse might end up in the null singularity described
in this work. This would require, in particular, abandoning the condition that the metric
is smooth everywhere because we have a discontinuity of the area radial function R(r) at
r = 0 furnishing a class of spacetime metrics that have not been considered before in the
singularity theorems literature, to our knowledge. As of today, we do not have any proof
or any specific mathematically rigorous formulation of the Cosmic Censorship Conjecture
available within the framework of gravitation theory [19]. Therefore, we still cannot
ascertain with absolute certainty that spacetime singularities formed after gravitational
collapse would always be covered by black hole horizons. For this reason we believe that
the null naked singularity solution associated with point mass sources deserves to be
investigated further.

To sum up, the choice of the coordinate transformations in eq-(1.6), valid for R <
2GM , leads to the expected proper discontinuity of the area radial function R(r) at

1One may verify also that ds2 = 0 in eq-(1.7) when dΩ2 = 0 and V 2 − U2 = 1 ⇔ R = 2GM ,
which follows only if one uses eq-(1.6), and after inserting the values for the metric components given by
eqs-(1.8) due to an exact cancellation of the singular terms when V 2 − U2 = 1⇔ dV = UdU/V .
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r = 0; i.e. R(r) jumps from the value of 2GM to 0 along the null lines U = ±V , whereas
the values of t remain properly fixed at ±∞, respectively, as they should. On the other
hand, the Kruskal-Szekeres coordinate transformation in eq-(1.2), valid for R ≥ 2GM , is
duly consistent with the value of R = 2GM at r = 0+, and which also corresponds to the
null lines U = ±V and t = ±∞, which can be verified by a mere application of eqs-(1.2).
Infalling particles and photons will reach the null singularity at an infinite coordinate time
t = ∞ as measured by an external observer in the asymptotically flat region at infinity
due to the infinite redshift factor.

Furthermore, since there is no longer an interior region between R = 0 and R = 2GM ,
due to the chosen discontinuity of the area radial function R(r) at r = 0, there is no
longer an spatial volume inside. This could be relevant in explaining why the gravitational
entropy does not depend on the volumes but depends on the areas. Hawking radiation can
also emerge from naked singularities. In particular, under certain adiabatic conditions,
a Planck-distributed flux of Hawking-like radiation can emerge from evolving black holes
for which no horizon has been formed yet, or even will ever form [13]. On the other
hand, it has been argued that until an understanding of quantum gravity is made, in
at least some regimes, no compelling theoretical case for, or against radiation, by black
holes is likely to be made, see [14] and references therein. For this reason it is beyond
the scope of this work to try to answer the question whether or not the findings of this
work will be useful in resolving the information paradox and which differs from the main
approaches to the solution of the paradox based on the AdS/CFT correspondence, Black
hole complementarity, Fuzzballs in string theory, the Holographic principle, etc....

2 Point Mass Sources and Euclidean Gravitational

Action as Entropy

A rigorous correct treatment of point mass distributions in General Relativity has been
provided based on Colombeau’s [7] theory of nonlinear distributions, generalized functions
and nonlinear calculus. This permits the proper multiplication of distributions since the
old Schwarz theory of linear distributions is invalid in nonlinear theories like General
Relativity. Colombeau’s nonlinear distributional geometry supersedes the no-go results of
Geroch and Traschen [16] stating that there is no proper framework to study distributions
of matter of co-dimensions higher than two (neither points nor strings in D = 4 ) in
General Relativity. Colombeau’s theory of Nonlinear Distributions (and Nonstandard
Analysis) is the proper way to deal with point-mass sources in nonlinear theories like
Gravity and where one may rigorously solve the problem without having to introduce a
boundary of spacetime at r = 0.

Nevertheless one may still arrive at some interesting physical results by recurring to
the ordinary Dirac delta functions. In order to generate δ(r) terms in the right hand side
of Einstein’s equations in the presence of a point-mass source, it was argued in [8] that
one must replace everywhere r → |r| as required when point-mass sources are inserted.
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The Newtonian gravitational potential (in three dimensions) due to a point-mass source
at r = 0 is given by −GNM/|r|. It is consistent with Poisson’s law which states that
the non-zero Laplacian of the Newtonian potential ∇2(−GM/|r|) = 4πGρ is proportional
to the mass density distribution ρ = (M/4πr2)δ(r). However, the Laplacian in spherical
coordinates of (1/r) is identically zero. For this reason, there is a fundamental difference
in dealing with expressions involving absolute values |r| like 1/|r| from those which depend
on r like 1/r. This is a direct consequence of the discontinuity of the derivatives of the
function |r| at r = 0.

In particular, after rewriting the metric components in the form

gtt = 1− 2GM

|r|
= 1− 2GM

r

r

|r|
= 1− 2GM

r
f(r); f(r) ≡ r

|r|
. (2.1)

grr = − 1

gtt

. (2.2)

such that the derivatives

f ′(r) =
df(r)

dr
= δ(r); f ′′(r) =

d2f(r)

dr2
= δ′(r). (2.3)

reveals that the nonvanishing R is given by :

R = − 2GM [
f ′′(r)

r
+ 2

f ′(r)

r2
] =

− 2GM [
δ′(r)

r
+ 2

δ(r)

r2
] = − 8πG T (2.4)

where T is the trace of the stress energy tensor gµνTµν in the Einstein’s field equations due
to the presence of matter and the signature chosen is (+,−,−,−). The scalar curvature
(2.4) is R = 0 for r > 0 and it is singular at r = 0. Whereas the scalar curvature R and
Ricci tensorRµν associated with the standard Schwarzschild (Hilbert) solutions, involving
r instead of |r|, are identically zero for all values of r, including r = 0. 2

The non-trivial Einstein-Hilbert action associated with a point-mass source is

S = − 1

16πG

∫
R 4πr2 dr dt =

1

16πG

∫
2GM [

δ′(r)

r
+ 2

δ(r)

r2
] 4πr2 dr dt. (2.5)

Integrating by parts yields

1

16πG

∫
8πGM [ 2δ(r) − δ(r) ] dr dt =

1

16πG

∫
8πG (

M δ(r)

4πr2
) 4πr2 dr dt =

2One may notice that by choosing f(r) = κ/r in eq-(2.4) for κ= constant, it yields R = 0 which
implies a zero trace for the stress energy tensor T = 0, as it happens in Electromagnetism due to the
conformal invariance of Maxwell equations in D = 4. The Reisnner-Nordstrom solutions (in the massless
case) have for temporal metric component gtt = 1 − e2/r2, which has the same functional form as
gtt = 1− (2GM/r)f(r) = 1− 2GMκ/r2 ↔ 1− e2/r2.
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1

2

∫
M dt (2.6)

The Euclideanized Einstein-Hilbert action associated with the non-trivial scalar curvature
(2.4) is obtained after a compactification of the temporal direction along a circle S1 whose
net Euclidean time integration interval is 2πtE . The latter interval can be defined in terms
of the Hawking temperature TH and Boltzman constant kB as 2πtE = (1/kBTH) = 8πGM .
Integrating with respect to the Euclidean temporal coordinate, the Euclidean gravitational
action becomes then

SE = (
M

2
) (2πtE) = 4π G M2 =

1

4

4π(2GM)2

GN

=
Area

4 L2
P

. (2.7)

which is precisely the black bole Entropy in Planck area units G = L2
P ( h̄ = c = 1 ).

This result that the Euclideanized gravitational action (associated with a non-trivial
scalar curvature involving delta functions due to point-mass sources) is the same as the
black hole entropy can be generalized to higher dimensions. In the Reissner-Nordsrom
(massive-charged) and Kerr-Newman black hole case (massive-rotating-charged) we gave
shown also [8] that the Euclidean action in a bulk domain bounded by the inner and
outer horizons is the same as the black hole entropy. These findings should be compared
to Verlinde’s enthropic gravity proposal [18] based on the holographic principle.

Replacing the area radial function R for is absolute value |R| in eq-(1.1) gives

(ds)2 = (1− 2GM

|R|
) (dt)2 − (1− 2GM

|R|
)−1 (dR)2 − R2(r) (dΩ)2. (2.8)

and it leads to a non-trivial scalar curvature

R = − 2GM [
δ′(R)

R
+ 2

δ(R)

R2
]; δ′(R) =

∂(δ(R))

∂R
(2.9)

that is singular at R(r = 0) = 0 and vanishing for r > 0 ⇒ R(r) > 0. The non-trivial
Einstein-Hilbert action becomes, after integrating by parts,

S = − 1

16πG

∫
R 4πR2 dR dt =

1

2

∫
M dt (2.10)

The end result after integration is the same as in eq-(2.7) as one would expect. The main
difference in using the area radial function R(r) = r + 2G|M |Θ(r) is that the horizon is
now displaced to r = 0+.

As discussed in detail in [8] we can model the mass distribution by a smeared delta
function [17], by starting with the following field equations associated with the signature
(+,−,−,−)

R00 −
1

2
g00 R = 8πG T00 = g00 8πG ρ(r), Rij −

1

2
gij R = 8πG Tij (2.11)

where ρ(r) is a smeared delta function given by the Gaussian, and the Tij elements are
comprised of a radial and tangential pressures of a self-gravitating anisotropic fluid [17]
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ρ(r) = M
e−r2/4σ2

(4πσ2)3/2
, pr = − ρ(r), ptan = pθ = pφ = −ρ(r)− r

2

dρ

dr
. (2.12)

The radial pressure pr = −ρ is negative pointing towards the center r = 0 consistent with
the self-gravitating picture of the droplet. The radial dependence of the mass distribution
is explicitly given in terms of the incomplete Gamma function γ[a, r] as

M(r, σ) = M
∫ r

0

e−r2/4σ2

(4πσ2)3/2
4πr2 dr =

2M√
π

γ[
3

2
,

r2

4σ2
]. (2.13)

The metric solution to the Einstein’s equations (2.11) are [17]

(ds)2 = (1− 2GM(r, σ)

r
) (dt)2 − (1− 2GM(r, σ)

r
)−1 (dr)2 − r2 (dΩ)2. (2.14)

In the limit σ2 → 0 one recovers the delta function

limσ→0
e−r2/4σ2

(4πσ2)3/2
→ δ(r)

4πr2
. (2.15)

and the incomplete Gamma function reduces to the ordinary Gamma function Γ(3
2
) =

(
√

π/2) such that M(r, σ → ∞) tends to M . The stress energy tensor for a point mass
source is given explicitly by the zero-width limit of the Gaussian in the right hand side
of eqs-(2.12), as shown explicitly in [8]. It involves both density and pressure terms. One
one can verify the validity of eq- (2.4), in the zero width limit, after taking the trace of
the stress energy tensor T µ

ν = diagonal (ρ,−pr,−pθ,−pφ) and whose components in the
σ → 0 limit are

ρ(r) = − pr(r) = M
δ(r)

4πr2
, pθ(r) = pφ(r) = −M

δ′(r)

8πr
(2.16)

The generation of source terms in General Relativity and the appearance of naked
singularities due to the choices of differential structures in exotic four-dim manifolds has
been studied extensively by [15]. The discontinuity of R(r) and its derivatives at the
singularity r = 0 (location of the point mass source) that lead to null naked singularities
might be relevant to the existence of different diffeomorphic structures in exotic four-
dimensional manifolds (and higher dimensions). This warrants further investigation.

We finalize by adding some remarks [8] about how a fuzzy point mass may admit
a short distance cut-off of the Brillouin form R(r = 0) = 2GM (instead of zero) if
one has a Noncommutative spacetime coordinates algebra [xµ, xν ] = iΣµν , [pµ, pν ] =
0, [xµ, pν ] = ih̄ηµν where Σµν are c-numbers of (Planck length)2 magnitude. A change
of coordinates in phase space x′µ = xµ + 1

2
Σµν pν leads to commuting coordinates x′µ

and allows to define r′(r) =
√

(xi + 1
2

Σiρ pρ) (xi + 1
2

Σiτ pτ ). One can select Σµν such

that r′(xi = 0) = r′(r = 0) = 2GM , after using the on-shell condition pµp
µ = M2.
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Therefore one recovers the cut-off corresponding to the Brillouin area radial function
R(r) = r + 2GM ⇒ R(r = 0) = 2GM . Thus a fuzzy point mass has non-zero area and
volume. Finsler geometry (Lagrange-Finsler manifolds) associated with the spacetime
tangent bundle and the Hamilton-Cartan geometry of phase spaces, is the proper arena
where one can study point masses within the context of Noncommutative Gravity of the
spacetime tangent ( co-tangent ) bundle. For a nice review of the physical applications of
Finsler geometry see [20].

Another Planck scale cut-off can be derived in terms of noncommutative Moyal star

products f(x) ∗ g(x) simply by replacing r → r∗ =
√

r ∗ r =
√

r2 + Σijxixj/r2 + .... so

r∗(x
i = 0) 6= 0, and it receives Planck scale corrections. A point is fuzzy and delocalized,

henceforth it has a non-zero fuzzy area and fuzzy volume. An open problem is to verify
whether or not Schwarzschild deformed metrics of the form

gtt(r∗) = 1− 2GM

r∗
, grr = −g−1

tt , r∗ =
√

r ∗ r =
√

r2 + Σijxixj/r2 + .... . (4.2a)

with the angular part r∗ ∗ r∗ (dΩ)2, solve the Noncommutative Gravity field equations
to all orders in the noncommutative parameter Σµν . This is a very difficult problem.

APPENDIX : Schwarzschild-like solutions in D > 3

In this Appendix we follow closely our prior calculations [9] to the static spherically
symmetric vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start
with the line element with signature (−, +, +, +, ...., +)

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 + R2(r)g̃ijdξidξj. (A.1)

Here, the metric g̃ij corresponds to a homogeneous space and i, j = 3, 4, ..., D− 2 and the
temporal and radial indices are denoted by 1, 2 respectively. In our text we denoted the
temporal index by 0. The only non-vanishing Christoffel symbols are given in terms of
the following partial derivatives with respect to the r variable and denoted with a prime

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi

2j = R′

R
δi
j, Γi

jk = Γ̃i
jk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δi
kg̃jl − δi

l g̃jk).

(A.3)

The vacuum field equations are
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R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′

R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′

R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′ . (A.7)

The solution of this equation is

µ + ν = ln R′2 + C, (A.8)

where C is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (

dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.
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For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3
)− 2 ln R′. (A.13)

βD is a constant equal to 16π/(D − 2)ΩD−2, where ΩD−2 is the solid angle in the D − 2
transverse dimensions to r, t and is given by (D − 1)π(D−1)/2/Γ[(D + 1)/2].

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3
)(dt)2 +

(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξidξj =

−(k − βDGDM

RD−3
)(dt)2 +

1

(k − βDGDM
RD−3 )

(dR)2 + R2(r)g̃ijdξidξj (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the form R(r). These equations are satisfied even if R(r) has singular derivatives
at r = 0, like those appearing in dR/dr = 1 + 2G|M |δ(r). It is also interesting to observe
that the only effect of the homogeneous metric g̃ij is reflected in the k = ±1 parameter,
associated with a positive ( negative ) constant scalar curvature of the homogeneous D−2-
dim space. k = 0 corresponds to a spatially flat D − 2-dim section. The metric solution
in eq-(1.1) is associated to a different signature than the one chosen in this Appendix,
and corresponds to D = 4 and k = 1.
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