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1. Bondi’s Solution
Assuming the existence of negative besides positive masses, the two body problem of two masses equal
in magnitude by opposite in sign, was studied in the approximation of the linearized Einstein equations by
Bondi [1]. As expected from the equivalence principle, where a positive mass attracts positive or negative
masses, and where a negative mass repels all masses regardless of their sign, such a two-body
configuration is self-accelerating and would make unstable a vacuum composed of an equal number of
positive and negative masses. However, if the mass of the gravitational field set up between the two
masses is included the result is very different. This field mass is not included in Bondi’s analysis, because
it comes from the nonlinear terms in Einstein’s gravitational field equations.

2. Negative Masses in Einstein’s Gravitational Field Equation

While Bondi simply assumed that negative masses might exist, Eintein’s gravitational field equations
imply the existence of negative masses [2]. For the proof it is sufficient to consider the gravitational field
outside a spherical mass distribution, where one has Schwarzchild’s solution. With the line element in
spherical coordinates

2 2 2 2 2 2 2 2 2 2    ds f c dt - h dr - r ( d sin d ) (1)

expressing the components of the metric tensor gik in space-time by two functions h(r) and f(r), and
inserting the thusly given components of the metric tensor in Einstein’s vacuum field equation,

0ikR (2)

one obtains
0
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For the gravitational field F, if measured with the eigen-time fdt, and eigen-length hdr, one obtains for the
acceleration and hence the radial force F:
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 
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(4)

With F given by (4) one can write for the second equation (3):

2
2
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1 0  
F( r F )

hr c

(5)

The first term is identical to the definition of the divergence of a radial vector F r/ F r which is πr2F
of the flux of F through a spherical surface of radius r, divided by the increase in the volume of this
sphere 4πr2hdr. One therefore can write for (5)
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1 0 F Fdiv
c

(6)

We compare this result with Newtonian gravity where (G is Newton’s constant)

4   Fdiv G (7)

and conclude that the gravitational field F has a negative mass density

2

24
  

g
F
Gc

(8)

We can test this result by putting
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GMF
r

 
(9)

the gravitational field of a spherical mass of radius R, for r > R. We find
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c r
(10)

To obtain the total amount of negative mass Mg outside of the mass M, we integrate
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(11)

or

2
2   g pot

GMM c E
R

(12)

where Epot is the negative gravitational potential energy of a spherical shell of radius R and mass M. This
example shows, that to obtain the gravitational field mass Mg, one simple may have to equate the
gravitational potential energy with Mgc2.

Next we go to the two body problem treated by Bondi [1]. The Newtonian gravitational potential energy
for two bodies of mass m1 and m2 and separated by the distance r is

1 2 pot
Gm mE

r
(13)

and would become positive if one of the masses is negative.

Lengthy calculations with Einstein’s nonlinear theory, including quantum field theoretical corrections,
give for the potential energy of two masses [3]
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where rp ≈ 10-33cm is the Planck length, making the last term in the bracket on the r.h.s. of (14) small for
r >> rp.

It is remarkable that for m2 = -m1 the second term vanishes, and one obtains there for the gravitational
field energy (m1=|m2|=m)
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(15)

Therefore, to complete Bondi’s calculation one may simple add Mg to the positive mass of the positive-
negative mass two body problem.

It was shown by Bopp the presence of negative masses can be accounted for in a Lagrange
function,  k k kL q ,q ,q   , which also depends on the acceleration. The equations of the motion are there
derived from the variational principle:

( , , ) 0k k kL q q q dt    (16)

or from

( , , ) 0a a ax u u ds    (17)

where / ,a au dx ds / ,a au du ds 2 /2(1 ) ,tds dt  v / ,c  1 2 3( , , , ),ax x x x ict and where
2 1/2(1 )L dt   . With the subsidiary condition

2 2
aF u c   (18)

One obtains from (17)

( ) 0
a a a

d F d
ds u ds u x

     
      

(19)

where λ is a Lagrange multiplier. In the absence of external forces, Λ can only depend on 2
au . The

simplest assumption is a linear dependence

2
0 1(1 / 2) ak k u     (20)
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whereby (19) becomes

 12 0a a
d u k u
ds

  
(21)

or

12 2 0a a au u k u      (22)

Differentiating the subsidiary condition one has

0,a au u  2 0,a a au u u   3 0a a a au u u u   (23)

by which (22) becomes

2
1 1

32 3 2 0
2a a a

dk u u k u
ds

         
(24)

It has the integral (summation over  )

2
0 1

ν

32
2

k k u   
(25)

where k0 appears as a constant of integration. By inserting (25) into (21) the Langrange multiplier is
eliminated and one has

2
0 1 1

3( ) 0
2 a a

d k k u u k u
ds 
     

 
(26)

Writing (26) as follows:

0,adP
ds

 2
0 1

ν 1

3( )
2a a aP k k u u k u   

(27)

where Pa are the components of the momentum-energy four-vector. For k1=0 one has pa=k0ua, which by
putting k0=m is the four-momentum of a spinless particle with rest mass m. The mass-dipole moment is
therefore given by

1a aP k u  (28)

As can be seen from the conservation of angular momentum

0d J
ds  

(29)

where

[ , ] [ , ]J   x P p u (30)
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and where [ , ] x P x P     x P , that for a particle at rest (Pk=0, k=1, 2, 3) one has

[ , ] ,kl kl k l l kJ p u p u  p u k,l=1, 2, 3 (31)

which is just the spin angular momentum.

The energy of a pole-dipole particle at rest, and for which u=icγ, is determined by the fourth
component

2
4 0 1

ν

3( )
2

imc i k k u c  P 
(32)

For the transition to quantum mechanics one needs the equation of motion in canonical form.
There we separate the space and time derivative, whereby / ( , , )L ds dt L   r r r  . Setting c=1 we
have

2 2 1/ 2
0 1

2
2 2

4 2 1/ 22 1/ 2

1( )(1 v )
2

1
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 

(33)

From

,L d L
dt

 
 
 

P
v v

L



s
v

(34)

one has to compute the Hamilton function

H L    v P v s (35)

From /L  s v one obtains
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k

       

(36)

by which together with (33) v s can be expressed in terms of v and s. In these variables the angular
momentum conservation law (29) assumes the form

 r P + v s = const (37)

with the vector s is equal the mass dipole moment. For the Hamilton function (35) one then finds
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2 1/ 2 2 3/ 2 2 2
0 1(1 v ) (1 / 2 )(1 v ) ( )H k k          v P s s v (38)

Putting

2 1/ 2
4(1 v )

i









 

P
r

v a



(39)

where 4{ , }  a are the Dirac matrices, one finally obtains the Dirac equation

0H
i t

 
 


 (40)

where

1 1 2 2 3 3 4

2v v v

H P P P m

  

   
    

   

 

(41)

with the mass given by

2 2 2
0 1(1 / 2 )(1 v ) ( )m k k       s s v

m = k0 for v = c

(42)

This result can be directly applied to the Planck mass plasma where positive and negative mass
quasiparticles form gravitational bound Dirac particle fermions [4]

Fig. 1: Pole-dipole particle configuration.

Following Hönl and Papapetrou [5], we analyze the simple classical mechanical two body pole-
dipole model shown in Figure 1. It consists of a positive mass m+ and a negative mass m-. In a two body
problem with both masses positive and with an attractive force in between, the two bodies can execute a
circular motion around their center of mass. In case one of the masses is negative, but with both together
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having a positive mass pole m0=m+-|m-|, the circular motion persists, except that the center of mass is no
more in between the masses, even though it is still located on the line connecting m+ and m-. As a
consequence, the pole-dipole particle executes a rotational motion which causes the spin. This motion has
the same property as the “Zitterbewegung” derived by Schrödinger from the Dirac equation [6].

If |m+| > |m-|, the distance of m- from the center of mass is larger than for m+, and we assume that
m+ is at a distance rc, with m- at a distance rc+r. Furthermore, if m0<<m+~|m-|, one has r<<rc.
Defining 2 2 ~1/2(1 v / )c    , with v cr   where ω is the angular velocity around the center of mass,

and 2 2 1/2v (1 v / )c 
   . With v ( )cr r    , momentum conservation leads to

| | ( )c cm r m r r  
   (43)

For r<<rc and henceforth putting    one can expand:

2 2

2(1 .....)cr r
c
     

(44)

For the mass dipole moment one has

| |
| | c

m mp m r m r r 


 
  




  

(45)

With the help of (44) and for γ>>1 one finds

2
0/cr p m (46)

and for the energy

2/ | | / cE c m m m p r   
    (47)

and finally, for the angular momentum (putting ωrc~c):

2 2| | ( )c c cJ m r m r r p c mcr    
        

(48)

The correct spin angular momentum is obtained from the Dirac equation for / 2cr mc  . From
(46) and (47) one has

0 /m m  (49)

In a co-rotating reference system of the pole-dipole particle the gravitational interaction energy is
positive, and for | | | |m m m    , given by

2
2

0
| |Gm m G mE m c

r r

  

   
(50)

According to (34) the mass in a system at rest is
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2
2 | |G mmc

r




(51)

With | |p m r , equation (47) and / 2cr mc  , one obtains

2 | | cm r    (52)

which can be used to eliminate r from (51), with the result that

3 3 22 | | / 2 | | / pm G m c m m   (53)

where /pm c G  is the Planck mass.

Equation (53) is the gravitational field mass of a positive mass interacting with a likewise negative mass,
replaces the mass a zero rest mass fermion acquired in the standard model by the Higgs mechanism.

It shows how a fermion, if composed of a large positive and a large negative mass,can acquire its mass
without the Higgs mechanism by the gravitational field of the large positive and negative mass.

The assumption for the hidden existence of negative masses is consistent with Schrödinger’s discovery
that the “Zitterbewegung” results from the interference of positive and negative energy waves [6].

Equation (53) can also be written as follows:

3

2
p p

mm
m m

 
 
 
 

(54)

But with  rcm || and pp rm , it follows that also m/mp ≈(rp/r)3, and according to (15), one can
neglect the quantum corrections for all masses of interest.

3. Conclusion

A more detailed analysis of the positive-negative mass two body problem first carried out by Bondi, does
not lead to a self acceleration. It rather leads to the finding that the Dirac spinors can be thought of as
being composed of positive and negative mass particles, and rather than  leading to a self-acceleration, it
leads to the “Zitterbewegung,” which for the Dirac particle  was discovered by Schrödinger. It definitely
does not lead to an unstable vacuum composed of positive and negative masses as claimed by Cavalleri
and Tonni [7].

Replacing supersymmetry by the assumption that the vacuum is made up by an equal number of
positive and negative masses, and replacing the Higgs field by the Einsteinian gravitational field of
positive masses interacting with likewise negative masses, it can be seen as a model replacing the
standard supersymmetric model of elementary particles and cosmology [8, 9].
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