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Abstract.   

The Sun’s motion around the Solar System barycentre produces a small quadrupole 

moment in the gravitational energy of Mercury. This moment has until now gone 

undiscovered, but it actually generates 7arcsec/cy precession of Mercury’s 

perihelion. Consequently, the residual 43arcsec/cy previously attributed to general 

relativity theory must account for this new component and only 36arcsec/cy for GR.  
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1.   Introduction 

The orbit of planet Mercury has been calculated by several investigators; see 

Clemence (1947), Brouwer & Clemence (1961), and review in Pireaux & Rozelot 

(2003). In their calculations, the inverse square law has been applied to set up the 

differential equations of motion using the measured distances and velocities between 

Mercury, the Sun and planets. Then the observed precession of the perihelion of 

Mercury was explained as being due to general precession in longitude, perturbation 

by the planets, solar oblateness, and 43arcsec/cy for general relativity.  

In this paper, an obscure contribution to Mercury’s orbital precession has 

been identified due to the Sun moving around the barycentre, producing a small 

quadrupole moment in the energy of Mercury. This can be understood in theory by 

first imagining the Sun rapidly orbiting the barycentre so that it takes on the blurred 

appearance of a toroidal or oblate Sun. Then Mercury would orbit the average 

position of the Sun at the barycentre, and describe a precessing elliptical orbit. Now, 

it is proposed that for the existing Solar velocity there will be a residual component 

of this effect, such that Mercury is currently orbiting a centre of mass position, 

moving with the Sun, located a small distance towards the barycentre. This 

corresponds to a tiny variation in Newton’s law, which causes Mercury to describe a 

precessing orbit. 

As an aid to understanding, consider an analogous system of a pendulum bob 

suspended from a slowly moving pivot, instead of the usual fixed pivot. The pivot 

would drag the bob and it would not be able to describe the usual simple harmonic 

motion. Likewise, the Sun drags Mercury around with it, and Mercuty’s binding 

energy is different in form from that for a stationary Sun. At present, received 

wisdom does not acknowledge that such an accelerating Sun affects the potential of 

Mercury.  

An exaggerated example of this proposed phenomenon will now be derived, 

followed by a transformation to the real Solar System. 

 

 



3 

 

2. Theoretical precession due to a rapidly moving Sun 

The absolute binding energy of Mercury, in the field of the Sun orbiting 

around the barycentre, may be calculated by using Newton’s law. First, consider the 

hypothetical system shown in Figure 1. Let Mercury (mass M1) be regarded as 

stationary at distance (r1C = 57.9x106km) from the origin at barycentre C, while the 

Sun (mass M) travels rapidly around C at radius (rSC = 7.43x105km). Then, for the 

Sun at instantaneous distance r1 from Mercury we can write:  

   cosrr2rrr SCC1SCC11
222

 .  (1a) 

The instantaneous gravitational force exerted by the Sun on Mercury is given by the 

inverse square law, (F1 = GMM1 / r1
2), and the force directed towards barycentre C 

is F1cosα, where cos is given by: 

    cosrr2rrr 1C1C1SC
2

1
22

 .   (1b) 

Upon eliminating cos, this force towards C is: 
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Fig. 1   Schematic diagram showing Jupiter and the Sun moving around their 

barycentre C.  Mercury is here considered to be stationary during one orbit of 

the Sun. 
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Now eliminate variable r1 and get all the cos terms in the numerator: 
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After averaging  over a complete orbit of the Sun, the average force towards C 

becomes:  
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This is the force that would govern the orbit of inertial Mercury, rather than an 

instantaneous inverse square law. It is slightly stronger than an inverse square law for 

a stationary Sun located at C. By integrating from r1C to infinity, the absolute 

potential energy of Mercury in this system would be: 
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These two expressions would apply to the equation of motion for Mercury 

around C, with angular momentum being greater than that around a fixed Sun at C. 

Inertial Mercury focuses on the centre of gravity at C, and the quadrupole moment 

would produce precession, similar to an oblate Sun.  

 

3. Actual precession due to the real moving Sun 

These expressions for a rapidly moving Sun will now be adjusted to cover a 

slowly moving Sun, in order to reveal the final residual quadrupole moment. 

Mercury is still chasing an elusive accelerating Sun, so the quadrupole moment 

cannot be eliminated. The Sun orbits the barycentre at 7.43x105km radius over 11.86 

years due to Jupiter. Its slow motion around C allows Mercury time to respond to the 

Sun’s wobble such that the effective centre of gravity, where inertial Mercury 

focuses, lies between the Sun’s centre and C. Radius rSC in Eq.(2c) has to be replaced 

by a derived smaller value r'SC in order to give the actual average acceleration of 

Mercury around this effective centre of gravity: 
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After substituting (u = 1/r1C), plus Mercury's specific angular momentum [h ≈ 

(GMr1C)1/2], then orbit theory yields a differential equation for the trajectory: 
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This type of equation has previously been solved because general relativity theory 

gives a similar expression for the trajectory of Mercury, (see Rindler, 2001): 
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where the final term accounts for 43arcsec/cy precession of Mercury's orbit. Hence, 

by direct comparison, we can calculate the precession to expect from the quadrupole 

moment in Eq.(5): 
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Here, the effect of orbit eccentricity is included in the 43arcsec/cy term. 

 The value of r'SC will be found by considering Figure 2, wherein Mercury is 

now depicted orbiting the Sun with period T1 while the Sun is moving slowly around 

barycentre C with period (TSC = 49.2T1). Inertial Mercury will actually be focussed 

on a moving centre of gravity P (with period TPC), at radius rPC from C towards the 

Sun and distance r'SC from the Sun. Logically, during a complete orbit of Mercury, 

the Sun moves arc distance (2rSC/49.2); and Mercury tries continuously to 

compensate for the Sun’s movement. So we will expect r'SC to be around rSC/(2 x 

49.2). An accurate radius will be derived using an action principle involving Mercury 

as it orbits around P with period T1. By defining action as (Kinetic Energy x Time), 

let it be a conserved quantity if the centre of gravity is related to the real Solar mass 

M by: 
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On the left, the lower effective KE of the centre of gravity mass at P is compensated 

by an extension in time of one extra period of Mercury. Here, period (TPC = TSC), 

therefore (rSC / vSC = rPC / vPC), and simplification gives: 
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Fig. 2   Schematic diagram showing the Sun moving slowly around the 

barycentre at C.  Mercury is considered to be orbiting the effective centre of 

gravity at P, between C and the Sun. 

 

Consequently, the position of P is determined by Mercury’s period being 

synchronised with a harmonic of the Sun’s movement around the barycentre. From 

the viewpoint of an observer on Mercury, after 49.2 orbits, the Sun has moved in a 

circle around P of radius r'SC given by:   
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It is this circular motion of the Sun around P which will now determine the 

quadrupole moment operating on Mercury, by introducing r'SC into Eq.(7). Inspection 
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of this expression confirms that for any arbitrary (T1/TSC), the position of P can vary 

as one would expect, from C to the Sun’s centre. Thus, for (T1 = 88.0days), (TSC = 

4331days) and (rSC = 7.43x105km), it evaluates to (r'SC = 7433km). Substitution in 

Eq.(7), with (h = 2.76x1015m2s-1), yields the residual precession due to the 

quadrupole moment: 

 

   cysec/arc0.743162.0     .   (11) 

Therefore, the well-known 43arcsec/cy residual precession, previously attributed to 

GR, must be reduced by 7arcsec/cy to 36arcsec/cy for GR. 

The absolute potential energy of Mercury, in this realistic Solar System, is of 

the same form as Eq.(3): 
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 Precession due to other planets increasing the Sun's wobble is variable 

because together they cause great fluctuation in rSC , with a long-term average at 

around 8.4x105km (Landscheidt, 2007).  

  Precessions currently attributed to general relativity in the orbits of Venus, 

Earth and Icarus, will also be affected by the Sun's movement, (Shapiro et al (1968), 

Lieske & Null (1969), Sitarski (1992)).  

 

4. Conclusion 

 Motion of the Sun around the Solar System barycentre produces a 

small quadrupole moment in the average gravitational energy of Mercury. The effect 

of this is to generate 7arcsec/cy precession in Mercury’s orbit, just as an oblate Sun 

would. This has not been included previously, so only 36arcsec/cy precession due to 

general relativity theory is now required for a fit to the observations. Unfortunately, 

received wisdom does not include the possibility of an accelerating Sun affecting the 

potential of Mercury. And complacency is currently impeding progress because 

investigators believe this theory does not apply when using heliocentric coordinates. 
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