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Abstract.   

The Sun’s motion around the Solar System barycentre produces a small quadrupole 

moment in the gravitational energy of Mercury. This moment has until now gone 

undiscovered, but it actually generates 7arcsec/cy precession of Mercury’s 

perihelion. Consequently, the residual 43arcsec/cy previously explained by general 

relativity theory must account for this new component and only 36arcsec/cy for GR.  
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1.   Introduction 

The orbit of planet Mercury has been calculated by several investigators; see 

Clemence (1947), Brouwer & Clemence (1961), and review in Pireaux & Rozelot 

(2003). In their calculations, the inverse square law has been applied to set up the 

differential equations of motion using the measured distances and velocities between 

Mercury, the Sun and planets. Then the observed precession of the perihelion of 

Mercury was explained as being due to general precession in longitude, perturbation 

by the planets, solar oblateness, and 43arcsec/cy for general relativity.  
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In this paper, an obscure contribution to precession has been identified due to 

the Sun orbiting around the barycentre, producing a small quadrupole moment in the 

energy of Mercury. The overall effect of this solar motion is similar to solar 

oblateness. The orbiting Sun drags Mercury around with it and does not allow 

Mercury to settle into a closed ellipse, so its binding energy differs in form from that 

for a stationary Sun. In fact, the curved trajectory of the Sun causes Mercury to 

actually orbit around a focal point just inside the Sun’s trajectory, towards the 

barycentre. When averaged over an orbit, Mercury experiences this as a variation 

from Newton’s law, even though the instantaneous force is always towards the Sun’s 

centre and obeys an inverse square law. This results in 7arcsec/cy precession of 

Mercury’s orbit, which has never been investigated.   

To aid understanding, consider an analogous system of coupled oscillators 

such as a mass oscillating on a spring which is suspended from a periodically moving 

pivot. Displacement and kinetic energy of the mass involves the spring and pivot’s 

movement. That is, a harmonic oscillator (cf. Mercury) is acted upon by an external 

periodic force (cf. Sun) which affects energy, amplitude, and phase of the oscillator. 

Similarly, a pendulum bob suspended from a moving pivot could not describe simple 

harmonic motion. 

Consequently, previous investigators have calculated the orbit of Mercury 

with reference to a perfect ellipse around a stationary Sun, and then added 

43arcsec/cy GR precession in order to get a fit to observations. By referring to the 

Sun, an obscure effect of solar circulation has been omitted from their calculations. It 

is necessary to refer the moving Sun and planets to the fixed barycentre; then 

7arcsec/cy precession will result and only 36arcsec/cy be required from GR theory. 

An exaggerated example of this phenomenon will now be explained to make 

it obvious, before transforming it to the real subtle system. 

 

2. Derivation of precession due to the moving Sun 

The absolute binding energy of Mercury, in the field of the Sun orbiting 

around the barycentre, may be calculated by using Newton’s law. First, consider the 

hypothetical system shown in Figure 1. Let Mercury (mass M1) be regarded as 
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stationary at distance (r1C = 57.9x10
6
km) from the origin at barycentre C, while the 

Sun (mass M) travels rapidly around C at radius (rSC = 7.43x10
5
km). Then, for the 

Sun at instantaneous distance r1 from Mercury we can write:  

   cos2 1
22

1

2

1 SCCSCC rrrrr  .  (1a) 

The instantaneous gravitational force exerted by the Sun on Mercury is given by the 

inverse square law, (F1 = GMM1 / r1
2
), and the force directed towards barycentre C 

is F1cosα, where  is given by: 

    cos2 11
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Upon eliminating cos, this force towards C is: 
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Fig. 1   Schematic diagram showing Jupiter and the Sun moving around their 

barycentre C.  Theoretically, Mercury is here considered to be stationary 

during one orbit of the Sun 

 

Now eliminate variable r1 and get all the cos terms in the numerator: 
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After averaging  over a complete orbit of the Sun, the average force towards C 

becomes:  
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This is the average force that a stationary Mercury would respond to; although the 

instantaneous force is actually towards the Sun according to Newton’s inverse square 

law. The force is slightly stronger than an inverse square law for a stationary Sun 

located at C. By integrating from r1C to infinity, the absolute potential energy of 

Mercury in this system would be: 
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These two expressions would apply to the equation of motion for Mercury 

around C, with angular momentum being greater than that around a fixed Sun at C. 

Inertial Mercury can only focus on the centre of gravity at C, even though the 

instantaneous gravitational force is towards the Sun’s centre. We are interested in the 

way that the small quadrupole moment should produce precession, just like an oblate 

Sun.  

 Apparently, received wisdom does not allow a moving Sun, like the pseudo-

toroidal Sun described above, to affect the absolute potential of Mercury. However, 

logically, the Sun’s circulation perturbs Mercury so its orbit cannot settle and its 

energy should be different in form from normal. Therefore these expressions will 

now be modified for a slowly moving Sun, to prove that a remnant quadrupole 

moment will remain, as follows. 

The real Sun orbits the barycentre at 7.43x10
5
km radius over 11.86 years due 

to Jupiter. Its slow motion around C means the effective centre of gravity now lies 

between the Sun and C, which is where inertial Mercury focuses so a small 

quadrupole moment should be expected. Therefore rSC in these equations will be 

replaced by a compensated value of the order (r'SC ≈ rSC /100), such that Eq.(2c) is 

modified to give the actual average acceleration of Mercury:  
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After substituting (u = 1/r1C), plus Mercury's specific angular momentum [h ≈ 

(GMr1C)
1/2

], then orbit theory yields a differential equation for the trajectory: 
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This type of equation has previously been solved because general relativity theory 

gives a similar expression for the trajectory of Mercury, (see Rindler, 2001): 
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where the final term accounts for 43arcsec/cy precession of Mercury's orbit. Hence, 

by direct comparison, we can calculate the precession to expect from the quadrupole 

moment in Eq.(5): 
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Here, the small effect of orbit eccentricity is included in the 43arcsec/cy term. 

 The value of r'SC can be found by considering Figure 2, wherein Mercury 

(period 1) is allowed to orbit and track the Sun as it moves slowly around C with 

period (SC = 49.21).  Mercury's orbit is now focussed on a moving centre of gravity 

P, at radius rPC from C towards the Sun. This distance is derivable from an action 

principle which describes the effective action seen from Mercury orbiting around P. 

By defining action as (Kinetic energy x Time), it is conserved for any value of 1 

when: 

     SCSCPCPC MvMv 
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where (PC = SC) and (vPC / vSC = rPC / rSC). Here, the lower equivalent KE of the centre 

of gravity is compensated by an extension in time of one more period of Mercury, 1.  
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Fig. 2   Schematic diagram showing the Sun moving slowly around the 

barycentre  C.  Mercury is considered to be orbiting the centre of gravity, 

focal point P, between C and the Sun 

 

An alternative expression for action is (Angular momentum x Angle), thus: 
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On the left, the lower equivalent angular momentum is compensated by extra angle, 

due to an extra period of Mercury. Simplification gives: 
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 From the viewpoint of an observer on Mercury: after 49.2 orbits, the Sun has 

moved in a circle around P of radius x given by:   
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It is this circular motion of the Sun around P which now determines the quadrupole 

moment operating on Mercury because radial component x is equivalent to r'SC in 

Eq.(7). Thus for  (1 = 88.0days),  (SC = 4331days)  and (rSC = 7.43x10
5
km), it 
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evaluates to (x ≡ r'SC = 7433km). Substitution of this in Eq.(7), with (h = 

2.76x10
15

m
2
s

-1
), yields the expected precession due to the quadrupole moment: 

 

   cyarcsec/0.743162.0     .   (11) 

This means that the well-known 43arcsec/cy residual precession, previously 

explained as GR precession, must be reduced by 7arcsec/cy to a residual of 

36arcsec/cy for GR. 

The absolute potential energy of Mercury in this approximately real system is 

finally: 
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 Precession due to other planets increasing the Sun's wobble is variable 

because together they cause great fluctuation in rSC , with a long-term average at 

around 8.4x10
5
km (Landscheidt, 2007).  

  Precessions currently attributed to general relativity in the orbits of Venus, 

Earth and Icarus, will also be affected by the Sun's movement, (Shapiro et al (1968), 

Lieske & Null (1969), Sitarski (1992)).  

 

3. Conclusion 

 Motion of the Sun around the Solar System barycentre produces a small 

quadrupole moment in the average gravitational energy of Mercury. The effect of 

this is to generate 7arcsec/cy precession in Mercury’s orbit, just as an oblate Sun 

would. This has not been included previously, so only 36arcsec/cy precession due to 

general relativity theory is now required for a fit to the observations. 

 

Acknowledgements 

 I would like to thank Imperial College Libraries, R. Glovnea for computing 

assistance, and A. Rutledge for typing.  

 

 

 



8 

 

References 

Brouwer, D., & Clemence, G.M.: Methods of Celestial Mechanics.  

Academic Press, New York (1961) 

Clemence, G.M. Rev. Mod. Phys. 19, 361-4 (1947) 

Landscheidt, T.  http://landscheidt.wordpress.com/6000-year-ephemeris (2007) 

Lieske, H., & Null, G. Astron.  J. 74, 297-307 (1969) 

Pireaux, S. & Rozelot, J.-P. Astrophys. Space Science. 284, 1159-94 (2003) 

Rindler, W.: Relativity: Special, General, and Cosmological. Oxford (2001) 

Shapiro, I. I., Ash, M.E., & Smith, W.B. Phys. Rev. Lett. 20, 1517-8 (1968) 

Sitarski, G. Astron. J. 104, 1226-9 (1992) 

http://landscheidt.wordpress.com/6000-year-ephemeris

