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Abstract.   

The Sun’s orbital motion around the Solar System barycentre contributes a small quadrupole 

moment to the gravitational binding energy of Mercury. This moment has until now gone 

undiscovered, but it actually generates 7arcsec/cy precession of Mercury’s perihelion. 

Consequently, the residual 43arcsec/cy allocated previously to general relativity must in 

reality account for this new component and only 36arcsec/cy for general relativity. This 

means that the orbit of Mercury is grossly incompatible with the vacuum solution of GR. 
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1.   Introduction 

The orbit of planet Mercury has been calculated by several investigators; see 

Clemence (1947), Brouwer & Clemence (1961), and review in Pireaux & Rozelot 

(2003). In their calculations, the inverse square law has been applied to set up the 

differential equations of motion using the measured distances and velocities between 

Mercury, the Sun and planets. Then the precession of the perihelion of Mercury was 

explained as being due to general precession in longitude, perturbation by the 

planets, solar oblateness, and 43arcsec/cy for general relativity.  

In this paper, an obscure contribution to precession has been identified due to 

the actual motion of the Sun around the barycentre producing a very small 

quadrupole moment in the energy of Mercury. The Newtonian force exerted upon 

Mercury by the moving Sun produces a small acceleration perpendicular to the usual 

radial acceleration, which means that the angular momentum of Mercury fluctuates 

slightly. Then logically, the orbit of Mercury cannot be an ellipse around a moving 

Sun so its absolute potential cannot be the same as for a stationary Sun. Overall, the 

effect is numerically similar to solar oblateness, as if the circling solar mass is 

extended equatorially on average. This causes 7arcsec/cy precession of Mercury’s 

orbit which has never before been recognised and included. 

Consequently, previous investigators have calculated the orbit of Mercury 

with reference to a perfect ellipse, for Mercury alone around a stationary Sun, and 

then added 43arcsec/cy precession for GR in order to get a fit to observations.  In fact 

this residual precession of 43arcsec/cy should account for the obscure component of 

7arcsec/cy plus only 36arcsec/cy for a modified GR solution. 

 

2. Derivation of precession due to the moving Sun 

The absolute binding energy of Mercury, in the field of the Sun orbiting 

around the barycentre, may be calculated by using Newton’s law. First, consider the 

theoretical system shown in Figure 1. Let Mercury (mass M1) be regarded as 

stationary at distance (r1C = 57.9x106km) from the origin C, while the Sun (mass M) 
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travels rapidly around C at radius (rSC = 7.43x105km) .  Then, for the Sun at distance 

r1 from Mercury we can write:  

  θ−+= cosrr2rrr SCC1SCC11
222  .  (1a) 

 

          
Figure 1.   Schematic diagram showing Jupiter and the Sun moving around 

their centre of mass C.  Theoretically, Mercury is considered to be stationary 

during one orbit of the Sun. 

 

The instantaneous gravitational force exerted by the Sun on Mercury is given by the 

inverse square law, (F1 = −−−−GMM1 / r1
2), and the force directed towards C is (F = 

F1cosα), where α is the angle between the Sun and centre C given by: 

   α−+= cosrr2rrr 1C1C1SC
2

1
22  .   (1b) 

Upon eliminating cosα, the force is: 
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Now eliminate variable r1 and get all the cosθ terms in the numerator: 
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After averaging θ over a complete orbit of the Sun, the average force towards C 

becomes:  
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This is the average force that a theoretically stationary or slow-moving Mercury 

responds to, even though the instantaneous force is towards the Sun according to 

Newton’s inverse square law. The force is slightly stronger than an inverse square 

law for a stationary Sun at C. By integrating this force to infinity (r1C < r < ∞), the 

absolute potential energy of Mercury in this theoretical system would be: 
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Obviously, this is the potential energy of Mercury which would be applied for 

solving the equations of motion in this special system, rather than the Newtonian 

potential (GM/r1C) for a stationary Sun. If Mercury were allowed to orbit this rapidly 

moving Sun, its angular momentum and kinetic energy would be slightly greater than 

that around a Sun stationary at C; but we are more interested in the way that this 

small quadrupole moment causes precession. 

 Strangely, most investigators exit here, rejecting this result by insisting that 

their calculations have proved that the absolute potential of Mercury is not affected 

by a moving Sun because the instantaneous gravitational force is known to be 

towards the Sun and independent of velocity. They accept that a ‘’real toroidal Sun’’ 

would produce Eq.(3), but not a rapidly moving Sun as described herein. In rebuttal, 

the logical reply to this claim is that the moving Sun causes the angular momentum 

of Mercury to fluctuate so the orbit of Mercury cannot be an ellipse and its potential 

energy must be different in form. When they calculate the orbit of Mercury, as 

referred to the perfect ellipse for Mercury alone around a stationary Sun, it is 

therefore necessary to add 43arcsec/cy precession to get a fit to observations. If 
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Eq.(3) were admitted and developed as follows, then only 36arcsec/cy would be 

required. 

Although Eq.(2c) is correct for a rapidly moving Sun, the real Sun orbits the 

barycentre at 7.43x105km radius over 11.86 years due to Jupiter and produces a 

correspondingly small quadrupole moment in the long term. Mercury tries to track 

the Sun's motion exactly, but it has inertia and it is chasing an accelerating Sun, so 

some quadrupole moment is still generated. Therefore rSC in these equations will be 

replaced by a smaller compensated value of the order (r/
SC ≈ rSC /100), such that 

Eq.(2c) is modified to give the actual average acceleration of Mercury:  
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After substituting (u = 1/r1C), plus Mercury's specific angular momentum [h ≈ 

(GMr1C)1/2], then orbit theory yields a differential equation for the trajectory: 
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This type of equation has previously been solved because general relativity theory 

gives a similar expression for the trajectory of Mercury, (see Rindler, 2001): 
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where the final term accounts for the 43arcsec/cy precession of Mercury's orbit. 

Hence, by direct comparison, we can calculate the precession to expect from the 

quadrupole moment in Eq.(5): 

   cysec/arc43r
h2
c 2

/
SC ×






≈δω    .   (7) 

Here, the small effect of orbit eccentricity is included in the 43arcsec/cy term. 

 The value of r/
SC can be found by considering Figure 2, wherein Mercury 

(period ττττ1) is allowed to orbit around and track the Sun as it moves slowly around C 

with period (ττττSC = 49.2ττττ1).  Mercury's orbit is now focussed on a moving centre of 

mass P, at radius rPC from C towards the Sun. This distance is derivable from an 
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action principle which describes the effective action seen from Mercury orbiting 

around the centre of mass P. By defining action as (Kinetic energy x Time), it is 

conserved for any value of ττττ1 when: 

   ( ) SCSCPCPC
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where (ττττPC = ττττSC) and (vPC / vSC = rPC / rSC). Here, the lower equivalent KE of the centre 

of mass is compensated by an extension in time of ττττ1. Simplification gives: 
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Figure 2.   Schematic diagram showing the Sun moving slowly around the 

centre of mass C.  Mercury is considered to be orbiting focal point P 

between C and the Sun. 

 

 From the viewpoint of an observer on Mercury, after 49.2 orbits, the Sun has 

moved in a circle around P of radius x given by:   
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It is this circular motion of the Sun around P which now determines the quadrupole 

moment operating on Mercury because radius x is equivalent to r/
SC in Eq.(7). Thus 

for  (ττττ1 = 88.0days),  (ττττSC = 4331days)  and (rSC = 7.43x105km), it evaluates to (x ≡ 

r/
SC = 7433km). Substitution of this in Eq.(7), with (h = 2.76x1015m2s-1), yields the 

expected precession due to the quadrupole moment: 

 

   cysec/arc96.643162.0 ≈×≈δω    .   (11) 

This means that the 43arcsec/cy previously allocated to GR precession should be 

36arcsec/cy in reality. 

The absolute potential energy of Mercury in this approximately real system is 

finally: 
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 Precession due to other planets increasing the Sun's wobble is variable 

because together they cause great fluctuation in rSC , with a long-term average at 

around 8x105km (Landscheidt, 2007).  

  Precessions currently attributed to general relativity in the orbits of Venus, 

Earth and Icarus, will also be affected by the Sun's quadrupole moment, (Shapiro et 

al (1968), Lieske & Null (1969), Sitarski (1992)). 

 

3. Conclusion 

 Motion of the Sun around the Solar System barycentre produces a small 

quadrupole moment in the gravitational binding energy of Mercury, which is 

estimated to generate nearly 7arcsec/cy precession of the perihelion of Mercury. This 

effect has been overlooked previously because the simple Newtonian potential of 

Mercury (GM/r) has been incorrectly employed for an orbiting/accelerating Sun as if 

for a stationary Sun. Therefore, this new 7arcsec/cy term and 36arcsec/cy due to 
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general relativity are able to explain the observed 43arcsec/cy residual precession. 

Accordingly, the orbit of Mercury is not compatible with the vacuum solution of GR. 
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