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PREFACE

This book is addressed to students, professors and researchers of geometry, who will find
herein many interesting and original results. The originality of the book The Geometry of
Homological Triangles consists in using the homology of triangles as a “filter” through which

remarkable notions and theorems from the geometry of the triangle are unitarily passed.

Our research is structured in seven chapters, the first four are dedicated to the homology

of the triangles while the last ones to their applications.

In the first chapter one proves the theorem of homological triangles (Desargues, 1636),
one survey the remarkable pairs of homological triangles, making various connections between

their homology centers and axes.

Second chapter boards the theorem relative to the triplets of homological triangles. The
Veronese Theorem is proved and it is mentioned a remarkable triplet of homological triangles,

and then we go on with the study of other pairs of homological triangles.

Third chapter treats the bihomological and trihomological triangles. One proves herein
that two bihomological triangles are trihomological (Rosanes, 1870), and the Theorem of D.

Barbilian (1930) related to two equilateral triangles that have the same center.

Any study of the geometry of triangle is almost impossible without making connections
with the circle. Therefore, in the fourth chapter one does research about the homological
triangles inscribed into a circle. Using the duality principle one herein proves several classical

theorems of Pascal, Brianchon, Aubert, Alasia.

The fifth chapter contains proposed problems and open problems about the homological

triangles, many of them belonging to the book authors.

The sixth chapter presents topics which permit a better understanding of the book,

making it self-contained.

The last chapter contains solutions and hints to the 100 proposed problems from the fifth

chapter. The book ends with a list of references helpful to the readers.

The authors



Chapter 1

Remarkable pairs of homological triangles

In this chapter we will define the homological triangles, we’ll prove the homological
triangles’ theorem and it’s reciprocal. We will also emphasize on some important pairs of
homological triangles establishing important connections between their centers and axes of
homology.

1.1. Homological triangles’ theorem

Definition 1
Two triangles ABC and AB,C, are called homological if the lines AA, BB, and CC,

are concurrent. The concurrence point of lines AA, BB,, CC, is called the homological center
of ABC and AB,C, triangles.

B
Fig. 1
Observation 1
In figure 1 the triangles ABC and AB,C, are homological. The homology center has

been noted with O .

Definition 2

If two triangles ABC and AB,C, are homological and the lines AB,, BC,, CA are
concurrent, the triangles are called double homological (or bio-homological).

If the lines AC,, BA,, CB, are also concurrent, we called these triangles triple
homological or tri-homological.



Theorem 1 (G. Desargues — 1636)

1) If ABC and AB,C, are homological triangles such that:

ABNAB :{N}’ BCMBC, :{M}= CANCA :{P}’
Then the points N, M, P are collinear.

2) If ABC and AB,C, are homological triangles such that:

ABNAB ={N}, BCNBC ={M}, CANCA ={P},
Then MN || AC.

3) If ABC and AB,C, are homological triangles such that:

AB||AB,, BC||BC,

Then AC|| AC,.

Proof

Ci

P
Fig. 2

1) Let O be the homology center of triangles ABC and AB,C, (see figure 2). We apply
the Menelaus’ theorem in triangles: OAC, OBC, OAB for the transversals:
P,A.C; M,B,,A; N,B,, A respectively. We obtain:

PA AO CC _, 0
PC AA CO
MC BB CO_, .
MB BO CC
NB BO AA_, 3)
NA BB AO



By multiplying side by side the relations (1), (2), and (3) we obtain, after simplification:

PAMC NB_ @

This relation, in accordance with the Menelaus’ reciprocal theorem in triangle ABC
implies the collinearity of the pointsN, M, P.

Definition 3
The line determined by the intersection of the pairs of homological lines of two
homological triangles is called the triangles’ homological axis.

Observation 2
The line M, N, P from figure 2 is the homological axis of the homological triangles

ABC and ABC,.
2) Menelaus’ theorem applied in triangle OAB for the transversal N, A, B, implies

relation (3)

A

Fig. 3

Menelaus’ theorem applied in triangle OBC for the transversal M,C,, B, implies
MC BB CO 1
MB BO CC
By multiplication of side by side of these two relations we find

relation (2)

8



NB MC CO AA_,

= 5
NA MB CC AO )
Because AB|| AC,, the Thales’ theorem in the triangle OAC gives us that:
CO O
2040 0
C  AA
Considering (6), from (5) it results”
NB_ B
NA MC

which along with the Thales’ reciprocal theorem in triangle BAC gives that MN || AC .

Observation 3.

The 2) variation of Desargues’ theorem tells us that if two triangles are homological and
two of their homological lines are parallel and the rest of the pairs of homological sides are
concurrent, it results that: the line determined by the intersection of the points of the pairs of
homological lines (the homological axis) is parallel with the homological parallel lines.

3) The proof results from Thales’ theorem applied in triangles OAB and OBC then by
applying the Thales’ reciprocal theorem in triangle OAC .

Observation 4.

The variation 3) of Desargues’ theorem is also called the weak form of Desargues’
theorem. Two homological triangles which have the homological sides parallel are called
homothetic.

Theorem 2. (The reciprocal of Desargues’ theorem)
1) If two triangles ABC and AB,C, satisfy the following relations

ABﬂABl :{N}’ BCN BC, :{M}’ CAﬂClA :{P}’
and the points N, M, P are collinear then the triangles are collinear.
2) If two triangles ABC and AB,C, have a pair of parallel lines and the rest of the pairs

of lines are concurrent such that the line determined by their concurrency points is parallel with
one of the pairs of parallel lines, then the triangles are homological.

3) If two triangles ABC and AB,C, have

AB AC
ABHABU ACHACI,and —=——=1

AB  AG

then BC||B,C, and the triangles are homological.

Proof.
1) We will be using the method of reduction ad absurdum. Let

{0} =BB,NAA; {0} =AANCC; {O,}=CC,NBB O=0, =0,
The Menelaus’ theorem applied in triangles OAB; O,AC; O,BC respectively for the transversals
A,B,N; P,A,C; M,B,,C, respectively provides the following relations:



_—. 1=, 7
NA BB AO 7
PA_AO CC _, &
PC AA CO,
MC BB CO, _, o)
MB BO, CC

Multiplying side by side these relations and taking into account that the points M ,N,P are
collinear, that is

PA MC NB
_._C._zl (10)

After simplifications we obtain the relation:

A}Ol . BIO 'Cloz -1 (11)

AO BIOZ Clol
The Menelaus’ reciprocal theorem applied in triangle AB,C, and relation (11) shows that the
points O,0,,0, are collinear. On the other side O and O, are on AA, it results that O, belongs
to AA also. From

{Oz} = AA ﬂBBl; {Oz} = AA ﬂCCI; {Oz} = BB ﬂCC]a

it results that

{Oz} =AANBB,NCC

and therefore O, =0, =0, which contradicts our assumption.

2) We consider the triangles ABC and AB,C, such that AC||AC,,
ABNAB ={N}, BCNBC ={M} and MN || AC.
Let
{0}=BBNAA; {0} =AANCC; {0,)=CC NBAR
we suppose that O = O, = O, = 0. Menelaus’ theorem applied in the triangles OAB, O,BC for
the transversals N, A, B;; M,C,, B, respectively leads to the following relations:

=2 1 (12)
NA BB AO
MC BB CO, _q (13)
MB BO, CC

On the other side from MN || AC and AC, || MN with Thales’ theorem, it results
NB MB
=_1 (14)
NA MC

A C

A_ = Cl_ (15)
AOI Clol

10



By multiplying side by side the relations (12) and (13) and considering also (14) and (15) we
obtain:

AQ, BO CO, .
AO BIOZ Clol
This relation implies the collinearity of the points O,0O,,0, .

(16)

Following the same reasoning as in the proof of 1) we will find that O =0, =0, , and
the theorem is proved.

3) Let {O} =BB NAA; {G}=AANCC; {O,} =CC NBB, suppose that O = O,
Thales’ theorem applied in the triangles OAB and O,AC leads to

OA OB AB (17)
OA OB AB
OA OC AC
= = (18)
OA OC AC
AB AC
Because —— =-——=1 and A,O,O, are collinear, we have that
AB  AC
OA OA
—= (19)
OA OA
This relation shows that O = O, , which is contradictory with the assumption that we
made.
If O =0, then from (17) and (18) we find that
oB_oc
OB, OC,

which shows that BC|| BC, and that {O} =CC, (BB, therefore the triangles ABC and ABC,

are homological.

Observation 5
The Desargues’ theorem is also called the theorem of homological triangles.

Remark 1
In the U.S.A. the homological triangles are called perspective triangles. One explanation
of this will be presented later.

Definition 4
Given a fixed plane(O() and a fixed point O external to the plane OM (0!) , we name the

perspective of a point from space on the plane (05) in rapport to the point O, a point M, of

intersection of the line OM with the plane OM

11



Fig. 4

Remark 2.

In the context of these names the theorem of the homological triangles and its reciprocal
can be formulated as follows:

If two triangles have a center of perspective then the triangles have a perspective axis.

If two triangles have a perspective axis then the triangles have a perspective center.

Remark 3.

Interpreting the plane Desargues’ theorem in space or considering that the configuration
is obtained through sectioning spatial figures, the proof of the theorem and its reciprocal
becomes simple.

We’ll illustrate bellow such a proof, precisely we’ll prove that if the triangles ABC and

ABC, are homological and ABNAB ={N}, BCNBC, ={M}, CANC A ={P}, then the
points N, M, P are collinear.

We’ll use figure 2 in which OABC, is a triangular pyramidal surface sectioned by the
plane (ABC). Because the planes (ABC), (ABC,) have a non-null intersection, there is

common line and the points M, N, P belong to this line (the homology axis) and the theorem is

proved.
In plane: the two triangles from Desargues’ theorem can be inscribed one in the other,
and in this case we obtain:

Theorem 3.
If A,B,,C, are the Cevians’ intersections AO, BO, CO with the lines BC, CA AB and

the pairs of lines AB, AB,; BC,BC,; CAC A intersect respectively in the points N,M , P, then

the points N, M, P are collinear.

Remark 4.
The line determined by the points N, M, P (the homology axis of triangles ABC and

AB,C)) is called the tri-linear polar of the point O (or the associated harmonic line) in rapport

12



to triangle ABC , and the point O is called the tri-linear pole (or the associated harmonic point)
of the line N,M ,P.

Observation 6.
The above naming is justified by the following definitions and theorems.

Definition 5.
Four points A B,C,D form a harmonic division if

1) The points A B,C,D are collinear
CA__DA (17)
CB DB

If these conditions are simultaneously satisfied we say that the points C and D are
harmonic conjugated in rapportto A B.

Because the relation (17) can be written in the equivalent form

2)

AC__BC (18)
AD BD
| | | |
[ [ [ [
A C B D

Fig. 5
we can affirm that the points A B are harmonically conjugated in rapport to C,D . We can state
also that A is the harmonic conjugate of B in rapportto C and D, or that D is the harmonic
conjugate of C inrapportto A and B.

Observation 7
It can be proved, through reduction ad absurdum, the unicity of the harmonic conjugate
of a point in rapport with other two given points.

Note 1.
The harmonic deviation was known in Pythagoras’ school (5" century B.C.)

Theorem 4.

If AA, BB,, CC, are three concurrent Cevians in triangle ABC and N,M,P are the
harmonic conjugate of the points C,, A, B, in rapport respectively with A B; B,C; C, A, then
the points N, M, P are collinear.

Proof

We note {M "} =C,B 1CB

Ceva’s theorem gives us:

AB BC CA_
AC BA CB
Menelaus’ theorem applied in triangle ABC for transversal M, B,,C, leads to:

(19)

13



M'B BC CA_,

= (20)
M'C BA CB
From relations (19) and (20) we obtain:
B M'B
B b 21
c c 21)

Fig. 6

This relation shows that M ' is the harmonic conjugate of point A on rapport to B and
C . Butalso M is the harmonic conjugate of point A on rapport to B and C . From the unicity

property of a harmonic conjugate of a point, it results that M = M '. In a similar way we can
prove that N is the intersection of the lines AB, and AB and P is the intersection of lines

AC, and AC . Theorem 3is, in fact, a particularization of Desargues’ theorem, shows that the

points N, M, P are collinear.

Remark S.
The theorems 3 and 4 show that we can construct the harmonic conjugate of a given point
in rapport with other two given points only with the help of a ruler. If we have to construct the

conjugate of a point A in rapport to the given points B,C we can construct a similar
configuration similar to that in figure 6, and point M , the conjugate of A it will be the
intersection of the lines BC and BC

14



1.2. Some remarkable homological triangles

In this paragraph we will visit several important pairs of homological triangles with
emphasis on their homological center and homological axis.

A. The orthic triangle

Definition 6

The orthic triangle of a given triangle is the triangle determined by the given triangle’s
altitudes’ feet.

Theorem 3 leads us to the following

Proposition 1
A given triangle and its orthic triangle are homological triangles.

Observation 8
In some works the Cevian triangle of a point O from the triangle’s ABC plane is

defined as being the triangle AB,C, determined by the Cevians’ intersection AO, BO, CO with

BC, CA AB respectively. In this context the orthic triangle is the Cevian triangle of the
orthocenter of a given triangle.

Definition 7
The orthic axis of a triangle is defined as being the orthological axis of that triangle and
its orthic triangle.

Observation 9
The orthological center of a triangle and of its orthic triangle is the triangle’s orthocenter.

Definition 8
We call two lines C,d anti-parallel in rapport to lines a,b if<(a,b)=<x(d,a).

In figure 7 we represented the anti-parallel lines ¢,d in rapport to a,b.

Fig. 7

15



Observation 10
The lines C,d are anti-parallel in rapport to a,b if the quadrilateral formed by these lines is
inscribable, If C,d are anti-parallel with the concurrent lines @,b then the lines a,b are also
anti-parallel in rapport toC,d .

Proposition 2

The orthic triangle of a given triangle has the anti-parallel sides with the sides of the
given triangle.

Proof

In figure 8, AB,C, is the orthic triangle of the orthological triangle ABC .

P

Fig 8
We prove that BC, is anti-paralflgel to BC inrapportto AB and AC . Indeed, the
quadrilateral HB AC, is inscribable (M (HB A)+mex(HC A) =90°+90° =180°), therefore
<JABC, = <AHC, . On the other side <AHC, = <ABC (as angles with the sides perpendicular
respectively), consequently <<AB,C, = <ABC. Analogue we can prove that the rest of the sides

are anti-parallel.

16



B. The Cevian triangle

Proposition 3
The Cevian triangle of the center of a inscribe circle of a triangle and the triangle are
homological. The homology axis contains the exterior bisectors’ legs of the triangle.

The proof of this proposition results from the theorems 3 and 4. Indeed, if | is the center
of the inscribed circle then also Al intersects BC in A, we have:

AB_AB

AC AC
(the interior bisectors’ theorem). If B, and C are the feet of the bisectors’ Bl and CI and
BCNBC ={M} then

MB _ AB

MC AC
if the exterior bisector of angle A intersects BC in M ' then from the theorem of the external
bisector we have

(22)

BC in (23)

M'B_ AB

M'C AC
From the relations (23) and (24) we find that M '= M , therefore the leg of the external bisector
of angle A belongs to the homological axis; similarly it can be proved the property for the legs
of the external bisectors constructed from B and C .

(24)

Proposition 4

In a triangle the external bisectors of two angles and the internal bisector of the third
triangle are concurrent.

Proof.

We note by |, the point of intersection of the external bisector from B and C, and with
D, E, F the projections of this point on BC, AB, AC respectively.
Because |, belongs to the bisector of angle B, we have:

I.D=I,E (25)
Because |, belongs to the bisector of angle C , we have:

I.D=1IF (26)
From (25) and (26) it results that:

ILE=IF (27)

This relation shows that | E belongs to the interior bisector of angle A

17



Remark 6

The point |, is the center of a circle tangent to the side BC and to the extensions of the
sides AB, AC. This circle is called the ex-inscribed circle of the triangle. For a triangle we have
three ex-inscribed circles.

C. The anti-supplemental triangle

Definition 9
The triangle determined by the external bisectors of a given triangle is called the anti-
supplemental triangle of the given triangle.

Observation 11
The anti-supplemental triangle of triangle ABC is determined the centers of the ex-

inscribed circles of the triangle, that is the triangle |11

Proposition 5

A given triangle and its anti-supplemental triangle are homological. The homology center
is the center of the circle inscribed in triangle and the homological axis is the tri-linear polar of
the inscribed circle’s center.

Proof.

The proof of this property results from the propositions 3 and 3.

Remark 7
We observe, without difficulty that for the anti-supplemental triangle |1 1. The triangle

ABC is an orthic triangle (the orthocenter of Il I, is | ), therefore the homological axis of

18



triangles ABC and | I, 1. is the orthic axis of triangle || 1 that is the line determined by the
external bisectors’ feet of triangle ABC .

D. The K-symmedian triangle

Definition 10
In a triangle the symmetrical of the median in rapport to the interior bisector of the same
vertex is called the symmedian.

A

B A1 D A N C

Fig. 10
Remark 8
In figure 10, AA is the median, AD is the bisector and A is the symmedian.
We have the relation:
<BAA =<CAA (28)

Two Cevians in a triangle which satisfy the condition (28) are called isogonal Cevians.
Therefore the symmedian is isogonal to the median.

Theorem 5
If in a triangle ABC the Cevians AA and AA are isogonal, then:
BA BB (ABY
A : B' :[ ] (Steiner relation) (29)
CA CA AC
Proof
We have
BA  ariaABAA (30)
CA ariaACAA

ariaABAA%AB- AA -sin(<BAA)
ariaACAA%AC-AA -sin (< CAA)

19



Therefore
BA _ariaaBAA  AB-sin(«BAA)

31
CA ariaaCAA  AC-sin(«xCAA) Gl
Similarly
BA' ariaaBAA' AB:-sin(xBAA’) (32)
CA' ariaaCAA' AC-sin(«xCAA")
Because
<BAA = <CAA'
<CAA = <BAA'
from the relations (31) and (32) it results the Steiner relation.
Remark 9
The reciprocal of theorem 5 is true.
If AA' is symmedian in triangle ABC , then
BA' (ABY
-2
CA' (AC
Reciprocal, if AA'e (BC) and relation (33) is true, then AA' is symmedian.
Theorem 6
The isogonal of the concurrent Cevians in a triangle are concurrent Cevians.
Proof.

The proof of this theorem results from the theorem 5 and the Ceva’s reciprocal theorem.

Definition 11
We call the concurrence point of the Cevians in a triangle and the concurrence point of
the their isogonals the isogonal conjugate points.

Remark 10.
We can show without difficulty that in a triangle the orthocenter and the center of its
circumscribed circle are isogonal conjugated points.

Definition 12
The Lemoine’s point of a triangle is the intersection of its three symmedians.

Observation 12
The gravity center of a triangle and its symmedian center are isogonal conjugated points.

Propositions 6
If in a triangle ABC the points D, E belong to the sided AC and AB respectively such

that DE and BC to be anti-parallel, and the point Sis in the middle of the anti-parallel ( DE)
then AS is the symmedian in the triangle ABC .
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Proof

M
Fig. 11

Let M the middle of the side (BC) (see figure 11). We have <AED = <ACB. The triangles
AED and ACB are similar. It results that:

AE ED
—_—=— (34)
AC CB
We have also:
ES ED
—_— = (35)
CM CB
therefore
AE ES
—_— = (36)
AC CM

Relation (36) along with the fact that <AES = <ACM leads to AAES~ AACM with
the consequence <EAS = <ACAM which shows that AS is the isogonal of the median AM ,
therefore AS is symmedian.

Remark 11

We can prove also the reciprocal of proposition 6 and then we can state that the
symmedian of a triangle is the geometrical locus of the centers of the anti-parallels to the
opposite side.

Definition 3
If in a triangle ABC we note A" the leg of the symmedian from A and A "is the

harmonic conjugate of A" inrapportto B, C, we say that the Cevian AA" is the exterior
symmedian of the triangle.
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Proposition 7

The external symmedians of a triangle are the tangents constructed in the triangle’s
vertices to the triangle’s circumscribed circle.

Proof

Fig. 12
The triangles BAA " and CAA " are similar because <ABA" = <CAA" and <AA"C is

common (see figure 12).
It results:

A n B _ AB _ A " A
A "C - AC - A HC
From relation (37) we find that
" 2
A"C (AC
This relation along with the relation (33) show that A" is the harmonic conjugate of A

(37)

in rapport to B,C, therefore AA "is an external symmedian.

Theorem 7 (Carnot — 1803)

The tangents constructed on the vertices points of a non-isosceles triangle to its
circumscribed circle intersect the opposite sides of the triangle in three collinear points.

The proof of this theorem results as a particular case of theorem 4 or it can be done using
the anterior proved results.

Definition 14

The line determined by the legs of the exterior medians of a non-isosceles triangle is
called the Lemoine’s line of the triangle; it is the tri-linear polar of the symmedian center.

From the results anterior obtained , it results the following

Proposition 8

The Cevian triangles of the symmedian center of a given non-isosceles triangle are
homological. The homology axis is the Lemoine’s line of the given triangle.
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Proposition 9
In a triangle the external symmedians of two vertices and the symmedian of the third
vertex are concurrent.
Proof
Let Sbe the intersection of the external symmedians constructed through the vertices B
and C of triangle ABC (see figure 13).
A

A AN
Ju S \
Fig. 13
We construct through S the anti-polar UV to BC (U € AB, V € AC). We have
<AUV = «C and <AVU = <«B
On the other side because BS, CS are tangent to the circumscribed circle we have
B = SC and <CBS= «BCS= <A
It results that:
<UBS = «C and <UCS = «B
Consequently, the triangles SBU and SCV are isosceles B=J; L =9V.
We obtain that SU = SV , which based on proposition 6 proves that AS is symmedian.

E. The tangential triangle
Definition 15.

The tangential triangle of a triangle ABC is the triangle formed by the tangents
constructed on the vertices A B,C to the circumscribed circle of the given triangle.
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Observation 13
In figure 14 we note T, T, T, the tangential triangle of ABC . The center of the

circumscribed circle of triangle ABC is the center of the inscribed circle in the tangential circle.

Te

Fug. 14

Proposition 10

A non-isosceles given triangle and its tangential triangle are homological. The
homological center is the symmedian center of the triangle, and the homology axis is the
triangles’ Lemoine’s line.

Proof

We apply proposition 9 it results that the lines AT_, BT, CT, are symmedians in the
triangle ABC , therefore are concurrent in the symmedian center K, and therefore triangles
ABC and T_T,T, are homological. On the other side AT, ,BT_, CT, are external symmedians of

the triangle ABC and then we apply proposition 8.

F. The contact triangle

Definition 16
The contact triangle of a given triangle is the triangle formed by the tangential vertices of
the inscribed circle in triangle with its sides.

Observation 14
In figure 15 the contact triangle of the triangle ABC is noted C,C,C..
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Definition 17
A pedal triangle of a point from a triangle’s plane the triangle determined by the
orthogonal projections of the point on the triangle’s sides.

Ca

Fig 15

Observation 15
The contact triangle of the triangle ABC is the pedal triangle of the center | of the
inscribed circle in triangle.

Proposition 11

In a triangle the Cevians determined by the vertices and the contact points of the
inscribed circle with the sides are concurrent.

The proof results without difficulties from the Ceva’s reciprocal theorem and from the
fact that the tangents constructed from the triangle’s vertices to the circumscribed circle are
concurrent.

Definition 18
The concurrence point of the Cevians of the contact points with the sides of the inscribed
circle in a triangle is called the Gergonne’s ‘s point.

Observation 16
In figure 15 we noted the Gergonne’s point with T"

Proposition 12

A non-isosceles triangle and its contact triangle are homological triangles. The homology
center is the Gergonne’s point, and the homology axis is the Lemoine’s line of the contact
triangle.

Proof
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From proposition 11 it results that the Gergonne’s point is the homology center of the
triangles ABC and C,C,C,. The homology axis of these triangles contains the intersections of

the opposite sides of the given triangle and of the contact triangle, because, for example, BC is
tangent to the inscribed circle, it is external symmedian in triangle C,C,C_ and therefore
intersects the C,C; in a point that belongs to the homology axis of these triangles, that is to the
Lemoine’s line of the contact triangle.

Proposition 13
The contact triangle C,C,C, of triangle ABC and triangle AB,C, formed by the
projections of the centers of the ex-inscribed circles |, 1,,1, on the perpendicular bisectors of

BC, CA respectively AB are homological. The homology center is the Gergonne’s point I of
triangle ABC .
Proof

Fig. 16
Let D and A' the intersection of the bisectrix Al with BC and with the circumscribed
circle to the triangle ABC and M, the middle point of BC (see the figure above).

Considering the power of |, in rapport to the circumscribed circle of triangle ABC , we

have |, A“1,A=0I.—R’ It is known that Ol =R 4 2R, where T, is the A-ex-inscribed

circle’s radius .
Then

| A-1,A=2Rr, (39)

The power of D in rapport to the circumscribed circle of triangle ABC leads to:
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DB-DC = AD - DA’

Therefore
2
AD-DA= 22 (40)
(b+c)
From (39) and (40) we obtain:
LA LA 2R, (b+c)’
2 .2 = 5 (41)
DA' DA a'bc
Using the external bisectrix’ theorem we obtain
1,A_b+c
DA a
and from here
I.,A_ Db+c
DA b+c-a

Substituting in (41) this relation and taking into account that abc = 4RS and S= I‘a( p—a) we

find that
I,A" b+c

YO (42)
DA a
From DM, = BM —BD, we find:
- a(b—c) (43)
2(b+c)
The similarity of triangles A'Al, and A'M_D leads to
| a—D=¢
2
We note AA(NBC=C,, we have that the triangles AC,D and AAI are similar.
From:
LA_ 1A
DA DC,
we find
o - (b=c)(p=2)
(b+c)

Computing BC, =BD—DC, we find that BC, = p—b, but we saw that BC, = p—b,
therefore C, =C,, and it results that A, C,, A are collinear points and AC, contains the
Gergonne’s point (F) Similarly, it can be shown that 1,C, and | C_ pass through T".

G. The medial triangle

Definition 19
A medial triangle (or complementally triangle) of given triangle is the triangle
determined by the middle points of the sides of the given triangle.
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Definition 20
We call a complete quadrilateral the figure ABCDEF where ABCD is convex

quadrilateral and {E} = ABNCD, {F} =BC[1AD. A complete quadrilateral has three

diagonals, and these are AC, BD, EF
Theorem 8 (Newton-Gauss)
The middle points of the diagonals of a complete quadrilateral are collinear (the Newton-

Gauss line).
Proof

A

Fig. 17
Let M,M,M, the medial triangli of triangle BCD (see figure 17). We note
M,M,NAC={M}, M,M,NBD={N}, MM,NEF={P]
taking into account of the middle lines which come up, the points M, N, P are respectively the
middle points of the diagonals (AC), (BD), (EF) of the complete quadrilateral ABCDEF .

We have:

MM, =2 AE MM, =~ AB NM, —-CD NM, —+DE
2 2 2 2

PM,—1BF PM,—LcF
2 2

Let’s evaluate following relation:
MM, NM, PM, AE DC FB
MM, NM, PM, AB DE CF

Considering A D,F transversal in triangle BCE we have, in conformity to Menelaus’

AE DC FB MM, NM, PM
theorem, that — - ——-—— =l and respectively that L. 2. =1,
MM, NM, PM,

From the Menelaus’ reciprocal theorem for triangle M,M,M it results that the points M, N, P

are collinear and the Newton-Gauss theorem is proved.
Remark 12
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We can consider the medial triangle M,'M,'M,' of triangle CFD (M, ' the middle of
(CF)and M, the middle of (CD) and M, the middle of (DF)) and the theorem can be
proved in the same mode. Considering this triangle, it results that triangles M;M,M; and
M,'M,"'M," have as homological axis the Newton-Gauss line. Their homological center being
the intersection of the lines: MM,', M,M,"', M;M,".

Proposition 14

The medial triangle and the anti-supplemental triangle of a non-isosceles given triangle
are homological. The homological center is the symmedian center of the anti-supplemental
triangle, and the homological axis is the Newton-Gauss line of the complete quadrilateral which
has as sides the sides of the given triangle and the polar of the center of the inscribed circle in
that triangle.

Proof

N

Fig. 18
In a triangle the external bisectrix are perpendicular on the interior bisectrix of the same
angles, it results that | is for the anti-supplemental |_I | (see figure 18) The orthocenter of the

given triangle ABC is the orthic triangle of I,1, I, therefore BC is anti-parallel to Il . In

accordance to proposition 6 it results that |1, M, is symmedian in triangle anti-supplemental,
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therefore 1 M, and | M are symmedians and because these are also concurrent, it result that
the triangles M,M M, and Il I are homological, the homology center being the symmedian

center of | I, 1.. Wenote N, M, P the tri-linear polar of | , the line determined by the exterior

bisectrix feet of the triangle ABC .
We note

{Nl} = Nlalvlbm Ialb’ {Ml} = Mchﬂ Iblc’ {R} = '\/Ialvlcm Ialc
The line M,,N,, P is the homological axis of triangles M,M_ M, and Il I, as it can be easily
noticed it is the Newton-Gauss line of quadrilateral NACMBP (because N, is the middle point

of NC, M, is the middle of AC and M_M, || AN, etc.)
Proposition 15

Fig. 19
The triangle non-isosceles medial and the tangential triangle of a given triangle are homological.
The homology center is the center of the circumscribed circle of the given triangle, and the
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homological axis is the Newton-Gauss line of the complete quadrilateral which has as sides the
sides of the given triangle and its Lemoine’s line.
Proof

The lines M,T,,M_T,,M_T, are the perpendicular bisector in the triangle ABC , therefore
are concurrent in O (triangle T,BC is isosceles, etc.) We note M, N, P the homological axis of
triangles ABC and T,T,T, (see figure 18). We’ll note {M,} =M, M_NT,T,. We observe that
from the fact that M M is middle line in triangle ABC, it will pass through M, the middle
point of (AM). {M}=BCNT,T,

Similarly, N, is the middle of (CN) and B, is the middle of ( BP)

The triangles M,M_ M, and T,T, T, being homological it results that M,,N,, B are

collinear and from the previous affirmations these belong to Newton-Gauss lines of the complete
quadrilateral BNPCAM , which has as sides the sides of the triangle ABC and its Lemoine’s
line M,N,P.

Remark 13

If we look at figure 18 without the current notations, with the intention to rename it later,
we can formulate the following proposition:

Proposition 16

The medial triangle of the contact triangle of a given non-isosceles triangle is
homological with the given triangle. The homological center is the center of the inscribed circle
in the given triangle, and the homology axis is the Newton-Gauss’s line of the complete
quadrilateral which has the sides the given triangle’s sided and the tri-linear polar is the
Gergonne’s point of the given triangle.

H. The cotangent triangle

Definition 21

A cotangent triangle of another given triangle the triangle determined by the tangent
points of the ex-inscribed circles with the triangle sides.

Observation 17

In figure 19 we note the cotangent triangle of triangle ABC with J_J,J..

Definition 22
Two points on the side of a triangle are called isometric if the point of the middle of the
side is the middle of the segment determined by them.
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Fig. 20

Proposition 17
In a triangle the contact point with a side with the inscribed and ex-inscribed are
isometrics




Proof
Consider the triangle ABC and the side BC to have C, and |,the contact points of the

inscribed and A-ex-inscribed (see figure 21).
To prove that C, and | are isometrics, in other words to prove that are symmetric in

rapport to the middle of (BC) is equivalent with showing that Bl , = CC, . Will this through

computation, finding the expressions of these segments in function of the lengths a,b,C of the
triangle. We’ll note:

X= AC, = AC,
y=BC, = BC,
z=CC, =CC,
From the system:
X+y=c
y+z=a
z+Xx=Db
By adding them and taking into account that a4+ b+ c=2p, we find:
X=p—a
y=p-b
z=p-—-cC

Therefore CC, = p—c.
We note with E, F the tangent points of the A ex-inscribed circle with AB and AC and

also
y'=Bl,=BE
z'=Cl,=CF

We have also AE = AF, which gives us:
c+y'=b+2
{y'+ zZ'=a

From this system we find
y':%(a+b—c) =p-cC

Therefore Bl, = p—c = CC_, which means that the points |,,C, are isometric.

Observation 18
AE=AF =p

Definition 23
Two Cevians of the same vertex of the same triangle are called isotomic lines if their base

(feet) are isotomic points.

Theorem 9 (Neuberg’s theorem)
The isotomic Cevians of concurrent Cevians are concurrent
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Proof
In figure 22, let’s consider in the triangle ABC the concurrent Cevians in point P noted

with AR, BP,,CP, and the Cevians AQ,, BQ,,CQ, their isotomic lines.

A

Fig. 22
From Ceva’s theorem it results that
B PC PA_, 59
RC PA BB

Because
RB = QIC’ PzA: QzCa RC = QIB’ ch = Q2A>Q3A: P389 P3A: Q3B
We can write
QC QA QB _,
QB QC QA

The Ceva’s reciprocal theorem implies the concurrence of the Cevians AQ,, BQ,,CQ; .

(40)

We noted with Q their concurrence point.

Definition 24
The points of concurrence of the Cevians and their isotomic are called isotomic
conjugate.

Theorem 11.(Nagel)
In a triangle the Cevians Al ,Bl,,Cl are concurrent.

Proof
The proof results from theorem 9 and from proposition 15.

34



Definition 25
The conjugate isotomic point of Gergonne’s point(r) is called Nagel’s point (N).

Observation 20
The concurrence point of the Cevians AH_,BH ,CH  is the Nagel point (N).

Theorem 10

Let A,B',C' the intersection points of a line d with the sides BC,CA AB of a given
triangle ABC . If A",B",C" are isotomic of the points A',B',C'respectively then A",B",C"
are collinear.

A

A’ B C c”
Fig. 23
Proof
The A',B',C' being collinear, from the Menelaus’ reciprocal theorem it results:

AB BC C'A_,

. . — 41)
A'C BPAC'B
Because
AB=A"C,AC=A"B; B'A=B"C,B'C=B"A C'A=C"B,C'B=C"A
And substituting in (41) it result
AH B"A n
C. .C B: 42)
AHB BHC CHA

This relation and the Menelaus’ s reciprocal theorem shows the collinearity of the points
A"’ BH’C" .

Remark 14
The line of the points A",B",C" is called the isotomic transversal.
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Proposition 18
A given non-isosceles triangle and its cotangent triangle are homological triangles. The
homology center is the Nagel’s point of the given triangle and the homology axis is the isotomic

transversal of the Lemoine’s line of the contact triangle.
A

Fig. 24

Proof
From theorem 10 it results that the lines Al,, Bl ,Cl_are concurrent in the Nagel’s point,

therefore triangle ABC and |_I I have the center of homology the point N .

alblc
We note { A} =C.C,1BC and {A"} =1, . N BC (see figure 24).
Will show that A', A" are isotomic points. We know that A' is the harmonic conjugate in
rapportto B and C
Also A" is the harmonic conjugate of | in rapport to B,C and we also know that C, and | are

isotomic points. (BC, =Cl, = p—b;CC, =BI,).

We have:
A'B CB
AC CC
that is:
A'B  p-b
AC p-c
from which:
A=l @3)
p—cC
A'C 1.C
A'B IB
therefore
A'C  p-b
A'B p-c
from which
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a(p-b)
c-b

Relations (43) and (44) show that A' and A" are conjugated points. Similarly we prove

that B',B"; C',C" are conjugated. The homology axes A,B',C' and A",B",C" of the contact

triangle and the triangle ABC respectively of the co-tangent triangle and of triangle ABC are
therefore isotomic transversals.

A'C = (44)

Observation 21
Similarly can be proved the following theorem, which will be the generalization of the
above result.

Theorem 12
The Cevians triangle of two isotomic conjugated points in given triangle and that triangle
are homological. The homology axes are isotomic transversals.

Proposition 19
The medial triangle of the cotangent triangle of a non-isosceles triangle ABC is
homological to the triangle ABC .

A

Fig. 25

Proof
We note M_, M, M_ the vertexes of the medial triangle of the cotangent circle | I,1,

(see figure 25) and with { A’} = AM, (N1 BC. We have
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A'B  ariaAABA'  ABsin BAA'

A'C  ariaAACA'  ACsinCAA' )
On the other side:
ariaAAI M = ariaAAI M,
from here we find that
Al sin BAA' = Al, sin CAA'
therefore
sinBAA' A, CG _p-c¢ (46)
sinCAA" Al, BC, p-b
Looking in (45) we find:
AD DA =2 . (47)
(b+c)

With the notations{B'} = BM,; N AC and {C'} =CM_ AB we proceed on the same manner and

we find

B'C a(p-a)
B'A c¢(p-c) (%)
C'C _b(p-b)
C'B a(p-a) )

The last three relations and Ceva’s reciprocal theorem, lead us to the concurrency of the
lines: AM',,BM',,CM . therefore to the homology of the triangles ABC and M_M,M_.

We note

{M}=1,1.NBC,
IN}=1,1,NAB,
{Pl=1,1.NAC

and
{M,}=M_M, N AB,

{N,}=M,M_NBC,

{R}-M.M.NCA
We observe that N, is the middle of the segment (1 :N), N, is the middle of the segment
(1,M) and B is the middle of the segment (1,P). In the complete quadrilateral PMI,I,NI the
Newton-Gauss line is N,M,P therefore the homological axis of triangles ABC and M_M,M_.
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Proposition 20

The cotangent triangle of a given triangle and the triangle A'B'C' formed by the
projection of the circle inscribed to triangle ABC on the perpendicular bisectors of the sides
BC,CA AB are homological. The homology center is Nagel’s point N of the triangle ABC .

Proof

Let A, the intersection of the bisector A' with the circumscribed circle of triangle ABC ,

M, the middle of BC and |, the vertex on BC of the cotangent triangle (see figure 26).

Fig. 26
Consider the power of | in rapport to the circumscribed circle of triangle ABC , we

have Al -1A =R —OI”  Itis known that DI> = R’ —2Rr . Substituting we find
AIA =2R *)

Considering the power of D in rapport to the circumscribed circle of the triangle ABC we have

AD-DA =BD-DC.

We know that
BD—_%¢
b+c
cp_ B
b+c
It results
2
AD-DA = 22C (+%)
(b+c)
On the other side with bisector’s theorem we obtain
Al b+c
ID a )
Al b+c
ID a+b+c

Dividing relations (*) and (**) side by side it results
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Al _ 1A 2R (b+c)

_ — (****)
ID DA a’bc
Taking into account (***) and formula abc = 4RS and S= p-r, we find
DA a
Because DM, = BM, —BD, we find that
a —_
DM, = alp=c)
2(b+c)
From the fact that triangles AA'l and AMD are similar we have
A IA
DA DM,
From here we obtain
|A':? (R

We note |, = AANBC. From the similarity of the triangles AIA' and ADI it results
DI,_(a+b+cﬂb—c)
¢ 2(b+c)
Bl =BD+ DI, = p—c, this relation shows that |, = contact of the A-ex-inscribed circle or

AA'is Cevian Nagel of the triangle ABC . Similarly it results that | B' contains the Nagel’s
point.
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I. The ex-tangential triangle

Definition 26

Let ABC and I, the centers of the A-ex-inscribed circle, B-ex-inscribed circle, C.-
ex-inscribed circle. The common external tangents to the ex-inscribed circles (which don’t
contain the sides of the triangle ABC ) determine a triangle E_E E_ called the ex-tangential

triangle of the given triangle ABC

Proposition 21
The triangles ex-tangential and anti-supplemental of a given non-isosceles triangle are
homological.
Ec

Fig. 27
The homology center is the center of the inscribed circle in the ex-tangential triangle, and the
homology axis is the anti-orthic axis of the given triangle.
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Proof
The lines E_|

a a’

are concurrent in the center of the circle inscribed to this circle, noted | (see figure 27).

El,, E.l. are the bisectors in the ex-tangential triangle, therefore these

Therefore it results that triangles E,E E_ and |l ] are homological.
We note

1. NEE ={M]}.
L1 NEE, ={N}.
Ialbn EaEb :{P}
The homology axis of triangles E,E E_ and Il |, is, conform to Desargues’ theorem

the line M, N, P. Because E E, and BC intersect also in M , it results that is the feet of the

exterior bisector of angle A of triangle ABC . Consequently M, N, P is the anti-orthic axis of
triangle ABC .

Remark 15
From the above affirmation it results that the anti-orthic axis of triangle ABC 1is the

homology axis for triangle ABC as well as for triangle E_E E_. Therefore we can formulate

Proposition 22
A given triangle and its ex-tangential triangle are homological. The homology axis is the
anti-orthic axis of the given triangle.

Remark 16
a) The homology center of triangle ABC and of its ex-tangential E_ E E_is the

intersection of the lines AE,, BE,, CE..

b) From the proved theorem it results (in a particular situation) the following theorem.

Theorem 13 (D’ Alembert 1717-1783)

The direct homothetic centers of three circles considered two by two are collinear, and
two centers of inverse homothetic are collinear with the direct homothetic center which
correspond to the third center of inverse homothetic.

Indeed, the direct homothetic centers of the ex-inscribed circles are the points M, N, P,
and the inverse homothetic centers are the points A B,C . More so, we found that the lines

determined by the inverse homothetic centers and the vertexes of the ex-tangential triangle are
concurrent.

Observation 22
Considering a given isosceles triangle, its anti-supplemental triangle |1 1. and its ex-

tangential triangle E,E E_it has been determined that any two are homological and the

homology axis is the anti-orthic axis of the triangle ABC . We will see in the next paragraph
what relation does exist between the homological centers of these triangles.
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J. The circum-pedal triangle (or meta-harmonic)

Definition 27

We define a circum-pedal triangle (or meta-harmonic) of a point D, from the plane of
triangle ABC , in rapport with the triangle ABC - the triangle whose vertexes are the
intersections of the Cevians AD, BD,CD with the circumscribed circle of the triangle ABC .

Remark 17
Any circum-pedal triangle of any triangle and the given triangle are homological.

Proposition 23
The circum-pedal triangle of the orthocenter H of any triangle ABC is the homothetic of

the orthic triangle of that triangle through the homothety of center H and of rapport 2.
Proof.

Fig.28

Let ABC a scalene triangle. H its orthocenter, H,H, H, its orthic triangle and A'B'C"'

its circum-pedal triangle (see figure 28).

Because <BA'H = <BHA' (are inscribed in circle and have as measure %m( AB)) and
<BCA = <BHA' angles with sides respectively perpendicular, we obtain that
<BA'H = <BHA"', therefore the triangle BHA" is isosceles. BH, being the altitude, it is the
median, therefore HH, = H_A' or H,A"=2HH_ which shows that A' is homothetic to H,.

through the homothety H(H;2). The property is proved similarly for the vertexes B' and C' of
the circum-pedal triangle as well as in the case of the rectangle triangle.

Remark 18

We will use the proposition 22 under the equivalent form: The symmetric of the
orthocenter of a triangle in rapport with its sides belong to the circumscribed circle.
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Proposition 24
The circum-pedal triangle of the symmedians center of a given triangle has the same

symmedians as the given triangle.

Proof (Efremov)
Let K the symmedian center of triangle ABC and DEF the pedal triangle of K (see
figure 29)
The quadrilateral KDBF is inscribable; it results that
<KDF = «KBF = «<B'BA= <AA'B' (50)
The quadrilateral KDCE is inscribable, it results:
<KDE = <KCE = <AA'C' (51)

From (50) and (51) we retain that <EDF = <B'A'C".

A,
Fig. 29

Similarly we find that <EDF = <A'B'C", therefore ADEF ~ AA'B'C".
Because K is the gravity center of the triangle DEF | from <EDK = <BB'A and

<B'A'C'= «EDF itresults that AA'is a symmedian in the triangle A'B'C'. Similarly we
show that BB' is a median in the same triangle, and the theorem is proved.

Remark 18
The triangles ABC and A'B'C' are called co-symmedians triangle.

Proposition 24
The homology axis of two co-symmedians triangles is the Lemoyne’s line of one of

them.
Proof
In the triangle ABC we consider the symmedian center and A'B'C' the circum-pedal

triangle of K (see figure 30).
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It is known that Lemoine’s line of triangle ABC passes through A which is the
intersection constructed in A to the circumscribed to triangle ABC with BC .

We’ll note AABC ={S}

We have
AASB ~ ACSA'
From where
AB AS
—_—=— (52)
A'C CS
Also
AASC ~ ABSA'
We obtain
AC AS
—_— = (53)
A'C CS

Fig. 30

From (52) and (53) it results
AB BA' _BS
AC AC CS
On the other side AS being symmedian we have
BS AB’
CS AC
Therefore it results

(54)

(55)
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BA' AB

CA T AC O
The line A Ais ex-symmedian in triangle ABC , we have

AB AP’

ACAC °7

We note with A, the intersection of tangent in A' with BC , because A A' is ex-symmedian
in triangle BA'C , we have

! D2
AB_AT (59)
AC A'C
Taking into account relation (56) it results
! 2
E = A82 (59)
AC AC
From (57) and (59) we find
AB_AB
AC A{C

Which shows that A", = A.

Applying the same reasoning for triangle A'B'C'we find that the tangent in A' intersects B'C'
and the tangent in A at the circumscribed circle in the same point on B'C', the tangent from A

and the tangent from A' intersects in the unique point A. Consequently, B'C"' and BC

intersect in A.

K. The Cosnita triangle

Definition 28

Given a triangle ABC , we define Cosnita triangle relative to the given triangle, the
triangle determined by the centers of the circumscribed circles to the following triangles
BOC,COA AOB, where O is the center of the circumscribed circle of the given triangle ABC

A

Fig. 31
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Theorem 14 (C. Cosnita)

The Cosnita triangle of triangle ABC and triangle ABC are homological.
Proof

In figure 31 we construct a scalene triangle ABC and we note O,,0;,0O. the centers of
the circumscribed triangles of triangles BOC, COA, AOB.
We have m(BOC)=2A, m«(BOO,)=A, m«(ABO,)=90°—(«C-<A)
m« (ACO, ) =90°—(«xB-<«A).
The sinuses’ theorem applied in triangles ABO,and ACO, leads to:
BO, AO,
sin(BAO,) sin (90" —(«<C—<A))

*)

COo, _ AO,
sin(CAO,)  sin (90" —(«B-<A))

**)

From (*) and (**) we find
sin(BOO,) _ cos(xC—<A)
sin(CAO,)  cos(<B—<A)

(***)
Similarly we obtain
sin(ABO,)  cos(xA—<B)
sin(CBO,)  cos(«<C—<B)

(****)

sin(BCO,)  cos(«B-<«C)
sin(ACQ,)  cos(<«A-<C)
(*****)

From relations (**%*), (****), (*****) and the from the trigonometrically variation of
Ceva’s theorem it results that AO,, BO,, CO, are concurrent. The concurrence point is noted

Ko, and it is called the Cosnita point. Therefore the Cosnita point is the homology center of

triangle and of ABC Cosnita triangle.
Note
The name of Cosnita point has been introduced by Rigby in 1997.

Observation 23
The theorem can be similarly proved in the case of an obtuse triangle.

Remark 19
Triangle ABC and Cosnita triangle O,0,0. being homological, have the homology axis
the Cosnita line.
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Theorem 15
The Cosnita point of triangle ABC 1is the isogonal conjugate of the center of the circle of
nine points associated to triangle ABC .

MNA

B
Fig. 32
Proof
It is known that the center of the circle of nine points, noted O, in figure 32 is the middle

of segment OH , H being the orthocenter of triangle ABC .

We note {S} =00, NOH .

We’ll prove that <OAK, = <HAQ, which is equivalent with proving that AS is
symmedian in triangle OAH . This is reduced to prove that % = gﬁz .

OoS OO
Because OO, || AH we have that AOAS ~ AHSA, it results that =Y AHA :

R
From the sinuses’ theorem applied in triangle BOC we find that OO, = ———— . It is
2(cos A)
2

known that in a triangle AH =2R(cos A), it results that (,)AC:IA = % ; therefore AS is the

isogonal of the median AQ, ; similarly we prove that BK is a symmedian in triangle BOH ,

consequently K, is the isogonal conjugate of the center of the circle of the nine points.

Theorem 16 (generalization of the Cosnita’s theorem)
Let P a point in the plan of triangle ABC , not on the circumscribed circle or on the

triangle’s sides; A'B'C' the pedal triangle of P and the points A, B,,C, such that
PA.PA — PB'-PB — PC-PC k. ke Q'
Then the triangles ABC and AB,C, are homological.
Proof
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Let «, 3,7 the barycentric coordinates of P . From o =aria(APBC) we have

2 ak
PA' = Xa , and from PA"PA =k we find PA = B (we considered P in the interior of
o

triangle ABC, see figure 33). We note D and respectively P, the orthogonal projections of A
on AD and P on AD.
Ci

Ay
Fig.33

Proof
Let o, 3,7 the barycentric coordinates of P. From o =aria(APBC) we have

2 ak
PA'= § , and from PA"PA =K we find PA,= P (we considered P in the interior of
o

triangle ABC, see figure 33). We note D and respectively P the orthogonal projections of A
on AD and P on AD.
Because <PAD = <ABC (angles with perpendicular sides), we have

AP =PA -cosB:%cosB
2a

: 2 aKcosB 2
From wzana(APAB) it results PC':% and AD=AP +PD :%4—%.
a
We note A =37, and we have
_ kaccosB+ 4o

4o

"

b
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2, A2
o :aria(AABc):%Bc-AA'=ak4—;“

And similarly as in they, computation we obtain

abkcosC+4a
ﬁ] =
4o
Or
a’k —4a’ abkcosC+4aB ackcosB+4ay
A : ,
4o 4o 4o

Similarly,

B abkcosC +4a8 b’k—43> cbkcos A+43y

40 T4 40 ’
c abk cos B+4ary cbkcos A+ 405y c b’k —4~7
1 4y ’ 4y T 4y

Conform with [10] the Cevians AA,BB,,CC, are concurrent if and only if o, 3,7, = a,37,.
Because in our case this relation is verified, it results that the lines AA, BB,, CC, are

concurrent.
The theorem is proved in the same manner also in the case when P is in the exterior of
the triangle.

Remark 20
The center of homology of the triangles ABC and AB,C, has been named the

generalized point of Cosnita.

Observation 24.1
The conditions from the above theorem have the following geometrical interpretation: the

points A, B, C, are situated on the perpendiculars from point P on the triangle’s sides and are

the inverses of the points A', B', C' in rapport to the circle in point P and of radius|kl :

Observation 24.2

2
The Cosnita’s theorem is obtained in the particular case P = O and k = R? (O and R are the

center and respectively the radius of the circumscribed circle). Indeed, OA' = Rcos A, and with

the sinuses’ theorem applied in triangle BOC we have =20A (A being the center of

sin2 A
2

the circumscribed circle of triangle BOC ). From where OA"OA = R7, similarly we find

R2
OB 0B, =0C"OC, —-.
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Observation 24.3
It is easy to verify that if we consider P =1 (the center of the inscribed circle) and
k=r(r+a), a>0 given, and I' is the radius of the inscribed circle in the Kariya point.

Therefore the above theorem constitutes a generalization of the Kariya’s theorem.
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Chapter 2

Triplets of homological triangles

This chapter we prove of several theorems relative to the homology axes and to the
homological centers of triplets of homological triangles.

The proved theorems will be applied to some of the mentioned triangles in the precedent
sections, and also to other remarkable triangles which will be defined in this chapter.

2.1. Theorems relative to the triplets of homological triangles

Definition 29
The triplet (T,,T,,T;) is a triplet of homological triangles if the triangles (T,,T,) are

homological, the triangles (TZ,T3) are homological and the triangles (TI,T3) are homological.

Theorem 17

Given the triplet of triangles (T,,T,,T,) such that (T,,T,) are homological, (T,,T,) are
homological and their homological centers coincide, then

(1) (T,,T,,T,) is a triplet of homological triangles. The homological center of (T,,T;)
coincides with the center of the previous homologies.

(i)  The homological axes of the pairs of triangles from the triplet (T,,T,,T,) are

concurrent, parallel, or coincide.
Proof

Let’s consider T, triangle ABC,, T, triangle AB,C,, and T, triangle AB,C,. (See
figure 34).
We note O the common homological center of triangles (T,,T,) and (T,,T;) such that

AANBB NCC, ={0]
AANBB,NCC, ={0]
From these relations results without difficulty that
AANBB NCC, ={0]
Consequently, (TI,T3) are homological and the homology center is also O .
We consider the triangle formed by the intersection of the lines AB,, AB,, AB,, noted

in figure PQR and the triangle formed by the intersections of the lines BC,, B,C,, B,C,, noted
KLM . We observe that

PRNKM ={B
Also

PQNKL={B,}
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RQNML={B,j

Because B, B,, B, are collinear from the Desargues’ theorem we obtain that the triangles PQR
and KLM are homological, therefore PK,RM,QL are concurrent lines.

Bs

Fig. 34

The line PK is the homology axis of triangles ('I'I,T2 ) , line QL is the homology axis of

triangles (T,,T;) and RM is the homology axes of triangles (T,,T;) . Because these lines are
concurrent, we conclude that the theorem is proved.

Remark 21
a) We can prove this theorem using the space role: if we look at the figure as being a

space figure, we can see that the planes (T,), (T,) share the line PK and the planes (T,), (T;)
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share the line QL . If we note {O'}=PKLQit results that O' belongs to the planes (T,)and
(T3) , because these planes intersect by line RM , we find that O' belongs to this line.

The lines PK,RM,QL are homological axes of the considered pairs of triangles,

therefore we conclude that these are concurrent in a point O'.
b) The theorem’s proof is not valid when the triangles PQR and KLM don’t exist.

A situation of this type can be when the triangles (Tl,Tz)are homological, the triangles
(T,,T,) are homological, and the triangles(T,,T,) are homothetic. In this case considering the
figure s in space we have the planes (Tl) and (T3) are parallel and the plane (Tz) will intersect

them by two parallel lines (the homology axes of the triangles (T,,T,) and (T, T,)).

c) Another situation when the proof needs to be adjusted is when it is obtained that
the given triangles have two by two the same homological axis.

The following is a way to justify this hypothesis. We’ll consider in space three lines
d,,d,,d, concurrent in the point O and another line d which does not pass through O. Through

d we draw three planes «,3,7 which will intersect d,,d,,d, respectively in the points
A,B.C; A.B,,C,; A,B,,C;. The three triangles ABC,, AB,C,, AB,C, are homological two
by two, their homology center is O and the common homology axis is d .

Theorem 18

Given the triplet of triangles (T,,T,,T,) such that (T,,T,) are homological, (T,,T,) are
homological, and the two homology having the same homological axis, then:

1) The triplet (Tl,TZ,T3) is homological. The homology axis of triangles (T1,T3)
coincide with the previous homological axis.

ii)  The homological centers of the triangles (T,,T,), (T,,T;) and(T,T,) are collinear

or coincide.

Proof.

It
T, = ABC,
T,=ABC,
T,=ABC,

and M,N, P is the common homological axis of triangles(Tl,Tz) and (TZ,T3) it results that

{N} =ACNAC,
{P}=ABNAB,

and
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{M}: B,C,NBC,
{N}:Aﬁczm'a}cs
{P}=AB,NAB,

From these relations we find that
{M}=BC NBC,

{N}=AC NAC,

{P}=ABNAB,

which shows that the line M, N, P is homological axis also for triangles (T,,T;)

Fig. 35

In figure 35 we noted with O, the homology center of triangles (T,,T,), with O, the
homology center of triangles (T,,T;)and with O, the homology center of triangles (T,,T,).

Considering triangles AA A and BB,B, we see that AB N AB,NAB, ={P}, therefore these

triangles are homological, their homology center being the point P . Their homological axis is
determined by the points
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Consequently the points O,,0,,0, are collinear.
Verify formula

{0}=AANBB,
10.}=AANBB,
{03}:A'A§ﬂ8182

Theorem 19 (the reciprocal of theorem 18)
If the triplet of triangles (T,,T,,T;) is homological and the centers of the homologies
(T,T,), (T,,T,), and (T, T,) are collinear, then these homologies have the same homology axes.

Proof
Let O,0,,0, the collinear homology centers (see fig 35). We’ll consider triangles

BB,B,, CC,C, and we observe that these have as homology axes the line that contains the
points O,,0,,0, . Indeed, {O}=BB,NC, {0,}=B,B,NC,C,, and {O,}=BB,NCC,, it
results that these triangles have as homology center the point M (BC, NB,C,NB,C, ={M}).
Similarly, the triangles AAA , CC,C, have as homology axes the line OO,0,, therefore as
homology center the point M ; the triangles AA A, B,B,B, are homological with the homology

axis O0O,0, and of center P . Theorem14 implies the collinearity of the points M,N,P ,
therefore the theorem is proved.

Theorem 20 (Véronése)
Two triangles AB,C,, AB,C, are homological and

{A}=BC,NBC
{B}=AC,NCA
{C1=ABNBA

then the triplet (ABC,,AB,C,,ABC,) is homological and the three homologies have the

homological centers collinear.

Proof

Let O, the homology center of triangles (T,, T, ), where
T, =ABC,
T,=AB.C,

(see fig. 36) and A'B'C' their homology axis.
We observe that O, is a homological center for triangles ABC,, AB,C,, and their

homological axis is C'AB,;.
Also O, is the homological center for triangles B,C A,, B,C,A ; these triangles have as
homological axis the line A',B,,C,.
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Similarly, we obtain that the points B', A,C, are collinear, being on the homological axis
of triangles C AB,, C,AB,.

Fig. 36
The triplets of collinear points (C,A,B;), (B'A,C,) and (A B,,C,) show that the
triangle T, = AB,C, is homological with T and T,.

The triplet (T,,T,,T,) is homological and their common homological axis is A',B',C'. In

conformity to theorem 15, it result that their homological centers are collinear.

2.2. A remarkable triplet of homological triangles

Definition 30
A first Brocard triangle of given triangle is the triangle determined by the projections of
the symmedian center of the given triangle on its medians.

Observation 25
In figure 37 the first Brocard’s triangle of triangle ABC has been noted ABC,.

Definition 31
In a given triangle ABC there exist the points Q and Q' and an angle @ such that
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m(<xQAB) =m(<xQBC) =m(<xQCA) =0 m(xQ'BA)=m(xQ'CA)=m(xQ'AB)=w
A

m C
Fig. 37
The points Q and Q' are called the first, respectively the second Brocard’s point, and @ is
called the Brocard angle.
Definition 32
An adjunct circle of a triangle is the circle which passes by two vertexes of the given

triangle and it is tangent in one of these vertexes to the side that contains it.
A

Fig 38
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Observation 26
In figure 38 it is represented the adjunct circle which passes through B and C and is

tangent in C to the side AC. Will note this circle BC. To the given triangle ABC corresponds
six adjunct circles.

Proposition 26
The adjoin circles AB, BC,CA of triangle ABC intersect in Brocard’s point Q.

Fig. 39
Proof
Let Q the second point of intersection of the circles /A_Ig, BC. Then we have that
<QAB=<QBC.
Because BC is tangent in B to the side AC we have also the relation
< QBC =<QCA
These imply that
< QCA=<xQAB

And this relation shows that the circumscribed circle to triangle €XCA is tangent in the point A

to the side AB, which means that the adjunct circle CA passes through the Bacard’s point Q.
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Remark 22

Similarly we prove that the adjunct circles /B\A, X(\i,(f:lg intersect in the second Bacard’s
point Q'. Bacard’s points © and Q' are isogonal concurrent.

Proposition 27
If ABC is a triangle and @ is Bacard’s angle, then
ctgw = ctgA+ ctgB + ctgC (60)
Proof
Applying the sinus’ theorem in triangles AQC, BQC we obtain:
CQ AC
: =— (61)
sin(A-w) sin AQC
e (62)
sinw sin BQC
Because
m(<):AQC) =180°-A
and
m(<«BQC)=180°-C
From relations (61) and (62) we find
' sin @ :AC_s%nC 63)
sin(A—w) BC sinA
And from here
sin(A-w)=2 512 Gh (64)
b sinC

. o a sinA
From the sinus’ theorem in triangle ABC we have that — = — 5
sin

and re-writing (64) we have

) .
sin(A- @) = 3L A SO (65)
sin B-sinC
Furthermore
sin (A— ) = sin A- cos @—sin wcos A
And

sin? A sinw

sin A-cos w—sin wcos A= (66)

sinB sinC
Dividing relation (66) by sin A-sin® and taking into account that sin A=sin(B+C)

and sin(B+C)=sin BsinC+cos B-cosC we’ll obtain the relation (60).

Proposition 28
In a triangle ABC takes place the following relation:
2 2 2
ctgw = a+b+c (67)
4s
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Proof
If H, is the projection of the vertex B on the side AC, we have:

AH, Db-c-cosA

CtgA= 68
J BH, 2s (68)
From the cosin’s theorem in the triangle ABC we retain
2bccos A=b* +c* -a’ (69)
Replacing in (68) we obtain
2 2 2
CtgA = b+c-a (70)
4s

Considering the relation (60) and those similar to relation (70) we obtain relation (67)

Definition 33
It is called the Brocard’s circle of a triangle the circle of who’s diameter is determined by
the symmedian center and the center of the circumscribed circle of the given triangle.

Proposition 29
The first Brocard’s triangle of a triangle is similar with the given triangle.

Proof

Because KA ||BC and OA'LBC it results that m(<KAO)=90° (see figure 37).
Similarly m(<«KBO)=m(<xKCO0)=90° and therefore the first Brocard’s triangle is inscribed
in the Brocar’s circle.

Because M(<AOC, ) =180°— B and the points A,B,,C,,0 are con-cyclic, it results that
<ABC,,0=<B, similarly from m«(B'OC')=180°— A it results that m(<«BOC,)=m(A")
but «BOC, = «B AC,, therefore «B AC, = <A, therefore triangle AB,C, is similar to the
given triangle ABC.

Proposition 30
If in a triangle ABC we note K,,K,,K, the orthogonal projections of the symmedian
center K on the triangle’s sides, then the following relation takes place:

Fig. 40
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KK, _ KK, _ KK, =ltga) )
a b C 2

Proof
In triangle ABC we construct AA the symmedian from the vertex A (see figure 20).

B 2
We have —A§ = %, on the other side

CA
BA,  AriaABAA (72)
CA, AriaACAA
Also
AriaABAA,  AB-AF (73)
AriaACAA, AC-AE
Where E and F are the projections of A, on AC and AB.
It results that
AF _c o
AE b
From the similarity of triangles AKK,, AAF and AKK,, AAE we have
KK, _AF (75)
KK, AE
Taking into account (74), we find that KK, _ KK, , and similarly
a Cc
KK, KK, )
—t= ; consequently we obtain:
a
(76)
The relation (76) is equivalent to
aKK, DbKK, cKK; aKK, +bKK, +cKK,
R T R 2 12 L2 (77)
a b c a +b +c
Because aKK, +bKK, +cKK, =2 AriaAABC = 2s, it result that
KK, KK, KK, 2s
a b c a+b’+c (78)
. b’ +c*-a’ . , .
We proved the relation (67) ctgA= s and from this and (78) we’ll obtain the
S
relation (71).
Remark 23

Because KK, =AA' (A’ being the projection of the vertex A of the first Brocard’s
triangle on BC), we find that
m(<ABC)=m(«<ACB)= o (79)
also
m(<«C,AC)=m(<«BCA)=w (80)

and
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m(<«C,AB)=m(«BBA)=w (81)

Theorem 21 (J. Neuberg — 1886)

The triangle ABC and its Bacard’s first triangle are homological. The homological center
is the isotonic conjugate point of the symmedian center.

Proof

Let H, be the projection of vertex A on BC and A the intersection of AA with BC,

and A' the middle of the side (BC).

We found that m(«<ABC) = @, therefore AA'= %tga), we have also AH, = E
a
From the similarity of triangles AA'A, and AH,A, we find ﬁz: = % , that is:
1 1
'Av 2
AA_atge (82)
AH, 4s
We observe that A;A'zg— BA,, AH, =BH, —BA =ccosB—BA,.
a .
: .2 BA a’tgw
Getting back to (82), we obtain - = and from here
ccos B—-BA 4s
a-2BA a’tgw
A 2% (83)
2ccosB—a 4s-atgw
From (83) taking into account that tgw = % and 2accos B=a’ +¢* —b’* we find that
a +0 +cC
. ab’
BA = 84
& b* +¢’ 54
then we obtain:
. ab’
BA = 85
& b* +¢’ (8)
therefore
B ! 2
BA L b—z (86)
CA c
We note BA N AC ={B,}, CANAB={C,]}
then
! 2
<5 _ C—2 (87)
AB, a
And
! 2
A 2 (88)
BC, b
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The last three relations along with the reciprocal of Ceva’s theorem show that the
Cevians
AA,BB,,CC, are concurrent.

, BA' ¢
We showed that if AA is symmedian in triangle ABC then % :F (33). This relation
and the relation:
CA ¢
i%:—z (89)
BA b
lead us to the equality: CA = BA , which shows that the Cevian AA is the isotonic of the
symmedian from the vertex A of triangle ABC; the property is true also for the Cevian
BB,,CC, and therefore the concurrence point of the Cevian AA,BB,CC, is the isotonic
conjugate of the symmedian center K of the triangle ABC.
In some publications this point is noted by Q" and is called the third Brocard’s point. We
will use also this naming convention further on.

Theorem 22
The perpendicular constructed from the vertexes A B,C respectively on the sides

AC,,C,A,AB, of the Brocard’s first triangle of a given triangle ABC intersect in a point T

which belongs to the triangle’s circumscribed circle.
Proof
We’ll note with T the intersection of the perpendicular constructed from B on AC,
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Fig 41

with the perpendicular constructed from C on AB and let {B1 } =BTNAC, and
{Cl} = AB,NCT (see figure 41).

We have m(<):Bl'TCI'): m(<«C,AB,). But conform to the proposition «C AB, = <A, it
results M(<«BTC) = <A, therefore T belongs to the circumscribed circle of triangle ABC.

If {A } =B,C, N AT let note T' the intersection of the perpendicular constructed from
A on BC with the perpendicular constructed from B on AC, ; we observe that
m(<rB{TA[): m(«AC,B,) , therefore T' belongs to the circumscribed circle of the triangle

ABCThe points T,T" belong to the line BB, and to the circumscribed circle of triangle ABC. It
result that T =T "' and the proof is complete.

Remark 24
The point T from the precedent theorem is called Tarry’s point of triangle ABC.

Similar can be proved the following theorem:

Theorem 23
If through the vertexes A B,C of a triangle ABC we construct parallels to the sides

B,C,,C,A,AB, of the first Brocard’s triangle of the given triangle, then these parallels are

concurrent in a point Son the circumscribed circle of the given triangle.

Remark 25
The point S from the previous theorem is called Steiner’s point of the triangle ABC. It
can be easily shown that the Stern’s point and Tarry’s point are diametric opposed.

Definition 34
Two triangles are called equi-brocardian if they have the same Brocard’s angle.

Proposition 31

Two similar triangles are equi-brocardian

Proof

The proof of this proposition results from the relation
ctgw = ctgA+ ctgB + ctgC

Remark 26
A given triangle and its firs Brocard’s triangle are equi-brocardian triangle.

Proposition 32
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If ABC is a triangle and AB, AC, are its adjoin circles which intersect the second side

AC in E respective F , then the triangles BEC,BFC are equi-brocardian with the given

triangle.
Proof

Fig. 42

The triangles BEC, ABC have the angle C in common and <tBEC=<tABC because

they extend the same arc AB in the adjoined circle AB.
Therefore these triangles are similar therefore equi-brocardian.

Similarly we can show that triangle ABC is similar to triangle CBF, therefore these are
also equi-brocardian.

Theorem 24
The geometric locus of the points M in a plane that are placed on the same side of the
line BC as the point A, which form with the vertexes B and C of triangle ABCequi-brocard

triangles with it is a circle of center H, such that m(<«BH,C) =2 and of a radius

n =§«/ctgza)—3 (90)
Proof

From proposition 32 we find that the points E, F belong evidently to the geometric locus
that we seek. A belongs to the geometric locus (see fig. 42).
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We suppose that the geometric locus will be a circumscribed circle to triangle AEF . .
We’ll compute the radius of this circle. We observe that CA-CE = CB’ and BF -BA=BC”,
therefore the points C, B have equal power in rapport to this circle, and the power is equal to a

From the precedent relations we find that
fv|  feal
AE="—— and AF="—"—

Cc

Applying the sinus’ theorem in the triangle AEF we find
¢’ (& —bz)2 +b (¢’ —az)2 +(b*+¢* -a’)(a’ -b’ ) (¢’ - &)
bZCZ
The sinus’ theorem in triangle AEF gives
n = EF
' 2sinA
where 7, is the radius of the circumscribed circle to triangle AEF .
Because 2bCsin A=4S and 165’ = 2a’b” + 2b’c* +2¢’a* —a* —b* —¢* and taking into account

2 2 2
also the relation ctgw = a‘i‘& we find
S

n, = ;w/ctgza)—3

If we note H, the radius of the circumscribed circle to triangle AEF , taking into account

EF’ =

that the points C, B powers in rapport to this circle are equal to a’ and that this value is the

square of the tangent constructed from B respectively C to this circle and further more equal to

H,B* -7/ and to H,C*> -7/ , we find that H,B=H,C, which means that HIA':gctga) and

from here we find that m(<«BH,C) =2w.
Let’s prove now that if M is a point on the circle & ( H1,771) then triangle MBC has the
same Brocad angle @ as ABC. We’ll note the Brocad’s angle of triangle MBC with @', then

MB* + MC* + BC?
ctgw'= 91)
4SAMBC
From the median theorem applied in triangle MBC we find that
2

MB? + MC> :2MA'2+% (92)

AriaMBC = & MA"’;S MAH, 93)
The cosin’s theorem applied in triangle MA'H, gives

7. =MA”+H A”-2MA" cos<MA'H, - H A' (94)

We’ll compute 4s,,,. taking into account relation (93) and substituting in this

2MA'"cos <MA'H, from relation (94) in which also we’ll substitute H,A'= gctga) we’ll obtain
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2
2MA'2+3§
AMBC Ctg(() ( )
Now we’ll consider the relations (92) and (95) which substituted in (91) give
ctgw' = ctgw ; therefore @' = @ and the theorem is proved.

Remark 27
The geometric locus circle from the previous proved theorem is called the Henberg’s

circle. If we eliminate the restriction from the theorem’s hypothesis the geometric locus would
be made by two symmetric Henberg’s circles in rapport to BC. To a triangle we can associate,
in general, six Henberg’s circles.

Definition 35

We call a Henberg’s triangle of a given triangle ABC the triangle H H,H, formed by
the centers of the Henberg’s circles.

Proposition 33

The triangle ABC and its triangle Henberg H,H,H, are homological. The homology

center is the triangle’s Tarry’s point, T .

H,

Fig. 43

Proof
We proved in theorem 22 that the perpendiculars from A B,C on the sides of the first

Brocad triangle are concurrent in T. We’ll prove now that the points H,, AT are collinear. It is

sufficient to prove that
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H,A-BC, =0 (96)
We have H A= AA'+ A'H, and BC, =CC'+C'B'+B'B, (see figure 43). Then
H,A=-BC =(AA'+A'H,)(CC'+C'B'+B'B) 97)

Because AA' :%(E+E), C'B':%E , we have

H—l/xgc‘{:%Ké.—"clcv%xéié%z@.—“svsl+%z6.c—“lcv+
+%A—C-B—C+%A—C- B'B +AH, -CIC'+%A'H1 .BC+A'H,-B'B, (98)
Evidently, AB-CC'=0, AC-B'B =0, A'H,-BC=0
On the other side
lﬁB-?C =—lac-c0sB,
4 4
lH)CIC':lbotga)sinA,
2 4
1

—Ké-gé:—labcosc,
4 4

A'H -CC =%Ctga)~tga)~cos B,

A'H, ﬁ = —%C’[ga)-tga)-cosC

Considering these relations in the relation (98) it will result the relation (96).

Similarly it can be proved that H,B passes through T and H,C also contains the pointC.

Theorem 25

Let ABCa triangle and ABC, its first Brocard triangle and H,H,H, is its Neuberg’s
triangle, then these triangles are two by two homological and have the same homological axis.

Proof

We roved that the triangle ABC and its first Brocard’s triangle are homological and their
homological center is Q" the third Brocard’s point. Also we proved that the triangle ABC and

the Neuberg’s triangle are homological and the homology center is Tarry’s point T .

Taking into consideration that H,A is mediator in triangle ABC for BC, and that H,B,
and H,C, are also mediator in the same triangle, it results that the Neuberg’s triangle and triangle

AB.C, (the first Brocard’s triangle) are homological, the homology center being O, the center

of the circumscribed circle of triangle ABC.

Consequently, the triangle ABC, its first Brocard’s triangle ABC, and Hegel’s triangle
H,H,H, is a triplet of triangles two by two homological having the homology centers Q",T,0O.

We’ll prove now that these homology points are collinear.
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The idea for this proof is to compute the %, where we note {P} = AA (N OT, and to

show that this rapport is constant. It will result then that P is located on BB, and CC,, and
therefore P=Q".

Fig. 44
Let then {P}=AA NOT . Menelaus’ theorem applied in the triangle H OT for the

transversal A, P, A gives
AO AH, PT _q

= (99)
AH, AT PO
We have
AO=0A—AA = ;(ctgA—tga))
AH, =H A-AA = %(ctga)—tga))
Therefore
AO ctgA-tgw (100)

AH, ctgo-tgw
Considering the power of H, in rapport to the circumscribed circle of triangle ABC it
results

2
HIA-HIT:HIOZ—OQZ=§(Ctga)—§ctgAj R (101)
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We noted Q he tangent point of the tangent from H, to the circumscribed circle of triangle

ABC.
We know that

H,A=7, :%/ctgza)—3
2

2
a a )
—| ctgo—-—CctgA | —R -
4(9 29) ul

n

AT =HT-H A=

It results that
2

AH, i(ctgza)—S)

2 2 2 2 2 2
AT & -2 cgactgA+ S ctg? A- gz L
2 4 4sin" A 4 4
1

Because — =1+ctg*A we find
sin” A
H ‘w-
A __dgao-s (101)
AT  2(1-ctgaxctgA)
Substituting the relation (100) and (99), we obtain
2(1-ctg’w
all = ( 2 ) =A (102)

PO ctg’w-3

PT 2(I-ctg’w)

PO cg’w-3

It result that P=P", therefore the intersection of the lines AA,BB,,CC, noted " coincides

with P . The triangles from the considered triplet have therefore their homology centers
collinear. Applying theorem 19 it results that these have the same homological axis and the
theorem is proved.

If we note P'the intersection of OI with BB, we’ll find, similarly
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2.3. Other theorems on homological triangles

Proposition 34
Let ABC a triangle. We note D_,E_,F, the contact point of the A-ex-inscribed circle

a’’ a

with the lines BC,CA, AB respectively. The lines AD,, BE,,CF, are concurrent.

Fig. 45

Proof

We have that AE, = BF,, BD, = BF, and CD, = CE,, the b.B EAFRC

n
D,.C EC F,B
the Ceva’s reciprocal’s theorem it results that the lines AD,, BE,,CF, are concurrent.

=1 and from

Remark 28
The concurrence point of the lines AD,,BE,,CF, is called the adjoin point of

Gergonne’s point (I') of triangle ABC, and has been noted it T . Similarly we define the adjoin
points I',,I".. Because AD, is a Nagel Cevian of the triangle we have the following proposition.

Proposition 35
Triangle ABC and triangle T',,T,,T", are homological. Their homology center is the

Nagel’s point (N) of triangle ABC.
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Proposition 36
In triangle ABC let C, be the contact point of the inscribed circle with BC, F, the

contact point of the B-ex-inscribed circle with AB and E_ the contact point of the C-ex-

inscribed circle with AC. The lines AC,, BE_,CF, are concurrent.

Proof
CaB'ECC'FbA:1 (1%)
C,C EEA KRB
Indeed
C,B=BC, = AF_ = AE, (2%)
F,A= AE, =CC, =CC, (3%
E.C=E_A+ AE, + AF,
But
E.A= AF_; AE, = AF, and E,C = AC, = AC, = BF,
It result
E.C = AF_ + AR, + BF, = BF, (4%)

Taking into account (2%*), (3*), and (4*) we verified (1*), which shows that the Cevians
AC,,BE_,CF, are concurrent.

Remark 29
The concurrence point of the Cevians AC,, BE_,CF, is called the adjoin point of Nagel,

and we note it H, . Similarly we define the adjoin points H,, H_ of the Nagel’s point N.
Because the AC,,BC,,CC_ are concurrent in the Gergonne’s point (T') of the triangle we can
formulate the following proposition.

Proposition 37
The triangle ABC and the triangle H,H,H_ of the adjoin points of Nagel are

homological. The homology point is Gergonne’s point (T').

Theorem 26
The triangle I',I',I". (having the vertexes in the adjoin Gergonne’s points) and the

triangle H_H H_ (having the vertexes in the adjoin Nagel’s points) are homological. The center

of homology belongs to the line I'H determined by the Geronne’s and Nagel’s points.
Proof

The triangle ABCand triangle H_H, H_ are homological, their homology center being
H . We have

{r,}=BH,NCH,, {T,}=AH . NCH,, {T.}=AH,NBH,
Applying the Veronese’ theorem, it results that triangle I",I',I", 1s homological with the triangles
H,H H_ and ABC. Furthermore, this theorem states that the homology centers of triangles
(ABC, H,H,H,), (ABC, I',I'T',), (I',I',I',, H,H H ) are collinear.
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We note S the homology center of triangles (T',I',I";, H,H,H ). It results that S
belongs to line HI".

Remark 30
Triangle ABC and triangles T',I',I",, H,H,H_ have the same homological axis. This

conclusion results from the precedent theorem and theorem 19.

Theorem 27

If two triangles one inscribed and the other circumscribed to the same triangle are
homological with this triangle

Proof

Let triangle ABC, circumscribed to triangle ABC and triangle A B,C, inscribed in

triangle ABC.
- B1

Fig. 46
Because ABC, and ABC are homological the lines AA, BB, C,C are concurrent and therefore
AB,'BC].CA:1 (1%)
AC, BA CB
Also ABC and A B,C, are homological triangles and consequently:
AZB.BZC.CZA:1 (2%)
AC BA CB
We have
AriaAACA _ AC _ AC:AA -sin(CAA)
AriaAABA, ~ AB~ AB-AA sin(BAA)
From here
sin(C. C AB
(CAA) _AC A .

sin(BAA)  AB AC

Similarly we find
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sin(ABB,) B,A BC
- = : (4%)
sin(CBB,) B,C BA
sin(BCC,) _C,B CA (5%

sin(ACC,) C,A CB
Multiplying the relations (3*), (4*), (5*) and taking into account (1*) and (2*) gives
sin(CAA) sin(ABB,) sin(BCC,) 1
sin(BAA) sin(CBB,) sin(ACC,)
This relation and Ceva’s theorem (the trigonometric form shows the concurrence of the lines
AA,, BB,, CC, and implicitly the homology of triangles ABC, and AB,C,.

Remark 31
Theorem 27 has a series of interesting consequences that provide us other connections
regarding the triangles homology associate to a given triangle.

Proposition 38

The anti-supplementary triangle and the contact triangle of a given triangle ABC are
homological.

Proof

The anti-supplementary triangle 1,11 and the contact triangle C,C,C, of triangle ABC

are respectively circumscribed and inscribed to ABC. Also these triangles are homological with

ABC (see proposition 5 and proposition 12), in conformity with theorem 27 these are also
homological.

Proposition 39

The tangential triangle and the contact triangle of a given triangle ABC are homological.
Proof
The proof results from the precedent theorem and from propositions 10 and 12.

Proposition 40
The tangential triangle and the orthic triangle of a given triangle ABC are homological.
The proof results from theorem 27 and from proposition 10.

Remark 32
The homology center of the tangential triangle and of the orthic triangle is called the
Gob’s point, and traditionally is noted @ .

Proposition 41

The anti-supplementary triangle of a given triangle ABC and its cotangent triangle are
homological.
Proof
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From proposition 5 and from proposition 17 it results that the triangle ABC is
homological with triangle I,1,1, and with its cotangent triangle. From theorem 27 it results the

conclusion.

Remark 33
The homology center of triangle I_I,1_ and of the cotangent triangle is noted V' and it is

called Beven’s point . It can be proved that in a triangle the points 1,0 and V are collinear.

Definition 36

An anti-complementary triangle of a given triangle ABC is the triangle formed by the
parallel lines constructed in the triangle’s vertexes A, B,C to the opposite sides of the given
triangle.

Proposition 36

The anti-complementary triangle and the orthic triangle of a given triangle are
homological.

The proof of this proposition results from the theorem 27 and from the observation that
the anti-complementary triangle of triangle ABC is homological with it, the homology center
being the weight center of the triangle ABC.

Theorem 28
Let ABC and ABC, two homological triangles having their homology center in the

point O. The lines AB, AC intersect respectively the lines AC, AB in the points M, N which
determine a line d, . Similarly we obtain the lines d,,d,. We note

{Al=d,Nd,, {B,})=d,Nd, {C,}=d,Nd, ,then the triangle ABC and triangle AB,C, are

homological having as homological axis the tri-linear polar of O in rapport to triangle ABC.

In figure 47 we constructed only the vertex A of the triangle ABC, in order to follow
the rational easier.
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We note {M,}=AANBC and {M,} =MNNBC. We noticed that M,B,M,C form a
harmonic division. Considering in triangle ABC the Cevian AO and M, its base, it results that
the tri-linear polar of O in rapport with triangle ABC intersects BC in M, . Similarly it can be
shown that the lines d,,d, intersect the lines CA, AB in points that belong to the tri-linear polar
of O. Conform to the Desargues’ theorem we have that because the triangles A B,C, and ABC

are homological, their homology axis being the tri-linear polar of O in rapport with triangle

ABC.

Remark 34
An analogue property is obtained if we change the role of triangles ABC and ABC, .

We’ll find a triangle A B,C, homological to ABC,, their homology axis being the tri-linear
polar of O in rapport with triangle ABC,.

An interested particular case of the precedent theorem is the following:

Theorem 29
If ABC is a given triangle, ABC, is its Cevian triangle and 1,1 1, is its anti-
supplementary triangle, and if we note M,N the intersection points of the lines Al , Al
respectively with 11,11, , d, the line MN , similarly we obtain the lines d,,d, ; let
{A}=d,Nd,, {B,}=d,Nd,, {C,}=d Nd, , also we note M,,N, the intersection points
between the lines B1,,C |, respectively with the lines AC,, AB,. Let d, the line M N,,
similarly we obtain d,d;, {A}=d;Nd,, {B,}=d,Nd,, {C,}=d,Nd; . Then
1. ABC, and I I I, are homological
ii.  AB,C, and I,l,1_ are homological
ii.  AB,C, and AB,C, are homological
iv.  The pairs of triangles from above have as homology axis the tri-linear polar of |
in rapport to triangle ABC (the anti-orthic axis of triangle ABC)
Proof

1. Because Al,,BI,,CI_ are concurrent in |, the center of the inscribed circle, we
have that Al_,B/,,C, | are concurrent in |, therefore the triangles ABC, (the Cevian triangle)
and |1, I, (the triangle anti-supplementary) are homological.

We note {I,}=C B NBC and {A,'}zAAlﬂB]C1 ; we noticed that |, and A are
harmonic conjugate in rapport to C, and B,, because AA is an interior bisector in triangle
AC B, it result that that Al, could be the external bisector of the angle A, therefore |, belongs
to the tri-linear polar of | in rapport to ABC. On the other side |, is the intersection between
I,I. and BC, therefore it belongs to the homological axis of triangles ABC, and I I I.. We

note {I,} = AC,NAC and {I,}=AB N AB and it results that I ,1,,1, are the feet of the
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external bisectors of triangle ABC. Furthermore, it can be shown that |, — 1, — I, is the tri-linear
polar of | in rapport with triangle AB,C,
The proof for i1), ii1), and iv) result from theorem 27.

Remark 35
a) The pairs of triangles that belong to the triplet (1,1,1., ABC, ABC,)have the same

a'b'c>
homology center — the point | and the same homological axis anti-orthic of triangle
ABC.

b) In accordance with theorem 18 it result that | and the homological centers of the
triangles A B,C,, 1,11, and AB,C, are collinear.

Theorem 30
Let ABC a given triangle, O its circumscribed circle and H its orthocenter and ABC,

its orthic triangle. We note M,H, P the middle points of the segments (AH ),(BH ),(CH ). The
perpendiculars constructed in A,B,C on OM,OH,OP from triangle AB,C,. The triplet of
triangles ( ABC, ABC,, AB,C,) is formed by triangles two by two homological having the same

homological axis, which is the orthic axis of triangle ABC.
Proof

B,

Fig. 48
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The center of the circumscribed circle of triangle AB,C, is the point M (the quadrilateral
AB HC, is inscribable, the circle’s center being M ).The perpendicular from A on OM , which

we note d, is the radical axis of the arches (ABC,) and (ABC). The line BC, is a radical axis

of the circle AB,C, and of Euler’s circle (ABC,). Let A the intersection of the lines d, and
B,C, (see figure 48). This point is the radical center of the mentioned arcs and A, belongs also to
the tri-linear polar of H in rapport with ABC, that is of orthic axis of triangle ABC.

Similarly, we note d, the perpendicular from B on OH and d, the perpendicular from
C on OP, B, the intersection between d, and AC, and {C,} =d,NAB. We find that B,,C,
are on the orthic axis of triangle ABC The homological sides of triangles ABC, AB,C, and
A, B,C, intersect in the collinear points A, B,,C, which belong to the orthic axis of triangle
ABC.

Remark 36
According to theorem 18, the homology centers of the triangle triplet mentioned are
collinear.

Theorem 31
Let ABC a given triangle, let O the center of the circumscribed triangle, | the center of
the inscribed circle and C,C,C, its contact triangle. We note with M, N, P the middle points of

the segments IAIB,IC respectively and the perpendiculars constructed from A B,C
respectively on OM,ON,OP form a triangle AB,C, . The triplet (ABC,C,C,C;, ABC,) contains

triangles two by two homological having a common homological axis, which is the radical axis
of the circumscribed and inscribed circles to triangle ABC.

Proof

The circumscribed circle of triangle AC,C, is the point M , it result that the

perpendicular d, constructed from A on OM is the radical axis of circles (AC,C,) and (ABC)
On the other side C,C, is he radical axis of circles (AC,C,) and inscribed to triangle ABC. The

intersection point A of lines d, and C,C_ is therefore, the radical center of the mentioned

circles; it is situated on the radical axis d of the arcs inscribed and circumscribed to triangle
ABC.
Similarly are defined the points B,,C,, and it results that these belong to line d .

Because the corresponding sides of triangles ABC, C,C,C_, and AB,C, intersect in the collinear
points A, B

s Moo

C,. It results, in conformity with the Desargues’ theorem that these triangles are

two by two homological and their common homological axis is the radical axis of the inscribed
circle of triangle ABC.

Remark 37
We saw that the triangle ABC and its contact triangle C,C,C_ are homological, the

homology center beingI", the Geronne’s point, and the homological axis is the Lemoine’s line
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of the contact triangle (Proposition 12). Taking into account the precedent theorem and this
result we can make the following statement: The radical axis of the circumscribed and inscribed
circles of triangle ABC is the Lemoine’s line of the contact triangle of the triangle ABC.

Definition 37
We call the anti-pedal triangle of point M relative to triangle ABC, the triangle formed
by the perpendiculars constructed in A, B,C on MA, MB, MC respectively.

Theorem 32
Let M,,M, two points in the plane of the triangle ABC symmetric in rapport to O,

which is the center of the circumscribed circle. If AB,C, is the pedal triangle of M, and A B,C,
is the anti-pedal triangle of the point M,, then these triangles are homological. The homology
axis 1s the radical axis of the circumscribed circles to triangles ABC and ABC,, and the
homological center is the point M, .

Proof

Fig. 49
Let A',B',C' the middle points of the segments (AM,),(BM,),(CM,) (see Fig. 49).

The line B,C, is perpendicular on AM, and because A' is the center of the circumscribed circle.
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B,C, is the radical axis of the circles (ABC) and (ABC,). On the other side the lane
BC, is the radical axis of the circles (ABC ) and (ABC,), it result that the point A, the

intersection of the lines B,C, and B,C, is the radical center of the three mentioned circles,
circumscribed to triangles ABC and ABC,. Similarly it can be proved that the points B,C, in
which the lines AC, and A,C, respectively AB, and A B, intersect belong to line d . Therefore
the triangles ABC, and A B,C, are homological having as homological axis line d, which is
the radical axis of the circumscribed circles to triangles ABC and ABC,.

Because the line B,C, is the radical axis of the circles (ABC,) and (ABC), and AC, is
the radical axis of the circles (BC,A) and ( ABC), it result that the point C, is the radical center
of these circles, therefore it belongs to the line M,C, which is the radical axis of circles (ABC,)

and (BCIA ) , consequently the line C,C, passes through M, . Similarly it can be shown that the
lines B,B, and A A pass through point M,. Therefore this point is the homological center of
the triangles ABC, and AB,C,.

Remark 38

Proposition 14 can be considered a particular case of this theorem. Therefore we obtain
that the homological axis of the medial triangle and of the tangential triangle of a given triangle
ABC is the radical axis of the circumscribed circle of the triangle ABC and of Euler’s circle of
triangle ABC.
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Chapter 3

Bi-homological and tri-homological triangles

In this chapter we’ll prove a theorem that expresses the necessary and sufficient condition

that characterizes the homology of two triangles.
This theorem will allow us to prove another theorem that states that two triangles are bi-

homological then these are tri-homological.

3.1. The necessary and sufficient condition of homology

Theorem 33
The triangles ABC and AB,C, are homological if and only if

AriaA(AAB) AriaA(BBC) AriaA(CCA)
AriaA(AAC) AriaA(BBA) AriaA(CCB)

Proof

The condition is necessary.
The triangles ABC and AB,C, being homological the lines AA,BB,,CC, are concurrent

in a point O (see Fig. 50).

We have
AriaA(AAB)  AB-AA -sin(AAB) 0
AriaA(AAC)  AC-AA -sin(AAC)
AriaA (B,BC) _ BC: BB, -sin (B BC) o
AriaA(BBA) BA-BB, -sin(BBA)
AriaA(C,CA) CA-CC, -sin(C,CA) 3)
AriaA(C,CB)  CB-CC, -sin(C,CB)

Multiplying these relations side by side it results
AriaA(AAB) AriaA(BBC) AriaA(CCA) sin(AAB) sin(BBC) sin(C,CA)
AriaA(AAC) AriaA(BBA) AriaA(CCB) - sin(AAC) sin(B,BA) sin(C,CB)
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From Ceva’s theorem (the trigonometric form) it results that the relation from the
hypothesis is true.
The condition is sufficient
If the given relation is satisfied, it results that
sin(AAB) sin(BBC) sin(CCA)
sin(AAC) sin(BBA) sin(CCB)
The Ceva’s reciprocal theorem gives us the concurrence of the Cevians AA,BB,,CC,,

therefore the homology of triangles ABC and ABC,.

3.2. Bi-homological and tri-homological triangles

Definition 38
The triangle ABC is direct bi-homological with triangle ABC, if triangle ABC is

homological with ABC, and with BC A .

The triangle ABC is direct tri-homological with triangle AB,C, if is homological with
BC,A and BAC,, and ABC is invers tri-homological with triangle ABC, if ABC is
homological with AC B, with B AC, and with CB A .

Theorem 34 (Rosanes — 1870)
If two triangles ABC and ABC, are direct bi-homological then these are direct tri-

homological.
Proof
If triangles ABC and AB,C, are homological then

AriaA(AAB) AriaA(BBC) AriaA(CCA)

=1 1
AriaA(AAC) AriaA(BBA) AriaA(CCB) M)

If triangles ABC and B,C,A are homological, then
AriaA(BAB) AriaA(CBC) AriaA(ACA) o

AriaA(B,AC) AriaA(C,BA) AriaA(ACB)
Taking into consideration that AriaA(AAC)=-ariaA(ACA), AriaA(BBA)=—-AriaA(BAB),
AriaA(CCB)=—-AriaA( ACA). By multiplying side by side the relations (1) and (2) we obtain
AriaA(C AB) . AriaA(ABC) . AriaA (B,CA) _ 1 3)
AriaA(C,AC) AriaA(ABA) AriaA(BCB)
The relation (3) shows that the triangles ABC, C AB, are homological, therefore the
triangles ABC and ABC, are direct tri-homological.

Remark 39
Similarly it can be proved the theorem: If triangles ABC and ABC, are triangles inverse

bi-homological, then the triangles are inverse tri-homological.
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Proposition 43
If triangle ABC is homological with the triangles ABC, and AC B, then the centers of

the two homologies are collinear with the vertex A.

The proof of this theorem is immediate.

The Rosanes’ theorem leads to a method of construction of a tri-homological triangle
with a given triangle, as well as of a triplet of triangles two by two tri-homological as it results
from the following theorem.

Theorem 35
(1) Let ABC a given triangle and I',Q two points in its plane. We note

{A}=BPNCQ, {B}=CPNAQ,and {C}=APNBQ.
Triangles ABC, ABC, are tri-homological.

) If {A}=BQNCP, {B,}=CQNAP and {C,] =AQMNBP, then the triangles
ABC, ABC,, AB,C, are two by two tri-homological, and their homological

centers are collinear.
(i)  We note {R} = AA BB, if the points P,Q,R are not collinear then the triangle

RPQ is direct tri-homological with ABC and the invers triangle AB.C,.

Proof
(1) From the hypothesis it results that the triangles ABC and ABC, are

bi-homological AB 1BC NCA ={Q}, AC NBANCB ={P} (see Fig. 51). In accordance to
Rosanes’ theorem it result that AA (BB (NCC, ={R} . Therefore, the triangles ABC and ABC,

are tri-homological.

(i) ~ We observe that AB,(1BC,NCA ={P} and AC,\BA NCB, ={Q}, therefore
the triangles ABC and A B,C, are bi-homological. In conformity with Rosanes’ theorem we
have that triangles ABC and AB,C, are tri-homological, therefore AA,BB,,CC, are
concurrent in a point R. Also the triangles ABC, and A B,C, are bi-homological having as
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homological centers the points Q,P . In conformity with the same theorem of Rosanes we’ll
have that AA,BB,,C,C, are concurrent in a point R,. Consequently, the triangles AB,C, and

A B,C, are tri-homological.

The Veronese’s theorem leads us to the collinearity of the homological centers, therefore
the points R, R, R, are collinear.

(ii1)
RA
Also RQP

Indeed triangle RQP is direct tri-homological with ABC because
NPBNQC ={A} , RBN PCﬂQAz{Bl} , RCN PAﬂQBz{Cl} )

is invers tri-homological with AB,C, because

RANPC NQB ={Al, RBNPANQC, ={B} and RC,NPB NQA ={C}.
Remark 40
a) Considering the points P,R and making the same constructions as in the previous

b)

c)

d)

theorem we obtain the triangle AB,C, which along with the triangles ABC and
ABC, form a triplet of triangles two by two tri-homological.

Another triplet of tri-homological triangles is obtained considering the points R, Q
and making similar constructions.

Theorem 35 shows that given a triangle ABC and two points P,Q in its plane, we
can construct an unique triangle RPQ directly tri-homological with the given triangle
ABC.

Considering the triangle ABC and as given points in its plane the Brocard’s points Q
and Q', the triangle ABC, constructed as in the previous theorem, is the first
Brocard’s triangle. We find again the J. Neuberg’s result that tells us that the triangle
ABC and its first Brocard’s triangle are tri-homological (see theorem 17). More so
we saw that the homological center of triangles ABC and ABC, is the isotomic
conjugate of the symmedian center, noted Q". From the latest resultants obtain lately,
it results that the triangle QQ'Q" is tri-homological with ABC.

Proposition 44
In the triangle ABC let’s consider A',B',C' the feet of its heights and A,B,,C, the

symmetric

points of the vertexes A B,C in rapport to C',A',B', and A,B,,C, the symmetric

points of the vertexes A B,C inrapportto B',C', A'.
If M,N,,B, are the centers of the circles BCC,CAA,ABB, and M,,N,,P, are the

centers of the circles CBB,, ACC,,BAA, , then the triangles M N,P, and M,N,P, are ftri-
homological.

Proof

Let H the orthocenter of the triangle ABC, O the center of the circumscribed circle, O,

the center of the Euler’s circle of the given triangle and A", B",C" the middle points of the sides
BC,CA, AB (see Fig. 52).
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The points M,,N,,P, are the intersections of the pairs of lines (OA",BH ), (OB",CH),
(OC", AH) and the points M, ,N, , P, are the intersections of

Fig. 52
the pairs of lines (OA",CH ), (OB", AH) and(OC",BH).
The triangles M,N,P, and M,N,P, are homological because the lines M;M,,N,N,, PP,

are concurrent in the point O. The triangle M,N,P, is homological to N,P, A, because the lines

M,N,,N,P,, BA, are concurrent in the pointO, (indeed M N, is a diagonal in the parallelogram
M, HN,O).

The triangles M,N,P, and M,N,P, being bi-homological, it results that are also tri-
homological, and the proposition is proved.

Observation 27
The homology of triangles M N,P and M,N,P, results also directly by observing that

the lines M,P,,N,N,, PN, are concurrentin H .
The homological centers of triangles tri-homological M,N,P, and M,N,P, are collinear
(these belong to Euler’s line of triangle ABC).

Definition 39
We say that the triplet of triangles T T,T, is tri-homological if any two triangle from the

triplet are tri-homological.
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Theorem 36 (Gh. D. Simionescu)
If the triangles T,,T, are tri-homological and T, is the triangle formed by the homology

axes of triangles (T,,T,), then
i) The triplet (T,,T,,T,) is tri-homological

i) The homological axes of any pairs of triangles from the triplet are the sides of the
other triangle.

Proof

Y>
Fig. 53
Let T,,T, the triangles ABC and ABC, (see figure 53) tri-homological. We noted

X,, X,, X, the homological axis of these triangles that corresponds to the homological center R,
{Rl=AANBBNCC, V.Y,,Y, corresponding to the homological axis of the homological
center P, {P}=ACNBANCB, , and Z,Z,,Z, the homological axis of triangles T,,T,
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corresponding to the homological axis of the homological center Q, {Q} = AB 1BC,CA.
Also, we note {A]=ZZ,NYY,, {B}=XX,NYY,, {C,}=XX,NZZ,, and let T, the
triangle AB,C,.

If we consider triangles T,, T, we observe that BC,(1B,C, ={X,}, ABNAB, ={Y;},
AC NAC, :{Zz} :

The points X,,Z,,Y, belong to line BC therefore are collinear and consequently the
triangles T,, T, are homological. Analyzing the same triangles we observe that
BCNAB, ={Y}, ACNBC, ={X,}, ABNAC,={Z]}. The points X,,Y;,Z, are collinear
being on the line AC, Therefore the triangles T,,T, are double homological. From Rosanes’
theorem or directly, it results that (Tz,T3) are tri-homological, the third homological axis being

AB.
Similarly, if we consider the triangles (T;,T,) will find that these are tri-homological.

Lemma 1
In triangle ABC, AA' and AA"are isotonic Cevian. Let M € (AA') and Ne (AA") such

that MN is parallel with BC. We note {P} =CN(1AB and {Q} =BMNAC,. Prove that

PQII BC
A

Fig. 54
Proof
We’ll apply the Menelaus’ theorem in triangles AA'C and AA"B for the transversals
B—-M —Q respectively C—N—P we have
BA' MA QC 1
BC MA' QA
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CA" NA PB_

Therefore
BA" MA'QC B CA"' NA E
BC MA' QA CB NA" PA

MA  NA

From here and taking into account that BA'=CA" and —— i =
MA' NA" QA PA

with Menelaus’ theorem we obtain PQ|| BC.

Theorem 37 (Caspary)

If X,Y are points isotomic conjugate in a triangle ABC and the parallels constructed
through X to BC, CA respective AB intersect AY,BY,CY respectively in A,B, and C, then
the triangles ABC and AB,C, are tri-homological triangles.

Proof

We note AA',BB',CC' the Cevians concurrent in X and AA",BB",CC" their isotonic.
See figure 55

B A M A”
Fig. 55
The vertexes of triangle ABC, are by construction on the AA",BB",CC", therefore Y is the

homological center of triangles ABC and ABC,.

We note with M,N,P the intersections of the lines AB,BC,CA respectively with
BC,CA, AB, using Lemma 1 we have that MC'|| AC, NA'|| AB, PB'|| BC, therefore
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C'B_MB AC NC B'A_PA
C'A MC AB NA B'C PB

Because AA',BB',CC' are concurrent, from the Ceva’s theorem it results
C'B AC B'A_
C'A AB BC

also
MB NC PA

which shows that the Cevians AB,BC,,CA are concurrent in a point Z and consequently the
triangles ABC and AB,C, are homological.

Similarly it can be proved that the Cevians AC,, BA,,CB, are concurrent in a point Z'.
Therefore the triangles ABC and ABC, are tri-homological, the homology centers being the
points Y, Z,Z".

Remark 41
The triangle AB,C, from the Caspary’s theorem is called the first Caspary triangle. The

triangle A B,C, analog constructed to AB,C, drawing parallels to the sides of the triangle ABC
through the point Y is called the second triangle of Caspary.
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1.3. Tri-homological equilateral triangles which have the same center

In this section will enounce a lemma regarding the tri-homology of equilateral triangles
inscribed in another equilateral triangle, and then using this lemma we’ll prove a theorem
accredited to Dan Barbilian, a Romanian mathematician (1895-1961)

Lemma 2
Let ABC, an equilateral triangle with a center O and AB,C,, AB,C, equilateral

triangles inscribed in ABC, (A,A€(BC),B,,B,e(AC),C,,C;e(AB))
A

B,

Then

(1) The triangles ABC, and A B,C, are tri-homological

(1)  The triangles AB,C, and AB,C, are tri-homological

(iii)  The triangles A,B,C, and AB,C, are tri-homological.

Proof

1. We observe that AB,,B/A,,CC, are concurrent in C, , therefore ABC, and

B,AC, are homological with the homological center in C,. Similarly results that B, is the
homological center of triangles ABC, and C,B,A, and A is the homological center of
triangles ABC, and AC,B,.

il. Similar to (1).

iil. We’ll prove that the triangles AB,C,, BC,A, , and C A B, are congruent. Indeed
if m(«ABC,)=a then m(«xAC,B,)=120°-a and m(«xB,C,A)=a . Therefore
<AB,C, =«BC,A and «AC,B,=«xBAC,; we know that B,C,=C,A , it results that
AAB,C, =ABC,A, . Similarly we find that ABC,A =AC AB,. From these congruencies we
retain that

AB,=BC,=CA (104)
In the same way we establish that AAC,B, = AB AC, = AC B, A, with the consequence
AC, =BA =CB, (105)
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We will prove that the lines C,B,, B,C,, A /A, are concurrent.

We note C,B,NAA ={P} and C,C,NAA ={P1.
The Menelaus’ theorem applied in the triangle ABC, for the transversals P,B,,C, and
P',B,,C, provides us with the relations:

PC, GB BA _ (106)
PBl C3A BZCI
P'C CB BA_, (107
P Bl CZA BSCI
From (106) and (105) we find that C,B, = AB,,B,A =C,B,,C,A =B,C,,B,C, =C,A, we

PC, _P'C

come back to the relations (106) and (107) and we find that a = - and from here we see

that P = P' with the consequence that B,C,(1B,C,NAA ={P]} .

Similarly we prove that the lines A B,,B,A,C,C, are concurrent in Q, therefore the
triangles A, B,C, and B,AC, are homological and the lines AC,,B,B,,C,A are concurrent in a
point R, therefore the triangles A B,C, and AB,C, are homological.

Remark 42
It can be proved that the triangles ABC,, AB,C, and AB,C, have the same center O.

If we note {A}=B,C,NC,A;{B,]=ABNAC,;{C,}] =AB,(1C,B, then triangle AB,C, is
equilateral with the same center O and from the Lemma it results it is homological with each of
the triangles ABC,, AB,C, and ABC,.

Theorem 38 (D. Barbilian — 1930)
If ABC, and AB,C, are two equilateral triangles having the same center O and the

vertexes notation is in the same rotation sense, then the triangles are three times homological as
follows:

(ABG). (C,BA), (ABC.BAC,). (ABC.AC,B,)

Proof

We note
{A} =BB,MNCC,,
{B}=AANCC,,
{Cs} =AANBB,.

See figure 57.
We notice that
AOB,C, =AOC,C, = AOAB, (SAS)
it results
BC,=C,A =AB, (108)
also
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AOC,C, =A0OBB, = AOAA, (SAS)

Fig. 57
it results

CC,=BA =AA (109)
We have also AB,C,C, =AC AA =ABAA (SSS)
We obtain that «BC,C, =«C A A =<xBB,A.
From what we proved so far it result that AABC, =AB,C A =AC,AB, with the
consequence <A =«B, = «C,, which shows that the triangle A B,C, is equilateral.
Applying lemma for the equilateral triangles ABC, and AB,C, inscribed in the
equilateral triangle A B,C, it result that the triangles ABC, and A B,C, are tri-homological.

1.4. The Pappus’ Theorem

Theorem 39 (Pappus — 3™ century)
If the vertexes of a hexagon are successively on two given lines, then the intersections of
the opposite sides are collinear.

Fig. 58
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Proof
Let ABCDEF a hexagon with the vertexes A,C,E on line d, and vertexes B,D,F on

the line d, (see figure 58).

We note {U} = ABMDE; {V}=BCNEF and {W}=CDNFA.

The triangle determined by the intersections of the lines AB,EF,CD and he triangle
determined by the intersections of the lines BC,DE,FA are twice homological having as
homological axes the lines d,,d, .

In accordance with theorem 24 these triangles are tri-homological, the third homological
axis is the line to which belong the points U,V ,W .

Remark 43
The Pappus’ theorem can be directly proved using multiple time the Menelaus’ theorem.

1.5. The duality principle

A line and a point are called incidental if the point belongs to the line or the line passes
through the point.

Definition 40

A duality is a transformation which associates bi-univoc to a point a line. It is admitted
that this correspondence preserves the incidental notion; in this mode to collinear points
correspond concurrent lines and reciprocal.

If it I considered a theorem T whose hypothesis implicitly or explicitly appear points,
lines, incident and it is supposed that its proof is completed, then if we change the roles of the
points with the lines reversing the incidence, it is obtained theorem T’ whose proof is not
necessary.

Theorem 40 (The dual of Pappus’ theorem)
If we consider two bundles each of three concurrent lines S(a,b,c), S'(a',b',c") such that

the lines a,b' and b,a' intersect in the points C,C,; a,c' and c,a' intersect in the points
B,,B, and the lines b,c' and c,b' intersect in A,A, , then the lines AA,BB,,CC, are
concurrent.

Proof

Analyzing the figure 59 we observe that it is obtain by applying the duality principle to
Pappus’ theorem.

Indeed, the two bundles S(a,b,c), S'(a',b',c') correspond to the two triplets of vertexes

of a hexagon situated on the lines d,,d, to which correspond the points S and S'.
The Pappus’ theorem proves the collinearity of U,V,W which correspond to the
concurrent lines AA,,BB,,CC,.

Observation 28
The dual of Pappus’ theorem can be formulated in an important particular case.
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I Fig. 59

Theorem 41
We consider a complete quadrilateral and through the vertexes E,F we construct two

secants, which intersect AD,BC in the points E,E, and AB,CD in the points F,F,.
F

Fig. 60 I
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Then the lines E,F,, FE, intersect on the diagonal AC and the lines E E,,FF, intersect on the
diagonal BD .

Indeed, this theorem is a particular case of the precedent theorem. It is sufficient to
consider the bundles of vertexes E,F and of lines (CD, EE,, AB) respectively (AD, FF,,BC)

see figure 60, and to apply theorem 28.
From what we proved so far, it result that the triangles BFE, and DF,E, are

homological, therefore BD, FF,, E,E, are concurrent.

Remark 44

The dual of Pappus’ theorem leads us to another proof for theorem 34 (Rosanes).

We prove therefore that two homological triangles are tri-homological.

We consider the triangles ABC, A'B'C' bi-homological. Let Sand S' the homology

centers: S the intersection of the lines AA' BB' ,CC' and {S'} = AB'1BC'\CA'( see figure 61).
We’ll apply theorem 41 for the bundles S( AA',BB',CC') and S'(C'B,A'C,B'A).

A

Fig. 61
We observe that

AANA'C={AY,
C'BNBB'={C,
BBNB'A={B,
CCNAC={C},
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AANB'A={A],

CCNcC'B={C
Therefore the lines BA',CB',AC' are concurrent which shows that the triangles ABC and
C'A'B' are homological, thus the triangles ABC and A'B'C' are tri-homological.

Theorem 42
In triangle ABC let’s consider the Cevians AA,BB,CC, in M, and AA, BB,,CC,

concurrent in the point M,. We note A,B,,C, the intersection points of the lines (CC,,BB,),
(AA,CC,) respectively (BB,AA), and A,,B,,C, the intersection points of the lines

(CC,,BB), (AA,CC,) respectively (BB,, AA), then

(1) The triangles AB,C, and A B,C, are homological, and we note their homological
center with P.

(11) The triangles ABC and AB,C, are homological, their homological center being
noted Q.

(iii))  The triangles ABC and A,B,C, are homological, their homological center being
noted with R

(iv)  The points P,Q, R are collinear.

Proof
(1)

Fig. 62
Let consider the point P the intersection of A/A, and C,C, with the sides of the

hexagon C,M,A/AM,C,, which has each three vertexes on the lines BB, BB,. In conformity
with Pappus’ theorem the opposite lines C,M,, AM,; M A, M,C, ; AsAs , C3C4 intersect in

collinear points .
These points are B,,B, and P ; therefore the line B,B, passes through P, and thus the

triangles AB,C,, A,B,C, are homological. We note U,V,W their homological axis, therefore
{U}=BC,NBC,
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{V} =ACNAC,
{W} =AB,NAB,

(ii)

We consider the hexagon C,B,M,C,B,M
respectively AA, .

The opposite sides (B,C,,B,C,), (C;M,,C,M,), (M,B,,M,B,) intersect in the collinear
points U, B,C . It results that the point U is on the side BC and similarly the points V,W are on
the sides AC, AB.

Consequently the triangle ABC is homological with AB,C, .

(i)

From the fact that U,V,W are respectively on BC, AC, AB, from their collinearity and
from the fact that U is on B,C,, V belongs to line A,C,, and W belongs to the line AB,, it
results that the triangles ABC and A,B,C, are homological.

(iv)

The lines BC,B,C,,B,C, have Uas common point, we deduct that the triangles BB,B,

, , which each of its vertexes on AA

and CC,C, are homological. Consequently their opposite sides intersect in three collinear points,
and these points are P,Q,R.

Remark 45
The point (iv) of the precedent theorem could be proved also by applying theorem 18.

Indeed, the triangles (ABC, AB,C,, A B,C,) constitute a homological triplet, and two by

two have the same homological axis, the line U,V ,W . It results that their homological centers
1.e. P, Q, Rare collinear.
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Chapter 4

Homological triangles inscribed in circle

This chapter contains important theorems regarding circles, and certain connexions
between them and homological triangles.

4.1. Theorems related to circles.

Theorem 43 (L. Carnot-1803)
If a circle intersects the sides BC, AC,AB of a given triangle ABC in the points
AA ;BB,;CC, respectively, then the following relation takes place
AB‘AZB.B,C.CZC.CIA‘CzA:1
AC AC BA BA CB CB

(110)

Proof

A

Fig. 63

We consider the power of the points A, B,C in rapport to the given circle, see figure 63.
We obtain:

AC, - AC, = AB, - AB, (111)
BA - BA, = BC, - BC, (112)
CA -CA, =CB,-CB, (113)

From these relations it results relation (110)
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Remark 46

From Carnot’s relation we observe that if
AB ‘ BC ‘ CA _ B
AC BA CB

then
AB BC CA_
AC BA CB

and this relation proves the following theorem:

Theorem 44 (Terquem)
If we construct a circle through the legs of three Cevians concurrent in a triangle, then it
will intersect the legs of other concurrent Cevians.

Theorem 45 (Pascal — 1640)
The opposite sides of a hexagon inscribed in a circle intersect in collinear points.

Proof
Let QRQ,R,Q,R;, the inscribed hexagon in a circle (see figure 64).
We note

{A}=RQ,NQ,R,

{B}=QRNRQ,
{Cl} =RQNRQ,
{Az} =QR N RQ,

{Bz} =RQ,NRQ,

{Cz} =RQ,NQR,

See figure 64.
Applying the Carnot’s theorem we have:

QB RB QC RC QA RA_,
QG RC QA RA QB RB

This relation can be written:

QB -QC -QA — RC-RA-RB

QG -QA-QB RB-RC-RA
Taking into consideration this relation, it results that the triangles ABC, and AB,C, are
homological (the lines AA,,BB,,CC, are concurrent), therefore the opposite sides of the
hexagon Q RQ,R,Q,R, intersect in collinear points.
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B,

A2
Fig. 64

Remark 47

The Pascal’s theorem is true also when the inscribed hexagon is non-convex. Also,
Pascal’s theorem remains true when two or more of the hexagon’s vertexes coincide. For
example two of the vertexes Cand C'of the inscribed hexagon ABCC'DE coincide, then we
will substitute the side CD with the tangent in C to the circumscribed circle.\

Theorem 46
If ABCDE is an inscribed pentagon in a circle, M, N are the intersection points of the

sides AB and CD respectively BC and DE and P is the intersection point of the tangent
constructed in C to the pentagon’s circumscribed circle with the side DE, then the points
M, N, P are collinear.
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Fig. 65

Observation 29
If in an inscribed hexagon AA'BCC'D we suppose that two pairs of vertexes coincide,

the figure becomes an inscribed quadrilateral, which we can consider as a degenerated hexagon.
The sides being AB, BC, CC' - tangentin C, C'D - CD, DA' — DA, AA' — tangent.

Theorem 47
In a quadrilateral inscribed in a circle the opposite sides and the tangents in the opposite
vertexes intersect in four collinear points.

Remark 48
This theorem can be formulated also as follows.

Theorem 48

If ABCDEF is a complete quadrilateral in which ABCD is inscribed in a circle, then the
tangents in A and C and the tangents in B and D to the circumscribed circle intersect on the
quadrilateral’s diagonal EF .

Observation 30
The figure corresponds to theorem
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Remark 49
If we apply the theorem of Pascal in the degenerated hexagon AA'BB'CC' where the

points A,A"; B,B'; C, C' coincide and the sides AA',BB',CC' are substituted with the tangents
constructed in A B,C to the circumscribed to triangle ABC, we obtain theorem 7 (Carnot)

Theorem 49 (Chasles - 1828)

Two triangles reciprocal polar with a circle are homological.

Proof

Let ABC and ABC, two reciprocal polar triangles in rapport with the circle of radius I

(see figure 67).

Fig. 67
We consider that BC is the polar of A, CA is the polar of B and AB is the polar of C,

Therefore, OA-OA =r> . Also OB-OB =0OC"-OC, =r>. We noted with A',B',C' the
orthogonal projections of the point O on BC,CA, AB respectively.
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Applying the Cosnitd theorem (its generalization), it results that the lines AA,BB,,CC,
are concurrent, consequently the triangles ABC and AB,C, are homological.

Remark 50
If one considers the points A, B,C on the circle of center O, then the sides of the triangle

ABC, will be tangents in A B,C to the circumscribed circle to triangle ABC, and the
homological center of the triangles is the Gergonne’s point of the triangle ABC,.

Theorem 50 (Brianchon -1806)
If a hexagon ABCDEF is circumscribed to a circle then the diagonals AD, BE,CF are

concurrent.
Proof

Q2

R; B

Fig 68
We will transform by duality Pascal’gs theorem 45 in in relation with the inscribed
hexagon Q RQ,R Q,R, in rapport to the circle in which the hexagon is inscribed. Therefore to
the line QR corresponds the point A of intersection of tangents constructed in the points R,Q,
on the circle (the polar of the points R,Q,). Similarly, we obtain the vertexes B,C,D,E,F of
the hexagon ABCDEF circumscribed to the given circle.
To the intersection point of the opposite sides QR and Q,R, corresponds the line

determined by the pols of these lines that is the diagonal AD .

Similarly we find that the diagonals and BE correspond to the intersection point of the
other two pairs of opposite sides.

Because the intersection points of the opposite sides of the inscribed hexagon are
collinear, it will result that the polar, that is AD,BE,CF are concurrent and Brianchon’s

theorem is proved.

Remark 51
The Brianchon’s theorem remains true also if the hexagon is degenerate in the sense that
two sides are prolonged.
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In this case we can formulate the following theorem

Theorem 51
In a pentagon circumscribable the diagonals and the lines determined by the opposite
points of tangency are concurrent

Remark 53

The Newton’s theorem is obtained by duality transformation.

If the hexagon ABCDEF from the Brianchon’s theorem is degenerated, in the sense that
the three pairs of sides are in prolongation, we obtain as a particular case the Gergonne’s
theorem.
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4.1. Homological triangles inscribed in a circle.

Theorem 53 (Aubert — 1899)

Let ABC and A'B'C' two homological triangles inscribed in the same circle, P their
homological center and | an arbitrary point on the circumscribed circle. The line 1A' intersects
the side BCin U , similarly are obtained the points V,W . The points U,V ,W are on the line that

passes through the point P.
Proof

Fig 69
Consider the inscribed hexagon IB'BACC' (see figure 69) and apply the Pascal’s
theorem.

It is obtain that the intersection points V,P,W of the opposite sides IB' with AC of
B'B with CC' and BA with C'l are collinear.

We consider the inscribed hexagon IA'CCBB', and applying the Pascal’s theorem, we
find that the points U, P,V are collinear.

From these two triplets of collinear points found, it results the collinearity of the points
U,V,W and P.

Transforming by duality the Aubert’s theorem we obtain:

Theorem 54 (the dual theorem of Aubert)
Let ABC and A'B'C' two homological triangles of axis d, circumscribed to a given

circle and t an arbitrary tangent to the circle that intersects the sides of the triangle A'B'C' in
A"B"C". Then the triangles ABC and A"B"C" are homological, their homological center
belonging to the line d, .

Theorem S5
If P,Q are isogonal conjugated points in the triangle ABC and PP,P, and QQ,Q, are

their pedal triangles, we note with X, the intersection point between P,Q, and P,Q, ; similarly
we define the points X,, X,. Then X, X,, X, belong to the line PQ.
Proof
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Fig70

It is known that the points PQ Q,P,Q,P, are on a circle with the center R which is the
middle of PQ (the circle of the 6 points) see figure 70.

We note with P, the intersection of the lines Q,R and BP, (the point P, belongs to the
circle. Similarly P, is the intersection of the lines Q,R and CP, (the point P, is on the circle of
the six points).

Applying the Pascal’s theorem in the inscribed hexagon P,Q,R,RQ,P, it results that the
points X,,R and P are collinear. Similarly it can be shown that X, and X, belong to the line

PQ.

Theorem 56 (Alasia’s theorem)
A circle intersects the sides AB,BC,CA of a triangle ABC in the points AD'; E E'

respectively F,F'. The lines DE',EF',FD' determine a triangle A'B'C' homological with
triangle ABC.

Proof

We note
{A'} =DE'NEF'
{B'}: FD'MNEF'
{C'} =FD'NDE'

[B" = A'CNAC
[A" =B'CNBC
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{C"1=A'BNAB
See figure 71
D

C’

Fig.71
We apply Menelaus’ theoremgin the triangle ABC for the transversals A",D"F ;
B",D,E'; C",E,F' obtaining
A"B D'A FC
A'C D'B FA
B"C E'B DA:1
B"A E'C DB
C'A F'C EB _q
C"B F'A EC
From these relations and taking into account the Carnot’s theorem it results
A"'B B"C'C"A: D'B FA E'C DB F'A EC _
A'"C B'"AC'B D'A FC E'B DA F'C EB
From the Menelaus’ theorem, it results that A",B",C" are collinear and from the

reciprocal of the Desargues’ theorem we obtain that the triangles ABC and A'B'C' are
homological.

Theorem 57 (the dual theorem of Alasia)
If ABC,D,EF, is a circumscribable hexagon and we note X,Y,Z the intersection of the
opposite sides (BC,,E/F,),(AB,,D,E,) respectively (C D, AF,), then the triangles ABC, and

XYZ are homological.
Proof
See figure 72
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Fig. 7
We will transform by duality in rapport to the circle the Alasia’s theorem, see figure 72.
To the points D,D',E,E',F,F' will correspond to the tangents constructed in these

points to the circle (their polar). To the line EE' will correspond the point A which is the

intersection of the tangents on Eand F', and to the line D'F corresponds the intersection X
of the tangents constructed in D',F (see figure 52), therefore to the intersection point A"

between BC,D'F corresponds its polar, that is the line XA , similarly to the intersection point
B" between DE' and AC corresponds the line C|Y , and to the point A" corresponds line
E,Z . The points A",B",C" are collinear (Alasia’s theorem). It results that the their polar are
concurrent, consequently the lines AX,CY,E Z are concurrent and the triangles ABC, and
XYZ are homological.

Theorem 58
Let ABC and ABC, two homological triangles inscribed in the circle (O, R) having

the homology center P and the axis (d). If A'B'C'and ABC, are their tangential triangles,

then these are homological having the same center P and axis (d).
Proof
{Ul=BCNBC,
{V} =CAN AC,
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(W}=ABNAB,
See figure 73

A’y
Fig. 73
The points U,V,W belong to the homological axis (d) .From the theorem (47) applied
to the quadrilaterals ABB A, ACC A and BCC B, it results that the polar of the point P in

rapport with the circle (O) is the line (d).
Because the polar of A is B'C' and the polar of A is BC, it results that

{U'1=B'C'NBC, is the pole of the line AA, but AA passes through P, therefore the pole U
of AA belongs to the polar of P, that is to the line (d) . Similarly it results that
(W' =ABNAB, , therefore W' belongs to (d) and the triangles A'B'C' and ABC, have as
homological axis the line (d).

The line A'A is the polar of the point U because A' is the pole of BC and A is the
pole of BC,, therefore A'A is the polar of a point on the polar of P, therefore A'A passes
through P . Similarly results that B'B, and C'C, pass through P.

Remark 54

If the triangles ABC and ABC, are quasi-median then taking into consideration the
precedent theorem and the proposition (25) we obtain that the triangles ABC and AB,C, and
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their tangential AB,C, and ABC, form a quartet of triangles two b two homological having the

same homological center and the same homological axis, which is the symmedian center,
respectively the Lemoire’s line of triangle ABC.

Theorem 59 (Jerabeck)

If the lines which connect the vertexes of the triangle ABC with two points M',M"
intersect the second time the triangle’s circumscribed circle in the points A',B',C' and
A",B",C", then the triangle determined by the lines A'A",B'B",C'C" is homological with the

triangle ABC.
Proof

Fig. 74
We’ll consider the M',M" in the interior of the triangle ABC and we note

m(«xBAA") =, m(xCAA")=¢'
m(<CBB') =, m(«ABB") = j'
m(<ACC") =y, m(«BCC")=y"

{T,}= A'A"NBC
{T,}]=C'C"NAC
{T.}=B'B"NAB

From the similarity of the triangles T BA'and T A"C we have
TB TA'  BA
TA" TC A'C
From the sinus’ theorem in the triangles BAA',CAA" we find
BA'=2Rsina and CA"=2Rsina'
consequently,

TB TA' sina (1)
TA" TC sino'
Also from the sinus’s theorem applied in the triangles T,BA' and T,CA'
T:B T:A'
2

sin(A—')  sin(A—a)
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nc TA"
sin(A—a) sin(A-a')

(3)

From the relations (1), (2) and (3) we obtain
TB _sine sin(A-a')

TC sine' sin(A-a) *
Similarly we find
T.B_ sin § sin(B-4") )
T,A sinf' sin(B-p")
and
T,A_siny sin(C-y') ©)

T,B siny' sin(C—y")
The relations (4), (5), (6) along with Ceva’s theorem (the trigonometric variant) lead to
the collinearity of the points T,,T,,T, and implicitly to the homology of the triangles ABC and

A Bmcvn’ Where we noted {Am} — Bv Bnmcvcn;{Bm} — Av Anmcvcn;{cm} — Bv B"ﬂ Av An .

Remark 55

If M'=M"=M we’ll obtain the following theorem:

1) The tangential triangle of the circumpedal triangle of the point M #| from the
interior of triangle ABC and the triangle ABC are homological.

2) If M =1 the triangle ABC and the tangential triangle of the circumpedal triangle of
| (the center of the inscribed circle) are homothetic.

3) The triangles ABC and A" B"C™ are homothetic in the hypothesis that M ',M " are

isogonal conjugate in the triangle ABC.

Bellow will formulate the dual theorem of the precedent theorem and of the Jerabeck’s
theorem.

Theorem 60
Let ABC be a given triangle, C,C,C, its contact triangle and T, —T, —T, an external

transversal of the inscribed circle T,e BC,T,e CAT, e AB. If A'is the second tangential point
with the inscribed circle of the tangent constructed from T, (A'# C,), B" is the tangency point
with the inscribed circle of the tangent constructed from T, (B'#C,), and C’ is the tangency

point with the inscribed circle of the tangent constructed from T; (C’ # C.), then the triangles
ABC and A’B’C’ are homological.

Theorem 61 (the dual theorem of Jerabeck’s theorem)
Let ABC an arbitrary given triangle and its contact triangle; we consider two transversals

TT,T, and T, T, T, exterior to the inscribed circle (T,T, € BC, etc.) and we note A', A" the tangent

points with the inscribed circle of the tangents constructed from T, respectively T, (A", A"

different of C,), also we note with A" the intersection point of these tangents. Similarly are
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obtained the points B',B",B" and C',C",C"". Then the triangle ABC is homological with each
of the triangles A'B'C', A"B"C" and A"B"'C".
Proof

We’ll consider the configuration from the Jerabeck’s theorem. (see figure 75) and we’ll
transform it through reciprocal polar.

Co

Ao
Fig. 75
Therefore if ABC is the inscribed triangle in the circle O and AA, AA" are the Cevians

from the hypothesis, we observe that to the point A corresponds the tangent in A to the
circumscribe circle of the triangle ABC and similarly to B, —C we note the triangle formed by

these tangents A B,C,. To point A" corresponds the tangent in A' constructed to the circle and
in the same manner to the point A" corresponds the tangent to the circle. We’ll note A the

intersection point of the tangents.
Through the considered duality, to the line BC corresponds the point A, (its pole), and

to the line A'A", its pole noted with A .

Because BC and A'A" intersect un a point, it results that that point is the pole of the line
A A . Because the intersection points of the lines BC and A'A"; AC and B'B"; ABand
C'C" are collinear, it will result that the lines A A,B,B,,C,C, are concurrent. We note A, with
A, A with A, Awith C_, etc. we obtain the dual theorem of Jerabeck’s theorem.

Theorem 62
Let ABC, ABC, two homological triangles inscribed in a given circle. The tangents in

A, B,,C, to the circle intersect the lines BC,CA, AB in three collinear points.

Proof
If we consider he triangles ABC and AB,C, homological with the center O, we note
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m(«BAA)=a, m(«xCBB,) = and m(<ACC, )=y
From the sinus’s theorem in ABA and we find
AB=2Rsina, AC=2Rsin(A-«)

Therefore

AB _ sin o ’
AC | sin(A-e)

. 2 . 2
Similarly ~ = S0 __| PA_|_siny |
NA | sin(B-f) PB (sin(C-y)

Using the reciprocal of Menelaus’ theorem immediately results the collinearity of the
points M, N, P

Observation 31
a) Similarly, it result that the tangents constructed in A B,C to the circumscribed

triangle intersect the sides B,C,, AC,,C B, in collinear points.

b) The theorem can be formulated also as follows: The tangential; triangle of
homological triangle with a given triangle (both inscribed in the same circle) is
homological with the given triangle.

Theorem (1. Patrascu)
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Fig. 77
Let M,M "' be two isotomic points conjugate inside of triangle ABC, and A'B'C",
A"B"C" their circumpedal triangles. The triangle determined by the lines A'A",B'B",C'C" is

homological with the triangle ABC. The homology axis of these triangles is the isotomic
transversal of the Lemoine’s line to triangle ABC.

Proof

Let {T}=BCNA'A" , {P}=AANBC , {P}=AAMNBC . We note

o= m( BTAK‘), o'= m(C/\") , following the same process as in Jerabeck’s theorem we obtain:

TB sina sin(A-a')
TC sina' sin(A-a)
From Jerabeck’s theorem results that the triangle ABC and the triangle formed by the
lines A'A",B'B",C'C" are homological.
From the sinus’ theorem we have
sina _ sin<xAPB
BP  AB

Also
sin(A-a) _ sin<APC
PC AC

Because sin <xAPB =sin <APC, from the precedent relations we retain that
sma  PC AC

sin(A—cz) BP AB

Similarly
sin’ _P'B AB
sin(A-a') P'C AC
The Cevians AP, AP' being isometric we have BP=P'C and BP'=CP.

2
We find that ::-_I—B = [%} , it is known that the exterior symmedian of the vertex A in

1

the triangle ABC is tangent in A to the circumscribed circle and if T' is its intersection with
TC (ACY ... . o
BC then %:(A—gj . This relation and the precedent show that T, and T, are isotomic
1
points. Similarly, if T, is the intersection of the line B'B" with AC, we can show that T, is the
isotomic of the external symmedian leg from the vertex B, and if T, is the intersection of the
line C'C"with AC, T, is the isotomic of the external symmedian leg from the vertex C of the
triangle ABC. The homology axis of the triangle from the hypothesis is TT,T, and it is the

isotomic transversal of the line determined by the legs of the external symmedian of triangle
ABC, that is the Lemoine’s line of triangle ABC.
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Chapter 5

Proposed problems. Open problems

5.1. Proposed problems
1. If ABCD parallelogram, A e (AB),B e(BC),C e(CD),D, € (DA) such that
the lines AD,,BD, B,C, are concurrent, then
(1) The lines AC, AC,,B/D, are concurrent;
(1)  The lines AB,,C D,, AC are concurrent
(Florentin Smarandache, Ion Patragcu)

2. Let ABCD a quadrilateral convex such that

{E}=ABNCD

{F}=BCNAD

{P}=BDNEF

{R}=ACNEF

{O}=ACNBD

(AB).(BF).(CA
We note G,H,1,J,K,L,P,O,RM,N,QU,V,T respectively the middle point of the
segments (AB),(BF),(CA),(AD),(AE),(DE),(CE),(BE),(BC),(CF),(DF),(DC) .

Prove that:
(1) Triangle PORis homological with each of the triangles GHI, JKL, MNQ,UVT ;

(i)  The triangles GHI, JKL are homological;

(iii)  The triangles MNQ,UVT are homological;

(iv)  The homology centers of the triangles GHI, JKL, POR are collinear;

(V) The homology centers of the triangles MNQ,UVT, POR are collinear
(Florentin Smarandache, Ion Patrascu)

3. Let ABC a triangle and ABC,, AB,C, isotomic triangles inscribed in ABC.
Prove that if the triangles ABC and A B,C, are homological then:

6)) The triangle ABC and the triangle A B,C, are homological and their homology
center is the isotomic conjugate of the homology center of the triangles ABC and ABC,
(if)  The triangle ABC and the medial triangle of the triangle AB,C, are homological.

4. Let ABC, and A B,C, equilateral triangles having the same center O. We note:
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that

{A3} =BB,NCC,
{%} =AANCC,
{C3} =AANBB,
Prove that:
@ (AB)=(BC,)=(CA);
(11) (%BZ)E(BIBZ)E(CICZ);
(iv)  The triangle AB,C, is equilateral and has its center in the point O;
(v)  The triangle A B,C, and the triangle A B,C, are tri-homological.
(Ion Patrascu)

5. If a circle passes through the vertexes B,C of the triangle ABC and intersect the

second time AB in E and AC in D, and we note F the intersection of the tangent in
D to the circle with BC and with G the intersection of the tangent to the circle
constructed in C with the line DE then the points A F,G are collinear.

6. Prove that in circumscribed octagon the four cords determined by the contact
points with the circle of the opposite sides are concurrent
(Ion Patrascu, Florentin Smarandache)

7. Let two external circles in a plane. It is known the center of a circle, construct the
center of the other circle only with the help of a unmarked ruler.

8. Let ABC, an inscribed triangle in the triangle ABC such that the triangles

ABC and ABC, are homological. Prove that if AA +BB, +CC, =0 then the homology
center of the triangles ABC and AB,C, is the weight center of the triangle ABC.

9. Let A'B'C' the pedal triangle of a point in rapport with the triangle ABC. A
transversal intersects the sides BC,CA/AB in the points U,V,W . The lines

AU,BV,CW intersect B'C',C'A", A'B' respectively in the points U' V' W' . Prove
U"'V' W' are collinear.

10.  Let ABC, and A B,C, the pedal triangles of the points M,,M, in rapport with
the triangle ABC. We note A, B,,C, the intersection points of the lines B.C, and B,C,;
CA and C,A ; AB and AB,. We note A,B,,C, the intersection points of the
lines B/C, and B,C,; C,A and C A, ; AB, and A, B,. Prove that:

(1) The sides of the triangle A B,C, pass through the vertexes of the triangle ABC;
(1)  The points A,,B,,C, belong to the line MM, ;
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(ii1)  The sides of the triangle A B,C, are the polar of the opposite vertexes in rapport
to the sides of the triangle ABC taken two by two and pass through the points
A4 > B4 > C4 5

(iv)  The lines AA,BB,,CC, are concurrent ;

(v)  The triangle AB,C, is homological with the triangles ABC, and A B,C,, their
homological centers being on the homological axis of the triangles ABC and
&B.’)CS :

(G.M. 1903-1904)

11. Let ABCDEF a complete quadrilateral and M point in side of the triangle BCE .
We note POR the pedal triangle of M in rapport with BCE (Pe (BC), Qe (BE)). We
also note PRNAC={U}, PQNBD={V}, RQNEF ={W} . Prove that the points
U,V,W e collinear.

(Ion Patrascu)

12.  Prove that the tangential triangle of the triangle ABC and the circumpedal
triangle of the weight center of the triangle ABC are homological.
Note: The homology center is called the Exeter point of the triangle ABC.

13.  Inthe triangle ABC let U -V —W a transversal U € BC, Ve AC .
The points U'e AU, V'e BV, W'e CW are collinear and A'e BC such that the
points U',C',B" are collinear, where {B'} = AW AC and {C'}= ABNA'V".
Prove that the triangles ABC and A'B'C' are homological.
(Ion Patrascu)

14. Let ABC a given random triangle, | the center of the inscribed circle and
C,C,C. its contact triangle. The perpendiculars constructed from | on IABI,Cl
intersect the sides BC,CA AB respectively in the points A,B',C'. Prove that the
triangle formed by the lines AA", BB',CC'homological with the triangle C,C,C..

15. If A'B'C', A"B"C" are inscribed triangles in the triangle ABC and
homological with it and if we note
{Am} — CIBVﬂCH B",{Bm} — Avcvﬂ A"C",{C"'} Al Bvﬂ A"B" ,
then the triangle A" B"'C™" is homological with each of the triangles
ABC’ AIB'C', A"B"C".

16.  The complementary (medial) of the first Brocard triangle associated to the

triangle ABC and the triangle ABC are homological
(Stall)
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17. The tri-linear poles of the Longchamps’s line of a triangle coincide with one of

the homology center of this triangle and of the first triangle of Brocard .

axis

(Longchamps)

18. If BCA', CAB', ABC' are similar isosceles triangles constructed on the sides of
the triangle ABCin its interior or exterior.. Then the homological axis of the triangles
ABC and A'B'C' is perpendicular on the line that connects their homological center
with the center of the circle circumscribed to triangle ABC . The perpendiculars
constructed from the vertexes A B,C on the sides B'C',C'A', A'B' are concurrent in a

point of the same line.

19. Let ABC a triangle and A'B'C' the pedal triangle of the center of the
circumscribed circle to triangle ABC . We’ll note A",B",C" middle points of the

segments AA',BB',CC'. The homology axis of the triangles ABC and A"B"C" is the
tri-linear polar of the orthocenter of the triangle ABC.

20. Let ABC,,AB,C, two triangles circumscribed to triangle ABC and homological
with it, their homological centers being M,,M,. The lines AM,,BM,,C M, intersect
BC,CA AB in A,B',C'. The lines AM ,B,M ,C,M, intersect BC,CA AB in the same
points A',B",C'. The lines AA',BB',CC" are concurrent.

21.  In a triangle the lines determined by the feet of the height constructed from B,C,
the lines determined by the feet of the bisectors of the angles B,C and the line of the
contact points of the inscribed circle with the sides AC, AB are concurrent in a point U .
Similarly, are defined the points V,W . Prove that the lines AU, BV,CW are concurrent.

22. Let ABC a triangle and ABC, the circumpedal triangle of the circumscribed
circle | and C,C,C, the contact triangle of the triangle ABC.
Prove that

(1) AC,,BC,,CC_B are concurrent in the isogonal of the Nagel’s point N of the
triangle ABC ;

(1))  The isogonal of the Nagel’s point, the center of the inscribed circle and the center
of the circumscribed circle are collinear.
(Droz)

23. The perpendicular bisectors of an arbitrary given triangle intersects the opposite sides
of the triangle in three collinear points.

(De Longchamps)

24. The homology axis of the triangle ABC and of its orthic triangle is the radical
of the circumscribed arcs and of the Euler’s circle.
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25. A'B'C' are the projections of the center of the inscribed circle in the triangle
ABC on the perpendicular bisectors of the triangle, then the lines AA',BB',CC' are

concurrent in a point which is the isotonic conjugate of the Gergonne’s point of the
triangle.

(De Longchamps)
26.  Prove that in an arbitrary triangle, the Lemoine’s point, the triangle orthocenter
and Lemoine’s point of the orthic triangle are collinear

(Vigarie)
27.  Prove that a triangle is isosceles if and only if the intersection of a median with a

symmedian is a Brocard’s point of the triangle.
(Ion Patrascu)

28.  In an arbitrary triangle ABC let A'B'C' the circumpedal triangle of the center of
the inscribed circle | . We’ll note A,B,,C, the intersections of the following pairs of

lines (BC,B'C"),(AC,A'C'),(AB,A'B"). If O is the center of the circumscribed circle
of the triangle ABC, prove that the lines Ol, A B,  are perpendicular
(Ion Patrascu)

29.  In the random triangle ABC let C,C,C, its contact triangle and A'B'C' the.
pedal triangle of the center of the inscribed circle | .

We’llnote {U}=B'C'NC,.C,, {V}=A'CNC,.C, {W}=A'BNC,.C,.

Prove that the perpendiculars constructed from A B,C respectively on IU,IV,IW
intersect the lines C,.C..C.C

a—c¢c?

C.C, in three collinear points.
(Ion Patrascu)

30. Let ABCD a trapeze and M, N the middle points of the bases AB and CD, and
Ee (AD) different of the middle point of (AD). The parallel through E to the base

intersects (BC) in F .
Prove that the triangles BMF, DNE homological.

31.  Consider the triangle ABC and the transversal A,B,,C, (A€ BC,BeCA,
C, € AB). The lines BB,,CC, intersect in A, ; the lines CC,, AA intersect in B, and the
lines AA, BB, intersect in CC, . Prove that the lines A A,B,B,,C,C, are concurrent.

(Gh. Titeica)

32. Let ABCD an inscribed quadrilateral to a circle and A',B',C',D' the tangency
points of the circle with the sides AB, BC,CD, DA.
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We’llnotes {A}=A'BNC'D'{B}=A'DNB'C".
Prove that
(1) The lines AA,BD',DA' are concurrent;

(i1) The lines BB,, AB',CA' are concurrent.
(Ion Patrascu)

33. Let ABC an arbitrary triangle , we note D,E,F the contact points of the
inscribed circle with the sides BC,CA AB and with M, N, P the middle of the arches
BC,CA AB of the circumscribed circle.

Prove that:

(1) The triangles MNP and DEF are homothetic, the homothety center being
the point L ;

(i)  We note A,B,,C, the intersections of the segments (LA),(LB),(LC) with the
inscribed circle in the triangle ABCand A,,B,,C, the intersection points of the BC,
with LM ; AC, with LN and AB, with LP. Prove that the triangles ABC,, AB,C,

are homothetic.
(Ion Patrascu)

34. Let ABC an arbitrary triangle and A'B'C' it contact triangle. We’ll note
A",B",C" the diametric opposite points of A',B',C'in the inscribed circle in the

triangle ABC.
Prove that the triangles ABC, A"B"C" are homological.

35. Let ABCDEF a complete quadrilateral and M e (AC),Ne (BD),Pe (EF)
such that
AM BN EP
MC ND PF
Determine the value of K the points M, N, P are collinear.
(Ion Patrascu)

36. If | is the center of the inscribed circle in the triangle ABC and D, E,F are the
centers of the inscribed circles in the triangles BIC,CIA AlB respectively, then the lines
AD, BE,CF are concurrent. (The first point of Velliers)

37.  Let |11 the centers of the ex-inscribed circles corresponding to triangle ABC

a'b'c

and 11,1, the centers of the inscribed circles in the right triangles BI,C, CI, A, Al _B

17273
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respectively. Prove that the lines Al,, Bl,, Cl, are concurrent. (The second point of
Velliers).

38.  Let | the center of the inscribed circle in the triangle ABC and |,1,,1, the
centers of the ex-inscribed circles of triangles BIC,CIA, AIB (tangents respectively to the
sides (BC),(CA),(AB)).
Prove that the lines Al,, Bl,, CI, are concurrent.

(Ion Patrascu)

39. Let I_,I,,I_ the centers of the ex-inscribed circles to the triangle ABC and

a’> 'b>’c
l,,1,,1, the centers of the ex-inscribed circles of triangles BI,C, CI A Al B
respectively (tangent respectively to the sides (BC),(CA),(AB)).
Prove that the lines Al,, Bl,, CI, are concurrent.

(Ion Patrascu)

40. Let ABCa triangle inscribed in the circle C(O,R), P a point in the interior of
triangle and AB,C, the circumpedal triangle of P . Prove that triangle ABC and the
tangential triangle of the triangle AB,C, are homological.

41.  Let ABCarandom triangle. | the center of its inscribed circle and 1,11, its anti-
supplementary triangle. We’ll note O, the center of the circle circumscribed to triangle

|11, and M,N,P the middle of the small arches BC,CA, AB from the circumscribed
circle to triangle ABC. The perpendiculars from |1, ,I_  constructed respectively on
OM,,ON,,OPR determine a triangle ABC, .

Prove that the triangles ABC,, |1l are homological, the homology axis being the
tri-linear polar of | in rapport with the triangle ABC.

42.  Let Q the Brocard’s point of triangle ABC and ABC, the circumpedal triangle
of ABC. We note AB,C, the triangle, which has as vertexes the diametric vertexes
A,B.,C . We'll note {A}=BCNAB , {B,}J=ACNBC, , {C,}]=ABNCA ,
{A}=BANCB, {B,}=AC NCB, {C,}] = AC,NBA.

Prove that the triangles A B,C,, AB,C, are homological and their homological axis
is the perpendicular on the line OO, , where O is the center of the circumscribed circle

to triangle A B,C,.
(Ion Patrascu)

43.  Let | and O the centers of the inscribed and circumscribed circle to the triangle
ABC, and J the symmetric point of | in rapport with O . The perpendiculars in
AB,C respectively on the lines AJ,BJ,CJ form an homological triangle with the
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contact triangle of ABC. The homology axis of the two triangles is the radical axis of the
inscribed and circumscribed circles and the homological center is | .
(C. Ionescu-Bujor)

44.  Are given the circles (C,),(C,),(C,) that intersect two by two. Let A, A the
common points of the pair of circles (C,), (C,); B, B, the common points of the pair
of  circles (C,),(C,) and C,,C, the common points of the pair of circles (C,),(C,) .

Prove that the triangles ABC,, AB,C, are homological, having the homology center

in the radical center of the given circles and as homological axis the radical axis of the
circles ABC,, AB,C,.

45. Let ABC a triangle, H its orthocenter and L the symmetric of H in rapport
with the center of the circumscribed to triangle ABC. He parallels constructed through
A B,C to the sides of triangle ABC form an homological triangle with the pedal triangle

ABC, of the point L. The homology axis of the two triangles is the radical axis of the
circles (ABC),(AB,C,), and the homology center is the point L.

(C. Ionescu-Bujor)

46. Let ABC and A'B'C' two conjugate triangles inscribed in the same circle (O).
We’ll note ABC, the triangle formed by the intersections of the lines (BC,B'C'),
(AC,A'C'"), (AB,A'B") and AB,C, the triangle formed by the lines AA",BB',CC'.
Prove that the triangles AB,C,, A B,C, are homological, having as homological axis the

perpendicular on the line determined by the center of the circumscribed circle to the
triangle ABC, and O.

47.  Let | the center of the inscribed circle in the triangle ABC; the lines which
pass through | intersect the circumscribed circles of triangles BIC,CIA AIB

respectively in the points A, B,,C, . Prove that:

(i)  The projections A,B,,C, of the points A,B,,C, on the sides BC,CA AB are
collinear.

(11) The tangents in A, B,,C, respectively to the circumscribed circles to triangles
BIC,CIA AIB form an homological triangle with the triangle ABC.
(Gh. Titeica)

48.  Let O the center of the circumscribed circle to a random triangle ABC, we’ll
note P,Q the intersection of the radius OB with the height and the median from A and

R S the intersections of the radius OA with the height and median from B of triangle
ABC.
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Prove that the lines PR, QS and AB are concurrent.
(Ion Patrascu)

49.  Let ABC an inscribed triangle in a circle of center O. The tangent in B,C to the
circumscribed circle to the triangle intersect in a point P. We’ll note Q the intersection

point of the median AM with the circumscribed circle and R the intersection point of
the polar to BC constructed through A with the circumscribed circle.
Prove that the points P,Q, R are collinear.

50.  Two lines constructed through the center | of the inscribed circle of the triangle
ABC intersects the circles (BIC),(CIA),( AIB) respectively in the points A, A, ; B, B, ;
C,.C,.

Prove that the lines AA,,B,B,,C,C, form a homological triangle with ABC .

51.  In the scalene triangle ABC let consider AA,BB,,CC, the concurrent Cevians in
P (A€(BC),B e(CA),C e(AB)), and AA,BB,,CC, the isogonal Cevians to the
anterior Cevians, and O their intersection point. We’ll note B,P,P the orthogonal
projections of the point P on the BC,AC,AB; R,R,,R, the middle point of the
segments (AP),(BP),(CP).

Prove that if the points B,P,,R,,Q,,Q,,Q,,R,R,,R, are  concyclic then these belong

to the circle of nine points of the triangle ABC.
(Ion Patrascu)

52.  Prove that the perpendiculars constructed from the orthocenter of a triangle on the
three concurrent Cevians of the triangle intersect the opposite sides of the triangle in
three collinear points.

53. If X,Y,Z are the tangency points with the circumscribed circle to the triangle
ABC of the mix-linear circumscribed circle corresponding to the angles A B,C
respectively, then the lines AX,BY,CZ are concurrent.

(P. Yiu)

54. Let ABC a given triangle and A'B'C', A"B"C" two circumscribed triangles to
ABC and homological with ABC . Prove that in the triangle formed by the lines
A'A",B'B",C'C" is homological with the triangle ABC.

5S. Let ABC a triangle which is not rectangular and H is its orthocenter, and P
A point on (AH ). The perpendiculars constructed from H on BP,CP intersect AC, AB
respectively in B, C,. Prove that the lines B,C,, BC are parallel.

(Ion Patrascu)
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56. Let MNPQ a quadrilateral inscribed in the circle (O) . We note U the

intersection  point of its diagonals and let [AB] a cord that passes through U such that
AU =BU. Wenote {U}]=AUNMN, {W}=PQNBU.

Prove that UV =UW
(The butterfly problem)

57.  Let A, A, A, A four points non-concyclic in a plane. We note p, the power of
the point A in rapport with the circle (A/AA,), p, the power of the point A in
rapport with the circle (AAA,), with p, the power the point A in rapport to the circle

(AAA,) and p, the power of the point A, in rapport with the circle (AAA). Show

that it takes place the following relation RS +—+ 1 + !

(SR SR SN
(Serban Gheorghiu, 1945)

=0.

58.The quadrilaterals ABCD,A'B'C'D' are conjugated. Prove that triangle BCD ,

B'C'D' are homological. (The quadrilaterals follow the same sense in notations.)

the

59.  Prove that an arbitrary given triangle ABC is homological with the triangle
where A, B,,C, are the vertexes of an equilateral triangle constructed in the exterior of

triangle ABC on it sides. (The homology center of these triangles is called the Toricelli-
Fermat point).

60.  Consider the points A',B',C' on the sides (BC), (CA), (AB) of the triangle

ABC which satisfy simultaneously the following conditions:
(1) A'B’+B'C*+C'A*=A'C’*+B'A"+C'B’;

(i1) The lines AA',BB',CC' are concurrent

Prove that

a) The perpendiculars constructed from A' on BC, from B' on AC, from C' on AB
are concurrent in appoint P ;

b) The perpendiculars constructed from A' on B'C', from B' on A'C', from C' on
A'B' are concurrent in a point P';

¢) The points Pand P' are isogonal conjugated,

d) If A",B",C" are the projections of the point P' on BC, AC, AB, then the points
A, A", B',B"C',C" are concyclic;

¢) The lines AA",BB"CC" are concurrent.
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(Florentin Smarandache, Ion Patrascu)

61. Consider a triangle ABC . In its exterior are constructed on the sides (BC) ,

(CA), (AB) squares. If A,B,,C, are the centers of the three squares, prove that the
triangles ABC, ABC, are homological. (The homology center is called the Vecten’s
point.)

62. A semi-circle has the diameter (EF) situated on the side (BC) of the triangle

ABC and it is tangent in the points P,Q to the sides AB, AC.
Prove that the point K common to the lines EQ, FP belong the height from A of the
triangle ABC

63. In the triangle ABC we know that BC* = AB-AC ; let D,E the legs of the
bisectrices of the anglesC,B (De (AB) , Ee (AC) ). If M is the middle of (AB) , N

is the middle of (AC) and P is the middle of (DE)

Prove that M, N, P are collinear
(Ion Patrascu)

64. Let ABC aright triangle in A. We’ll construct the circles
C(ABC),C(B;AC),C(C; AB):
Prove that:

(1) The circles C( A BC) , C( B; AC) , C(C; AB) pass through the same point L ;

(ii) If Q is the second point of intersection of the circles C ( B; AC),C (C; AB) , then
the points A B,L,C,Q are concyclic;

(iii)  If P is the second point of intersection of the circles C(C; AB), C(ABC) and

R is the second point of intersection of the circles C(B; AC) , C(A; BC) , then

the points P,Q, A R are collinear
(Ion Patrascu)

66. If triangle ABC is a scalene triangle and a',b',c' are the sides of its orthic
triangle then 4(a'b'+b'c'+c'a’)<a’+b’ +c’

(Florentin Smarandache)

67.  In an arbitrary triangle ABC let D the foot of the height from A, G its weight
center and P the intersection of the line (DG with the circumscribed circle to triangle

ABC . Prove that GP =2GD.
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(Ion Patrascu)

68.  Let (AB) a cord in given circle. Through its middle we construct another cord

(CD). The lines AC,BD intersect in a point E, and the lines AD,BC intersect in a
point F . Prove that the lines EF, AB are parallel.

69. Let ABCDEF complete quadrilateral ({E} = ABMNCD,{F}=ABCAD). A line
intersects (CD) and (AB) in C, A .

Prove that:

(1) The lines AB,,C,D,, AC are concurrent;

(i)  The lines BC,, AD,,BD are concurrent.

70. In a triangle ABC let AA'AA" two isotomic Cevians and PQ||BC, Pe (AB),
Qe (AC). We’ll note {M} =BQN AA', {N} =CP AA'. Prove that MN || BC.

71. In the triangle ABC let consider AA',BB',CC' the concurrent Cevians in the

point P . Determine the minimum values of the expressions:
E(P)= AP N BP N CP
PA'" PB' PC'
F(P)

_ AP BP CP
where A‘e[BC],B'e[CA],C'e[AB]

" PA' PB' PC'

(Florentin Smarandache)

72.  Lettriangles ABC,, AB,C, such that
BCNBC, ={R},BCNAC, ={Q},BCNAB, ={R]
AGNAC, ={R},ACNAC, ={Q]},ACNC,B, ={R}
ABNAB ={R},ABNBC, ={Q},ABNCA ={R}

Prove that

RB PG RA QB QC QA RB RGC RA_,
FC PA RB QC QA RB RC RA RB

(@)

(i1)Triangles AB,C,, AB,C, are homological (the lines AA,,B,B,,CC, are concurrent)
QB QC QA _RB RC RA
QC Q@A RB RC RA RB

if and only if

127



73.  On a line we consider three fixed points A B,C. Through the points A B we
construct a variable arc, and from C we construct the tangents to the circle CT,,CT, .
Show that the line T,T, passes through a fixed point.

74.  Inthe triangle ABC we construct the concurrent Cevians AA,BB,,CC, such that

AB’+BC*+C A’ = AB’+BC > +CA’ and one of them is a median. Show that the

other two Cevians are medians or that the triangle ABC is isosceles.
(Florentin Smarandache)

75.  Let ABC atriangle and A, B,,C, points on its exterior such that
<ABC = «C BA «C,AB=«BAC,«BCA=«xACB.
Prove that the triangles ABC, AB,C, are homological.

76.  Show that if in a triangle we can inscribe three conjugated squares, then the
triangle is equilateral.

77.  Let a mobile point M on the circumscribed circle to the triangle ABC . The lines
BM,CM intersect the sides AC, AB in the points N,P.

Show that the line NP passes through a fixed point.

78.  Given two fixed points A B on the same side of a fixed line d (AB )/ d). A
variable circle which passes through A B intersects d in C,D. Let {M}=ACNBD,
{N} =ADNBC. Prove that the line MN passes through a fixed point

79.  In the triangle ABC we have A=96°,B=24°. Prove that OH =a—b, (O is the

center of the circumscribed circle and H is the orthocenter of the triangle ABC)
(Ion Pétrascu), G.M 2010

80. Let ABCD a quadrilateral convex inscribed in a circle with the center in O. We
will note P,Q,R S the middle points of the sides AB,BC,CD,DA. If M is a point such

that 20M = OA+OB+0OC +OD and T is the intersection of the lines PR,QS,
Prove that:

@) 20T =OM

(i1) If we note P',Q',R',S' the orthogonal projection of the points P,Q,RS
respectively on CD,DA AB,BC , the lines PP, QQ'RR',SS' are concurrent. (The
intersection point is called the Mathot’s point of the quadrilateral.)
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81. Three conjugated circles are situated in the interior of a triangle and each of them
is tangent to two of the sides of the triangle. All three circles pass through the same point.
Prove that the circles’ common point and the centers of the inscribed and circumscribed
to the triangle are collinear points.

(O.ILM. 1981)

82. Let O the center of the circumscribed circle of the triangle ABC and
AA',BB',CC' the heights of the triangle. The lines AO, BO,CO intersect respectively

the lines B'C',A'C',A'B' in A,B,,C,.
Prove that the centers of the circumscribed circles to triangles AA'A,BB'B,,CC'C, are

collinear.
(A. Angelescu, G.M.)

83. Let ABC an equilateral triangle and AA,BB,,CC, three Cevians concurrent in

this triangles.
Prove that the symmetric of each of the Cevians in rapport to the opposite side of the
triangle ABC are three concurrent lines.

84. Given three circles C(O,,R),C(0O,,R),C(O,,R) that have a common point O . Let
A", B',C' the diametric points of Oin the three circles. The circumscribed circle to the
triangles B'OC',C'OA,A'OB' intersect the second time the circles

C(0,,R),C(0,,R),C(0,,R) respectively in the points A,B,C,.
Prove that the points A, B,,C, are collinear.
(Ion Patrascu)

85 Let d,,d,,d, three parallel lines. The triangles ABC, A'B'C' have A/A'on d,,
B,B'on d,, C,C' on d, and the same weight center G .

If {U} =BCN B'C';{V} =ACN A'C';{W} =ABNA'B'.
Prove that the points U,V,W,G are collinear.

86. In the triangle ABC let AA',BB',CC' its interior bisectrices. The triangle
determined by the mediators of the segments (AA'),(BB'),(CC') is called the first

triangle of Sharygin; prove that the triangle ABC and its first triangle of Sharygin are
homological, the homology axis being the Lemain’s line of the triangle ABC.

87. Let ABCDEF a hexagon inscribed in a circlee We note
{M}=ACNBD,{N}=BENCF,{P}=AENDF.

Prove that the points M, N, P are collinear.
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88.  Let ABC a triangle in which AB< AC and let triangle SDE, where Se (BC),
De(AB), E€(AC) such that ASDE ~ AABC ( S being different of the middle of
(BC)).

2
Prove that BS = AB
CS | AC
(Ion Patrascu G.M. 205)

89. Let ABC a random given triangle, C,C,C_its contact triangle and P a point in
the interior of triangle ABC. We’ll note A,B,,C, the intersections of the inscribed circle
with the semi-lines (C,P,(C,P,(C_.P.

Prove that the triangles ABC, AB,C, are homological.

90. In a random triangle ABC, Ois the center of the circumscribed circle and O, is
the intersection point between the mediator of the segment (OA) with the parallel
constructed through O to BC . If A' is the projection of A on BC and D the
intersection of the semi-line (OA' with the circle C(Q,QA), prove that the points

B,O,C,D are concyclic.
(Ion Patrascu)

91. If in triangle ABC, | is the center of the inscribed circle, A',B',C' are the
projections of | on BC,CA/AB and A",B",C" points such that JA" = KIA' ,
@:W, @:W@, Ke R*, then the triangle ABC, A"B"C" are homological.
The intersection point of the lines AA",BB",CC" is called the Kariya point of the
triangle ABC.

92. Let ABC a random triangle and C,C,C, its contact triangle. The perpendiculars
in the center of the inscribed circle | of the triangle ABC on Al,BI,Cl intersect
BC,CA AB respectively in points A,B,,C, and the tangents to the inscribed circle
constructed in these points intersect BC,CA AB respectively in the points A ,B,,C,.
Prove that

1. The points A,B,,C, are collinear;
ii. The points A,,B,,C, are collinear;
iii. The lines AB,, A B, are parallel.
(Ion Patrascu)

93. Show that the parallels constructed through orthocenter of a triangle to the
external bisectrices of the triangle intersect the corresponding sides of the triangle in
three collinear points.
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The

94. Let a circle with the center in O and the points A B,C,D,E,F on this circle.
circumscribed circles to triangles (AOB),(DOE);(BOC),( EOF);(COD),(FOA)
intersect the second time respectively in the points A, B,C,.

Prove that the points O, A, B,,C, are concyclic.

95.  Let ABC an isosceles triangle AB= AC and D a point diametric opposed to A
in the triangle’s circumscribed circle. Let E€ (AB) and {P} =DE[BC and F is the

intersection of the perpendicular in P on DE with AC. Prove that EF = BE =CF .
(Ion Patrascu)

96. In the triangle ABC we’ll note A'B'C' the circumpedal triangle of the center of
the circumscribed circle in the triangle ABC and O,,0,,0, the symmetric point to the

center O of circumscribed circle to triangle ABC in rapport to B'C',A'B,A'C'

respectively.
Prove that the triangles ABC, O,0,0, are homological, the homology center being

the Kariya’s point of the triangle ABC.

97. Let ABCDEF a complete quadrilateral in which BE=DF . We note
[G}=BDNEF.

Prove that the Newton-Gauss lines of the quadrilaterals ABCDEF , EFDBAG are
perpendicular

(Ion Patrascu)
98. Let in a random triangle ABC, the pointO the center of the circumscribed circle

and M, M,, M, the middle points of the sides (BC),(CA),(AB). If Ke R* and

A',B',C' three points such that OA'=K-OM_,0OB'=K-OM,,0C'=K-OM, . Prove

that the triangles ABC, A'B'C' are homological. (The homology center is called the
Franke’s point of the triangle ABC.)

99. Let ABC a scalene triangle and M,N,P the middle points of the sides
(BC),(CA),(AB). We construct three circles with the centers in M, N, P, and which

intersect the (BC) ,(CA) ,( AB) respectively in A, A; B,B,; C,,C, such that these six
points are concyclic.
Prove that the three circle of centers M, N, P have as radical center the orthocenter of the
triangle ABC.

(In connection with the problem 1 —O.1.M-2008, Ion Patragcu)

100. Let M an arbitrary point in the plane of triangle ABC.
Prove that the tangents constructed in M to the circles (BMC),(CMA),( AMB) intersect

(BC),(CA),(AB) in collinear points.
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(Cezar Cosnita)

5.2. Open problems

In this section we selected and proposed a couple of problems for which we didn’t find a
solution or for which there is not a known elementary solution.

1. A diameter of the circle C( R,O) circumscribed to triangle ABC intersects the sides
of the triangle in the points A,B,,C,. We’ll consider A',B',C' the symmetric points

in rapport with the center O. Then the lines AA',BB',CC' are concurrent in a point

situated on the circle.
(Papelier)

2. A transversal intersects the sides BC,CA AB of a triangle ABC in the points
A',B',C'. The perpendiculars constructed on A',B' C' on the sides BC,CA, AB

form a triangle A"B"C".
Prove that the triangles ABC, A"B"C" are homological, the homology center
belonging to the circumscribed circle of the triangle ABC.

(Cezar Cosnitd)

3. Let ABC a triangle, ABC, the Caspary’s first triangle and the triangle YZZ' formed
by the homological centers of the triangles ABC, ABC,.

Show that these triangles have the same weight center.
(Caspary)

4. In triangle ABC we’ll note with M, N, P the projections of the weight center G on
the sides BC,CA, AB respectively.
Show that if AM,BM ,CP are concurrent then the triangle ABC is isosceles.
(Temistocle Birsan)

5. Let triangle ABC, the Cevians AA,BB,,CC, concurrent in Q, and AA,BB,,CC,

concurrent in Q,. We note {X}=BC NB,C,,{Y}=CANC,A.{Z]=ABNAB,.
Show that
a. AX,BY,CZ are concurrent;

b. The points AY,Z; B,Y,Z and C,Y,Z are collinear.
(Cezar Cosnita)

6. Through the point M of a circumscribed circler to a triangle ABC we’ll construct the
circles tangent in the points B,C to AB and AC. These circle intersect for the
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10.

11.

12.

second time in a point A' situated on the side BC. If B',C' are the points obtained

in a similar mode as A', prove that the triangles ABC, A'B'C' are homological.
(Cezar Cosnitd)

Prove that the only convex quadrilateral ABCD with the property that the inscribed
circles in the triangles AOB, BOC,COD, DOA are congruent is a thomb

({0l = ACNED).

(Ion Patrascu)

Let AA, AA ; BB,,BB,; CC,,CC, three pairs of isogonal Cevians in rapport with
the angles A B,C of the triangle ABC ( A€ BC,B € CA,C. € AB). The points
X,Y,Z and XY,z being defined as follows

{X}=ABC,NAC,.{Y}=AB,NAC, etc. Prove the following:

a) The lines AX,BY,CZ are concurrent in a point P ;
b) The lines The lines AX',BY',CZ' are concurrent in a point P';

c) The points P, P' are isogonal conjugated.
(Temistocle Birsan)

If T,,T,,T, are triangles in plane such that (T,,T,) are tri-homological, (T,,T;) are tri-

homological, (T3,T1) are tri-homological and these pairs of tri-homological triangles

have each of them in common two homological centers, then the three homological
centers left non-common are collinear?

If ABCDEF is a complete quadrilateral, U,V,W are collinear points situated
respectively on AC,BD,EF and there exists Q on (BE) such that

{P} =VQNBC;{Rl =WQNCE and U,P,R are collinear, then the triangles
BCE, QRP are homological.

It is known that a triangle ABC and its anti-supplementary triangle are homological.
Are homological also the triangle ABC and the pedal triangle of a point M from the
triangle’s ABCplane. It is also known that the anti-supplementary of triangle ABC
and the pedal of M are homological.

What property has M if the three homological centers of the pairs of triangles
mentioned above are collinear?

If P is a point in the plane of triangle ABC,which is not situated on the triangle’s
circumscribed circle or on its sides; A'B'C' is the pedal triangle of P and A,B,,C,

_ _—

three points such that PA'-PA =PB'-PB =PC'-PC, =K, Ke R*. Prove that the
triangles ABC, ABC, are homological.

133



(The generalization of the Cezar Cosnita’s theorem).

Chapter 6
Notes

6.1. Menelaus’ theorem and Ceva’s theorem

1. Menelaus’ theorem

Definition 1
A line, which intersects the three sides of a triangle is called the triangle transversal. If
the intersection points with BC,CA AB are respectively A,B,,C,, we’ll note the transversal

A_BI_CI'

Theorem 1 (Chapter 1, 2)
If in the triangle ABC, A — B, —C, is a transversal, then

AB BC CA_ O

AC BA CB

Proof

B C A
Fig.1
We construct CD || AB,, De AB (see Fig.1). Using the Thales’ theorem awe have
AB CB BC CD
AC CD’ BA CA
Multiplying side by side these relations, after simplification we obtain the relation (1).
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Theorem 2 (The reciprocal of Menelaus’ theorem)
If the points A,B,,C, are respectively on the sides BC,CA, AB of the triangle ABC and

it takes place the relation (1), then the points A, B,,C, are collinear.
Proof
We suppose by absurd that A —B, —C,is not a transversal. Let then {C1 } =ABNAB,

C, #C,. We’ll apply the Menelaus’ theorem for the transversal A —B, —C, , and we have:
AB BC CA_ .
AC BA CB
From the relations (1) and (2) we find:
QA_QA
CB CB

And from this it results that C, = C,, which contradicts the initial supposition. Consequently,

2)

A — B, —C, is atransversal in the triangle ABC.

II. Ceva’s theorem

Definition 2
A line determined by a vertex of a triangle and a point on the opposite side is called the
triangle’s Cevian.

Note
The name of this line comes from the Italian mathematician Giovanni Ceva (1647-1734)

Theorem 3 (G. Ceva — 1678)
If in a triangle ABC the Cevians AA,BB,,CC, are concurrent then

A BC GACA__

)

AC BA CBCB

Proof

A C
Fig. 2
Let{O} = AA BB NCC,. We’ll apply the Menelaus’ theorem in the triangles AAC, AAB for
the transversals B—P—-B,,C—-P—C,, we obtain
BA BC PA_, )
BC BA PA

135



CB PB CA

2 (5)
CA PA G
By multiplying side by side the relations (4) and (5) and taking into account that
i =—] and i = i
CB CA AC

We’ll obtain he relation (3).

Theorem 4 (The reciprocal of Ceva’s theorem)

If AA,BB,,CC, are Cevians in the triangle ABC such that the relation (3) is true, then
these Cevians are concurrent.

Proof

The proof is done using the method of reduction ad absurdum.

Lemma 1
If A isapoint on the side BC of the triangle ABC, then
AC _ sinxAAC
AC sinxAAC’
B A A, C

Fig. 3

Because sin <AAB =sin <xAAC and by multiplying the precedent relations side by side we
obtain the relation from the hypothesis.

Observation 1
The relation from the hypothesis can be obtained also from

AC SACA

Corollary
If AA and AA, are isogonal Cevians in the triangle ABC (<A AB= <A AC), (see Fig.

3), then from Lemma 1 it results:
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A_B'E_(ABJZ
AC AC |AC

Theorem S (The trigonometric form of Ceva’s theorem)
In the triangle ABC, the Cevians AA,BB,,CC, are concurrent if and only if

sin<AAB sin«BBC sin«xCCA _
sin<xAAC sin<«BBA sin<«CCB
To prove this it can be used the Lemma 1 and theorems 3,4.

Theorem 6 (The trigonometric form of Menelaus’ theorem)
Three points A, B,,C, situated respectively on the opposite sides of the triangle ABC are

collinear if and only if
sin<xAAB sin«BBC sin«CCA
sin<XAAC sin<«BBA sin<«CCB

III.  Applications

1. If AA,BB,,CC, are three Cevians in the triangle ABC concurrent in the point P
and BC, intersects BC in A, AB, intersects ABin C, and C A intersects AC in
B, , then
(1) The points A,, B,,C, are harmonic conjugates of the points A, B,,C, in rapport to
B,C;C, A respectively AB;
(i) ~ The points A,,B,,C, are collinear
Proof

A

Fig. 4

(1) From the Ceva’s theorem we have

AB BC CACA_
AC BA CBCB
From the Menelaus’ theorem applied in the triangle ABC for the transversal A —B —-C, it

results:
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AB BC CA_,
AC BA CB

e . . : B B . .
Dividing side by side the precedent relations it results A=C = —% which shows that the point
A, is the harmonic conjugate of the point A in rapport with the points B,C .

(i1) This results from (i) and from the reciprocal of Menelaus’ theorem.

Remark 1
The line A,,B,,C, is called the harmonic associated to the point P or the tri-linear polar

of the point P in rapport to the triangle ABC . Inversely, the point P is called the tri-linear pole
or the harmonic pole associated to the line A B,C,.

2. If P is a point halfway around the triangle from A, that is A_B+B_R =VC+CA an
P,,P, are similarly defined, then the lines AR,BP,,CP, are concurrent (The

concurrence point is called the Nagel’s point of the triangle)
Proof
We find that A = p—b, BA =c— p and the analogues ad then it is applied the reciprocal

Ceva’s theorem.
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Annex 1

Important formulae in the triangle geometry

The cosine theorem
a’ =b*+c*—2bccos A

-b _ _
bc 2 bc
The median relation
4ma’ =2(’ +¢7)-a’

A_ |(p=b)(p-c)
2 p(p-c)

The tangents’ theorem

9 7 a-b

tgA+B a+b
2

r:E, Rzﬁ; ra——S
p 4S p—a

& +b’+¢ =2(p’ -1’ —4Rr)
a+b' +c' =2p(p’-3r’ -6RY)
a'+b*+c =2[p4 —2p2r(4R+3r)+r2(4R+r)2}

ab+bc+ca=p*+r>+4Rr
abc=4Rpr
165’ =2(a’h’ +b’c’ +c’a’ ) —(a' +b* +c)

We prove:
ab+bc+ca=p*+r>+4Rr

From S’ =p(p-a)(p—b)(p-c) and S* = p* —r? we find (p-a)( p-b)(p—c)=p-r’.
It results

p’—(a+b+c) p’ +(ab+bc+ca) p—abc= pr?

& p’-2p’ +(ab+bc+ca) p—4Rpr = pr?
From here we retain ab+bc+ca= p>+r>+4Rr; @ +b*+¢ =2( pz—r2—4Rr)
a+b'+¢ =2p(p’-3r’—6Rr).

We use the identity @ +b’+¢’—3abc=(a+b+c)(a’ +b’ +c’ —ab—bc—ca).
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It results
& +b'+¢ =2p(2p* - 2r* —8R —4R' ) +12R0* =2p( p* - 3r’ —6RY ).

C. Distances between remarkable points in triangle geometry

1. CG’ =é(9R2 —2p* +2r* +8RY)

OH’=9R*-2p*+2r* +8Rr
. O’=R-2Rr
4. Ol =R’ +2Rr,
5 3a’b’c?
5. OK :Rz—ﬁ
(a®+b*+c7)
4p°r (R+r
RZ_ p ( 2)
(4R+r)
7. ON?>=(R-2r)’

8. GH’ :g(9R2—2p2+2r2+8Rr)

6. O’ =

9. GI’ :é( P’ +5r* —16Rr )

10. GI? :é(a2+b2+cz)—

S(p-a) (-a’+b’+¢*)+2Rra

1 GK = 2(a2+b2+c2)3—3(a2+b2+cz)(a4+b“+c“)—27a2b2c2
. 9(a2+b2+cz)2

12. Gl =— - 7| (4R +8Rr=517) =1 (4R+1)' |

9(4R+r)
4

13. GN* =—( p*+5r° —=16Rr
5 (P )

14. HI? =4R> - p* +3r> —4Rr
15. HI =4R* +2r) +r* +4Rr - p’

2(a’ +b? +cz)3 (a’b’ +b’c* +c’a’ ) -3a’h’c’

16. HK> =4R* —(a’ +b* +¢’ ) +

2 —
17. I =4 | 1- 2P 2R7T)
R(4R+T)

18. HN? =4R(R-2r)

(a®+b? +cz)2
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19. 11 =4R(r, )
2
20 1T =r2|1- P
(4R+r)
21. IN* = p* +5r° —16Rr
4r2R[p2(R+r)—r(r+4R)2}

22. IK? = i
(p*—r*—4Rr)

We’ll prove the formulae 14 and 15
The position’s vector of the inscribed circle in the triangle ABC is

ﬁzi(aﬁ+bﬁ3’+cP—C)
2p

If H is the orthocenter of the triangle ABC then HI = %(aﬁu bHB + C%)
Y

Let’s evaluate HI-HI

HI? = T (a’HA® +b’HB? +¢’HC? + 2abHAHB + 2bcHBHC + 2acHAHC )
P
If A is the middle of BC , we have AH =20A then AH’=4R’-a’ , similarly
BH?=4R’-b’ and CH?=4R*-¢ .Also,

HAHE = (OA-+ OB (OC + OR) =4R* - (o +b ).

Taking into consideration ~ that & +b’+cC’ =2( pz—r2—4Rr) , we find
HAHB = HBHC = HAHC = 4R’ +r? +4Rr — p

Coming back to HI* we have

HI? =— 4R’ (&’ +b* +¢*)—(a* +b* +c* ) (4R* +1’ +4Rr — p*)(2ab+2bc+ 2ac)

p2
But ab+bc+ac=r*+ p’ +4Rr and 165’ =2a’b’ +2b’c’ +2¢’a’ —-a* -b* -¢*
After some computation it results
IH?> =4R’ +4Rr +3r*> - p’

The position vector of the center of the A-ex-inscribed circle is

PI, =———(~aPA+bPE +cPC)
2(p-a)

We have H—Ia =

m(-me bHB+cHC)

We evaluate H—IaHTa and we have
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1

HI; :ﬁ(a2 HA? + b*HB? + ¢*HC? —2&@@—2acmH—C+2bcm3%)
4(p-a

We have
HAHB = HBHC = HAHC = 4R® — p* +12 —4Rr

H|:: ( 1 )2_4R2(a2+b2+Cz)—(a4+b4+c4)+(4R2—p2+r2+4Rl’)(2bC—2ab—2ac)
4(p-a

From 2( p—a)=b-+c—a it result that4( p— a)2 =a’ +b’ +¢’ +2bc—2ab-2ac, consequently
2bc—2ab-2ac=4(p-a)’ —(a’+b’ +’)
Using
16S* =2a’®’ +2b’c’ +2¢’a’ —-a* -b* - ¢
b’ +b°c? +c*a’ = (ab+bc+ca)’ —2abc(a+b+c)=(r* + p> +4Rr) —4pabe
After few computations we have

HI; =4R*+2ra’ +r’ +4Rr - p’

Note
In general, the formulae from this section can be deducted using the barycentric
coordinates. See [10].

D. Application

Theorem (Feuerbach)
In a triangle the circle of the nine points is tangent to the inscribed circle of the triangle
and to the triangle’s ex-inscribed circles.

Proof
We’ll apply the median’s theorem in the triangle OIH and we have

410; =2(01” +1H?)—OH’
Because Ol =R*-2Rr, OH?> =9R*+2r*+8Rr—-2p® and IH>=4R*+Rr +3r> - p’

R
We obtain |0, =5—r , relation which shows that the circle of the none points (which has the

. R_. o .
radius E) is tangent to the inscribed circle.

We’ll apply the median’s theorem in the triangle Ol |H :
41,0; =2(017 +1,H*)-OH’
Because Ol = R* +2Rr, (Feuerbach) and I H?> =4R’ +2r +r’> +4Rr — p’ we obtain
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1,0, =—+r,. This relation shows that the circle of the nine points and the S-ex-inscribed circle

are exterior tangent. Similarly it can be show that the circle of the nine points and the B-ex-
inscribed circles and C-ex-inscribed circles are tangent.

Note
In an article published in the G.M 4/1982, the Romanian professor Laurentiu Panaitopol
proposed to find the strongest inequality of the type
R +hr’>a’+b*+c’
And proves that it is:
S8R’ +4r’>a’ +b’ +c’.

a’+b’+c’

Taking into account IH*=4R’+2r°— and that IH>>0 we find the

inequality and its geometrical interpretation.
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6.3. The point’s power in rapport to a circle

Theorem 1
Let P a point and C(O,r) in a plane. Two lines constructed through P intersect the

circle in the points A B respectively A", B'; then takes place the equality:
PA.PB— PA- PB

Proof

Fig.1
From the similarity of the triangles PAB' and PA'B (see Fig.1)
it results
PA _PB'
PA' PB
therefore
PA-PB = PA'PE'

Similarly it can be proved the relation from the hypothesis if the point P is on the circle’s
interior . See Fig.2
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Corollary 1
If a variable secant passes through a fix point P and intersects the circle C(O,r) in the

points A B, then the scalar product PA-PB is constant

Definition 1
The point’s P power in rapport to the circle C(O,r) is the number p(P)= PAPB where
A B are the intersections with the circle of a secant that passes through P .

Theorem 2

The power of a point P (such that OP=d ) in rapport to the circle C(O,r) is
p(P)=d*-r’

Proof

Fig. 3
If OP=d >r (The point P is external to the circle). See fig. 3. Then constructing the
secant PO we have PAPB = PA-PB = (d—r)(d+r), and we find p(P)=d*—r?
If PO=d<r (seeFig. 4)

M

LI,
_/

Fig. 4
Then p(P)=PAPB=-PA-PB=—(r—d)(r+d)=d’-r’

Remark 1
a) Ifthe point P is in the exterior of the circle then P(P) is positive number.

b) If the point P is interior to the circle the point’s P power is a negative number (the
vectors PA, PB have opposite sense). If p=0 then P(O)=-r>.
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c¢) If the point P is on the circle, its power is null (because one of the vectors PA or
PB is null)
d) If the point P is exterior to the circle p(P)= PAPB = PT? where T is the tangency
point with the circle of a tangent constructed from P . Indeed,
PT?=PO’-0OT?
e) If P is interior to the circle p(P)=PAPB=—PM?2, where M e C(O,r) such that
MMPA =90° . Indeed, MP? =OM? —OP* =r* —d?.

Note

The name of the power of point in rapport to a circle was given by the mathematician
Jacob Steiner (1796-1863), in 1832 and it is explained by the fact that in the definition of the
power of a point appears the square of the length of a segment, and in Antiquity, the
mathematician Hippocrates (sec V BC) used the expression “power of a segment” to define the
square of a segment.
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Applications

1. Determine the geometrical locus d of the points from the plane of a given circle,
which have in rapport with this circle a constant power.

Solution

Let M a point with the property from hypothesis P(M)=Kk (constant). But

p(M)=d’—r?, we noted p(M)=d*—r?, r the radius of the circle with the center in O. It

results thatd” =r” + K, therefore =+/r> +Kk = const., therefore, the points with the given property
are placed on a circle C(O,d). Because it can be easily shown that any point on the circle
C(O,d) has the given property, it results that the geometrical locus is this circle. Depending of
k>0 or k<0 the circle geometrical locus is on the exterior or in the interior of the given circle.

2. Determine the geometrical locus of the points on a plane, which have equal powers in
rapport to two given circles. (the radical axis of two circles)
Solution

Fig. 5

Let’s consider the circles C(O,,1,),C(O,,1,), O0, > 1, +r,, see Fig. 5. If M is a point such that
its power in rapport to the two circles, k ,k, are equal, then taking into consideration the result
from the previous application, it result that M is on the exterior of the given circles

C(0,,d,),C(0,,d,), where d, =4[k +r?, d, =\/k, +1; . The point M is on the exterior of the

given circles (if we would suppose the contrary we would reach a contradiction with k =k, ).
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In general the circles C(O,,d,),C(0O,,d,) have yet another common point N and OO, is
the perpendicular mediator of the segment (MN), therefore M, N belong to a perpendicular
constructed on OO, .

Let M' the projection of M on00,, {M'}=MNNOQO,, applying the Pythagoras’
theorem in the triangles MOM ', MO,M ' we’ll find

d}-d; =OM"”-O,M "” =r?—r} = const
From here it result that M ' is a fixed point, therefore the perpendicular from M on OO, is a
fixed line on which are placed the points with the property from the hypothesis

Reciprocal
Considering a point P which belongs to the fixed perpendicular from above, we’ll
construct the tangents PT,, PT, to the given circles; the fact that P belongs to the respective

fixed perpendicular is equivalent with the relation PO;> —PO,* =1 —r,’. From the right triangles
PTO,, PT,0,, it results that PO* = PT? +OT?; PO,” = PT,* + O,T,>. We obtain that PT = PT,

, which shows that P has equal powers in rapport to the given circles. Therefore the geometrical
locus is the fixed perpendicular line on the centers’ line of the given circles.
This line, geometrical locus, is called the radical axis of the two circles.

Remark 2
a) If the two given circles are conjugated (O, #0O, ) then the radical axis is the
perpendicular mediator of the segment (00, ).

b) If the circles from the hypothesis are interior, the radical axis is placed on the exterior
of the given circles.

c) If the given circles are interior tangent or exterior tangent, the radical axis is the
common tangent in the contact point.

d) Ifthe circles are secant, the radical axis is the common secant.

e) Ifthe circles are concentric, the geometrical locus is the null set.

3. Determine the geometrical locus of the points from plane, which have equal powers
in rapport with three given circles. (The radical center of three circles).

Solution
Let C(O,,1,),C(0,,r1,), C(O,,1,) three given circles and we’ll consider them two by two

external and such that their centers O,,0,,0, being non-collinear points (see Fig. 6). If Q, is the
radical axis of the circles C(Q,r),C(O,,r,), and Q is the radical axis of the circles

C(O,,r,),C(0,,r,), we note {R} =Q NQ, (this point exists, its non-existence would contradict
the hypothesis that O,,0,,0, are non-collinear).

It is clear that the point R having equal powers in rapport to the circles
C(Q,,r,),C(0,,r,), it will have equal powers in rapport to the circles C(O,,r,),C(O,,r,) and in
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rapport to C(O,,1,),C(0,,r,), therefore it belongs to the radical axis Q, of these circles.

Consequently, R is a point of the looked for geometrical locus.

Fig. 6
It can be easily shown that R is the unique point of the geometrical locus. This point —
geometrical locus — is called the radical center of the given circles.
From the point R we can construct the equal tangents RT,,RT,; RT,,RT,; RT,,RT, to

the given circles.
The circle with the center in R is called the radical circle of the given circles.

Remark 3

a) If the centers of the given circles are collinear, then the geometrical locus, in general,
is the null set, with the exception of the cases when the three circles pass through the
same two common points. In this case, the geometrical locus is the common secant.
When the circles are tangent two by two in the same point, the geometrical locus is
the common tangent of the three circles.

b) If the circles’ centers are distinct and non-collinear, then the geometrical locus is
formed by one point, the radical center.
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6.4. The non-harmonic rapport

Definition 1
If AB,C,D are four distinct points, in this order, on a line, we call their harmonic
rapport, the result of the rapport in which the points B and D divide the segment (AC) .
BA DA

We note r=(ABCD)=B—C,D—C

Remark 1
a) From the above definition it results that if (ABCD)=(ABCD'), then the points
D,D' coincide

b) If r =—1, the rapport is called harmonic.

Definition 2
If we consider a fascicle of four lines a,b,c,d concurrent in a point O and which

determine on a given line € the points A B,C,D such that, we can say about the fascicle formed
of the four lines that it is a harmonic fascicle of vertex O, which we’ll note it O(ABCD) . The
lines OA/OB,OC,OD are called the fascicle’s rays.

A /B C D

Fig. 1

Property 1 (Pappus)
A fascicle of four rays determine on any secant a harmonic rapport constant
Proof

We’ll construct through the point C of the fascicle O( ABCD) the parallel to OA and
we’ll note U and V its intersections with the rays OB,OD (see Fig. 2)
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We have (ABCD) =

Then ( ABCD) = a

BA DA OA OA
BC DC CU CV

Ccv

U,/

Fig. 2

Cutting the fascicle with another secant, we obtain the points A'B'C'D', and similarly we

obtain (A'B'C'D") =

CV' _CV _ (aBCD)
cCuU' cuU

Property 2
To fascicles whose rays make angles respectively equal have the same harmonic rapport
Proof

Let O(ABCD) a fascicle in which we note
a=m(<«AOB), f#=m(«BOC), y=m(«COD)

(see Fig. 2)
We have
(ABCD) = BA . DA — Spoe : Srop
BC DC SBOC SCOD
(ABCD) = AO-BO-sinaz AO-DO-sin(a+f+y) _sina sin(a+p+7)

BO-CO-sin 8 CO-DO-siny sin 3 sin y

Because the harmonic rapport is in function only of the rays’ angles, it results the hypothesis’
statement.
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Property 3
If the rays of a fascicle O( ABCD) are intersected by a circle that passes through O,
respectively in the points A,B,,C,,D,, then

(ABCD)~ BA. DA
BICI chl

Proof

JA /B 1 C D

Fig. 3

From the sinus’ theorem we have AB, =2Rsina, BC =2Rsinf, C D, =2Rsiny,

D,A =2Rsin(a+ f+7). On the other side (ABCD) = S?na : sm(a'+ﬂ+ 7) .
sin B sin y

We’ll note (ABCD)=(ABCD,).

Remark 2
From what we proved before it results:
If AB,C,D are four point on a circle and M is a mobile point on the circle, then the

harmonic rapport of the fascicle M (ABCD) is constant.

Theorem 1

If two harmonic division have a homology point common, then the lines determined by
the rest of the homological points are concurrent.

Proof

Let the harmonic divisions (ABCD) , (AB'C'D') with the homological point A

common.
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We’ll note BB CC'={O} . We’ll consider the fascicle O( ABCD) , and we’ll note

ODNd'={D,}, where d' is the line of the points( AB'C'D") (see Fig. 4)).
o)

Fig. 4
The fascicle O( ABCD) being intersected by d', we have (ABCD)=(AB'C'D,).

On the other side, we have (AB'C'D,)=(AB'C'D'), therefore D, = D' thus the lines
BB',CC',DD' are concurrent in the point O.

Theorem 2
If two fascicles have the same non-harmonic rapport, and a common homological ray,
then the rest of the rays intersect in collinear points.
Proof
o’
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Le the fascicles O(O'ABC),O'(OAB'C') that have the common homological ray OO'
and (O'ABC)=(OAB'C") (see Fig. 5).
Let
{P} =0ANO'A;{Q} =0BNO'B}{I} =00NPQ{R} =PQNO'C'
We have
(IPQR) =(I1PQR")=(0O'ABC)=(0AB'C'),
therefore R'=R.
We obtain that {R} =OCNO'C’, therefore the homological rays intersect in the points
P,Q,R.

Applications

1.
If a hexagon ABCDEF is inscribed in a circle, its opposing sites intersect in collinear
points (B. Pascal — 1639)

Proof

Let
{U}=ABNDE;{V}=BCNEF;{W} =CDFA (see Fig. 6.
We saw that the harmonic rapport of four points on a circle is constant when the
fascicle’s vertex is mobile on a circle, therefore we have: E( ABCDF)=C(ABDF).
We’ll cut these equal fascicles, respectively with the secants AB, AF .
It results (ABUX) =(AYWF).

These two non-harmonic rapports have the homological point A in common. Thus that the
lines BY,UW,XF are concurrent, therefore {V}=BY\XF belongs to the line UW ,

consequently U,V,W are concurrent and the theorem is proved.
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2. If the triangles ABC, are placed such that the lines AA',BB',CC' are concurrent,
then their homological sides intersect in three collinear points. (G. Desargues — 1636)

Proof

Fig. 7
Let O be the intersection of the lines AA',BB',CC' and

{M}=BCNBC,{N}=ABNA'B;{P}=ACNAC'
We’ll consider the fascicle (OBACM) and we’ll cut with the secants BC,B'C', then we

have
(BDCM)=(B'D'C'M)
We noted {D} =OANBC and {D'}=0ANB'C'.
Considering the fascicles A(BDCM )= A'(B'D'C'M) we observe that have the homologue ray

AA' in common, it results that the homological rays AB, A'B'; AC,A'B"; AM, A'M intersect in
the collinear points N,P,M .
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In a circle we consider a point M in its interior.
Through M we construct the cords (PQ), (RS), (KL)such that (MK)=(ML).

If MKNPS={U}; MLNRQ={V}, then MU =MV (the butterfly problem).

Proof
Considering the points K,S Q,L, we have

Fig.8

P(KSQL) = R(KSQL)
(The harmonic rapport of the fascicles being X : &).
N LQ
Intersecting these fascicles with the line KL, we have (KULM )=(KMVL).

Therefore
UK LK MK LK
UM LM MV LM’

Taking into account hat (MK) =(ML) it results Uk _LV
uM MV
and from here

MU =MV
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6.5. Pole and polar in rapport with a circle
Definition 1

Let circle C(O,R), a point P in its plane, P#O, and a point P' such that
OP.-OP'=R’ (1)
We call the perpendicular p constructed in the point P' on the line OP, the polar of the point
P in rapport with the circle, and about the point P we say that it is the pole of the line p

Remark 1
a) If P belongs to the circle, its polar is the tangentin P to C (O, R) .

Indeed, the relation (1) leads to P'# P
b) If P isin the interior of the circle, its polar p is an external line of the circle.

c¢) If P and Q are two points such that m(«<POQ)=90°, and p, q are their polar,
then from the definition 1 it results that p_L Q.

Fig. 1

Proposition 1

If the point P is in the exterior of a circle, its polar is determined by the contact points
with the circle of the tangents constructed from P to the circle. (see Fig. 1)

Proof

Let U,V the contact points of the tangents from the point P to C (O, R). In the right triangle

OUP, if we note P" the orthogonal projection of U on OP, we have OU”> =OP" OP (the

right triangle’s side theorem ). But from (1) we have that OO-OP'= R’ it results that P"=P',
and therefore U belongs to the polar of the point P . Similarly, V belongs to the polar,
therefore UV is the polar of the point P .
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Theorem 1 (the polar characterization)
The point M belongs to the polar of the point P in rapport to the circle C (O, R) , if and
only if
MO’ —MP’ =2R* -OP’ (2)
Proof
If M is an arbitrary point on the polar of the point P in rapport to circle C (O, R) , then
MP' L OP (see Fig. 1) and
MO’ —MP* =(P'O’* +P'M*)~(P'P*+P'M*)=P'O’ - P'P’ =
=0U*-P'U*+P'U’-PU’ =R -(OP* -R*) =2R’ -OP".
Reciprocally, if M is in the plane of the circle, such that the relation (2) is true, we’ll
note M ' the projection of M on OP ; then we have
M'O’=M'P* =(MO*-M'M?)=(MP* =M 'M?) = MO’ -MP* =2R* -OP*  (3)
On the other side
P'O’-P'P’=2R'-OP? 4)
From (3) and (4) it result that M '= P"', therefore M belongs to the polar of the point P .

Theorem 2 (Philippe de la Hire)

If P,Q,R are points which don’t belong to a circle, then

1) Peq ifand onlyif Re p
(If a point belongs to the polar of another point, then the second point also belongs to the polar of
the first point in rapport with the same circle.)

Q

Fig. 2
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2) r=PQ< Re pNq
(The pole of a line that passes through two points is the intersection of the polar of the two
points.)

Proof

1) From theorem 1 we have Pe q & PO® - PQ* =2R’ —0Q®. Therefore

QO*-0P*=2R*-0P* @ Qe p
2) Let Re p/q; from 1) itresults Pe r and Qe r, therefore r = PQ.

Observation 1

From theorem 2 we retain:

a) The polar of a point, which is the intersection of two given lines in rapport with a
circle, is the line determined by the poles of those lines.

b) The poles of concurrent lines are collinear points and reciprocally, the polar of
collinear points are concurrent lines.

Transformation by duality in rapport with a circle

The duality in rapport with circle C(O,R) is a geometric transformation which
associates to any point P # O from plane its polar, and which associates to a line from the plane
tpole By duality we, practically, swap the lines’ and points’ role; Therefore to figure ~
formed of points and lines, through duality corresponds a new figure ' formed by the
lines(the polar of the points from figure ~*) and from points (the poles of the lines of figure ~*

) in rapport with a given circle..
The duality has been introduced in 1823 by the French mathematician Victor Poncelet.
When the figure ~* is formed from points, lines and, eventually a circle, and if these

belong to a theorem T, transforming it through duality in rapport with the circle, we will still
maintain the elementary geometry environment, and we obtain a new figure ~*, to which is

associated a new theorem T, which does not need to be proved.
From the proved theorems we retain:

- If a point is situated on a line, through duality to it corresponds its polar, which passes
through the line’s pole in rapport with the circle.

- To the line determined by two points correspond, by duality in rapport with a circle, the
intersection point of the polar of the two points.

- To the intersection point of two lines correspond, by duality in rapport with a circle, the
line determined by the poles of these lines.

Observation 2

The transformation by duality in rapport with a circle is also called the transformation by
reciprocal polar.
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Definition 2

Two points that belong each to the polar of the other one in rapport with a given circle,
are called conjugated points in rapport with the circle, and two lines each passing through the
other’s pole are called conjugated lines in rapport with the circle.

Definition 3

If through a point P exterior to the circle C (O, R) we construct a secant which

intersects the circle in the points M, N, and the point Q is on this secant such that % = Q—M,

QN
we say about the points P,Q that they are harmonically conjugated in rapport to the circle (O)

(see Fig. 3)
P M 9)
of
Fig. 3

We say that the points P,M,Q, N form a harmonic division.

Theorem 3

If a line that passes through two conjugated points in rapport with a circle is the secant of
the circle, then the points are harmonic conjugated in rapport with the circle.

Proof

Let P,Q The conjugated points in rapport to the circle C(O,R) and M, N the intersections of

the secant PQ with the circle (see Fig. 4), and the circle circumscribed to triangle OMN . The

triangles OMP and OP'M are similar ( <MOP=<«P'OM and «<MOP =<«OP'M having
equal supplements ).

Fig. 4
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It results % = g_l\l:/l) , therefore OP-OP'=R’ which shows that P' belongs to the polar

of P, in rapport to the circle C(O,R).

Because the point Q also belongs to the polar, it results that QP' is the polar of P,
therefore QP' L OP . Because <x<OMN =<OP'M and <xONM =<«<MP'P it result that PP"' is
the exterior bisector of the triangle MP'N . Having QP' L P'P, we obtain that P'Q is the
interior bisector in the triangle MP'N . The bisector’s theorem (interior and exterior) leads to

g—ln = % , therefore the points P,Q are harmonically conjugate in rapport with the circle (O)

Observation 3

a) It can be proved that also the reciprocal of the previous theorem, if two points are
harmonically conjugate in rapport with a circle, then any of these points belongs to
the polar of the other in rapport with the circle.

b) A corollary of the previous theorem is: the geometrical locus of the harmonically
conjugate of a point in rapport with a given circle is included in the polar of the point
in rapport with the given circle.

Theorem 4
If ABCD is a quadrilateral inscribed in the circle (O) and

{P}=ABNCD, {Q}=BCNAD, {R}=ACNBD then
a) The polar of P in rapport with the circle (O) is QR;
b) The polar of Q in rapport with the circle (O) is PR;

¢) The polar of R in rapport with the circle (O) is PQ.
Proof
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Fig. 5

It is sufficient to prove that MA = PA and ND = Pb where M, N are the intersections
PB NC PC
of the line QR with (AB), (CD) respectively. (See Fig. 5).

We have
M_A:Q_A‘sinMQA ()
MB QB sin MQB
RB _ QB sinBQR @)
RD QD sinDQR
QA _ AC sinQCA 3)
QD CD sinQCD
RD _CD sin ACD )

RB CB sin RCB
Multiplying side by side the relations (1), (2), (3), (4) and simplifications, we obtain
MA _ AC sin ACD

= : Q)
MB BC sinQCD
On the other side
PA _ AC sin ACD ©)

PB BC sinQCD
From (5) and (6) we obtain
MA PA
MB PB
therefore, M is the harmonic conjugate of the point P in rapport with the circle. Similarly, we
prove that N is the harmonic conjugate of the point P in rapport with the circle, therefore the
polar of P is QR.
Similarly we prove b) and c).

Definition 4
Two triangles are called reciprocal polar in rapport with a circle if the sides of one of the

triangle are the polar of the vertexes of the other triangle in rapport with the circle. A triangle is
called auto conjugate in rapport with a circle if its vertexes are the poles of the opposite sides.

Observation 4
Theorem 4 shows that the triangle PQR is auto conjugate.
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Applications

1) If ABCD is a quadrilateral inscribed in a circle of center O and ABNCD ={P},
ACNBD ={R} , then the orthocenter of the triangle PQR is the center O of the quadrilateral

circumscribed circle.

Proof
From the precedent theorem and from the fact that the polar of a point is perpendicular on
the line determined by the center of the circle and that point, we have that OP L QR, OR L PQ,

which shows that O is the triangle’s PQR orthocenter.

Observation 5
This theorem can be formulated also as follows: The orthocenter of a auto conjugate
triangle in rapport with a circle is the center of the circle.

2) Theorem (Bobillier)
If O is a point in the plane of the triangle ABC and the perpendiculars constructed in O
on AO, BO, CO intersect respectively BC, CA, AB in the points A, B,,C, are collinear.

Proof
Let’s consider a circle with the center in O, the triangle ABC and we execute a duality

C,

Fig. 6
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transformation of Fig. 6 in rapport with the circle. We have p(BC)=A' (the pole of the line
BC is the point A"), p(CA)=B', p(CB)=C". The polar of A will be B'C’, the polar of B
will be A'C' and the polar of C=AC[(1BC is A'B".

Because OA L OA, it result that the polar of A will be the perpendicular on the polar of
A, therefore the polar of A will be the perpendicular from A' on BC. Similarly, the polar of
B, will be the height from B' of the triangle A'B'C'. And the polar of C, will be the height

from C' of the triangle A'B'C'. Because the heights of the triangle A'B'C' are concurrent, it
results that the orthocenter H' of these triangle is the pole of the line determined by the points
A 4 Bl s Cl :

3) Theorem (Pappus)
If on the side (OX of the angle XOA we consider the points A B,C, and on the side
(OY the points A, B,,C, such that AB, intersects BA in the point K, BC, and CB, intersects

in the point L ,and AC, and CA intersect in the pointM , then the points K,L,M are collinear.
Proof

Fig. 7

We consider a circle with the center in O and we’ll transform by duality in rapport with
this circle figure 7.
Because the points A B,C are collinear with the center O of the circle in rapport with

which we perform the transformation, it results that the polar a, b, ¢ of these points will be
parallels lines.
Similarly the polar of the points A, B,,C, are the parallel lines aj, by, ¢; (see Fig. 8).

The polar of point K will be the line determined by poles of the lines AB, and BA

({K} =BANAB,), therefore it will be the line B,C,),.
Similarly the polar of M will the line A ,C,, .
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It can be proved without difficulty that the lines A B,,B,C,,, A,C,, are concurrent in a
point T . The polars being concurrent it means that their poles, i.e. the points K,L,M are

collinear, and the theorem is proved.

al

Cal

Fig. 8
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6.6. Homothety

Homothety definition
Let 7z aplane and O a fixed point in this plan, and ke R, k#0.

Definition 1

The homothety of center O and of rapport K is the transformation of the plane 7
through which to any point M from the plane we associate the point M ' such that OM ' = kOM

We’ll note h,,, the homothety of center O and rapport K. The point M '= how (I\/l ) is

called the homothetic of point M .

Remark 1

If k>0, the points M,M "' are on the same side of the center O on the line that contains
them. In this case the homothety is called direct homothety.

If k<0, the points M,M ' are placed on both sides of O on the line that contains them.
In this case the homothety is called inverse homothety.

In both situation described above the points M,M "' are direct homothetic respectively
inverse homothetic.

If k=—1 the homothety h_,, is the symmetry of center O

Properties
Give the homothety h,,, and a pair of points M,N, (Og MN) then [MN][[[M'N],

where M ',N"' are the homothetic of the points M, N through the considered homothety and
M'N'_ K.
MN
Proof

Fig. 1
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K|, ON’ = |k| we have that AOMN = AOM 'N', and therefore

oM |
ON

From ——=
oM

M'N'
N K

We have that <OMN =<OM 'N". It results that M, N"'[| MN .

Remark 2
1. If we consider three collinear points M, N, P, then their homothetic points

M N" P' are also collinear. Therefore, the homothety transforms a line (which does

not contain the homothety center) in a parallel line with the given line.
The image, through a homothety, which passes through the homothety center, is that line.

2. If we consider a triangle ABC and a homothety h,, the image of the triangle
through the considered is a triangle A'B'C' similar with ABC . The similarity

' 1

rapport being = |k| . Furthermore, the sides of the two triangles are parallel two

by two.
This result can be extended using the following: the homothety transforms a figure ~* in

another figure "' parallel with it.

The reciprocal of this statement is also true, and we’ll prove it for the case when the
figure is a triangle.

Proposition 2
Let ABC and A'B'C' two triangles, where AB| A'B', AC||A'C', BC|B'C' ;

AB = A'B', then there exists a homothety h,, such that h, (AABC)=AA'B'C'
Proof

C

Fig. 2
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Let {O} = AANBB' and {C} =OCNA'C' (see Fig. 2)
We have OA :OB :AB :AC :ACI'
OA OB AB AC AC
Therefore, C, =C,, the triangles ABC, A'B'C' are homothetic through the homothety

1 '

of center O and of rapport % = |k| .

3. The product (composition) of two homothety
a) The product of homothety that have the same center
Let hoy, and hg, , two homothety of the same center and M a point in plane.

We have h,,,(M)=M"', where OM'= KW , similarly ho, ,\(M)=M", where
OM "=k,OM .
If we consider (h<o,kl) °No,) ) (M), we have

(Noko 2ase) (M) =Nor, (Mo, (M)) =y, (M) =M "

where

OM "=k OM "=kk,OM =(kk,)OM

Therefore h<o,k1) o h(O,kz) (M ) = h(o,klkz) (M ) :

It result that the product of two homothety of the same center is a homothety of the same
center and of a rapport equal with the product of the rapports of the given homothety.

If we consider (h(o,kl) ° h(O,kz))(M ) we obtain Nox,) (h(O,kl) (M )) =hou, (M) =M, ,
where OM, =k,OM '=kk,OM =(kk,)OM . But we noted (kk,)OM =OM" , therefore
M,=M" and hg, °ohe,,=he,,°hoy,, in other words the product of two homothety is
commutative.

The following proposition is true.

Proposition 3

The homothety of a plane having the same center form in rapport with the composition an
Abel group.

Remark 3

The inverse of the homothety hg, : 7 — 7 is the homothety h | 17 —> 7«
’ (0.
k

b) The product of homotheties of different centers
Let hy,, and hgy , two homothety in the plane 7 and - a figure in this plane.

Transforming the figure through the homothety h,, ,, we obtain a figure f parallel
with . If we transform the figure f through the homothety h,, , we’ll obtain figure

o parallel with ~* . Because the parallelism relation is a transitive relation, it results
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that figure ~F is parallel with ~#, therefore ~#4 can be obtained from ~* through a

homothety. Let’s see which is the center and the rapport of this homothety.
The line OO, passes through the center of the first homothety, therefore it is invariant

through it, also it contains the center of the second homothety. Therefore it is also invariant
through this homothety. It results that OO, in invariant through the product of the given

homothety which will have the center on the line OO, .

Proposition 4
The product of two homothety of centers, different points, and of rapport k,K,, such that

k -K, #1 is a homothety with the center on the line if the given centers of homotheties and of
equal rapport with the product of the rapports of the given homotheties.

Proof
Let hg y)sNo, k) the homotheties, O, # O, and * a given figure.

Fig. 3

Wenote 5 =hg ., (), ot =hg ., (), f M e, let M =hg (M), then M, € f.
OIMI = klOIM 5 M2 :h(opkz)’
therefore

OM, =k,O,M,.
We note {O} = MM, NO0, (see figure 3).
Applying the Menelaus’ theorem in the triangle MM M, for the transversal O,—O-0,, we
obtain

oM OM, OM, _
oM, OM O,M,
Taking into account that

l.
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oM, =k, and o.M, =k,
oM ' oM, 7
we obtain
oM,
=kk, .
OM o

Therefore the point M, is the homothetic of the point M through the homothety h(O,klkz) .
In conclusion Rg ) ohg i) =hoky,)» Where O, 0,,0 are collinear and k; -k, #1.

Remark 4.

The product of two homotheties of different centers and of rapports of whose product is
equal to 1 is a translation of vectors of the same direction as the homotheties centers line.

Applications

1.
Given two circles non-congruent and of different centers, there exist two homotheties

(one direct and the other inverse) which transform one of the circles in the other one. The centers
of the two homotheties and the centers of the given circles forma harmonic division.

0O,

O,

Fig.4
Proof
Let (O, 5) and &(0,,5) the given circles, I, <, (see figure 4)

We construct two parallel radiuses in the same sense: O M ,O,M, in the given circles. We note

with O the intersection of the lines 0,0, and MM, . From the similarity of the triangles OM O,
and OM, 0, it results
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OO0, OM, OM,

L
00, OM OM, r,
It results that the point O is fix and considering the point M, mobile on &(O,,5 ), there

exists the homothety h ., which makes to the point M, , the point M, e & (O, ) .
0.

—_ r ——
oM, :r—IOI\/I2 . Through the cited homothety the circle &(O,,5) has as image the circle

2

&(0O,.1) . If the point N, is the diametric opposed to the point M, in &(O, ) and
{01=00,NM|N,, we find

_

o0 OM,

0'0O, O'N, r,
Therefore the circle & (O, ) is obtained from &(O,,5) through the homothety h .
-1

.00 00 . , N
The relation =— shows that the points O,0,,0'O, form a harmonic division.
00, 0'G,
Remark S

The theorem can be proved similarly and for the case when the circles: interior, exterior
tangent and interior tangent.

In the case of tangent circles one of the homothety centers is the point of tangency. If the
circles are concentric, then there exists just one homothety which transforms the circle & (O, 1)

r
in the circle &(0,,5 ), its center being O =0, = O, and the rapport r—l
2

2. G. Monge Theorem

If three circles are non-congruent two by two and don’t have their centers collinear, then
the six homothety centers are situated in triplets on four lines.

Proof
LetS,S ' the direct and inverse homothety centers of the circle &(O,.r,), &(O,.1,),

similarly S,,S,', S, S;". In figure 5 we considered r, <r, <T,.
We prove the collinearity of the centers §,S,,S;.
Through homothety the circle &(O,1,) gets transformed in the circle & (Oz/rz) , and through

the homothety hS the circle &(O,r,) gets transformed I n the circle &(O, ;) . By
(

f3

I

. . . r C g
composing these two homotheties we obtain a homothety of a rapport = and of a center which is
rl

collinear with §, S; and placed on the line OO, .
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This homothety transforms the circle &(O,,r,) in the circle G(O,,I;), therefore its

center is the point S,, and therefore §,S,, S, are collinear.
Similarly we prove the theorem for the rest of the cases.

3.
In a triangle the heights’ feet, the middle points of the sides and the middle segments

determined by the triangle orthocenter with its vertexes are nine concyclic points (the circle of
the nine points).

Proof
It is known that the symmetric points H,,H,,H, of the orthocenter H in rapport to the

triangle’s ABC sides are on the triangle’s circumscribed circle. Then, considering the homothety
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h | , we obtain that the circumscribed circle gets transformed through this in the circumscribed
(H.—
2

circle to the orthic triangle A'B'C' of the triangle ABC (see figure 6).
The center of this circle will be the middle of the segment (OH ), we’ll note this point O,

H;

Fig. 6

And the radius of the circumscribed circle to triangle A'B'C' will be ; .

Also, on this circle will be situated the points A",B",C" which are the middle of the segments
(AH),(BH),(CH) the symmetric of the points A B,C through the considered homothety.
The medial triangle AB,C, has its sides parallel with the sides of the triangle ABC,

therefore these are homothetic. Through the homothety h | the circumscribed circle to the
G.:5)

triangle ABC gets transformed in the circle & (Og,gJ, which contains the middle points

A, B,,C, of the sides of the triangle ABC.
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Therefore, the points A',B',C',A,B,C,A",B",C" belong to the circle 6’(09/§j ,
which is called the circle of the nine points.

Remark
The circumscribed circle and the circle of the nine points are homothetic and their direct,
and inverse homothety centers are the points H,G .

In conformity with application 1, it results that the points O,G,O,,H are collinear and
these form a harmonic division. The line of the points O,G, H is called The Euler’s line.
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6.7. Inversion in plane

A. Definition, Notations

Definition 1
Let O a fixed point in the plane 7z and K a real number not null. We call an inversion of
pole O and of module (power) k the geometrical transformation, which associates to each point

M e 7\{0]} the pointM 'e 7\{0} such that :
1. O,M,M" are collinear
2. OM.OM'=k.
We’ll note i the inversion of pole O and of module K .

The point M ':i(';(M) is called the inverse (image) of the point M through the

inversion of pole O and power K. The points M and i (M) are called homological points of

. . K
the inversion I .

Remark 1.
a) If k>0, then the inversion i('; is called a positive inversion, and if K<0 the

inversion is called a negative inversion.
b) From the definition it results that a line d that passes through the inversion’s pole,

through the inversion i; has as image the line d \{0}.
c) From the definition of inversion it results that the point M is the inverse of the point
M ' through the inversion i .

B. The image of a figure through an inversion

We consider the positive inversion ig , we saw that the lines that pass through O are

invariant through this inversion. We propose to find the images (inverses) of some remarkable
figures such as the circle and the line through this inversion.

Theorem 1
If i('; is a positive inversion, then the circle & (O\/E ) is invariant point by point through

this inversion, then through this inversion the interior of the circle 6’(0/\/? ) transforms in the

exterior of the circle & ( 0,Jk ) and the reciprocal being also true.

Proof
Let M e 63(0/\/?), we have
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\Y
Fog. 1
Therefore iy (M )=M forany M e 63(0/&), therefore i (6’(0&)) :6’(0/&).
Let now X e Int@(O/\/E ), we construct a perpendicular cord in X on OX, let it be

(UV) (see figure 1). The tangent in U to & (O\/E ) intersects OX in X'. From the legs’
theorem applied in the right triangle OUX' it results that OX-OX'=0OU? , therefore
OX -OX ' =k, which shows that §(X )= X", evidently X'e Extc>(Ok).

If we consider X e Exté’(O/\/E ) , constructing the tangent XT to the circle 6’(0/& )
and the projection X' of the point T on OX, we find that

OX -OX '=Kk,
therefore
i (X)=X"and X'e Inte’(0,vk].
Remark 2

From this theorem it results a practical method to construct the image of a point X

through a positive inversion ig .

Definition 2

If i(')‘ is a positive conversion, we say that the circle 6’(0/\/? ) is the fundamental circle
of the inversion i or the inversion circle.

Theorem 2
The image of a line d that does not contain the pole O of the inversion i, through this

inversion, is a circle which contains the pole O, but from which we exclude O, and which has
the diameter which passes through O perpendicular on the line d .
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Proof
We’ll try to find the geometrical locus of the points M ', from plane, with the property

that OM .OM '=k , where M is a mobile point on d .

d

Fig. 2
We’ll consider the point A the orthogonal projection of the point O on the line d ; let A' be the
inverse of the point A through the inversion i. We have OA-OA'=k. If M is a random point

on d and M'=if (M), we have OM -OM "=k . The relation OA-OA'=OM -OM ' shows that
the quadrilateral AA'M 'M is inscribable (see figure 2). Because M(<MAA')=90° it results
that also m(<«<MM 'A")=90°, consequently, taking into consideration that OA is constant,

therefore OA' is constant, it results that form M' the segment (OA') is seen under a right

triangle, which means that the geometric locus of the point M ' is the circle whose diameter is
OA''. The center of this arc is the middle of the segment (OA'). If we’ll consider N' a random

point on this circle and considering {N} =ON'd, then NN'A'A is an inscribable quadrilateral
and OA-OA'=0ON-ON' =k, therefore N' is the inverse of N through i

Remark 3
a) If P,Q are the intersections of the line d with the fundamental circle of the inversion

(these points do not always exist) we observe that the inverse of these points are the
points themselves, therefore these are also located on the circle image through il of

the line d. The line PQ is the radical axis of the circle 6’(0/\/? ) and of the inverse

circle to the line d . 1In general, the line d is the radical axis of the circle
OA’ + O,A’ = 00, and of the image circle of the line d through the image i .

b) The radius of the circle’s image of the line d through the positive inversion i; is

equal to L, where a is the distance from O to the line d.
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c) The points of quartet constructed from two pairs of homological points through an
inversion are concyclic if neither of them is the inversion pole.

Because of the symmetry of the relation through which are defined the inverse points it is
true the following theorem.

Theorem 3.
The image through the positive inversion i of a circle which passes through O (from

which we exclude the point O) is a line (the radical axis of the given circle and of the
fundamental circle of the inversion & (O\/E )

Theorem 4.
The image through the positive inversion iy of a circle, which does not contain its center

is a circle which does not contain he pole of the inversion O.

Proof
Let the given circle &(O,,1;) and the positive inversion i, O¢ &(O,,r,).

@)
Fig. 3
We’ll consider the secant O,M,N for the given circle and let M'=if (M), N'=i¢(N), see
figure 3.
We have
OM -OM "=k (1)
ON-ON'=k (2)

It is known that OM -ON = const (the power of the point O in rapport to the circle 6’(01, rl) )
We note
OM -ON = p 3)
From the definition of inversion we have that the points O,M,N,M ''M ' are collinear.

The relations (1) and (3) lead to Oi = E; from (2) and (3) we obtain ﬂ = 5
OM r OM p

These relations show that the point M ' is the homothetic of the point N through the homothety
K

h;p (also the point N' is the homothetic of the point M through the same homothety),
consequently the geometric locus of the point M ' is a circle which is the homothetic of the circle
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k

&(0,r1,) through the homothety h’. We will note this circle &(O,,T,), where T, =£rl and
p
p= ‘OOl2 - rlz‘ :

Remark 4
If the power of the pole O of the inversion i in rapport to the given circle & (Ol, rl) is

equal withk, then the circle &(Q,,1,) is invariant through if .

Fig. 4
Indeed, if M belongs to the circle @(Ol,rl) and M ' is the second intersection of the

line OM with the circle, we have:
OM-OM "=k =OA’,
This shows that OA’+O,A* =00, , therefore the circles 63(0/\/? ) , @(0,1) are
orthogonal (see figure 4).

C. The construction with the compass and the ruler of the inverses of a line and of a
circle

1. The construction of the inverse of a line

Let 6’(0/\/? ), the inversion i and the line d .

If the line d is external to the circle 63(0/\/? ) we construct the orthogonal projection of
O on d, then the tangent AT to the circle 63(0/\/? ) We construct the projection A' of T on
OA, we have A'=if(A).

We construct the circle of diameter [OA'], this without the point O represents i (d)
(see figure 5)
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Fig.5

If the line d is tangent to the circle 6’(0/\/? ), we know that the points of the circle
6’(0,\/? ) are invariant through the inversion i/, therefore if the line d is tangent in A to the

circle 6’(0/\/? ) , the point A has as inverse through i/ the point A.

Fig. 6

The image will be the circle of diameter [OA] from which we exclude the point O; this
circle is tangent interior to the fundamental circle & (O\/E )

If the line d is secant to the circle 6’(0,\/? ) and Og d, then the image through i of

the line d will be the circumscribed circle to the triangle OAB from which we exclude the point

0.
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Fig. 7

2. The construction of the inverse of a circle

If the circle &(Q,,1;) passes through O and it is interior to the fundamental circle
6’(0/\/?), we construct the diametric point A' of the pointO in the circle &(QO,r,). We
construct the tangent in A' to the circle & (Ol,l’l) and we note with T one of its points of

intersection with 6’(0/\/? ) We construct the tangent in T to the circle 63(0,& ) and we note

with A its intersection with the line OA'.
We construct the perpendicular in A on OA'; this perpendicular is the image of the circle

&(0,1,)/{O} through if (see figure 5).

If the circle & (Ol,rl) passes through O and it is tangent in interior to the circle
63(0/\/? ) The image through i of the circle &(O,r,)/{O} is the common tangent of the
circles 63(0/\/?) and &(O,1,).

If the circle &(O,,1,) passes through O and it is secant to the circle & (O\/E ), the

image through i¢ of the circle &(Q,r,) from which we exclude the point O is the common

secant of the circles 63(0/\/? ) and &(O,1,).
If the circle &(Q,, 1) is secant to the circle 63(0/\/? ) and it does not passes through O,
we’ll note with A B the common points of the circles &(O,,1,) and & (O\/E )
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Fig. 8

Let {C'}=(00,)N&(O,r,). We construct the tangent in C' to the circle &(O,,1,) and we
note with T one of its intersection points with 6’(0/& ) We construct the tangent in T to

63(0/ Jk ) and we note with C the intersection of this tangent to the line OO".

We construct the circumscribed circle to the triangle ABC . This circle is the image through i of
the circle &(QO,,1,) (see figure 8).

If the circle &(O,,1,) is tangent interior to the circle 6’(0/\/? ) and it does not passes
through O. Let A the point of tangency of the circles. We note {A'}=(OA)N&(O,1,). We

construct the tangent in A' to the circle
6’(01, rl) and we note with T one of the intersection points of the tangent with & (O\/E ) We

construct the tangent in T to the circle 6’(0/«/? ) and we note with A" its the intersection with
the line OO, . We construct the circle of diameter [ AA"], this circle is the inverse of the circle
&(0,r,) through i

If the circle &(O,,1,) is tangent in the exterior to the circle 6’(0/\/? ) Let A the point
of tangency of the circles, we construct A' the diametric of A in the circle & (Ol,rl) , We
construct the tangent A'T to the circle 6’(0/\/? ) and then we construct the orthogonal

projection A" of the point T on OA. We construct the circle with the diameter [AA"] , this circle
is the inverse of the circle &(QO,,1,) through i.
If the circle &(Q,,1,) is exterior to the circle 6’(0/&). Let {AB}=(00)N&(0,r,),

we construct the tangents AT, BP to 6’(0/\/? ) , then we construct the projections A',B' of the
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point T respectively P on OO, . The circle of diameter [ A'B'] will be the circle image through

i’ of the circle &(O,,1,) (see figure 9).

T

N\
O AP

I
1
1
1
1
|
1
]

Fig. 9

Remark 5

If the circle
&(0,,1,) is concentric with & (O\/E ) , then also its image through the if will be a concentric

circle with & (O/ \/E) .

D. Other properties of the inversion

Property 1
If M, N are two non-collinear points with the pole O of the inversion i('f and which are

not on the circle & (O\/E ) , then the points M, N, i (M), iy (N) are concyclic and the circle

on which these are situated is orthogonal to the circle & (O\/E )

Proof
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N’

Fig. 10
LetM, N in the interior of the circle & (O\/E ) (see figure 10). We construct
M'=is(M) and N'=if(N). We have OM -OM '=ON-ON'=k . It results ﬂ:ﬂ,
OM OM'

which along with <<MON = <«<N'OM ' shows that the triangles OMN,ON'M ' are similar. From
this similarity, it results that <OMN =<« ON'M ', which show that the points M,N,N",M ' are

concyclic . If we note with A B the intersection points of the circles & (O\/E ) with that formed
by the points M,N,N",M ', and because OM -OM '=k , it results OA’ = OM -OM ', therefore
OA is tangent to the circle of the points M, N, N',M "', which shows that this circle is orthogonal
to the fundamental circle of the inversion & (O\/E )

Property 2.
If M, N are two points in plane and M ',N' their inversion through the positive

. . %
inversion I, , then

M'N'= k—MN
OM -ON
Proof
We observed that the triangles OMN and ON'M ' are similar (see figure 10), therefore
M'N' OM'
NM ON
It results that
M'N' OM-OM k

NM OM-ON OM -ON
And from here

M'N'=k—MN__
OM -ON

Definition 3
The angle of two secant circles in the points A Bis the angle formed by the tangents to

the two circles constructed in the point A or the point B.

Observation 1
If two circles are orthogonal, then their angle is a right angle. If two circles are tangent,
then their angle is null.

Definition 4
The angle between a secant line to a circle in A B and the circle is the angle formed by

the line with one of the tangents constructed in A or in B to the circle.

184



Observation 2
If a line contains the center of a circle, its angle with the given circle is right.
If a line is tangent to a circle, its angle with the circle is null.

Theorem
Through an inversion the angle between two lines is preserved, a line and a circle, two
circles.

Proof
If the lines pass through the pole O of the inversion, because these are invariant, their
angle will remain invariant. We saw that if the lines do not pass through the pole O inversion,

their images through i(')‘ are two circles which pass through the point O and which have the

diameters constructed through O perpendicular on d,,d,.

Fig. 11
The angle of the image-circles of the lines is the angle formed by the tangents constructed
in O to theses circles; because these tangents are perpendicular on the circles’ diameters that
pass through O, it means that these are parallel with the lines d,,d, and therefore their angle is

congruent with the angle of the lines d,,d, .

If a line passes through the inversion’s pole and the other does not, the theorem is proved
on the same way.
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If a line passes through the inversion’s pole and the circle secant with the line, then the
line’s image is that line and the arch’s imagine is the given circle through the homothety of
center O, the inversion’s pole.

01’ Ol

Fig. 12

We’ll note with A one of the intersections of the given line d with the given circle

&(0O,,r) and with & (Ol',r ') the image circle of the given circle through the image i('f , we’ll

have O/A'[| QA and the angle between d and &(O,,r) equal to the angle between & (Oll, r ')

and d as angle with their sides parallel (see figure 12) .
The case of the secant circles which do not contain the inversion center is treated
similarly as the precedent ones.

Remark 6

a)

b)

d)

The property of the inversion to preserve the angles in the sense that the angle of two
curves is equal with the angle of the inverse curves in the inverse common point
suggests that the inversion be called conform transformation.

The setoff all homotheties and of the inversions of the plane of the same center form
an algebraic group structure. This group of the inversions and homotheties of the
plane of the same pole O is called the conform group of center O of the plane . The
set of the lines and circles of the plane considered in an ensemble is invariant in
rapport with the group’s transformations conform in the sense that a line of the group
or a circle are transformed also in a line or a circle

Two orthogonal circles which don’t pass through the pole of the inversion are
transformed through that inversion in two orthogonal circles.

Two circles tangent in a point will have as inverse two parallel lines through a pole
inversion — their point of tangency.

Applications

1.

If AB,C,D are distinct points in plane, then
AC-BD<AB-CD+ AD-BC

(The Ptolomeus Inequality)
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Proof
We’ll consider the inversion ik, k>0, and let B',C',D' the images of the points
B,C,D through this inversion.
We have
AC-BD<AB-AB'=AC-AC'=AD-AD'=k
Also

B'C'= k-BC . C'D'= k-CD  D'B'= k-DB
AB- AC AC-AD AD - AB

Because the points B',C',D"' determine, in general a triangle, we have
D'B'<B'C+C'D".

Taking into consideration this relation and the precedents we find the requested relation.

Observation
The equality in the Ptolomeus is achieved if the points A B,C,D are concyclic. The
result obtained in this case is called the I theorem of Ptolomeus.

2. Feuerbach’s theorem (1872)

Prove that the circle of nine points is tangent to the ex-inscribed and inscribed circles to a
given triangle.

Proof

The idea we’ll use for proving this theorem is to find an inversion that will transform the
A

Fig. 13

circle of nine points in a line and the inscribed and ex-inscribed circles tangent to the side BC to

be invariant. Then we show that the imagine line of the circle of nine points is tangent to these
circles.
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Let A' the projection of A on BC. D and D, the projections of 1,1, on BC, M the
middle of (BC) and N the intersection of the bisector (Al with (BC). See figure 12.

It is known that the points D, D, are isotonic, and we find:

(b—c)

MD =MD, =
Without difficulties we find MD? = MA"- MN .

=]

Considering iy, , we observe that the inverse of A' through this inversion is N .

Therefore, the circle of nine points, transforms in a line which passes through N and it is
perpendicular on MO, , O, being the center of the circle of nine points, that is the middle of the
segment (ON). Because MO, is parallel to AO, means that the perpendicular on MO, will

have the direction of the tangent in A to the circumscribed circle to the triangle ABC, in other
words of a antiparallel to BC constructed through N, and this is exactly the symmetric of the
line BC in rapport with the bisector AN, which is the tangent TT, to. The inscribed and ex-

inscribed circles tangent to BC remain invariant through the considered inversion, and the
inverse of the circle of the nine points is the tangent TT, of these circles.

This property being true after inversion also, it result that the Euler’s circle is tangent to
the inscribed circle and ex-inscribed circle (I a) . Similarly, it can be proved that the circle of the

nine points is tangent to the other ex-inscribed circles.
Note

The tangent points of the circle of the nine points with the ex-inscribed and inscribed
circles are called the Feuerbach points.
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Chapter 7

Solutions and indications to the proposed problems

1.
a) The triangles AAD,, CBC, are homological because the homological sides

intersect in the collinear points B,D,P (we noted {P}=AD,NBC,NBD).
b) Because {P} =AD,NBC NBD, it result that the triangles DC,D,, BB /A are
homological, then the homological sides DC,, BB, ; DD,, BA ; D,C,, AB, intersect in three

collinear points C, A Q where {Q}=D,C,NAB,.

2.

i) Let O,,0,,0, the middle points of the diagonals (AC),(BD),(EF) . These
points are collinear — the Newton-Gauss line of the complete quadrilateral ABCDEF . The
triangles GIN,ORP have as intersections as homological sides the collinear points O,,0,,0,,
therefore these are homological.

ii) Gl NJIK={Q}, GHNIL={O,}, HINKL={GO,} and O,,0,,0, collinear show
that GIH, JKL are homological

iii) Similar with ii).

v) We apply the theorem “If three triangles are homological two by two and have the
same homological axis, then their homology centers are collinear

V) Similar to iv).
3.
1) The Cevians AA,,BB,,CC, are the isotomic of the concurrent Cevians

AA,BB,,CC,, therefore are concurrent. Their point of concurrency is the isotomic conjugate of
the concurrence point of the Cevians AA,BB,,CC,.
i) We note M_M_ M _ the medial triangle of the triangle ABC, (M, - the middle
point of (BC,), etc.) and { A} = AM_NBC, {B}=BM,NAC, {C'}=AM_NAB .
We have
BA' c-sin«xBAA'
CA' b-sin«CAA"
Because Aria,,cy = Aria,gy Wwe have
AC, -sin<«BAA'= AB, -sin «<CAA',

therefore
sin<BAA' AB  z
sin<CAA' AC, c-y’
Wenoted x=AC,, y=BC,, z= AB,
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and therefore
BA'

C

CA' b c-

Similarly we find
CB' a y AC' b x
AB' C a

<

We have
BA' CB' AC' _ Xy -z
CA' AB' BC' (a-x)(b-y)(c-2)
But the triangles ABC, AB,C, are homological,
therefore

X-y-Z
(a=x)(b-y)(c-2)

=1,

and therefore

BA' CB' AC' 1
CA' AB' BC'
In conformity with Ceva’s theorem it result that AM_, BM,, CM_ are concurrent.

iii) Similar to ii)

4

i) «<BOC, =«C,0A =120°,

it results that «<B,OC, = «C OA, .

Similarly «<C OA, = <AOB,. It result AAOA, = «BOC, = «CO0A

i)  AAOA =<«BOC, =«COA (S.AS).

1i1) AABB,=ABCC,=ACAA (SS.S) from here we retain that
«AB,B =<«BC,C, =«AAC,, and we obtain that AC,A B, =ABC,A =AAB,C,
(S.A.S).

1v) AABC, =AB,C A =AC,AB, (A.S.A). It result that <A = «B, = «C,, therefore
AB.,C, is equilateral, AOBA =AOCB, =A0OAC, (S.A.S). It result that
OA, = OB, =0C,, therefore Ois the center of the equilateral triangle AB,C, .

V) For this we’ll apply the D. Barbilian’s theorem.

5.
We apply the Pascal’s theorem for the degenerate hexagon BCCDDE

6.
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See http://vixra.org/abs/1103.0035 (Ion Patragcu, Florentin Smarandache, “A Property of
the Circumscribed Octagon” — to appear in Research Journal of Pure Algebra, India)

7.
If O is the center of the known circle, we construct firstly the tangents OU,OV

to the circle for which we don’t know its center in the following manner:
We construct the secant O,A B and O,C,D . We construct {E} =ACNBD ,

{F} = AD(BC. Construct EF and we note U,V its intersections with the circle (see figure.)

We, practically, constructed the polar of the point O in rapport to the circle whose center
O' we do not know. It is UV , and as it is known it is perpendicular on OQO'. To obtain O' we’ll
construct the perpendiculars in U,V on OU,OV . The intersection of these perpendiculars being
the point O'.
T

Fig.
We’ll construct a perpendicular on OU . We note P,Q the intersection of OU with the
circle G°(O). We consider a point R on &°(O), we construct PR QR and consider a point T on

PR such that (OTN&(O)={S}. We connect S and P, note {H}=RQ[PS. Connect T and
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H and note X,Y the intersection points of TH with the circle (O). We have that TH 1L OU
because in the triangle PTQ, the point H is its orthocenter.

Through U we’ll construct a parallel to XY . We note {M} = XY OU, connect X with U ,
consider L on XU , connect L with M , Y with U , note {K}=YUNLM and
{N} = XK[LY . We have UN || XY and therefore UN will contain O".

We will repeat this last construction for a tangent OV and we construct then the
perpendicular in V on OV, let it be VG. The intersection between UN and VG is O', which is
the center which needed to be constructed.

8.
Letkzi,p:B‘:C,q:C;A.Wehave
AC CA CB
VIt (A [ A —
=——(AB+KkAC); BB =——(BC+ pBA); CC,=——(CA+qCB
M 1+k( ) % 1+p( P ) : 1+q( a )
We obtain

AB(1+ p)(1+q) + BC(1+k)(1+ q) + CA1+K)(1+ p)+ KAC(1+ p)(1+q) +
+pBA(1+k)(1+q)+gBCA+k)(1+ p)=0
After computations we have
AB(1+ p)(1+g- p- pk)+BC(1+k)(1-gp)+ AC(+ p)kg-1)=0
But AC = AB + BC, it results
AB(1+ p)(1+k)(q— p)+ BC(k— p)(1+q) = 0. We must have
{(l +p)(1+k)(g-p)=0
(k-=p)(1+a)=0
This will take place every time when p=(=k=-1 which show that AA,BB,,CC, are medians

and that the homological center of the given triangle is G, which is the weight center of the
triangle ABC.

9.
We note m&(UAB) =ar, me(ABV )=, mx(ACW) =7 (see figure ...)




U
Fig.
UB  AriaAUAB

UC  AriaAUAC
uUuB B ABsin o

UC  ACsin(A+)
U'B'  AriaAU'AB' _ AB'sin (A+ )
U'C' AriaAU'AC'  AC'sina
Taking into account (1) we find
U'B' AB' AB UC
U'C' AC' AC UB

We have , therefore

()

2)

Similarly
V'C' BC' BC VA
V'A" BA' AB VC
W'A' CA' CA WB )
W'B' CB' CB WA

From relations (2), (3), (4) taking into consideration the Menelaus and Ceva’s theorems it results

that U ',V ' W' is a transversal in the triangle A'B'C".

€)

10.
i) We note {A}=BCNBC,, {A"}=BCNB,C,. In the complete quadrilaterals

CB,C,BAA', BC,B,CAA", the points B, A,C, A’ respective C, A,, B, A" are harmonic divisions
(see A). The fascicules (C;BAM,B,), (C,;B,M,AB) are harmonic and gave the ray C,C, in
common, then the intersection points C,A,B, of the homological rays
(CM,,C,M,),(CB,C,B,),(CA,C,A) are collinear, therefore the side A B, passes through

C
Similarly, it can be shown that the sides B,C,,C,A, pass through A respectively B.

i1) We’ll apply the Pappus’ theorem for the non-convex hexagon C, A AAC,C which
has three vertexes on the sides BA BC. The opposite sides (C,A,AC,),(AACC),(AA,CC,))
intersect in the collinear points B,,M,M,, therefore B, belongs to the line MM, . Similarly

we can show that the points A,,C, are on the line M\M,.

iii)y  Let {S}=ACNAC,. Because the fascicle (B,;C,BAC) is harmonic, it results
that B, A,,S,,C, is a harmonic division, therefore AC, is the polar of the point A in rapport
with the sides AB, AC of angle A. In the complete quadrilateral C,B,B,C AA, the line AA, is
the polar of the point A, in rapport with the sides AB, A of the angle A. It results that the polars
AC,, AA, coincide, consequently, the point A, is situated on the line B,C, which passes through
A. The proofis similar for B,,C, .
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iv)  We note {§}=BCNB,C and {S}=ABNAB,. The fascicle (C,BCAB) is
harmonic, it results that the points C, A,, S,, B, form a harmonic division. This harmonic division
has the point A in common with the harmonic division B, A, S,,C,, it results that the line S,S,

passes through the intersection point of the lines BC, B,C,, which is S, consequently the

3
points §,S,,S, are collinear.
Considering the triangles ABC, AB,C, we observe that S,S,,S, is their homological

axis, therefore these are homological, therefore the lines AA,, BB,,CC, are concurrent.

V) Let {§}=CC,NBC, and {A}=CBBC,. A is the harmonic conjugate of
A, in rapport with the points B,,C,. We’ll consider the complete quadrilateral C ABQ,B,C,; in
this quadrilateral the diagonal AQ, intersects the diagonal C B, in the point A", which is the
harmonic conjugate of A in rapport with C B,. Therefore, the points A, ', A, coincide. It results
that the triangles A B,C,, AB,C, are homological, the homological center being the point Q,.
Similarly, we can prove that the triangles AB,C,, A B,C, are homological, their homological
center being Q,. The homological centers Q,, Q,, evidently are on the homological line SS,S,
because these are on the polar of the point A, in rapport with BC and B,C,, which polar is
exactly the line §S,S;, which is the homological axis of the triangles ABC, AB,C,.

11.
A—D-F is transversal for the triangle CBE . We’ll apply, in this case, the result
obtained in problem 9.

12.
Let T,T,T. the tangential triangle of triangle ABC , and the circumpedal triangle

A'B'C' of G.

Ts
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We note <BAA'=,«<CBB'= f,<ACC'=y, we have
sin sin siny
sin( A-a) ' sin(B-f3) ' sin(C—7y) -
m<T,BA' = o, m«T,CA'= A—r

The sinus’ theorem in the triangles BA'T,,CA'T, implies TAA' =— BA ,
sinor  sin BT, A’
TA CA
sin(A-e) sinCT,A"’
We find that

sin«<BT,A" sin o BA'
sin«CT,A' sinsin(A-¢a) CA'
But also the sinus’ theorem implies BA'=2Rsin ¢, CA'=2Rsin(A-a)

Therefore,
2
sin«BT ,A" sinx
sin«CT ,A"' {sin(A-a)

Similarly we compute
2 2
sin«xCT,;B" [ sinf sin<AT .C' sin y
sin(B—B) | ~ sin«BT.C' |sin(C-y)

sin <AT ;B'
We’ll apply then the Ceva’s theorem.

Observation
It is possible to prove that the Exeter’s point belongs to the Euler’s line of the triangle

ABC.

13.

We’ll ration the same as for problem 9.

We find
Uu'B' AB' AB UC
u'c' AC' AC UB
V'C' BC' BC VA
V'A" BA' AB VC
W'A" CA' CAWB

By multiplying these relations side by side and taking into consideration the fact that U -V —-W
is a transversal in the triangle A'B'C', and using the Ceva’s theorem, we find that

AA' BB',CC' are concurrent.

14.
We prove that A',B',C"' are collinear with the help of Menelaus’ theorem (or with

Bobillier’s theorem).
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We note { P} = AANCC',{Q} = BB1CC,{R} = AABB'.
In the complete quadrilateral C'ACA'BB' the points C,C' are harmonically conjugated in
rapport to P,Q . The angular polar of the point C' is the line RC and this passes through the
intersection of the lines AQ, BP, consequently, the triangles ABC,QPR are homological. It is
known that the triangles C,C,C., ABC are homological. Because C,C,C; is inscribed in the
triangle ABC, PQR is circumscribed to triangle ABC, both being homological with ABC.
Applying the theorem , it results that the triangles C,C,C_., PQR are homological.

15.
Let m(<BAA")=a, m(«CBB") =, m(«<ACC") =7, see attached figure

The sinus’ theorem in the triangles AC" A", AB' A" lead to
sina_ sinC"

= 1
A"'C" AA"' ( )
sin(A-a) sinB'
m 1 = m (2)
A"B AA
From the relations (1) and (2) it result
sineg. . _sinC" B"C" 3)
sin(A-a) sinB' A"B'
The sinus’ theorem applied to the triangles A""C'C", A"B'B" gives:
AHIC" CIC "
M ' = . m (4)
sinC' sinA
A"l Bl BV BH
1 " = T m (5)
sinB" sin A
From these relations we obtain
A!"CH SlnC' CIC"
= (6)

AVHB! SiIl B". BVB"
From (6) and (3) we retain
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sina _sinC' sinC" C'C"

= : . 7
sin(A-«) sinB' sinB" B'B" @
Similarly we obtain:
sinf_sinA' sinA" A'A" ()
sin(B— ) sinC' sinC" C'C"
sin sinB' sinB" B'B"
L2 ©)

sin(C—y) sinA' sinA" A'A"
The relations (7), (8), (9) and the Ceva’s reciprocal theorem lead us to
sin¢  sinff  siny
sin(A-a) sin(B-f) sin(C-y)
Therefore to the concurrency of the lines AA"™, BB",CC"' and implicitly to prove the homology
of the triangles ABC, A"B"'C"'.
To prove the homology of the triangles A'B'C', A"B"C", we observe that
C'A"  Aria,.n AU sinx

B'A"  Aria,,, AB' sin(A-a)

Similar
A'B" BA' sing
C'B" BC' sin(B-J)
B'C" CB' siny
A'C" CA' sin(C—7)
We’ll apply the Ceva’s theorem. Similarly is proved the homology of the triangles
A"B"C", A"B"C".

Observation
This theorem could have been proved in the same manner as it was proved theorem 10.

16. ABC, the first Brocard triangle ( A is the projection of the symmedian center on the
mediator on ( BC) ,etc.).

We’ve seen that <ABC = <«xACB=«BCA=<«BCA=<«C AB=<«CBA=w® (Brocard’s
angle).

If M, is the middle point of the side (BC ) and if we note M,(e,/4,%) where

o, B,,y, are the barycentric coordinates of M, , that is a, = Ariay, gc » B =Ariay, ca»

h= AriaAMaAB :
We find:

o, = 4cjsw[Csin(B—a))+bsin(C—a))]

= 4cosw[bsin(B—a))+cSin(A—a))]
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C +b A—
4cos w[ sin @+ bsin ( a))]

If MM, are the middle points of the sides (AC) respectively (AB) ;
M, (%, 5,7 )M, (e, B,,7,) we obtain the following relations:

o, = 4cosa)|:asm @+ Csin(B— a))]

B, = 4C(t))sw[asin(C—a))+Csin(A— )]

Y, = 400Sa)[Csm w+asin(B- a))]

a, = 4cosa)[asm @+bsin(C- a))]

B, = 4c§sw[bsmw+ bsin(C-w) ]
4cosa)[asm (B—w)+bsin( A- a))]

We’ll use then the result that AM ,BM,,CM are concurrent if and only if &, 5,7, =, 87, .

Because in a triangle we have the following relations
2

sin( A— ) =sin a)z—
C

2
sin(B—a))zsinw-g
2

sin(C—w) =sin a)%

The precedent relation will be verified.

17.
The De Longchamps’s line is isotomic transversal to the Lemoine’s line (the tri-linear

polar of the symmedian K of the triangle ABC ). We have seen that the isotomic conjugate of
the symmedian center is the homological center of the triangle ABC and of its first Brocard
triangle. Therefore, this point is the tri-linear point of the De Longchamp’ line.

18.
Let’s suppose that the isosceles similar triangles BA'C,CB'A AC'B are constructed in
the exterior of triangle ABC and that m(<CBA') =m(<ACB') = m(<ABC') =

BA _ Aliaver  we obtain: BA _AB sin(B+X) |
Aria,,ca CA AC sin(C+Xx)

We note { A} = AATBC, we have
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CB, _BC sin(C+X) q AC, AC sin(A+x)
AB, AB sin(A+x)  BC, BC sin(B+x)’

With the Ceva’s theorem it results that AA',BB',CC' are concurrent; therefore, the
triangles ABC,A'B'C' are homological and we note the homology center with P . It is

observed that the triangles A'B'C' and ABC are homological because the perpendiculars from
A',B',C' on the sides BC,CA AB of ABC are concurrent in O, which is the center of the

circumscribed to the triangle ABC . This point is the otology center of the triangles A'B'C' and
ABC . In other words the triangles ABC, A'B'C"' are orthological. Their second orthological

center is the intersection point Q of the perpendiculars constructed from A B,C respectively on
B'C'C'A',A'B". In accordance with the Sondat’s theorem, it results that O, P,Q are collinear
and their line is perpendicular on the homological axis of triangles ABC, A'B'C".

Similarly we obtain:

19.
If we note A the intersection point of the tri-linear polar of the orthocenter H of the triangle

ABC with BC, and if we use the Menelaus’ theorem, we find

C tgB
AC _1B (1)
AB tgC
Let {A} =B"C'""BC. Applying the sinus’ theorem in the triangle BCC', we find that
B . B
CC'= _asmb Similarly, BB"= ﬂ , therefore CC"= _asmb and
cos(B-A) cos(C—-A) 2cos(B—-A)
BB"— asinC ‘
2cos(C—-A)

We’ll apply the Menelaus’ theorem for the transversal A —B"—C" in the isosceles
triangle BOC :

A'B'OB"'CC"__ 0
AC BB" OC"
It results
asin B asinC
e el B
AC  2cos(B-A) 2cos(C-A)
AB g__ asin B asinC
2cos(B—-A)  2cos(C-A)
AC sinB 2Rcos(C-A)-asinC
AB  sinC 2Rcos(B-A)-asin B
Substituting 2R = — and after several computations we find
sin
AC_1gB o
AB tgC

From (1) and (2) we find that A = A and the problem is resolved.
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20.
Solution given by Cezar Cosnita

Consider ABC as a reference triangle, and let (0{1, ,51,}/1), (0{2, ,52,72) the barycentric
coordinates of the points M, M, .
The equations of the lines AC,, AB, are

7/+1_0 ﬁ+£_0.

7/1 al al ﬂl

r + “ + k[ﬁ +£j =0, where K is determined by the condition
7/1 a] a] 1

72 + k( IBZ J 0
7/1 al al ﬁl
When K changes, we obtain the following equation
[&+&J[l+ﬁj_[ﬁ+ﬁj(ﬂ+ﬁjzo
o BA\n e)\n ala b
Considering & =0 we have the equation
[&ﬁjzz(ﬁ&]ﬁ
o B)n \n a«)b

which give the coordinates for A'.
We observe that the coordinates £,y of the point A'.

The line’s AM, equation 1s

We observe that the line AA' passes through the point whose coordinates are

% 2 4
bovnn o’ n b
B oo g B
The symmetry of this expression shows that the similar lines BB',CC"' pass also through

the same point M . If in these expressions we swap the indexes 1 and 2, we obtain the
coordinates of the common point of three analogues lines. But the two groups of coordinates
coincide with M. If M, is the weight center of the triangle ABC, then the coordinates of M

are ! ! ! , therefore M is the reciprocal of the complementary of M, . For

ﬂl + }/1 }/1 + al al + ﬂl
example, if M, is the reciprocal of the center of the circumscribed circle.

21.
The equations of the given lines are

~(b’+¢*—& ) x+(c’ +a’ b’ ) y+(a’ +b* —¢*) z=0
—bcx+cay+abz=0
—(b+c-a)x+(c+a-b)y+(a+b-c)z=0.
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To be concurrent it is necessary that
b’+c’-a’ c+a’-b* a’+b’-¢’
A=|b+c-a c+a-b a+b-c
bc ca ab
is null.
If we multiply the 3™ and 2" lines and add the result to the first line, we obtain a determinant

with two proportional lines, consequently A =0 and the lines are concurrent in a point U ,
which has the barycentric coordinates

U(-a(b—c)(b+c-a), b(c-a)(c+a-b), c(a—b)(a+b-c))
Similarly we find the coordinates of the points V,W .
The lines AU,BV,CW are associated to the point R.

From the results obtained, we have that the tri-linear polar of the orthocenter, the Gergone’s
point and the center of the circumscribed circle are three concurrent points.

22,

i) Let note {N'} =0l N AC,, we have that N _< R

=—, therefore N'| =Ol ——.
N'O R R—r
This shows that N' is a fixed point on the line Ol ; similarly it results that B,C_,C,C,
pass through N'.

ii) If we note {D'}=AN'NBC, we can show that AD',AD,, where D, is the

contact with BC of the A-ex-inscribed circle are isogonal Cevians by using the Steiner’s
BD' BD, ¢’

-—=2=— " To compute BD"' we apply the Menelaus theorem in the triangle
D'C D,C b

ADD' for the transversal N'-C, — A .

relation

23.

If the perpendicular bisector AD intersects BC in A', it is observed that AA' is tangent
to the circumscribed circle to the triangle ABC, therefore the line of the points given in the
problem is the Lemoine’s line.

24.
Let A'B'C' the orthic triangle of the triangle ABC . Because the quadrilateral BCB'C'

is inscribable, we have AB-AC = AC"AB', where {A] =B'C1BC, therefore A has equal

power in rapport to the circumscribed circle and the Euler’s circle (the circumscribed circle of
the triangle A'B'C"), therefore A is on the radical axis of these circles, similarly B, C, belong

to this radical axis.

25.
We note { A"} = AABC, the point M is the middle of (BC) and A is the projection

of A on BC . From the similarity of the triangles AA A", A'MA" it results % = E, therefore
n r
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AM hor o3
MA" r a
we find CA"= p—Db. It is known that BC, = p—b, C, is the projection of | on BC, therefore

AC, Gergonne Cevian and it result that AA" is its isotonic.

= and AM = g —ccosB, MA"= %— CA". After computations
p

Similarly BB', CC' are the isotomics of the Gergonne’s Cevians. The concurrency point
is the Nagel’s point of the triangle.

26.
The barycentric coordinates of the orthocenter H are H (tgAth,th) , of the

symmedian center are K(az,bz,cz). We note K' the symmedian center of the orthic triangle
A'B'C' of the triangle ABC . Because «<B'A'C=<«C'A'B=<A and the radius of the

circumscribed circle of the triangle A'B'C'. The radius of the Euler’s circle is ;, we have that

B'C'=Rsin2A, therefore K '( R’sin® 2A R’ sin” 2B, R sin® ZC) . Because
tgA tgB tgC
a’ b? c?
R’*sin’2A R’sin’ 2B R’*sin’2C
is null (&°=4R’sin® A, sin’ 2A=4sin> Acos’ A ), it results that H,K,K ' are collinear.
27.

Let ABC an isosceles triangle AB= AC, BB' the symmedian from B and CC' the
median.

A

C \ B
A’
We’ll note {Q} =BBCC' and {A'} = AQNBC (see the above figure).
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We have <ABC =< ACB, it results <QCA=<xQBC and <QBA=<xQCB. From the Ceva’s
A'B B'C C'A .. A'B B'A

. . =1, from which ——=——,
A'C B'A C'B A'C B'C
and with the reciprocal theorem of Thales we retain that A'B'|| AB. Then <B'A' A= «xBAA'
and <XABB'=<«BBA' therefore «QB'A'=<«QCA from which «<QCA=<«QAB=<xQBC ,

which means that € is a Brocard point of the triangle ABC.

theorem applied in the triangle ABC it results

Reciprocal
Let Q a Brocard’s point, therefore <QAB=<xQBC =<QCA, BB' symmedian, CC'

the median, and {A'}=AQBC . From the Ceva’s and Thales’s theorems we retain that
A'B'|| AB , therefore <tBAA'=<xAA'B' and <xABB'=<BB'A'. Then «QA'B'=<«QCB',
therefore the quadrilateral QA'CB' is inscribable, from which «QCA'= <QB'A'=<«B'BA.
Therefore m(<«B)=m(«ABB')+m(«B'BC)=m(«<C'CB)+m(«<C'CA)=m(«xC) . We
conclude that the triangle ABC is isosceles.

28.
In the inscribable quadrilateral B'A'BA. We’ll note {P}=AB(1A'B. According to

Broard’s theorem
Ol L PC, (1)

In the inscribable quadrilateral CAC'A' we’ll note {Q}=AC'NA'C, the same Brocard’s
theorem leads to

Ol LQB, )
In the quadrilateral CBC'B' we note {R} = BC'1CB', it results that
Ol L RA 3)

From Pascal’s theorem applied in the inscribed hexagon AB’CA’BC’ we obtain that the
points P,Q, R are collinear, on the other side A,B,,C, are collinear being on the homological

axis of the homological triangles ABC and A'B'C".
From the relations (1), (2), (3) we find that Ol L AB,.

29.
In problem 21 we saw that AU,BU,CW are concurrent. The polar of the point A in

rapport with the inscribed circle in the triangle ABC is C,C.. The polar of the point U in

rapport with the same circle is the perpendicular constructed from A on the line Ul . The
intersection of this perpendicular with C,C_ is the point U ' which is the pole of the line AU .

Similarly we’ll construct the poles V',W' of the lines BV,CW. The poles of concurrent lines are
collinear points, therefore U ',V ' W' are collinear.

30.
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Let {P}=ACNMF and {P'}=ACNHE. We’ll apply the Menelaus’ theorem in the

triangle ABC for the transversal M —F —P. We’ll obtainz—i : % : E—E =1, therefore
PC FC
L (M)
PA FB

The same theorem of Menelaus applied in the triangle ADC for the transversal E—H —P' leads
to
P 1
P '

@]

ED
=x )

>

Because

EF || AB, from (1) and (2) and the fact that Ii—g = E—Ei it results that P=P"', therefore the lines

MF,EN intersect the line AC. But {C}=DHBF, {Al =BM 1DE, therefore the triangles
BMF, DNE are homological.

31.
It can be observed that the triangles ABC, AB,C, are homological and their

homological axis is A—B—-C,; from the reciprocal of the Desargues’ theorem it results that
AA ,BB,,CC, are concurrent.

32.
1) It can be observed that the triangles ABC, AD'A' are polar reciprocal in rapport

with the circle, then it will be applied the Charles’ theorem

i) Similar as in 1).
33.
i) Let {L} =0l NMD. We have
LI r
— 1
LO R M
If {L =0l NNE,
we have
L'l r
- 2
L'O R @)
We note {L"} =0l (1PF, it results that.
L"I r
- - 3
L"O R ®)

The relations (1), (2), (3) leadto L=L"'=L"
The point L is the center of the homothety which transforms the circumscribed circle to

the triangle ABC in the inscribed circle in the triangle ABC (h, [LRJ ).
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iii)  Through h (LFJ the points B,C, A have as images the points B,C,, A, and the

points D,E, F are transformed in A,B,,C,.
Because the lines AD, BE,CF are concurrent in the Gergonne’s point I".

34.
Let I, the center of the A-ex-inscribed circle to the triangle ABC . Through the

homothety h, (LRJ the inscribed circle is transformed in the A-ex-inscribed circle. The image of

the point A' through this homothety is the point A, which is situated on the A-ex-inscribed
circle, such that A'l || C,A. Through the same homothety the transformed of the point A" is the
contact of the point D, with the line BC of the A-ex-inscribed circle, therefore AA" passes
through D, ( AA" is the Nagel Cevian), similarly BB",CC" are the Nagel Cevians.
Consequently the point of concurrency of the lines AA", BB",CC" is N - the Nagel’s point.

35.
Let AB=u, AD=V, AE = pu, AF =qv.
u+kv, AP pu+kqv.

1+k 1+k
We’ll write the vector AC in two modes:

— _ pU+XV _ U+YyqQV

We’ll have AN =

AC =

I+x I+y

By making the coefficients of u and v we
-1

we'll find y=——, y:M.

P-q q-1
ac_Pla-hura(p=v o ke k  p(a-fu+a(p-l)v

pg-1 k+1 k+1 pg-1

W:ﬁ)_m:(p—l)u+k(q—l)v

1+k
NP = AP— AM

. —1-kq+Kk) - -1) -
vp- P(Pa-l-ka+k) -~ kpq(q-1)
(k+1)(pa-1) (k+1)(pa-1)

The vectors NP, MP are collinear if and only if
p-1 (k+1)(pg—1) _ kg .(k+1)(pq—1)
1+k p(pg-1-kg+k) 1+k kpg(g-1)

The line obtained in the case k=1 is the line Newton-Gauss of the complete
quadrilateral ABCDEF .

s k=1.
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36.
\NehwenW<ABD):%§,n(<ACD):%6.

BD AD CD _ AD
sinBAD . i g sinCAD . i C

The sinus’ theorem implies

On the other side DC = BD

sin— B sinlC
4 4

We find

.1 0.3
sin <BAD _stCstB

sin<CAD

L1, .3
sin—Bsin=C
4 4
We continue the rational in the same manner and we use then the trigonometric variant of Ceva’s
theorem.

37.
m(<ABI, ) = 45°+%§, m(<ACl,) = 45%%6
We have
Bl Al c, Al

1 1 . _
sin BAI, sin(45°+i§j sinCAl, sin(45°+iéj

From the triangle Bl ,C we retain that

sini(A+ B) 5111(45"

Bl, _ Bl

Cl, sini(A+C) Cl, sm(45o

We obtain
) 1~) .
45°——C |- 45°+
ﬁn{BAh_sm( 4 Jsm(

3
_ 4
sin <CAl, sin (45°—i§)sm(45°+i

Similarly we find

. 1~
45°—— Al-sin| 45°+
nace, (4R

3¢
_ 4
sin <ABI, sin(45°—i6jsin [45O iA

206



14 3~

in| 45°——B |-sin| 45°+=A

sin <ACI, _sm( 4 )sm( 4 }
sin «BCl, sin(45°—iﬁjsin(45°+i§}

38.
m(<cABI, ) =90’ +% B; m(<«ACl,)=90 +%C
sin<«BAl, sin<«ABIl, sin«xCAl, sin<ACI,
BI, A, 7 CI Al
We obtain

B
sin<BAI, _BI, “®4

sinxACl, CI, cosiC
But the sinus’ theorem in the triangle BI,C gives us:
Bl, sin«BCI,
Cl, sin«CBI,’
Then we obtain
1 C 1 C 3 B
Bl, 4% sin«BI,C_ B4~y
Cl, slp sinxCAIl,

cos 1 Bcos 3 C
4 4
Similarly we find
1 3
sin<«CBl , _ cosz AcosZC

sin<ABl,

cos l Ccos é A
4 4
and

1 3
sin<ACl, COSZ BcosZA
sin<BCI |

cos l Acos E B
4 4

39.

«CBI, = <ABI_ =90’ —%{B, %1 _BC =90 —%{B,

«I,BC =45 —%({B), <ABI, =%(<B)—45°, «BCl, =<«ACl, =90’ —%qu

«1,CB=90 +%(<C) , <l CB=45 +%(<C) , <ACI, =45 +%(<C).
We’ll obtain
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1 3
in| 45°+—C | sin| —~ B—-45°
sin«l, AB " 4 jfm(4
sin<l, AC sin 45°+lB) sin(45°—3C
4 4
. 1 . 3
, sin| 45°+—A| sin| 45°-=C
sin«|,BC 4 ) 4
sin <l,BA sin 45°+1Cj sin(45°—3A
4 4
. 1 . 3
45°+-B 45°—-=
gn<gCA_sm( 4 J.“n( j
sin<l,CB sin 45°+1A sin éB—45o
4 4
40.
Let TT,T, the tangential triangle of the triangle ABC, .
We have
<T,C,A=<xAAC, and «T B A=<xAAB;
AC _ AL . AB Al
sinCT A sinTCA  sinBTA sinTBA
Therefore
sinCT,A_AC sinTCA
sinBT A AB, sinTBA
But

sinTC A sin AAC,
sinT,BA sin AAB,
On the other side sin «<AAC, =2R- AC, and sin (<):AAB,) =2R-AB
We’ll obtain that
sinCTA (AC Y
= , etc.
sin BT A AB,

41.
| is the orthocenter of the orthic triangle of the triangle |1 1, (that is of the triangle

ABC). The point M is the center of the circumscribed circle o the triangle IBC (this circle
passes through the point |, ). The perpendicular constructed from |, on QM is the radical axis

of the circumscribed circle of the triangle |11, and IBC.

On the other side BC is the radical axis of the circumscribed circles IBC and ABC, it
results that that the intersection between BC and AC, is the radical center of the circumscribed

circles of the triangles I,I,I_., ABC and IBC - this point belongs to the tri-linear polar of the
point | in rapport to the triangle ABC.
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42.
We observe that the triangle ABC is congruent with the triangle C,AB, . Because

AB=C A and AC, = BA, it results that the quadrilateral AC,BA is an isosceles trapeze.

C,C, is perpendicular on BC, and because it passes through its middle it will contain also the
center O of the circumscribed circle of the triangle ABC . Similarly we show that B,C, and
A A, pass through the center O . The triangles A B,C,, AB,C, are homological and their

homology center is O.
We’ll note

{L}=ABNAB, {Mj=BCBC,, .
The line L—M —N is the homology axis of the triangles AB,C,, AB,C,. From the
congruency of the angles C,AB,, B.C,C, it results that the quadrilateral B, AC,C, is inscribable,

therefore
MC,-MA=MC, -MB,.

This equality shows that the point M has equal powers in rapport to the circle (O) and

in rapport to circle (O1 ), therefore M belongs to the radical axis of these circles.

Similarly we can show that L, N belong to this radical axes also. This gives us also a
new proof of the triangles’ homology from the given problem.

43.

Let ABC, the contact triangle of the triangle ABC (the pedal triangle of | ). We note
A',B',C"' the middle points of the segments (Al ),(Bl),(Cl).

We note A B,C, the anti-pedal triangle of the contact point | with the triangle ABC.
Because B,C, is perpendicular on Al and A'O|| Al .
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It results that B,C, is perpendicular on A'O as well, therefore B,C, is the radical axis of
the circles (ABC,),(ABC). The line BC, is the radical axis of the circles (ABC,) and
(ABC,), it results that the point {A}=BC NB,C, is the radical center of the above three

circles.
Therefore A is on the radical axis of the circumscribed and inscribed circles to the triangle

ABC.
Similarly, it results that the intersection points B,,C, of the pairs of lines (C,A,C,A)),

(AB,AB,) are on the radical axis of the inscribed and circumscribed circles.
The point A is the radical center of the circles (BAC,),(CAB,),(ABC), it, therefore,

belongs to the radical axis of the circles(BAC,),(CAB,); this is the line A /A which passes
through .

44.
The lines AA,, C,C, are common cords of the given circles and are concurrent in the

radical center of these circles; it results that the triangles ABC,, A B,C, are homological.
We’ll note
{A}=BCGNBC,.
The quadrilateral BC,B,C, is inscribed in the circle (C, )
It results that

AB-AC =AB,-AC,.
This relation shows that A, which belongs to the homology axis of triangles ABC,,

A B,C,, belongs to the radical axis of the circumscribed circles to these triangles.

45.
We will use the same method as in the problem 43.

46.
Because AB=A'B' and AA'=BB', it results that AB'BA' is an isosceles trapeze,
C,C, id the perpendicular bisector of the cord AB', therefore it passes through O. Similarly, it

results that AA and BB, pass through O; this point is the homology center of the triangles.
If L,M,N are the intersections points of the opposite sides of the triangles ABC, ,
AB,C, ({M}=BCNB,.C,), we have that L,M,N are collinear, and these belong to the

homology axis of the above triangles.
We observe that the quadrilateral AB'BC, is inscribable, therefore MA-MA'=MB, - MC,

This equality shows that the point M has equal powers in rapport to the circles (O) and (O1 )
We noted with (Q,) the center of the circumscribed circle of the triangle ABC,, therefore M

belongs to the radical axis of these circles.
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Similarly, N belongs to this radical axis, therefore L—M —N is perpendicular on OO, .

47.
1) We’ll note with ¢ the measure of the angle formed by the line constructed from
| with the bisector Al, (I, being the center of the A-ex-inscribed circle).

CA =CA -cos ACA = CA -sin(a—%)

CA =11, -sin ABC = IIacos(§+0{j

CA = IIacos(E+a)-sin(0(—Ej
2 2
BA = IIacos(a—Ej-sin(E+aj
2 2

Therefore

Similarly
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BC__ clgr
BA tg(5+aj

CB 2

Then is applied the Menelaus’ theorem.

ii) We’ll note A’ the intersection of the tangent in A with BC.
We find that

AC :[ACT ) cos’ (§+aj
AB (AB

(5]
cos’| ——«o
2

If B and C, are the intersections of the tangents constructed in B, respectively in C, to
the circles CIA BIA with AC respectively AB, we’ll have

B{'A_(BIAT _ sinte
COS

BC (BC 2 @ N “j
. cos’ (C —0{}

CB _ 2

CA  sin’a

Then we apply the Menelaus’ theorem

48.
The triangles
APQ, BRS are homological because

APNBR={H}, QRNSB={G}, PQNRS={0}
and H,G,O - collinear (the Euclid line). According to the reciprocal of the Desargues’ theorem,
the lines AB, PR, QS are concurrent.
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49.
It is known that AP (see the figure below) is symmedian in the triangle ABC, therefore
if we note with S the intersection point of the segment ( AP) with the circle, we have that

arcBS = arcCQ

Therefore S,Q are symmetric in rapport to PM .
Because PM is the mediator of BC, it results that PM passes through O, and AR|| BC leads

to the conclusion that PM is also the mediator of the cord AR , therefore R is the symmetric of
A in rapport with PM .

R

P
Because A/S,P are collinear and Q,R are the symmetric of S, A in rapport to PM , it results

that P,Q, R are collinear

50.
We will note o = m«All,, |

We have

is the center of the A-ex-inscribed circle, f=m<xAll,.

a

AABA, ~ AAAC
From this similarity we find
AB :( BA j AA
AC \AC) AA

The sinus’ theorem implies
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AA __CA

sinBCA  sin AAC

AR _ BA
sinCBA, sinBAA

From here
AA CA sinBCA
AA BA sinCBA
ASB BA sin BCA sinCBA, sin BCA
AC CA sinCBA sinCBA sinCBA

I,
BCA = 5+B+ﬂ 900—— +f=90°— (g ﬁj

sin BCA, =cos (% — ,Bj

sin BCA = cos (% - aj
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sin CBA = cos (% + aj

sin CBA, =cos (§+ﬂj

Therefore
AB:COS(S_QJ'COS(S_'B) "
AC cos(B+aj-cos(B+ﬁj
2 2
Similarly
cos(B+aj-cos(B+ﬁj
B,C _ 2 2 (2)
B,A sinasin B
CA sinarsin

)

CsB_cos(cz:—aj-COS(g—ﬂj

The relations (1), (2), (3) and the Menelaus’ theorem lead to the solution of the problem.

51.
The mediators of the segments PQ,,P,Q,, BQ, pass through the point O,, which is the

middle of the segment PQ and which is the center of the circle which contains the points

R.P,R,QLQLQR.R,R

Because R R, is middle line in the triangle PAB, it results that
«<PAB=<«PRR, (1)
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Also, RR, is middle line in the triangle PAC, and RO, is middle line in the triangle PAQ,
therefore we obtain

<O,RR, =<xQAC ()
The relations (1), (2) and the fact that AP and AQ are isogonal Cevians lead to
%PRR, =<O,RR, 3)

The point O, is the center of the circumscribed circle of the triangle RRR, . Considering
relation (3) and a property of the isogonal Cevians, we obtain that in the triangle RR R, the line
RP is aheight and from RR, || BC we obtain that APis height in the triangle ABC.

Applying the same rational one more time, it will result that BP is height in the triangle
ABC, consequently P will be the orthocenter of the triangle ABC, Q will be the center of the

circumscribed circle to the triangle ABC, and O, will be the center of the circle of nine points
of the triangle ABC.

52.
Let H the orthocenter of the triangle and AA,BB,,CC, three concurrent Cevians . We

note m(«xBAA )=a, m(«CBB, )=/, m(«ACC,)=y. Ais the intersection of BC with the
perpendicular from Hon AA.

A

B Ay’

Because AA,BB,,CC, are concurrent we have
sino sin siny
sin(A—a)'sin(B—,B)'sin(C—y)
On the other side
AB _ AriaAHB _ AH -sin AHB-HB
AC  AriaAHC  AH -sin AHC-HC

=1

—

Because K-I-E = AAC (as angles with the sides perpendicular), it results
(AHB)=A-ar, MAHC =mAHB+mBHC =180°-a,

It results
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AB sin(A-a) HB
AC  sina HC
Similarly, we find
BC _sin(B-f) HC nd GA sin(C-y) HA
BA sinf  HA CB siny HB
We, then apply the Menelaus’ theorem.
The proof is similar for the case when the triangle is obtuse.

53.
We’ll prove firstly the following lemma:

Lemma
If (BC) is a cord in the circle &(O',r") is tangent in the point A to the circle (O) and

in the point D to the cord (BC) , then the points A D, E where E is the middle of the arch BC

which does not contain the point A are collinear. More than that we have ED-EA=EB*-EC’.
Proof

w
o

The triangles AOE, AO'D are similar, because the points A/O',O are collinear OE is
. OA OE R
parallel with O'D (see the figure above), and —=——=—.
O'A OD r'
It results then that <OAD = <«OAE , therefore A D, E are collinear.
We’ll note with N the projection of O' on OE and M the intersection point between
BCand OE, and x=0ON .
Wehave NM =r', ME=R-Xx-r', NE=R-Xx, OO'=R-r".
ED- EA represents the power of the point E in rapport to the circle &(O',r') and it is equal to
EO"”-r".
Because EO” =0O'N* +NE* =00"-0'N? +(R—X) we obtain
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EO”—r? =2R(R-r'-X).
On the other side EC*=MC’+ME’ =0C’* +OM* + ME? or
EC* =MC* =R +(x+r")’ +(R-r'-x)’
We find that EC* = 2R(R-r'-X)
Therefore, EB* = EC*> = ED- EA, and the Lemma is proved.

The proof of the theorem of P. Yiu
We note A the intersection n point of the line BC with the line AX and with X,, X,

the points of tangency of the lines AC, AB respectively with the inscribed circle A-mix-linear
(see the figure below).

We have
BA areaBAX BX:XA-sinBXA  BX-sin BXA
CA areaCAX CX-XA-sinCXA CX-sinCXA

According to the lemma, the points X, X,,E (the middle of the arc AE) and the points

(1)

X, X,, F (the middle of the arch AAB) are collinear, consequently, XX, and XX, are bisectors

in the triangles AXC respectively AXB.
The bisector’s theorem applied in these triangles leads to
AX, AX AX, AX
CX, CX’ BX, BX’

From these relations we obtain

BX  BX,
CX CX,
We’ll substitute in the relation (1), and we find:
BA _ BX; sinC )
CA CX, sinB
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Al r

But BX, = AX — AX,, CX, = AC- AX,, AX, =" Al =—=x
COS— sin —
2

It results

r 2r

AX, = =
? A. A sinA
CcOS —sin —
2 2

. . . a
From the sinus’ theorem we retain that sin A= EQ .

4ARr
We obtain AX, =? (it has been taken into consideration that 4RS=abc and S= pr ).

Therefore AX, = E

P

The relation (2) becomes:
BA (p-b)c’
CA (p-c)b’
(p-c)a®> AC, (p-a)b’

- CB,
Similarly, we find —" = A/
milarty, we T ABl (p—a)C2 BCl (p_b)az

BA CB AC ) . . .

Because : : =1, in conformity to the reciprocal Ceva’s theorem, it result that the
CA AB BC

Cevians AX,BY,CZ are concurrent. The coordinates of their point of concurrency are the

a b c
(p-a)’(p—b)’(p-c)

The point X (56) is the direct homothety center of the inscribed and circumscribed

barycentric coordinates : and itis X (56) in the Kimberling list.

circles of the given triangle.
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54.

Solution given by Gh. Titeica

Let A'B'C',A"B"C" the circumscribed triangles of the given triangle ABC and
homological with ABC .

Their homological centers being M and respectively N (the triangles
A'B'C',A"B"C" are called antipedal triangles of the points M, N in rapport to ABC.

Wenote A, A the intersections with BC of the lines AA', AA".

We have

(AAMA') = (AANA) =1

A’

The line A'A"intersects the line BCin a point of the line MN .

55.
The triangles B.C,A,BPC are orthological because the perpendiculars constructed from

the vertexes of the first triangle on the sides of the second triangle are concurrent.
Indeed, the perpendicular constructed from B, on BP, the perpendicular constructed

from Aon BC and the perpendicular constructed from C, on CP are concurrent in H. The
reciprocal is also true: the perpendicular constructed from B on AB,, the perpendicular

constructed from AB on AC, and the perpendicular constructed from P on BC, are
concurrent.
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Because the first two perpendiculars are the heights of the triangle ABC, it means that
also the third perpendicular passes through H, therefore PH is perpendicular on BC, it results
that BC || BC,.

56.
We’ll show firstly that
VM -UN  WP-WQ
uv: oUW’
The sinus’ theorem in the triangles MUV, NUV leads to
uv.: "'VWW UV W

sin sing, “sinf sine,

(see the figure bellow)

Therefore,
VM -UN sing;sing,
UV?  sinainf
Similarly, from the triangles UWQ,UWP
we find

WP-WQ sing; sina,
Uw? sinin 8
If we note UA=UB=a, UV =x, UW =Yy, and considering the power of U in rapport
with the circle, we have:
VM -UN =(a-x)(a+x)=a*-x’
Considering the power of W in rapport with the circle, we have WP-WQ = a’ — y*
a—x _ a’— yz
N - yz

From the relation proved above we have , and from here it results

X=Y.
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57.
We will note ¢, =(AAA,) and 4, the power of M in rapport with the circle ¢, etc.

The set of the points M whose powers g in rapport to the circles ¢, which satisfy the
linear relation
LR R Y R
B PP
is a circle whose equation is satisfied by the points A, A, A, A,.
For example for the point A we have g = p, and u, = 4, = 1, =0. The points A being,
hypothetical, arbitrary, it results that (1) is an identity, which is satisfied by any point from the
plane. In particular, it takes place when the point M is at infinite; we have g, = MO’ —r*, where
O and r, are the center and the radius of the circle ¢,. We’ll divide by x4 and because
U, —> 1 when M — oo, the relation (1) is reduced to

(D

58.
Let {I} =CC'1BB'; The triangle ABB' is isosceles, therefore, <<ABB'= <AB'B.

We note m(<«ABB') = ¢ . Then we have:
c BC  B'C' c'l

sin(90 +e) sinBIC sinB'IC' sin(90 —a)
But
sin(90° +a) =sin (90° —a) =cosx
Then we deduct that Cl =C'l .
We’ll note {I'} =CC'\DD' and m(<ADD')=m(«AD'D)= 4.
We have
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Cl' ¢t  opr o c
sin(90'—4) sinCI'D sinC'ID' sin(90" + j)
It results that Cl '=C'l "', and we deduct that | =1', which point is the middle of the segment
CC', consequently CC1\DD'NBB'={l}.

Observation
The problem is true also when the squares are not congruent. The intersection point is the
second point of intersection of the circles circumscribed to the squares.

59.
We note m(«<AAC)=a, m(«BBC)=/4, m(«<CCB)=7y.
Because AB,, BA,CA are concurrent we can write
sing sin(B+60°)  sin60°
sin(A-a)  §in60°  sin (C+60°) -
Similarly
sinf  sin(C+60°)  sin60°
sin(B-4) T sin60° sin ( A+60°)
siny  sin(A+60°) sin 60°
sin(B-7) T sin60° sin (B +60°)
We multiply these three relations and we find
sino sin siny
sin( A-a) . sin(B-f3) . sin(C—-y) -
which shows that the lines AA,BB,,CC, are concurrent.
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60.

a) Let P the intersection point of the perpendicular in A' on BC with the
perpendicular in B' on AC.

We have PB*-PC*=A'B’-A'C*, PC’-PA’=B'C’-B'A’

Adding side by side these relations, it results

PB>-PA’=A'B>~A'C>+B'C>*+B'A’ (1)
If C, is the projection of P on AB, then
PB2 - PA’ =C,B*-CA’ )

From (1) and (2) it results C, =C'

b) Let A,B,,C, the projections of the points A B,C on B'C'.C'A,A'B'

respectively.
We have

AC”-AB” =C'A"-B'A’
BC’-BA”=C'B’-A'B
CA”-CB"=A'C*-B'C>
From these relations it results AC”+BA”+CB"” =AB”+BC"”+C,B" which is a
relation of the type from a) for the triangle A'B'C"

Using a similar method, it results that triangle ABC, is the pedal triangle of P".

c) The quadrilateral AB'PC' is inscribable, therefore <tAPB'=<AC'B' and
because these angles have as complements the angles «CAP,<«<B'AP', it results that these

angles are also congruent, therefore the Cevians AP, AP' are isogonal.
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d) We observe that the mediators of the segments AP, AP' pass through the point F
, which is the middle of the segment PP"'.

We show that F is the center of the circle that contains the points from the given
statement.
We’ll note m(«<P'AC)=m(«PAB)=¢a, AP=Xx,AP'=Xx".
We’ll use the median’s theorem in the triangles C'PP',B'PP' to compute C'F,B'F .
4C'F*=2(PC"”+P'C")-PP"
4B'F*=2(PB"+P'B”)-PP"
PC'=xsine, P'C*=P'C"+C"C", P'C"=x'sin(A-a)
AC"=x'cos(A-a), AC'=xcosar
P'C” = x"+sin’ (A—05)+(X'cos(A—0{)—Xcoso&)2 =
= X"+ cos” ¢ —2xx'cos o cos (A- )
4C'F? =2[X'2+ X cos20{—2XX'COSO{COS(A—0{)]—PP'2
4C'F? =2[ X"+ X —2xx'cos cos (A— ) | - PP”

Similarly, we find the expression for B'F*, and it will result that C'F = B'F therefore
C',C",B",B" are concyclic.

e) We’ll consider the power of the points A B,C in rapport with the circle of the
points A", A",B',B",C"C".
We have
AB'AB"=AC" AC"
BA-BA"=BC"BC"
CA-CA"=CB'CB"
Multiplying these relations and using the reciprocal of the Ceva’s theorem, it results the
concurrency of the lines AA",BB",CC".

61.
Follow the same method as for problem 59. Instead of 60 we’ll use 45 .

62.
Let O the center of the circumscribed circle and H the projection of X on BC. The
quadrilateral KHFP is inscribable, from here it results that

m(<«KHP) = m(«<KFP) :%m(I/;Q) =m(<KOP).
On the other side AAOP=AAOQ, then m(<):AOP)=%m(<):QOP). We obtain that

«KHP =<AOP and then their complements are congruent, therefore m(<«AHO)=90°. It

results that the quadrilateral AHOP is an inscribable quadrilateral, therefore A K,H are
collinear.
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63.

From the bisectrices’ theorem we find E: BC E:ﬁ and the given relation

DA AC’ EB BC
impliesB—C = AB , we deduct that

DB EA
—= ()
DA EC

We’ll use the reciprocal of the Menelaus theorem in the triangle ADE for the transversal

M —P—-N. We have to compute @ME The point P is the middle of (DE) , therefore

MA NE PD

E=l. From (1) we find %zE—C, therefore MA-MD = CN - NE , then wzﬁ
PD MA NA MA NA MA NA

Therefore, %-M-E:I and M,P,N are collinear.

A NE PD

64.
We’ll note m(«<MAB)=«a, m(<MBC) =4, m(<MCA)=y,
{A}=BCNAA, {Bl=ACNBB, {C}=ABNCC,
We have
AB _Aria(ABA)  AB-sin(60°+ /) AB
AC  Aria(ACA) AC-sin(120°—y)-AC
But AB=AC,AB=MB, AC=MC,sin(120°—y)=sin(60°+7%).
AB _sin(60°+ /) MB
C  sin(60°+y) MC
BC _sin(60°+y) MC ond C,A _sin(60°+a) MA
BA sin(60°+a) MA CB sin(60°+ ) MB
Then we apply the reciprocal of the Ceva’s theorem.

Therefore,

Similarly

65.
i) Let L,Q the intersection points of the circles & (C, AB) ,& ( B, AC) )

We have
AABC =ALCB (S.S.9),
it results
XCLB=90° and «xLCB=<ABC
which leads to LC|| AB.

Having also LC= AB, m(«<CAB)=90°,
we obtain that the quadrilateral ABLC is a rectangle, therefore AL =BC and L ,belongs to the
circle @( A BC) )
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i1) ACQB = ABAC (S.S.S), it results that <CQB =90°.
Because ABLC is a rectangle that means that A B,L,C are on the circle with the center in O,

the middle of BC.
The triangle BQC is a right triangle, we have

QO=%BC=OC=OB,

therefore the point Q is on the circle of the points A B,L,C.

iii) AOCA= AABR, it results that
m(<«PAC)+m(«CAR)+m(<«BAR) =180°,
consequently, the points P, A/R are collinear.
But
m(<«PQL)=90°, m(«LQR)=90° (L,B,R collinear).
It results
m(<QPR) =180°,
therefore P,Q, R are collinear.
We saw that P, AR are collinear, we deduct that P,Q, A R are collinear.

66.

If H is the orthocenter of the triangle AB'C', from the sinus’ theorem we have
Ef S AH .
sin A

But AH =2Rcos A

We obtain
B'C'=2Rcos Asin A or B'C'=2Rsin2A.

Because 2R = , we find

sin
a'=B'C'=Rcos A.
From the cosine’s theorem we have
b’ +c’ -a’
2bc
4(a'b+b'c'+c'a')=

_4[ab(b2+cz—a2)(a2+cz—b2) bc(a’+c”—b*)(a’+b* —¢*) ac(b’+c’—a’)(a’ +b’ -¢’)

cos A=

+ +
4abc? 4a’bc 4ab’c

We deduct that
4 _(b? — a2 2 i (e _p? 2 b (& —a? )
FRURIRLE (el Be el e

2 22 2 12\ 2 22
:a2+b2+c2—Hb e ] +(C —b J +(C k_)a J }Sa2+b2+cz.
c a
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We observe that if the triangle ABC is equilateral, then we have an equality in the
proposed inequality.

67.

1
Let {M}=AGNBC, we consider the homothety h;?> the image of the circumscribed

circle of the triangle ABC (the circle circumscribed to the medial triangle). On the circle of the
nine points is also the point D , therefore it is the homothetic of a precise point on the
circumscribed circle. This point is exactly the point P, therefore

GD:lG‘P.
2

68.

If M is the middle of the cord AB, N is the middle of the cord CD and P is the middle
of the segment EF then M,N,P are collinear (the Newton-Gauss line of the complete
quadrilateral DACBFE . )

(see the figure above). It results that in the triangle DEF , DP is median. But C being on this
median, we show then that Ceva’s theorem i, from DP, FB, EA concurrency, it results AB || EF

69.
This is the Pappus’ theorem correlative.
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70.

The Menelaus’ theorem in the triangles AA'C,AA"B for the transversals
B-M-Q, C—N-P lead us to

BA' MA QC _,

: = (1)
BC MA' QA
CA" PB NA _, o
CB PA NA"
PB QC . . .
Because PA = @ and BA'=CA" from the equality of the relations (1) and (2), it results
MA = NA , which implies MN || BC.
MA' NA"
71.
Applying the Van Aubel theorem for the triangle ABC we have:
AP AC' AB'
=T (1)
PA' CB' B'C
BP BA' BC'
e @
PB' A'C C'A
CP CA'" CB'
==t 3)
PC' A'B B'A
We’ll note £: x>0, ﬁ: y>0, ﬂ: Z> 0, then we obtain
CB' B'C A'C

E(P)=(x+1j+(y+l]+(z+1J22+2+2:6
X y z

The minimum value will be obtained when X=y=z=1, therefore when P is the weight
center of the triangle ABC.

Multiplying the three relations we obtain:

E(P) :(x+lj+(y+lJ+(z+lj+£+128
X y z) X yz

The minimum value will be obtained when x=y=z=1, therefore when P is the weight center
of the triangle ABC.
Multiplying the three relations we obtain:

E(P):£x+1J+(y+1j+(z+1j+£+128
X y z) X yz

72.

1) We apply the Menelaus’ theorem in the triangle ABC, for the transversals
R _Q3 - RZ’ F)2 _Q] - R}a F)3 _QZ - Rl’ w¢e Obtain
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RB RC QA _,

RC, RA QB .
PC, QB RA _, o
RA QC, RB
PA RB QG _, G
PB RC, QA

Multiplying relations (1), (2), and (3) side by side we obtain the proposed relation.

1) If AA;BB,;CC, are concurrent then P,P,,P, are collinear and using the
Menelaus theorem in the triangle ABC, gives
RB PC, PA _, @

RC, RA RB
Taking into account the relation from 1) and (4) it will result relation that we are looking

for.

Reciprocal

If the relation from i1) takes place, then substituting it in 1) we obtain (4). Therefore,
ABC,, AB,C, are homological, and their homological axis being PPP,.

73.
The fixed point is the harmonic conjugate of the point C in rapport with A B because
TT, is the polar of C in rapport with the circle which passes through A, B.

74.
We suppose that AA is median, therefore AB=AC and from the given relation in
hypothesis, we obtain
AC’+C A’ = AB’+BC/}
From the concurrency of the Cevians AA, BB,,CC, and the Ceva’s theorem we retain that
AB _AC Q)
BC CB
We’ll note ﬁ: k, k>0, then
BC

1
BC’ +k’C,B* =k’BC*+BC
It follows that
(k*-1)C,B*~BC =0.
In order o have equality it results that K=1 or CB=BC.
If k=1 then AB =BC and AC, =C B, which means that BB,CC, are median.

If CB=B,C then from (2) we obtain AB = AC, with the consequence that AB=AC,
and the triangle ABC g isosceles.
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75.
We note

m(<«C AB)=m(«BAC)=«

m(<«C,BA)=m(«xABC)= 4

m(«<ACB)=m(«<BCA)=y
We have

BA'  Aria(

ABA) AB-BA -sin(B+j) c-siny-sin(B+j)
CA'  Aria(ACA)
BV

) _
) AC-CA-sin(c+y) b-sinf-sin(c+y)
A

Similarly we compute —C, ¢
B'A C'B

>

and use the Ceva’s theorem.

76.
Let MNPQ a square inscribed in the triangle ABC.

A

B N C

If we note the square’s side with X and the height from A with h,, we have

AAPQ ~ AACB
Therefore
X_h—x
a h
But ah, =2S, where S is the aria of the triangle ABC.
Therefore
2S
X= .
a+h,
- 2S 2S : o
Similarly we find y= , 2= the size of the inscribed squares.
b+h, c+h,
From x =y = zit results
a+h =b+h =c+h, (1)
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By squaring the relation we obtain:
a’+h’>+4S=b’+h’+4S=c’+h’>+4S
Taking away 6S we have:
(a+h,) =(b+h,) =(c+h)’
From here it results
[a-h[=lp-h|=|c-h} 2)

From (1) and (2) we find a=b=c, therefore the triangle is equilateral

77.
The line NP is the polar of the point of intersection of the lines AM, BC , therefore NP

passes through the pole of the side BC (the intersection of the tangents constructed in B,C to
the circumscribed circle of the triangle ABC)

78.
Let {P} = AB(1CD. The line MN is the polar of the point P and passes through the
fixed point Q which is the harmonic conjugate of the point P in rapport with C,D .

79.
It is known that ON? =9R? —(a2 +b? +C2)

. c’ .
We observe that C =60° . From the sinus’ theorem we have that R* =— and from the cosine’s

theorem ¢’ =a’ +b’ —ab. By substituting we obtain that ON =c—b

80.

)
OA+OB=20P
OC+0D =20R
OP+OR=0OM

The quadrilateral OPMR is a parallelogram of center T, the middle of PR, therefore
20T =OM .

ii)

OPMRs a parallelogram, it results that PM [|OR and because OR L CD it results that
PM L CD, therefore M € PP', Similarly we show that M € QQ', M e RR', M e S5’

81.
If O,,0,,0, are the centers of the three congruent circles, it result that O,0,, O,0,, O,0,

are parallel with the sides of the triangle
ABC.
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It results that the triangles ABC, O,0,0, can be obtained one from the other through a
homothety conveniently chosen.
Because O,,0,,0, belong to the interior bisectrices of the triangle ABC, it means that the
homothety center is the point T , which is the center of the inscribed circle in the triangle ABC.

The common point of the three given circles, noted with O'. This point will be the center
of the circumscribed circle to the triangle 0,0, (O'0, =0'0, =0'0,).

A

The homothety of center | , which transforms the triangle ABC in O,0,0, will transform the

center of the circumscribed circle O of the triangle ABC in the center O' of the circumscribed
circle to the triangle O,0,0,;, therefore O,1,0" are collinear points.

82.
OA is perpendicular on B'C', the triangles A'B'C', ABC are homological, their
homology axes is A"B"C" the orthic axis of the triangle ABC.
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The quadrilateral AA A" A" is inscribable, the center of its circumscribed circle being O,,
the middle of the segment ( AA").
Similarly, the centers of the circumscribed circles to the triangles BB B',CC,C' will be

0,,0,, the middle points of the segments (BB"),(CC"). The points O,,0,,0, are collinear

because these are the middle of the diagonals of the complete quadrilateral ABA"B"CC" (the
Newton-Gauss line of the quadrilateral).

83.
The symmetric of the Cevian AA in rapport with BC is A'A where A' is the vertex of

the anti-complementary triangle A'B'C' of the triangle ABC (the triangle formed by the
parallels to the sides of the triangle ABC constructed through A B,C).
We’ll use the reciprocal of Ceva’s theorem.

84.
We will transform the configuration from the given data through an inversion of pole O

and of rapport r’. The circles circumscribed to the triangles B'OC', C'OA', A'OB' which
transforms the sides BC,CA AB of a triangle ABC. The three given congruent circles are
transformed respectively in the tangents constructed in A B,C to the circumscribed circle to the
triangle ABC. The points A,B,,C, have as inverse the intersection points A,B,C, of the
tangents to the circumscribed circle to the triangle ABC constructed in A B,C with
BC,CA, AB. These point are, in conformity with a theorem of Carnot, collinear (the Lemoine
line of the triangle ABC), therefore the given points from the problem A, B,,C, are on a circle

that contains the inversion pole O.

85.
Let {P} = A'B( AB' and the middle point of ( AA'); the points P, M, W are collinear.

If {Q} = ACN A'C,we have that V,M,W are collinear, and if we note {R} =BC\B'C

and N the middle point of (CC') we have that R, U, N are collinear, on the other side

V,M,N are collinear belonging to the median from the vertex V of the triangle VCC’. From
these we find that U,V,W,M, N are collinear. If we note S, S'the middle points of the segments

(BC),(B'C'), we have {G} = A'STAS. The quadrilateral AA'SS' is a trapeze and MG
passes through the middle of the segment ($') Through a similar rational and by noting T,T'
the middle points of the segments ( AB),(A'B') we have that the points N,G and the middle of
the segment ('I_I") are collinear. Also, if we note X, X' the middle points of the segments

(AC),(A'C'), we find that G, the middle point of (BB') and the middle point of (NN') are

collinear.
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Because M, N and the middle of (BB') are collinear, it results that G belongs to the line
MN , on which we noticed that are placed also the points U,V,W .

86.
If wenote S,,S,, S, the first triangle of Sharygin of the triangle ABC, {A}=8SNBC

and A the intersection point of the external bisectrix of the angle A with BC, through some
computations we’ll find

AB= "

An =22

AB=2

A=
AB ¢

From R=F it results that A, is the intersection point of the tangent from A to the

circumscribed circle to the triangle ABC with BC, therefore the foot of the exterior symmedian
of the vertex A.

87.

See Pascal’s theorem.

88.

DA~ AABC implies
S S DE 1)
AB AC BC

From <ABC = «<DE it results that DE is the tangent to the circumscribed circle to the triangle
BD, therefore, DE, BC are anti-polar, and <tAED =< ABC.

It results that SD || AC . Similarly we’ll obtain SE || AB.

BS BD DS
- - )
BC BA AC
Cs_CE_= o
CB CA BA
From (2) and (3) we deduct
BS AB DS
>2_B Y 4
CS AC &
From (1) we retain
DS AB
—== (5)
SE AC

The relations (4) and(5) give us the relation

235



BS_ EJZ
CS (AC

89.
If we note
m<r( PCaCC) =
me(PCG) = ar
we have

<ACA =a, <ACA=c".
Then

sin BAA _( sina Jz
sinCAA \sina')
From the concurrency of C,P,C P,C_P we have:

sin sinf3 siny _q

sina' sin ' siny'

We obtain that
sin BAA sinCBB, sin BCC, 1
sinCAA sin ABB, sin ACC,

90.

Considering the inversion ioRZ , we observe that the image of the line BC through this
inversion is the circumscribed circle to the triangle BOC .

The circle &(0,,OA) is the image through the same inversion of the height AA'.
Indeed, the height being perpendicular on BC, the images of BC and AA' will be orthogonal
circles, and the circle & (Q,QA) has the radius OO perpendicular on the radius that passes

through O of the circumscribed circle of the triangle BOC . It results the image of A' through
the considered inversion will be the intersection point D of the line OA' with the circle

&(0O,,0A) and this coincide with the second point of intersection of the circle (BOC) and
~(0.04).

91.
We’ll consider K>1 and we’ll note A,B,,C, the projections of the vertexes of the

triangle ABC on its opposite sides.

We have
BA =c-cosB
CA =Db-cosC
AA =,

BA'= p-b; A'A"=(k-1)r
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Also, we’ll note D,E,F the intersection points of the lines AA",BB",CC" respectively
with the sides BC,CA, AB.

From AAAD ~ AA"A'D we find DAL h, and further more:

DA (k—1)r
DA (k=1)r-(p—b—-cosB)
h,+(k-Dr
BD _BA'-DA' _ (p-b)-h,+c-r(k—-1)cosB

DC CA+DA' (p-c)-h +a-r(k-1)-c-r(k—1)cosB

We substitute h, = %,r = E , and we obtain
BD  2p(p-b)+(k-1)accosB
DC 2p( p—C)+(k—1)(a2 —accos B)
Taking into account of
a’—accosB=a(a-ccosB)=a(a—BA)=a-CA =abcosC

and that

2p(p-b)=a’+c’—b*+2ac; 2p(p-c)=a’+b’—c’* +2ab,
along of the cosine’s theorem, we obtain

BD c(l+kcosB)

DC b(1+kcosC)

Similarly we find
EC a(l+kcosC)

EA c(1+kcosA) ’
FA b(l+kcosA)
(

FB a(l+kcosB)
We observe that

which shows that the lines AA",BB",CC" are concurrent.

92.
i) m(<AIB) =90’ +%; m(<cAIA)=90". It results m(<«AIB) :%

- C
AB _Aria(AIB)  |A-IB=sin—

AC ~ Aria(AIC) 1A -IC—sin(<AIC)

But,
. A C B
IC=90 +—+—;sin(<xAIC)=sin—
From the sinus’ theorem applied in the triangle BIC we have:
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. C B
sin 5 sin B
therefore
sin cY
AB_| 72
AC sins
Similarly
2
BC sm?
BA| ;G
sin —
2
2
CA sm?
gL
CB sin é

We’ll then obtain
AB BC CA_ |
AC BA CB
Therefore, A,B,,C, are collinear.

if)
We note m(«B'A'A)=a , then we have «B'A'A=<AIB as angles with

perpendicular sides.

AB sina- 1B

AC sin(«xBIC+a)-IC
But

- A - A

m(<«BIC) =90 + m(<«AIC)=90 tota

a=m(<B'A'A);

sin(90°+é+a)=sin(180°—AZIC)=sin(9O°—é—aj

2 2

We find that

sin(«AIC) =sin(A'-«); A'=<«B'A'C'
Therefore

AB_  sina _Sinf
AC sin(A-a)

. B
sin —
2
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If we note m(<C' B'Bl') =4, m(<A'C'C1') =y, similarly we find:

A
BC_ sing ",
B,A sin(B'-f)

. C
sin—
2

sin —

CA_ sy
C,B sin(C'-y)

. A
sin —
2

Observation:
This problem can be resolved by duality transformation of the “Euler’s line”.

93.
It 1s shown that if AD, is the external bisectrix from A and AH || AD,, A€ BC, we
have that AH is the exterior bisectrix in the triangle BHC , therefore
AB BH
AC CH

94.

Consider the inversion iF

0 3

where R is the radius of the given circle. Through this

inversion the given circle remains invariant, and the circumscribed circles to triangles
AOB, BOC, COD, DOE, EOF, FOA are transformed on the lines AB,BC,CD, DE, EF of the

inscribed hexagon ABCDEF .
The points A,B,,C, have as inverse the intersection points A',B,'C,' of the pairs of

opposite sides of the hexagon.
Considering the Pascal’s theorem, these points are collinear, and it results that the initial
points A, B,,C, are situated on a circle that passes through O.

95.
The quadrilateral DCFP is inscribable. It result

<xDCP = <«DFP and «PCF =<«PDF (D
On the other side AD L BC and «DCP =<«<DAC

Let {Q} =BD(FP. The quadrilateral BQPE is inscribable, it results
<X EQP = <EBP (2)
From (1) and (2) we deduct that <xEQP = «PDF , therefore the quadrilateral EQDF 1is
inscribable which implies that

<FED = «FQD 3)
But FQPE inscribable implies that
«BEF = «FED 4)
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From (3) and (4) we’ll retain <<BED = «FED which shows that (ED is the bisectrix of

the angle BEF . Because (AD is the interior bisectrix in the triangle EAF we’ll find that D is

the center of the circle A-ex-inscribed in the triangle AEF . If DT L EF we have
DT LEF /DT =DC=DB,TF =FC,TE=BE . From EF =TF +TE and the above relations

we’ll find that EF = BE+CF .

96.

It can be proved without difficulties that | is the orthocenter for the triangle A'B'C’,
also it is known that the symmetries of the orthocenter in rapport to the triangle’s sides are on the
circumscribed circle to the triangle, therefore A is the symmetric of the point | in rapport to
B'C'. That means that the quadrilateral |OO,A is an isosceles trapeze.

We have 10, = AO and <100 =<«IAO. On the other side <lIAO=<OA'l , we deduct
that <100 =<«OA'l . Having also IA'||OQ, (are perpendicular on B'C') we obtain that
OQ,IA' is a parallelogram. It results that OA'|| 1O, , but OA' L BC leads us to O4l perpendicular

on BC.
Similarly, it results that 10, =10, =R and 10, L AC, 10, L AB, consequently the lines

AQ,,BO,,CQO, are concurrent in a Kariya point of the triangle ABC.

97.

Let M,N,P the middle point of the diagonals (AC),(BD),(EF) of the complete
quadrilateral ABCDEF and R, S,T respectively the middle points of the diagonals
(FB),( ED) J( AG) of the complete quadrilateral EFDBAG. The Newton-Gauss line M —N-P
respectively R—S—T are perpendicular because are diagonals in the rhomb PRNS.

98.
It is known that AH =2R|cosA4 and OM :%AH , therefore OA'=kR|cosA4. We’ll

note {P} =OH ) AA' (H is the orthocenter of the triangle ABC). From the similarity of the

triangles APH, A'PO it results that
AH HP 2
——=——=>=const.
A'O OP k
Consequently, P is a fixed point on OH . Similarly it will be shown that BB',CC' pass
through P.

99.
Because the points B,B,,C,,C, are concyclic and AC, - AC, = AB, - AB,, it results that

the point A belongs to the radical axis of the circles with the centers in H and P . The radical
axis being perpendicular on the line of the centers H and P, which is parallel to BC will lead
us to the fact that the radical axis is the height from the point A.
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A similar rational shows that the height from the vertex B of the triangle ABC is a
radical axis for the circles of centers M, P. The intersection of the radical axes, which is the

orthocenter of the triangle ABC is the radical center of the constructed circles.

100.
Let A the intersection of the tangent in M to the circumscribed circle to the triangle

BMC with BC. Because MA is exterior symmedian in the triangle BMC, we have
AC (MCY
Aol
Similarly, we note B,,C, the intersection points of the tangents in M to the circles
CMA, AMB with AC respectively with AB .
We find

%(m] and CIB_(@T
BC (MC CA | MA

The reciprocal Menelaus’ theorem leads us to the collinearity of the points A, B,,C,.
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The originality of the book The Geometry of Homological Triangles
consists in using the homology of triangles as a “filter” through which
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unitarily passed.
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