
Geometrodynamic Mass Decrease During Gravitational Collapse 

Kenneth Sandale*† 
 
 

Abstract   The proof of Birkhoff's Theorem relies on a coordinate transformation to 
diagonalize the metric.  This coordinate transformation is made to affect the vacuum 
region, but will nevertheless cause the matter in the non-vacuum region to have a 
different velocity in the new coordinate system than in the old coordinate system, because 
a coordinate transformation cannot be abruptly turned off where the two regions meet 
without violating the holonomy requirement.  The effects of this coordinate 
transformation on the matter have never before been studied.  In fact, the coordinate 
transformation turns out to cause part of a gravitationally collapsing mass distribution to 
at some point start to move backwards in time.  This causes problems which invalidate 
the proof. 

Furthermore, we provide an actual counterexample to Birkhoff’s Theorem: In the 
particular circumstance of a spherically symmetric thin shell of matter collapsing it is 
shown that the Bianchi Identities give results contrary to Birkhoff’s Theorem. 

Keywords:  Birkhoff's Theorem; Gravitational Collapse; Black Holes; Bianchi Identities; 
General Relativity 

Introduction 

Birkhoff’s Theorem [1] implies that the metric in the exterior vacuum region of a 
spherically symmetric mass distribution does not vary in time, regardless of the 
(spherically symmetric) motion of the mass. 

While interesting directly, some of its implications may be of more interest than the 
theorem itself: 

1) One implication allows for the formation of black holes.  If the metric outside the 

mass distribution does not vary with time, then 
r

M2
-1  does not vary at a fixed 

point in the exterior region, implying that “M ”, the “Schwarzschild mass” does 

not vary with time.  This time-constancy of M  allows for 
R

M2  to become equal to 

unity, the condition for a black hole formation, if R, the radius of the mass 
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distribution becomes small enough.  If it were the case that M  decreased with 

gravitational collapse, and the decrease was sufficiently quantitatively large, 
R

M2  

would not be able to attain unity. 
 

2) Another implication of Birkhoff’s Theorem is that gravitational monopole 
radiation cannot occur. 

The standard proof of Birkhoff's Theorem [2-4] begins by writing out the most general 
spherically symmetric line element 
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and then uses a coordinate transformation that mixes r  and t  to make 01g  vanish, 

putting the line element into the form (dropping the prime from the new t ) 
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The use of 001 =g  in proofs of Birkhoff’s Theorem appears to be universal, appearing 

in conventional proofs [2-3,5] and even in novel proofs [6].  This is not mere 

coincidence.  The same reasoning that derived 011 =
∂

∂
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g
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vanishing 01g  comes very close to implying that 
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 cannot be zero if 01g  is non-

vanishing.  If 01g  does not vanish then the 00
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rather than implying 
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quantity that does not at all appear to be zero. 

Because of its essentialness to the proof of Birkhoff’s Theorem, the coordinate 

transformation causing 01g  to vanish deserves serious scrutiny.  This however appears 

never to have been done.  While the usefulness of the coordinate transformation in the 



proof pertains to the vacuum region, the coordinate transformation cannot just stop at the 
interface of the vacuum region and the matter region without violating the holonomy 
condition for coordinate transformations.  So therefore the coordinate transformation will 
cause the matter to have a different velocity in the new coordinate system than in the old 
coordinate system. 

The possible perniciousness of the coordinate transformation’s actions on the matter can 
be understood from an analogous situation in electromagnetism, where we can create an 
obviously invalid proof that a uniformly moving charged particle does not produce a 
magnetic field.  Consider, in one Lorentz frame, a uniformly moving charge and the 
magnetic field it produces.  A Lorentz Transformation can be made that causes the 
magnetic field to vanish. So we now have a situation where in the new coordinate system 
the particle is not generating a magnetic field.  The incorrect proof then reaches the 
conclusion that in some coordinate system one can have a uniformly moving particle not 
generating a magnetic field.  The error of course is that the coordinate transformation that 
caused the magnetic field to vanish also impacted on the charged matter, causing it to no 
longer be moving.  The vanishing magnetic field result is not a general result, but only 
really applicable to a situation where the charged matter is not moving.  Likewise, 

because the Birkhoff coordinate transformation to make 01g  vanish affects the motion of 

the matter we cannot be assured that the result of the exterior vacuum metric having a 
vanishing time dependence is applicable for general spherically symmetric motion of a 
mass distribution. 

Finding ourselves in a situation where Birkhoff’s Theorem was not validly proven, we 
are motivated to seek a possible counterexample.  The Schwarzschild mass is often 
treated simply as a constant of integration whose value is chosen to correspond with 

Newtonian Theory [7-9].  But by integration of the 00
02

10
0 =− RgR  Einstein Equation in 

the non-vacuum region it can be seen to be a specific quantity ∫ drrT 20
0 4π  [10].  

Applying the Bianchi Identities to a situation with a gravitationally collapsing shell of 
mass we get the result that the Schwarzschild mass is not a constant of motion, but rather 
is a decreasing quantity.  This definitively contradicts Birkhoff’s Theorem. 
 

1. Direct Examination Of Changes In Mass Via The Bianchi Identities 

1.1 Calculation Of Changes In “M” During Collapse 

Let us consider the change in the stress-energy of a thin shell of pressureless matter 
undergoing spherically symmetric gravitational collapse, using the Schwarzschild-
Birkhoff solution for the metric field. 

From the Bianchi Identities 
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Because 
iTg 0−  vanishes outside the shell, the 
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if the range of integration is such that all the shell of matter is within the boundaries of 
integration with no matter touching a boundary.  Under that assumption, we get  
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Writing out the 
s
µ0Γ  in the second term explicitly in terms of the derivatives of the 

metric (using the notation that the index “1” refers to the radial direction) and keeping in 

mind that 10g  is zero in the Schwarzschild-Birkhoff coordinates, that 
2

2T  and 
3

3T  are 

zero because the shell of matter is pressureless, and because it can see seen that the term 

proportional to 1
0T  turns out to exactly cancels with a term proportional to 0

1T , we get  
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Exploiting the spherical symmetry of our physical situation, we replace g− with 
2

1100 4 rgg π−  giving  

( )
=

∂
∂

−−
∂

−∂
∫∫ drrT

x

g
gggdr

x

rTgg 20
00

0000
11000

20
01100 4

2

14
π

π
 

 drrT
x

g
ggg 21

10
1111

1100 4
2

1 π∫ ∂
∂−  (10) 
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In the Schwarzschild-Birkhoff regime 
1

00
00 −= gg , therefore the first and third terms 

in Equation 11 cancel, giving 
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For weak field situations, the gravitational field is approximately 
r

g

∂
∂ 00

, and thus the 

difference between the value of 00g  on the inner surface and the value on the outer 

surface is of order of magnitude the strength of the gravitational field times the thickness 

of the shell.  Thus for thin shells, to an excellent approximation, 00g  is constant 

throughout the shell when the thickness is small.  However, in situations where the 
situation approaches that of being a black hole, the gravitational field is not 

approximately 
r

g

∂
∂ 00

, and our approximation would no longer be valid.   

 

 

Thus, as long as the situation is not approaching that of a black hole we can approximate 

00g  as being constant over the thin shell and pull it out from the integral to cause 

Equation 12 to become Equation 13.  However, it is important to note that in situations 
approaching a black hole, this is not valid. 

 
( )

∫ ∂
−∂

dr
x

rTg
g

0

20
011

00

4π
drrT

x

g
ggg 21

10
1111

11002
1 4π∫ ∂

∂−=  (13) 

 
( )

∫ ∂
−∂

dr
x

rTg
0

20
011 4π

drrT
x

g
gg 21

10
1111

112
1 4π∫ ∂

∂−=  (14) 

We choose our mass distribution to be such that ( )2/cv  is negligible, and thus the right-
hand side of Equation 14 can be approximated as zero.  However, for our purposes this 
approximation is not really even necessary.  The key result of our work will be that the 



Schwarzschild mass decreases during gravitational collapse.  We will show in the next 
paragraph that the right hand side of Equation 14 is always negative for gravitational 
collapse in the Schwarzschild Birkhoff regime, and thus the effect of it non-vanishing is 
never to cancel the decrease in mass, but rather actually to increase the decrease in mass.   

The right-hand side of Equation 14 can be shown to be negative by re-writing it as 

drrT
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∂− .  11T  is positive since it is the product of the mass density 

(a positive number ) and the square of the velocity (a positive number).  
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 in the shell 

can be seen to be negative as the shell collapses in the Schwarzschild Birkhoff regime, .  
Therefore the integral on the right-hand side of Equation 14 is always negative.   
Therefore, even if we do not approximate it as zero, we will still get the same result of a 
decreasing Schwarzschild M that we are about to see presently. 
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This is quite remarkable.  It indicates that the quantity that is the constant of motion is 

∫ − drrTg 20
011 4π .  This is NOT the same quantity as ∫ drrT 20

0 4π , the quantity that 

mathematically is the Schwarzschild Mass! 

As the shell gravitationally collapses, the magnitude of 11g−  in the Schwarzschild 

regime increases and thus for ∫ − drrTg 20
011 4π  to remain constant, the quantity 

∫ drrT 20
0 4π , which is the specific quantity which must be M  in the Schwarzschild 

Solution, decreases.  So the Schwarzschild mass would decrease during gravitational 
collapse!  

So we have shown that the actual mathematical quantity for the “mass” in the 
Schwarzschild scenario MUST decrease during gravitational collapse, something 
Birkhoff’s Theorem implied could never happen.1 

                                                 
1 While the geometrodynamic change in mass density in a collapsing system has previously not been 
examined via the Bianchi Identities, in part because the Birkhoff’s Theorem seemingly argues against the 
necessity of doing so, it actually has been done in another situation.  In cosmological models, the mass 
 



1.2 Extreme Gravitational Collapse and Extreme Gravitational Anti-Collapse 

Seemingly if 11g  were to have its magnitude become infinite--as what would happen if 

the shell were to collapse to the point of black hole formation, ∫ drrT 20
0 4π  would have 

to become zero in order for ∫ − drrTg 20
011 4π  to remain constant.  Since ∫ drrT 20

0 4π  

is the Schwarzschild mass, what we have seemingly shown is that concomitant to a black 
hole forming, its mass goes to zero.  Obviously a zero mass object will not generate a 
black hole, and thus we would see black hole formation (at least for a thin shell) in the 
Schwarzschild metric as being self-contradictory, and thus impossible.   

The situation is not as simple though as it might seem.  For the argument of the previous 

paragraph to work trivially, 11g  would need to be uniform over the mass distribution, 
which it is not. Furthermore, as we noted earlier, our derivation of Equation 16 assumed 

that 00g  was uniform over the thin shell, which it is not under conditions approaching a 

black hole.   

It is interesting to note that Nature allows the converse process to a gravitationally 
collapsing body geometrodynamically losing mass.  The time reversed process of mass 
decrease during gravitational collapse is allowed—in the Schwarzschild regime from out 
of virtually nothingness an expanding object of mass approaching zero can expand into 
having a finite mass.2  

It might be tempting to speculate on whether such a process created the Universe, but of 
course such a model would not give the isotropy and homogeneity found in Friedmann-
type models.  (It would however obviate the question of what the Universe was like 
before t=0.) 

                                                                                                                                                 
density in an expanding universe is indeed explicitly calculated via the Bianchi Identities. In such situations 
there is no analogue to Birkhoff’s Theorem to guide (actually, to misguide) us.  Perhaps more importantly 
in causing the need to adjust the mass density to be recognized in those situations, intuitively we expect that 
as the volume of the Universe expands the mass density should need to decrease in a way commensurate 
with the expansion in order to preserve the total mass (minus losses due to the action of pressure). 
2 We need not consider whether the initial infinitesimally small object could get enough radial momentum 

to expand against its own gravitational field.  Relativity puts certain constraints on 
0µT , i.e. the value of 

0µT  at an infinitesimally future instant of time is completely determined by the values of 
µνT  and the 

metric and its derivatives (via the Bianchi Identities) at an earlier instant, but the 
iiT  (i ≠ 0) components 

are totally free. A sharp “unprovoked” change in 
iiT  is fully allowed in Relativity. 



1.3 Monopole Radiation 

We cannot assume that "information" about the decrease in the mass will be sent to 
distant regions instantaneously, and so we would expect monopole gravitational waves.  

Indeed, one might want to consider construing the decrease of the Schwarzschild mass of 
a gravitationally collapsing object as being "due" to monopole radiation carrying away 
mass/energy, but we do not wish here to engage in heuristic characterizations. 

1.4 Limitations of the Methodology 

Before moving to the next section we should note that our results for gravitational 
collapse were done using the Schwarzschild-Birkhoff metric inserted into the Bianchi 
Identities.  But our main conclusion was that the Schwarzschild-Birkhoff regime could 
not really be correct.  So, while we have shown that the regime used to allow black holes 
is wrong, our other results are not themselves reliable, being that to get them we assumed 
a metric which we ended up showing was actually wrong. 

Obviously we should concern ourselves with what the results would be using the correct 
regime. 

We could try to generalize Equation 16 to what it would be without the now disproven 

Birkhoff’s Theorem assumptions/results, to get the time evolution of ∫ drrT 20
0 4π .  

However, we no longer know that ∫ drrT 20
0 4π  is the “mass” quantity, anyway.  It was 

the “mass” quantity in the Schwarzschild-Birkhoff regime because solving the equations 
within the Schwarzschild-Birkhoff regime yielded that it was.  However those equations 
were stripped of terms involving time derivatives of the metric, terms we now know do 
not vanish, and stripped of terms involving 01g , terms we will soon see do not vanish.  So 

even if we could find the time-evolution of ∫ drrT 20
0 4π , it would not necessarily be of 

use.  It appears that there is no simple way to fully understand in detail what happens 
during gravitational collapse. 

It obviously is quite plausible that a Correspondence Principle effect will occur such that 
in the limit of gentle collapse the results we got using the Schwarzschild-Birkhoff metric 
approach are correct. 

What we do know is that Birkhoff’s Theorem is incorrect, and that there is now no reason 
to believe a collapsing mass distribution will maintain a constant “mass”, and thus we are 
no longer assured that unlimited gravitational collapse must lead to black hole formation. 



2 ANALYSIS OF THE BIRKHOFF AND SCHWARZSCHILD 
COORDINATE TRANSFORMATIONS  

If, as we calculated in the preceding section, the Schwarzschild mass decreases during 
gravitational collapse, then in the vacuum region exterior to the mass shell the quantities 
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 will change in time, in contradiction to the Birkhoff's Theorem.  

Logically then, either the Bianchi Identities or Birkhoff’s Theorem is incorrect.  There is 
no possibility for the Bianchi Identities to be wrong if General Relativity is correct, but it 
turns out that there actually is one place, and only one place, in the Birkhoff’s Theorem 

proof that is not validly justified.  The coordinate transformation used to make 01g  

vanish in the vacuum affects the motion of the mass distribution because the holonomic 
requirement for coordinate transformations prevents coordinate transformations from 
being abruptly turned off.  This aspect of the proof of Birkhoff’s Theorem has apparently 
never previously been scrutinized.  What we will establish happens is that this coordinate 
transformation will cause the particles in the mass shell to eventually reverse their 
direction in time, something we will see leads to invalidation of the proof. 

Reversal of time direction is an exotic phenomenon, but it turns out to be implied by a 
wide range of seemingly normal coordinate transformations.  Consider the example in the 
next paragraph. 

The coordinate transformation to make 01g  vanish is of the form )(' EdrCdtdt −= η  

where C  is the 00g  in the initial coordinate system, E−  is the 01g  in the initial 

coordinate system, and η  is the integrating factor.  If in the original coordinate system 
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considering the Weinberg method for constructing an integrating factor [2].  At the 
moment )( EdrCdt−  becomes zero, assign a spatially constant non-infinitesimally 
positive value ofη to all points on that space-like hypersurface.  The holonomy condition, 
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finite time derivative.  Since the time derivative of η  is not negatively infinite it will not 
instantaneously go from being a finite positive number to being a negative number. 

We are not arguing that the metric in the previous paragraph is the actual metric, but 
rather we are just trying to show that a non-exotic metric can lead to exotic time-direction 
reversal in the Birkhoff coordinate transformation.  Our proof that the reversal occurs is 

not done by direct examination of the 00g  and 01g  in the original coordinate system—it 

might be very difficult to calculate the actual values of those quantities—but rather by 
concluding on the basis of our Bianchi Identity treatment of the collapsing mass shell in 
the previous section that there must be an error somewhere in the Birkhoff Theorem 
proof, and realizing that  time reversal is the only place the error could be hidden.  
Birkhoff’s Theorem is sufficiently simple that all other parts of the proof can be seen not 
to be flawed. 

So we know that in the new coordinate system, the Birkhoff coordinate system, the 
particles composing the collapsing mass shell will eventually start moving backwards in 
time.  Whether such a situation is allowable is most certainly questionable, but even if it 
were allowable, the situation would not be that of a shell collapsing to progressively 
smaller radii.  It would be topologically like the standard situation in Feynman diagrams 
where an electron moves forward in time and then turns around and moves backwards in 
time.  (Of course, in QED this would also involve photon creation.)  So an observer 
observing things in the Birkhoff coordinate system would observe two mass shells 
heading towards each other and then vanishing.  So what would be going on in the 
Birkhoff coordinate system would not be a single shell undergoing collapse, and thus it 
could not be used to evaluate what would happen in such a situation.3 

One might attempt to salvage the Birkhoff's Theorem coordinate transformation by 
limiting our consideration to gravitational collapse that is just starting, and ignore the 

strange things that happen later on when 00g and 01g  in the initial coordinate system 

might take on values resulting in the particles reversing their direction in time in the 
                                                 
3 The need to take into account the effect of a vacuum coordinate transformation on the matter in the non-
vacuum region can be underscored by the following consideration.  One can fallaciously prove that a 
uniformly moving electric charge does not produce a magnetic field by making a the Lorentz 

Transformation on the 
µνF  tensor that removes the B  vector field.  Of course the error is that this 

Lorentz Transformation must be carried onto the region where the charge is and causes the charge to now 
be at rest. 



Birkhoff's coordinate system.  But ignoring the event does not change it from happening.  
For example, if we take a quantum electrodynamics Feynman diagram where an electron 
goes forward in time before  subsequently reversing its direction in time with the 
emission of a photon, and we just do not look at the time period where the pair 
annihilation occurred, the positron will nevertheless still be present.  Personally ignoring 
the future time period where the mass shell reverses its direction in time will not change 
things—the event still occurs, and thus we will still have two mass shells with opposite 
velocities heading towards each other.  

Another way one might be tempted to try to salvage Birkhoff's Theorem is by specifying 
that we will apply the Birkhoff coordinate transformation for the time period when the 
shell is collapsing, but then at some time before the time when the shell reverses its time-
direction we no longer apply the coordinate transformation.  It turns out that we cannot 
assume this is allowable--we have no guarantee that such a scheme can be done in a way 
that satisfies the holonomy4 requirement for coordinate transformations. 

CONCLUSION  

 The coordinate transformation used in the derivation of Birkhoff’s Theorem to make 

01g  vanish is not a valid coordinate transformation.   

 If one follows the time-evolution of the quantity expressing the Schwarzschild “M ” 

expressed in terms of an integral of 0
0T  one finds that it is not a constant of motion, in 

contradiction to what would be necessary for Birkhoff’s Theorem to be true. 
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