Geometrodynamic Mass Decrease During Gravitational Collapse
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Abstract The proof of Birkhoff's Theorem relies on a aioate transformation to
diagonalize the metric. This coordinate transfdromais made to affect the vacuum
region, but will nevertheless cause the mattehérton-vacuum region to have a
different velocity in the new coordinate systenrtlvathe old coordinate system, because
a coordinate transformation cannot be abruptlyedroff where the two regions meet
without violating the holonomy requirement. Théeefs of this coordinate

transformation on the matter have never before baetied. In fact, the coordinate
transformation turns out to cause part of a graeially collapsing mass distribution to

at some point start to move backwards in time.sThuses problems which invalidate
the proof.

Furthermore, we provide an actual counterexampRirtchoff's Theorem: In the
particular circumstance of a spherically symmetria shell of matter collapsing it is
shown that the Bianchi Identities give results canytto Birkhoff's Theorem.
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Introduction

Birkhoff’'s Theorem [1] implies that the metric ihe exterior vacuum region of a
spherically symmetric mass distribution does noywatime, regardless of the
(spherically symmetric) motion of the mass.

While interesting directly, some of its implicat®may be of more interest than the
theorem itself:

1) One implication allows for the formation of blacélés. If the metric outside the
mass distribution does not vary with time, tne&M does not vary at a fixed
r

point in the exterior region, implying tham'”, the “Schwarzschild mass” does
not vary with time. This time-constancy pf allows for% to become equal to

unity, the condition for a black hole formation,R¥, the radius of the mass
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distribution becomes small enough. If it were ¢thse thatv decreased with
gravitational collapse, and the decrease was seritiy quantitatively Iarge?Rﬂ

would not be able to attain unity.

2) Another implication of Birkhoff's Theorem is thatayitational monopole
radiation cannot occur.

The standard proof of Birkhoff's Theorem [2-4] begby writing out the most general
spherically symmetric line element

ds® = gy, (r,t)dt? + g,, (r,t)drdt + g, (r,t)dr? —r?d6” —r*sin® &g?

and then uses a coordinate transformation thatsriixandt to make d,, vanish,
putting the line element into the form (dropping firime from the new)

ds® = gy, (r,t)dt? + g, (r,t)dr? —r?dg” —r*sin* @g?. After this is done, the
dIn(g,,)

R’ =0 vacuum Einstein Equation simply yieldsgooT =0, implying g,;

has no time dependence. By subtractingRie- < g;R =0 Einstein Equation from the

Rg —%ggR =0 Einstein Equation in the vacuum region, with aprapriate choice of

0 0
time coordinate,a% =0 can be seento imply% =0,

The use 0fg,; = 0 in proofs of Birkhoff's Theorem appears to be @msal, appearing
in conventional proofs [2-3,5] and even in novelgds [6]. This is not mere

ag
coincidence. The same reasoning that der'rvg%‘a‘l =0 from the assumption of a

0
vanishing J,; comes very close to implying tha% cannotbe zero ifJy; is non-

vanishing. Ifg,; does not vanish then tH%l0 —%ng =0 vacuum Einstein Equation

dln dln
rather than implying~ 900% =0, implies that= 900% IS some

guantity that does not at all appear to be zero.

Because of its essentialness to the proof of Bifididheorem, the coordinate
transformation causin@,; to vanish deserves serious scrutiny. This howappears
never to have been done. While the usefulnedseofaordinate transformation in the



proof pertains to the vacuum region, the coorditraesformation cannot just stop at the
interface of the vacuum region and the matter regithout violating the holonomy
condition for coordinate transformations. So tfenethe coordinate transformation will
cause the matter to have a different velocity exrtbw coordinate system than in the old
coordinate system.

The possible perniciousness of the coordinate fibamgtion’s actions on the matter can
be understood from an analogous situation in elewgnetism, where we can create an
obviously invalid proof that a uniformly moving alggd particle does not produce a
magnetic field. Consider, in one Lorentz framendormly moving charge and the
magnetic field it produces. A Lorentz Transforroatcan be made that causes the
magnetic field to vanish. So we now have a sitmatwere in the new coordinate system
the particle is not generating a magnetic fielthe Thcorrect proof then reaches the
conclusion that in some coordinate system one asa a uniformlymovingpatrticle not
generating a magnetic field. The error of coussthat the coordinate transformation that
caused the magnetic field to vanish also impactethe charged matter, causing it to no
longer be moving. The vanishing magnetic fieldifeis not ageneralresult, but only
really applicable to a situation where the changedter is not moving. Likewise,

because the Birkhoff coordinate transformation skend,, vanish affects the motion of

the matter we cannot be assured that the restiiea#xterior vacuum metric having a
vanishing time dependence is applicable for gersgfadrically symmetric motion of a
mass distribution.

Finding ourselves in a situation where Birkhofflsebrem was not validly proven, we
are motivated to seek a possible counterexamphe. SEhwarzschild mass is often
treated simply as a constant of integration wh@deevis chosen to correspond with

Newtonian Theory [7-9]. But by integration of tlﬁg —% 98R= O Einstein Equation in

the non-vacuum region it can be seen to be a si;@qciantitij0°4n 2dr [10].

Applying the Bianchi Identities to a situation wahgravitationally collapsing shell of
mass we get the result that the Schwarzschild ieags a constant of motion, but rather
is a decreasing quantity. This definitively codicas Birkhoff's Theorem.

1. Direct Examination Of Changes In Mass Via The Binchi Identities
1.1 Calculation Of Changes In “M” During Collapse

Let us consider the change in the stress-energytith shell of pressureless matter
undergoing spherically symmetric gravitational apie, using the Schwarzschild-
Birkhoff solution for the metric field.

From the Bianchi Identities
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if the range of integration is such that all thelsbf matter is Wlthm the boundaries of
integration with no matter touching a boundary.deinthat assumption, we get

*X term vanishes
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Writing out the ! oy in the second term explicitly in terms of the datives of the

metric (using the notation that the index “1” reféo the radial direction) and keeping in

mind that 19 is zero in the Schwarzschild-Birkhoff coordinatmt T, and T, are
zero because the shell of matter is pressureleddyecause it can see seen that the term

proportional toTOl turns out to exactly cancels with a term propoiicao Tlo, we get
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In the Schwarzschild-Birkhoff regim@ = Jqyo , therefore the first and third terms
in Equation 11 cancel, giving

T4
oS e 2 g Bvar'a

d

For weak field situations, the gravitational fidﬁohpproximately%, and thus the

difference between the value 8f, on the inner surface and the value on the outer
surface is of order of magnitude the strength efgravitational field times the thickness
of the shell. Thus for thin shells, to an excdll@pproximation,d,, is constant

throughout the shell when the thickness is sntdbwever, in situations where the
situation approaches that of being a black hoke gtiavitational field is not

0

. gOO . . .
approximately—_—, and our approximation would no longer be valid.

or

Thus, as long as the situation is not approactiagdf a black hole we can approximate
Joo as being constant over the thin shell and pwaluttfrom the integral to cause

Equation 12 to become Equation 13. However,imjgortant to note that in situations
approaching a black hole, this is not valid.
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We choose our mass distribution to be such (héc)z is negligible, and thus the right-

hand side of Equation 14 can be approximated as 2éowever, for our purposes this
approximation is not really even necessary. Therksult of our work will be that the



Schwarzschild mass decreases during gravitatiamtlapse. We will show in the next
paragraph that the right hand side of Equatiorsladways negative for gravitational
collapse in the Schwarzschild Birkhoff regime, &mas the effect of it non-vanishing is
never to cancel the decrease in mass, but rathellycto increase the decrease in mass.

The right-hand side of Equation 14 can be showretaegative by re-writing it as

—0
%I " aitlT“M 2dr. T4 s positive since it is the product of the masssity

(a positive number ) and the square of the veldaityositive number)%ilol in the shell
X

can be seen to be negative as the shell collapghe Schwarzschild Birkhoff regime, .
Therefore the integral on the right-hand side afi&mpn 14 is always negative.
Therefore, even if we do not approximate it as zesowill still get the same result of a
decreasing Schwarzschild M that we are about t@resently.
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Thisis quite remarkable. It indicates that the quantiitat is the constant of motion is
J‘ —0,,T, 47 ?dr . This isNOTthe same quantity a}T0°4n ?dr, the quantity that
mathematically is the Schwarzschild Mass!

As the shell gravitationally collapses, the magéwf./— g,; in the Schwarzschild
regimeincreases and thus foj«/— 0y, T2 47T *dr to remain constant, the quantity

_[T0°47'[ ?dr , which is the specific quantity which mustiein the Schwarzschild

Solution, decreases. So the Schwarzschild mads wearease during gravitational
collapse!

So we have shown that the actual mathematical gydat the “mass” in the
Schwarzschild scenario MUST decrease during graeital collapse, something
Birkhoff's Theorem implied could never hapgen.

! While the geometrodynamic change in mass densiydollapsing system has previously not been
examined via the Bianchi Identities, in part beesthe Birkhoff's Theorem seemingly argues agaimst t
necessity of doing so, it actually has been doranither situation. In cosmological models, thesna



1.2 Extreme Gravitational Collapse and Extreme Graitational Anti-Collapse

Seemingly if §;; were to have its magnitude become infinite--astwcauld happen if

the shell were to collapse to the point of bIacleHormation,jT0°4ﬂ2dr would have

to become zero in order f(j.r —0,,T, 477 °dr to remain constant. Sinc_{eT004n2dr

is the Schwarzschild mass, what we have seemihghys is that concomitant to a black
hole forming, its mass goes to zero. Obviouslgm® mass object will not generate a
black hole, and thus we would see black hole foionaat least for a thin shell) in the
Schwarzschild metric as being self-contradictond thus impossible.

The situation is not as simple though as it miglens. For the argument of the previous

paragraph to work triviallyd,; would need to be uniform over the mass distriloytio
which it is not. Furthermore, as we noted earberr, derivation of Equation 16 assumed

that J,, was uniform over the thin shell, which it is netder conditions approaching a
black hole.

It is interesting to note that Nature allows theserse process to a gravitationally
collapsing body geometrodynamically losing maske fime reversed process of mass
decrease during gravitational collapse is allowed-the Schwarzschild regime from out
of virtually nothingness an expanding object of snagproaching zero can expand into
having a finite mas$.

It might be tempting to speculate on whether suploaess created the Universe, but of
course such a model would not give the isotropylandogeneity found in Friedmann-
type models. (It would however obviate the questibwhat the Universe was like
before t=0.)

density in an expanding universe is indeed explicilculated via the Bianchi Identities. In suduations
there is no analogue to Birkhoff's Theorem to guiaetually, to misguide) us. Perhaps more impdigan
in causing the need to adjust the mass densitg tedognized in those situations, intuitively weent that
as the volume of the Universe expands the masstgshsuld need to decrease in a way commensurate
with the expansion in order to preserve the to@snminus losses due to the action of pressure).

2 \We need not consider whether the initial infiniiteally small object could get enough radial momemtu

to expand against its own gravitational field. d&ieity puts certain constraints 65”0, i.e. the value of
T#% atan infinitesimally future instant of time israpletely determined by the values bf" and the
metric and its derivatives (via the Bianchi Idees) at an earlier instant, but e’ (i #0) components
are totally free. A sharp “unprovoked” change'li'ri1i is fully allowed in Relativity.



1.3 Monopole Radiation

We cannot assume that "information" about the dseaén the mass will be sent to
distant regions instantaneously, and so we woutgetxmonopole gravitational waves.

Indeed, one might want to consider construing g@ehse of the Schwarzschild mass of
a gravitationally collapsing object as being "dtee¥fnonopole radiation carrying away
mass/energy, but we do not wish here to engageundtic characterizations.

1.4 Limitations of the Methodology

Before moving to the next section we should no& tlur results for gravitational
collapse were done using the Schwarzschild-Birkhadfric inserted into the Bianchi
Identities. But our main conclusion was that tikbwgarzschild-Birkhoff regime could

not really be correct. So, while we have shown tiha regime used to allow black holes
is wrong, our other results are not themselvealtd| being that to get them we assumed
a metric which we ended up showing was actuallyngro

Obviously we should concern ourselves with whatrésellts would be using the correct
regime.

We could try to generalize Equation 16 to whatod be without the now disproven

Birkhoff’'s Theorem assumptions/results, to gettthree evolution ofJToo47T ?dr

However, we no longer know th tT004iT ?dr is the “mass” guantity, anyway. It was

the “mass” quantity in the Schwarzschild-Birkhafrme because solving the equations
within the Schwarzschild-Birkhoff regime yieldedatht was. However those equations
were stripped of terms involving time derivativdghe metric, terms we now know do
not vanish, and stripped of terms involvigg,, terms we will soon see do not vanish. So

even if we could find the time-evolution 36f|’004n 2dr , it would not necessarily be of

use. It appears that there is no simple way g fulderstand in detail what happens
during gravitational collapse.

It obviously is quite plausible that a CorresporaeRrinciple effect will occur such that
in the limit of gentle collapse the results we gsing the Schwarzschild-Birkhoff metric
approach are correct.

What we do know is that Birkhoff's Theorem is ineat, and that there is now no reason
to believe a collapsing mass distribution will ntain a constant “mass”, and thus we are
no longer assured that unlimited gravitationalagodle must lead to black hole formation.



2 ANALYSIS OF THE BIRKHOFF AND SCHWARZSCHILD
COORDINATE TRANSFORMATIONS

If, as we calculated in the preceding section Sblewarzschild mass decreases during
gravitational collapse, then in the vacuum regioteor to the mass shell the quantities

1—ﬂ and_—1 will change in time, in contradiction to the Bidifis Theorem.

)
r
Logically then, either the Bianchi Identities orl8ioff's Theorem is incorrect. There is

no possibility for the Bianchi Identities to be wpif General Relativity is correct, but it
turns out that there actually is one place, ang onk place, in the Birkhoff's Theorem

proof that is not validly justified. The coordieatransformation used to mal,;

vanish in the vacuum affects the motion of the naissibution because the holonomic
requirement for coordinate transformations preveontgdinate transformations from
being abruptly turned off. This aspect of the prafdBirkhoff's Theorem has apparently
never previously been scrutinized. What we withbBsh happens is that this coordinate
transformation will cause the particles in the metssll to eventually reverse their
direction in time, something we will see leadsrtealidation of the proof.

Reversal of time direction is an exotic phenomerar it turns out to be implied by a
wide range of seemingly normal coordinate transétioms. Consider the example in the
next paragraph.

The coordinate transformation to ma@g; vanish is of the formdt'=77(Cdt— Edr)

whereC is the J,, in the initial coordinate system; E is the J,, in the initial

coordinate system, angl is the integrating factor. If in the original ecdmate system

2M 2Mv

Joo Was1-== and g,; was - 37 whereM is a constant, then noting that = vdt
r I

. . . , 2M Y\ 2MV?
the Birkhoff coordinate transformation would Bg=7| | 1-——— |- 32 dt. For dt'

r
2Mv?

2

. . . 2M
to turn negative, all that is needed is %ﬁ“‘ 3

] to remain positive at that pointithin the Schwarzschild-Birkhoff regime clearly
2M  2MV?
—+

r 3r?

to become greater than 1 and for

will eventually become greater than 1 during uitkeh collapse. We can

2

2M
see thaty will not switch signs wheﬁr— + becomes greater than 1 by

3r?
considering the Weinberg method for constructingnéegrating factor [2]. At the
moment(Cdt— Edr) becomes zero, assign a spatially constant noniiegimally
positive value off to all points on that space-like hypersurface. hb®nomy condition,



0 d
E(/]C) = E(UE)’ since bothC and E have finite derivatives on the shell (except

2Mv?
3r?

. 2M
when the shell collapses to= 0, something that occurs afte1r; + becomes

2

2M  2Mv
greater than 1, not whiler—+ 32 is becoming greater than 1, implies thjahas a
r

finite time derivative. Since the time derivatvk/; is not negatively infinite it will not
instantaneously go from being a finite positive l@mto being a negative number.

We are not arguing that the metric in the previgaragraph is the actual metric, but
rather we are just trying to show that a non-exaigtric can lead to exotic time-direction
reversal in the Birkhoff coordinate transformatiddur proof that the reversal occurs is

not done by direct examination of tifly, and J,, in the original coordinate system—it

might be very difficult to calculate the actual wes of those quantities—but rather by
concluding on the basis of our Bianchi Identityatreent of the collapsing mass shell in
the previous section that thereistbe an error somewhere in the Birkhoff Theorem
proof, and realizing that time reversal is theyquibce the error could be hidden.
Birkhoff’'s Theorem is sufficiently simple that ather parts of the proof can be seen not
to be flawed.

So we know that in the new coordinate system, thichBff coordinate system, the
particles composing the collapsing mass shelleviéintually start moving backwards in
time. Whether such a situation is allowable is eestainly questionable, but even if it
were allowable, the situation would not be thaa shell collapsing to progressively
smaller radii. It would be topologically like tiséandard situation in Feynman diagrams
where an electron moves forward in time and themstaround and moves backwards in
time. (Of course, in QED this would also involveopon creation.) So an observer
observing things in the Birkhoff coordinate systeould observe two mass shells
heading towards each other and then vanishingwad would be going on in the
Birkhoff coordinate system would not be a singlelstindergoing collapse, and thus it
could not be used to evaluate what would happsudh a situation.

One might attempt to salvage the Birkhoff's Theoommrdinate transformation by
limiting our consideration to gravitational coll&pthat is just starting, and ignore the

strange things that happen later on wiikgand J,, in the initial coordinate system
might take on values resulting in the particlesrsing their direction in time in the

% The need to take into account the effect of a wataoordinate transformation on the matter in thie-n
vacuum region can be underscored by the followongsileration. One can fallaciously prove that a
uniformly moving electric charge does not produceagnetic field by making a the Lorentz

Transformation on thd=*" tensor that removes thB vector field. Of course the error is that this
Lorentz Transformation must be carried onto théoregvhere the charge is and causes the chargeato no
be at rest.



Birkhoff's coordinate system. But ignoring the evéoes not change it from happening.
For example, if we take a quantum electrodynamegifan diagram where an electron
goes forward in time before subsequently reverggdirection in time with the
emission of a photon, and we just do not look attitme period where the pair
annihilation occurred, the positron will nevertredestill be present. Persona@iporing
the future time period where the mass shell regdtsalirection in time will not change
things—the event still occurs, and thus we will stave two mass shells with opposite
velocities heading towards each other.

Another way one might be tempted to try to salMBgkhoff's Theorem is by specifying
that we will apply the Birkhoff coordinate transfaation for the time period when the
shell is collapsing, but then at some time befbeetime when the shell reverses its time-
direction we no longer apply the coordinate tramsfttion. It turns out that we cannot
assume this is allowable--we have no guaranteestitdt a scheme can be done in a way
that satisfies the holonorhyequirement for coordinate transformations.

CONCLUSION

The coordinate transformation used in the dewadif Birkhoff's Theorem to make
Jo; vanish is not a valid coordinate transformation.

If one follows the time-evolution of the quantéypressing the Schwarzschilt*”
expressed in terms of an integral'l@? one finds that it is not a constant of motion, in
contradiction to what would be necessary for Bifkkorheorem to be true.
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