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Abstract:

In this paper you can find a complete treatise on the General Theory of Relativity, starting
from the basic geometry, through the Einstein's field equations, to the calculation of the
deflection of light by the Sun and of the precession of the perihelion of planets.

Moreover, as appendixes, you will also find the Restricted Theory of Relativity and an
explanation on how | see the Gravity (coming from) the Electromagnetism!
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Simplicity is the closest thing to intelligence.

Introduction.

The General Theory of Relativity (GTR) is an extension of the Special Theory of Relativity
(or Restricted) (STR) shown in App. 1; it was necessary for Einstein to explain the
Gravitation. The word gravity reminds the word acceleration; in fact, we will see in Par.
2.1 that where there is an acceleration, rotation and gravity with a reference system, the
metric is not simple anymore as in STR.

Moreover, the GTR explains gravity as a curvature of the space, or better of the space-
time (mathematic space-time, in the opinion of the writer) caused by matter (and by the
energy!) which is in such space-time. It’s like when, for instance, you put a ball of lead on
a mattress: around the sphere you have a funnel-like hollow and there, the mattress is
curved. Then, we can say that in such an area where the mattress is curved is the
gravitational field of the ball of lead. If now we throw a small ball over the mattress, and
neglecting frictions, it will move uniformly on a straight line, over the flat side of the
mattress until, as it approaches the curved hollow, it will fall towards the ball of lead.
Matter, in GTR, sees the space-time as a railway over which it can move; therefore, if this
railway is curved, the trajectories followed by the matter will be curved.

Then, if the ball of lead is so heavy that it completely sinks into the mattress, then the
funnel will become like a closed bag and we would call it a black hole, and from it nothing
would come out, not even light.

In the GTR the Equivalence Principle holds, according to which a gravitational field can be
cancelled by an acceleration and so it is not possibile to absolutely tell an acceleration
from a gravitational field. In fact, let us consider the Einstein Elevator, in which a guy,
standing stopped at a floor, rests with his weight on the floor of the elevator; if now we
cut the cable holding the elevator, it will start a free falling in the terrestrial gravitational
field and the guy inside will float as if in a space ship where there is no gravity, as he is
falling with the elevator and with its floor and this floor will always fall under his feet.
Therefore, an acceleration, that of the free falling, has cancelled the gravitational effect;
and, at the same time, when the elevator is stopped, the guy inside it, instead of thinking
that he was standing in a gravitational field (as he is resting on the floor of the elevator)
could have thought that there weren’t any gravitational fields, but that the elevator was
accelerating upwards, so pushing the soles of his shoes.

Through the example of the mattress we have just introduced the concept of the
(mathematical) space-time curvature, caused by the matter/energy. The tensor equation,
which will be here proved, and which shows the correspondence between the
matter/energy and the curvature indeed, is the Einstein Gravitational Field tensor
Equation:

Rn - 5 9mR=-8GT,

Its left side, all in R, shows the “curvature radius” and the geometric characteristics of the
space in which the matter/energy is, and the measure of such a matter/energy is, on the
contrary, given by the right side, through the momentum-energy tensor T, , that, as we
will see, in some of its components, is proportional to the density r etc.

Perhaps, only in the opinion of the writer (as the thought which follows, as well as many
others, hasn’'t been ever read on any books by me) the Newton classic gravitational



equation shows a correspondence between geometrical characteristics and the presence
of matter:

I
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r
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in fact, the left side of the last equation, that is ?]TZ that is the second derivative of the

spatial position, over the time, is a geometric characteristic of the space indeed, while the

right side - GMZf tells us about M!
r

Since the time when it was born, officially in 1916, the GTR has been always seen by
many people with suspects, as it’s full of complexity, mathematical as well as conceptual;
so, thinking that so many hypothesis and relevant calculations can lead to equations which
stick to reality, sometimes led some critics to hold it as a weird theory.

Classic tests in Chapt. 4 are encouraging in the opposite direction, even though also there
the preambles, the suppositions and calculations are a lot, and then, for instance, in the
calculation of the deflection of the light of stars by the Sun, during an eclipse in 1919, the
accuracy of the measurement was very close to the result. Moreover, there are also
alternative explanations and in competition with the GTR, to explain the deflection of light
and the precession of the perihelion of planets.

In the opinion of the writer, GTR is for sure a beautiful physical-mathematical theory,
mathematical more than physical, maybe the most beautiful, but it's also true that it has
somewhat weird concepts inside. | think that the GTR is the typical falsifiable Popper-like
theory, like if it were an interpretative model which works to explain many phenomena,
but that it's not the real essence of the phenomena just explained. And then, provided
that the geometric interpretation of the curvature is real, we should still explain why the
matter causes it; ok, it causes that, but why? To see is not the same as to explain and
justify.

In the GTR, the gravity is just attractive and Einstein, in his Theory of Unified Fields (let’s
sum up a bit, out of brevity) after having used the concept of curvature in the GTR to
explain the gravitational pull, also used the concept of torsion to try to explain also the
repulsive forces of the electricity. All this unfortunately without success, that is, his unitary
field equations (maybe 33) couldn't be proved in the real Universe. Therefore, Einstein
work didn’t finish with the GTR; in fact, he died in 1955 in a bed in a Hospital, with paper
and pen in his hands!

I personally think the force of gravity is a macroscopic force which is made of microscopic
and electric forces among particles, positive and negative, which make the Universe, and
that can be considered as randomly spread (see App. 2). In fact, | prove in Appendix 2
that the electric energy of an electron in an electron-positron pair, which is:

1 €
X—
4peo re

Is exactly the gravitational energy given to an electron by all the mass of the Universe
M,,, atadistance R, , thatis:

GM Univme
RJniv

Therefore, we have:
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And it really doesn't seem to be just by chance the fact that if we see the Universe as if
made just by electrons and positrons (fundamental harmonics, whose mass is m,), and

whose number is N, we easily have:

N = Muw @ 75905
m

and nothing is strange, so far, but we realize that if we multiply the square root of N
(VN @,13%0%) by the classic radius of the electron r,, we get exactly

e

JNr, @R, @.,18X10®m, that is, the radius of the Universe! And an explanation of all this,

in a perfect harmony with the equivalence of electricity and gravity just shown, has been
put in App. 2/at Par.4.1.

Therefore, the attraction (/repulsion) particle-antiparticle, that is, the fast oscillations of
the particle-antiparticle pairs, in composing together, generate the slow oscillation of the
Universe (Big Bang, expansion, contraction, Big Crunch). Now, we are in the era of the
contraction, that is, the matter is contracting all towards the centre of mass of the
Universe, and that's why we see the actractive force of gravity every day, but hundreds of
billion of years ago, when the Universe was expanding, the gravity was (as a
consequence) repulsive-like (see still App. 2, as a support of all this), from which the
similarity between the electricity (attractive and repulsive) and the gravity (also attractive
and repulsive); “unfortunately”, when the Earth was born, the gravity already stopped to
be repulsive a very long time before!

Chapter 1: Preamble on Geometry.

Par. 1.1: Formalism, lengths of arcs and areas of curved surfaces.

the sphere and the circle:
with reference to figure 1, we want to represent through a formula the surface of a sphere

S: Z A P(r, 6. )

[0}

S max equatorial circumference

v

X

Fig. 1.1: The Sphere.

In Cartesian coordinates, we just use the Pythagorean Theorem to get such a formula:

X +y’+72°=r? (1.1)
On the contrary, with the more friendly spherical coordinates, we have, very easily and
intuitively:

t' . =(rcosgsinj )X+ (rsinqsinj )y +(rcosj )z (1.2)



where, of course, t'S is the vector which describes (by moving) all the surface of the
sphere. We see that the components are a function of two parameters (q e | ).

Of course, in the simpler case of a circle g, we would have:

t'g =(rcosq)X+(rsinq)y (1.3)
and here we see that the components are a function of just one parameter (q), if
r=const.

Ya

v
x

Fig. 1.2: The Circle.

(1.1) and (1.2) can therefore be written in a more general form, as functions of
rlespectively 2 and 1 parameters:

ts=t,(uv)X+t,(uv)y+t.,(uv)z (uv=q, andr=r(u,v)) 1.4)
t, =t,(WX+t,(W)¥y (u=q and r=r(u)) (1.5)
Of course, if in (1.4) and (1.5) all the t, don’t have the expressions they have in (1.2) and

(1.3), but they have other ones, generic ones, then they (still (1.4) and (1.5)) can
represent not anymore the sphere and the circle, buth other generic surfaces and curves.
Now, if we get a bit closer to the Cartesian coordinates, (X,y)=(x,f(x)), we make in (1.5) a
clhange of parameter (u >>> x) so that we then have:

ty =tiWX+t,(U)y =3+ f(X)y (1.6)
We will so consider (1.4) as the general expression for a surface and (1.6) that of a curve.
length of an arc on a curve:

tl . _ tl A - ulg
YA g tIA(U) (u) (u) (u)

to(u)

Fig. 1.3: Length of an arcX . .
With reference to figure 1.3, if t';(u) tends to t ,(u) , then DX (u) will become a df,(u);

not only; it will correspond to the infinitesimal arc dl on g. We can so write that:
J r .
dl =dt,(u), from which:

r r r, . dt,(u),, , dt,(u),, N >
= = gw= §", W= o\/[( Wy @lyangu= e 2 pa

I(A-B) I(A-B) I(A-B) I(A-B) I(A-B)

1.7)



and we also see from the vectorial composition in Fig. 1.3, that dt'g(u) is tangent to g, as
it meets it just in one point, and therefore the vector
{ _ dt, (u)

du
is tangent to g.

(1.8)

area of a curved surface:

Let's consider again (1.4), and we report it here again: t'S =t,(u,V)X+t,(u,v)y +t ,(u,v)Z.
dt'q

Fig. 1.4: Small area on a curved surface.

Now, with reference to Figure 1.4, we have a curved surface S, indeed, and a curve g(t)

on it.
Of course, if | want to say that the curve g(t) is really on S, then both parameters u and

v of S must be a function of the only parameter t of g(t):
Now, we know from (1.8) that the derivative of the vector t'g which represents a curve,

over its parameter t, yields the tangent vector t, to the curve. By the same token, then
the derivative of the vector t'S which represents the surface S yields a vector t tangent to

the surface itself, and if the derivative is calculated on the parameter t of the curve g(t)

which lies on S, then, of course, such a tangent vector will be also the tangent of the

curve g(t). Such a relationship can be analytically shown by seeing the two parameters u

and v as functions of the parameter t of the curve: u=u(t) and v=v(t).

Then, the tangent to the curve g(t) will be:

I dt's _dt's du, dt's dv

dt du dt adv dt .

So, still with reference to Figure 1.4, for the (1.9) we see that the tangent vector t and
1 1

vectors % and % lie on the same plane, as they are a three element composition, as
u v

well as in the figure, indeed. Now, as the vectorial product of two vectors (modulus =

product of moduli by the sine of the angle between them) yields a vector again, which is

normal to the original vectors, then, in order to Iobtain theI vector normal to the surface S

we carry out the vectorial product between % and %and if, then, | also want the

u v

versor n (unitary modulus) | will divide by the modulus of the normal vector:

(1.9)



dt dt

A= (%PS d‘?[ly (normal versor) (1.10)
du dv

For what the area of a surface (in general) is concerned, we know from the elementary
geometry that the area of a trapezium is given by the product of both sides by the sine of
the angle formed by them, and if we also remind the definition of vectorial product aboye

reported, we can then say that the small area dS delimited by the two small vectors %
u

and E(Fig. 1.4) is:

dS= dt dt , from which, by integration over all u and v:
du dv
e dt
S=qS= Qf#— & —=dudv (1.11)
S u- v

Par. 1.2: Base differential Geometry.

Fig. 1.5: Fundamental Trihedron.

. r dt'. (u .
We saw with (1.8) that the vector t(u) :% :tr'g (u) is tangent to the curve g(u). As
u

we want a versor i (unitary modulus), we'll have:

t(u) = |[ | (tangent versor) (1.12)

So, still with (1.8) we saw that the derivation operation yields a normal vector.
Now, we derive the (1.12), so getting the normal versor A(u) :

fi(u) = %f (u) (normal versor) (1.13)

At last, we define the binormal versor 6(u), of course in the following way, by using the
vectorial product:

B(u) ={ (u)’ A(u) (binormal versor) (1.14)
u
n(u) :Ef (u) (fundamental trihedron with generic parameter u) (1.15)

au) =f(u)” Au)



We saw through (1.7) that the length of an arc is:

su= = g, wl= g, @ldu= 60|[r'g (W|du (1.16)
s(A- B) s(A- B) s(A- B)
from which: s'(u) =— —|t ) -

If now, in the trihedron (1.15), we make a change of parameter (u >>> s, with s as an
intrinsic parameter) we Il have:

(9 =t" [u9) = (”) 3‘; tr'g(u)$ , from which:

r,
|t ()= |)|=1. Then:

@S s@- 1, ws0E -1 wsuS
gt (s) = ’ ds - _° ’ ds
: (S ()

and so we get the fundamental trihedron in the intrinsic parameterization:

t(s) =t (9
n(s) = |—[r—8| (fundamental trihedron with the intrinsic parameter s) (1.17)
S
9

(9t (9

t )

a(s) ={(9)" fAi(s) =

Fig. 1.6: Fundamental trihedron in the intrinsic parameterization.

Curvature and radius of curvature:

r . . L .
t", ()| is zero for lines, while it is * 0 on circles etc.

|tr" (s)| is defined as CURVATURE of g in t',(s).
(9= |[ 3 (1.18)

is the RADIUS OF CURVATURE.



Example on a circle (on the plane x-y):

X*+y*=r> (z=0)

X=rcosa = rcos(f) , y=rsna = rsin(f) , z=0 (where s=aris the arc on the circle),
r r
r S\ ..,S .
therefore: t (s) =(x,y,2) = (r cos(F),rsm(F),O) from which:

dt
tr'g (s) = o(9) =(x,y,7) =(- sin(FS),cos(FS),O) and so:
{r (s) = dt’s (9 =(x",y",z") =(- lcos(g),- lsin(E),O) , from which, again:
g ds r r’or oo
|tr"g (5)| = /X2 +y 2427 :% (curvature)!!
the torsion:

b'(s) is // to A(s); in fact:
L9 = {9 1) =10 AR+ S AS =T, (9" AS (9 A =E9 A

Now, we notice that as n(s) is a versor (modulus 1 constant), %ﬁ(s) does not represent
a variation of the modulus of n(s), that is, along its extensior; as a vector, but, as a
consequence, it is just a normal to A(s) variation, so we can say that: %ﬁ(s) A A(s), and
as we are talking about an orthogonal trihedron, we also haveythat (of course)

[f(s)” %ﬁ(s)] /! i(s)and so it shows to be proportional to n(s) :

ey 1 . ..
b'(s) = t—(s)n(S), (1.19)
1 is the TORSION of g int,y(s).

t(s)

Now, there is a link between curvature and torsion and it's expressed by the following:

Frénet formulas:
from the first two of (1.17) and from (1.18) we have the following: '(s) :Tls)ﬁ(s)' Then,

we have the (1.19):
b'(s) = - %ﬁ(s). Moreover, from the last of the (1.17) we get: A(s) = 6(5)’ t(s)and so:



Ao A om o AT L
EH(S)—E(b(S) t(s)) =b'(s)” t(s) +b(s) t(S)—-@n(s) t(s) +b(s) @n(s)—

S A
"t b(s) r(s)t(S)

from which we have the Frénet formulas:

£(s) —%n(s)
(s) =- ﬂn( S) (Frénet formulas) (1.20)
n'(s) = t() b(s) - ?t(S)

Curio: a body moving along a curve can have a tangential acceleration a; and a centrifugal
one a. , of course, and from physics we know it's v* /r. Now, let's see if all the equations
and all the formalism presented so far show this. We have:

dt'g(s) dt', () ds _ds;

ot g ot d
d’t,(s) _ ds ds,, di(s) _ 1 rr ot a0 VP
o t(s) + ( ) e >t(s) + ( )? n(s) = a—at+ac—att(s)+r—n(s).

Par. 1.3: Space differential Geometry.

first fundamental form:

we saw through (1.4) that a surface can be represented as follows:
t'S =t,(u,V)X+t ,(u,v)y +t,(u,v)z , that is: t'S :t's(u,v) and in a differential form:

af =& & e B gy = du+t dv

u dv
So, let’s define the 1st fundamental form for t'S(u,v) as follows:

| =dt ot =, of )du? + 2¢ ', )dudv + (¢, %', )dv? = Edu? + 2Fdudv + Gav?

where E=({' o), F=¢, ), c=(¢, %)

If now we make a change of parameters (t (u,v)>>>>t *(q,f)), we'll have a change in the
coefficients E, F and G, but I1=1*:

= (dg, df ) = dt st =[at' 2 =f g+t of [ =K (@,du+a,dv) +t, (F,du+f ) =

=[;q, +t7f,)du+ ¢ q, +t7F,)av’ = odu+t oM’ =|dt 7= 1 (du,v)

length of an arc:

we have an arc on t =t (u(t),v(t)); (1.21)



here, we still see the two parameters u and v, typical for surfaces, but as we pointed out
their common dependance from one single parameter t, then (1.21) is also the expression
for a curve (on which the arc is). About the length s between a and b, we then have, of
course: :

dt u rdv rdu r dv

dt 1/2 1/2 —
s= (j Q(dt &) t_Q[(t Dttt
:Q[E(d 2F%%+G( )21t (1.22)

area A of the surface:

by the (1.11), we saw that A= (A= Gt~ o’ jdudv

u-v

. L . r, e raf2 r fe
Now, as the following vectorial identity holds: |a b| =[a |b| - |a>b| , then we have:

|dtru ’ dtrv|2 =EG- F*and so:

A= (pA= gyt~ it Jdudv = Gy/EG- F2dudv (1.23)
A

u-v

-example 1: length of a circle:

we already saw through (1.2) that the sphere (Fig. 1.1) is represented by the following
equation:
t' =(rcosqsinj )X+ (rsinqsinj )y +(rcosj )z .
If now we consider the maximum equatorial circle, (see Fig. 1.1), you can get it by putting
¢=90°, from which:
t =(rcosq)X+(rsng)y....(+02) and then we have a t =t (u(t),v(t)) =t (q(t),r(t)), just like
in (1.21), from which:
' =-(rsing)X+(rcosq)¥
t'r =- cosgX +sinqy ,
I I . 1 1 . .
E=t ,=r’sn’q+r?cos’q =r®, F =t >, =-rcosqsing +rcosqsing =0,

G :t', >t', =cos’q +sin’q =1, and so (1.22) yields (r=const ® % =0):

_ b du,, (o VAPYSYPUN B o RO dq dr
S—dE(a) ZFEd_ G(E) ] edt —dE(a) Faa

_ b 00 o, 0 =dg 0 — _ . 2P _ —
_dE(E)] dt—Q\/EEdt—Qrwdt—er—r?T—2pr—C

du dv + G(%)z]l/zdt —

that is really the length of a circle!!!

-example 2: the surface of the sphere:

we still consider the same sphere (Fig. 1.1), which, through (1.2), is shown by the
following equation:

t' =(rcosqsinj )X+ (rsinqsinj )y +(rcosj )z , from which:

t'q =-(rsngsinj )x+(rcosqsinj )y



t'j =(rcosg cog )X+ (rsinqcos )y- (rsinj )z
E :t'q >t'q =r’sin’ , F :t'q >t'j =0, G :t'j >t'j =r?and for the (1.23), we get:

A= ¢pA= @)/EG- F2dqd = gp/r*sin?j - Odqdj = ggy>sin j dadj =
A q-j q-j q-j

=r?ylacsin j dj =r?2p|- cosj [} =r?2p x2=4pr?
a ]

That is really the surface of the sphere we all know!!!

second fundamental form:

let's write again the (1.10), which supplies a vector/versor N normal to the surface:
r oo I 1o '
N :ﬁ ; we then have, of course: |N| =1 and 0=d@ =d(NxN)=2dNxN, from
which: dN A N . (1.24)
If it's so, then dN lies on the surface, and so it can be expressed as follows (u,v):
rIN L IN

r r
dN =—du+—adv=N,du+N,adv (1.25)
fu 1\

Now we can define the second fundamental form I1I:

Il =-df N = -, du+t, dv)(N,du + N,dv) = -t N du? - ¢, N, +t, N, )dudv - £, N,dv? =
= Ldu® + 2Mdudv + Ndv?

properties of I}: , . oo Fo
as we have: (t,t,)" N, then O=(, xN), =t , XN+t , xN,,

r r o« r r r o« r ¢ r r + r
O=(,xN), =t, xN+t,xN,, 0=, =N), =t N+t xN,, 0=, xN), =t xN+t xN,,

therefore: truu XN = -tru XNU, trw <N = -trV XNV : truv XN = -tru XNV : trVu XN = -trV XNU and so:

L :truu xN , M :truv xN , N :trVv XN from which:
Il = Ldu? + 2Mdudv + Nav? =t xNdu? + 2 xNdudv +1',, xNv? = d% xN

normal curvature:

if we have a surface S which contains a curve C and if P is a point on C, the (1.20-1)
supplies the vector curvature, while we define the curvature t' (s)normal to C in P the

projection of the curvature vector t'(s) on the normal N(and |<|i3 the versor fi(s) of
(1.10)): o . .

t' (s) =(t'(s)*N)N and the component along N is: t =t'(s)xN.

Now, as t(s)~ N, we have:



d - r . ro. dr L ro . dr
E(t(s) XN)=0=t"(s) xN +t(s)><—N from which:t'(s) xN :-t(s)xaN and so:

R r dt, (s dt xdN '
t, =t'( )><N —-t(s)><—N =- Jd—N i\ L , as the numerator dtrg xdN is really
ds ds dc n

the definition of 11, whlle ds*can be figured out by deriving (1.22) and then squaring, and
we’ll really have I.

example: normal curvature of the sphere:

we already saw with (1.2) that the sphere (Fig. 1.1) is represented by the following
equation: - . .
t =(rcosgsinj )x+(rsingsnj )y+(rcosj )z , from which:
t'q =-(rsngsinj )x+(rcosqsinj )y
t, =(rcosgcog )%+ (rsingcog )y- (rsinj )z
t' . =- (rcosgsinj )X- (rsingsinj )§
t'» =-(rsingcosj )X+ (rcosgcos )y
t'“. =- (rcosgsinj )X- (rsingsinj )y- (rcos )2
N =- (r cosqsinj )X- (rsingsinj )§- (rcog )2
E=t o, =r?sn? , F=t A, =0, G=t, &, =r?, L={ N =rsn?} , M=, N =0
N =t XN =r, from which:
qu +2Mdqdj + Ndj ? m
" Edg2+2Fdqdj +Gdj 2 |r|

curvatures and main directions:
the two orthogonal directions where t, has its maximum and minimum values, are known

as main directions and the relevant normal curvatures t; and t, are the main curvatures.
Theorem: ty is main and with main direction dup,dvy if and only if dug,dvo and t, satisfy the
conditions:

(L-t,E)du, +(M - t,F)dv, =0

(M - t,F)du, +(N - t,G)dv, =0 (1.26)
proof:

tn is a bound if (t,=11/1)

dt
du

dt,

\ (dug ,dvy)

| %

- 11 %
=0, thatis: g, - 11 Id“|

2
|

=0 and:

(dug,dvg)

(dug,dvy)

EINIEN

B =0. Now, if we multiply by I, we have:

(dup,dvp)

=0, and: Il - I—Idv =0 but: %(duo,dvo):to, so:

(dup,dvp) (dup,dvp)



=0 . Now, as:

(dug,dvp)

I, =2Ldu+2Mdv and |, =2Edu+ 2Fdv and so:

=0 and Il - tl,,

(dug,dvg)

IIdu - tOldu

(Ldu, + Mdv,) - t,(Edu, + Fdv,) =0
(Mdu, + Ndv,) - t,(Fdu, + Gdv,) =0

that is, what we wanted to prove.
Now, we rewrite the (1.26) in the following way:

(L-tE)du+ (M - tF)dv=0
(M -tF)du+(N-tG)dv=0

and we multiply side to side:

(EG- F)t>- (EN+GL- 2FM)t+(LN - M?) =0. (1.27)
The two solutions are the main curvatures.

Gauss curvature and mean curvature:

by dividing the previous equation (1.27) by (EG- F?), we get: t*- 2Ht+K =0 , where:
LN- M?

EG- F? )

1
H :—(t1+t2) (mean curvature) and K =tt, (Gauss curvature). (H =

Gauss- Welnqarten equatlons
we saw t t'V , and N are linearly independent (orthogonal) and so we can use them as

ase tP wrltertheir gerivatives:

:Cilltu + thv +b11N

= letru +C§§trv +b]2N Gauss

{ = cglztIr +c§2tIr +b, (1.28)
N = b1t + bzt +

: gl Weingarten

- b;t u + bzzt v + gz

Where the G,- are the 2nd kind Christoffel simbols.

We saw by (1.24) that: dN A N and the (1.25) tells us that dN can be espressed in terms
of N,,N, , from which we have that N~ (N,,N,) and, according to the Weingarten

equations, we can write that
0= N <N = blt xN +b2t <N +glN <N

0= NV N :bitu N +b22tV <N +gzN <N
but we also know that: tr <N :trv xN'=0 and NxN=1 , from which: g, =g, =0 and so
28) get eaS|er as follows
Q1t + thv +bll
W:C§2tu +C§2tV +bﬁN Gauss
{ :letr +c§2tIr +b,N (1.29)

'}IU - bllt bzt Weingarten
=bY +b%




Lets wrlte (1. 29) more simply, in a TENSOR form, more completely:

C;‘?ta +hb, N (,j=1,2) (1.30)
and let's not forget that by (1.30) we have just started to use the EINSTEIN
CONVENTION, according to WhICh if in a term an index is repeated, then on it we have to
sum up. In fact, in the term Gf‘t in (1.30), a is repeated and so this term will yield two

values, as well as happens in the Gauss equations (1.29).

THE METRIC TENSOR g;:

let’s review our terminology used S0 far, usmg more compendious forms:

u=u, v=u?, u=(@uv), tr ﬂtl,trij— LS
Tu ‘Hu‘ﬂu

| =dt >t =t dudu + 2", %' ,du'du® +t, % Zduzdu = g, dudu’ + g,,du’du® + g, dudu® +
+9,,du’du® = § g, du'du* = g, du'du*, with: g, =E, 9,=0,=F, g, =G and:
ik

g d et ?ll ng

T= 010 - 9n0, = EG- F?= g (1.31)
22@

Moreover: dN = Iilldul + deuzand:
Il =-dt xdN =-t, Ndu'du* - £, N,du'du? - £, N,du?du? - t, N,dudu? =
= b, du'du® + b, du’du? + b,,du?du® +b,,du?du? = § b, du'du®

ik

2 b, b, =N M7 =b.

21 22@
By scalarly multiplying Gauss equations by tk , we have:
trij >trk = Gf?tratrk +Qj|<| >trk = G’Jatratrk +0= ijatratrk :G?gak :ijk (a,i,j=12)
G are the 1% kind Christoffel symbols.
Then, remember that: g, g* =d.’ (by definition of g*), with d/ which is the Kronecker’s
Delta, and isOif it j and 1if i = j; in fact:
g.g% =t ot ot 2ot =t of It ot 2=t o 1xa=d),as . and t' are, by definition,
normal, if i * j (definition of { .
From this, we have: G,9* =G g,,9* =Gd, =Gand so: G, =9,,G and

with: b, =L, b,=b, =M, b, =N and: b= detg

G =9°G,- (1.32)
We have: & =G, +Gy (1.33)
proof: o

we have, by definition of g;, that: g; =t ; , from which:

figy _r

o =t o+, =G, + G,

(ﬂglk + ﬂgkl _ ﬂgij (134)

Then, we also have: G, = > T T
u u u




proof:
19 _ ¢ ﬂgu _

we have, according to (1.33), that: TN +G, 'ﬂgk. i =G, +G, and =G, +G, ,

(it's still about (1.33), but with indexes every time dlfferent, but, all in aII, mdexes have
values 1 and 2, whatever their name is), from which we have what we wanted to prove.

It follows that:
1 ka 1-[gja ﬂg ﬂglj
ai _ 1.35
G = ( u ‘ﬂu ) (1.35)
and moreover, by multlplylng (1.32) G'=gG, in both sides by g,, (the reciprocal of

g'®) , where, by definition of reciprocal: g,,9' =dy , we have: ¢9,.G =9,,9°G, =d.G, .
that is, by removing dX and provided that =k , in the left side, we have:

ﬂglj _

G. = 9. G and by using the last equation, the (1.33) =G, +G,; becomes:

“g” =G, +Gy = 0, G+ 0uG] (1.36)

By scalarly multiplying by t'j , the Weingarten equations (1.29) Ni = bf‘tra , We get:
-h, =N, >trj = bf‘tra >trj =b?g, ; if now we put: b’ =h,g¥, we have:
b’ =b,g =- big,,99 =-b’d} =-b/; therefore Ni =- bf‘tra , with:

blj = gajbla e Qj = gajqa
the symbols (tensors) of Riemann (1st and 2nd kind):

Rk =B - Bib,, (2nd kind, rank 4 tensor) (1.37)
R\ =9% Ry (1st kind, rank 4 tensor) (1.38)

R.ix is the covariant Riemann curvature tensor
Ri« is the combined Riemann curvature tensor

Of course: Ry = g% Ry = 9" (Bby. - byba) =biby - byb (1.39)
According to (1.37), we have: R, =- Ry » Ry =- Ryx ; moreover Ry, =0 if the first

two indexes or the last two are the same; therefore, just four components are not zero,
and are:

R = Ry =by0, - B0, = LN - M?=b and R = Ry, =Bk, - Bk =- (LN - M?)=-b

2
We notice that: LN—MZ -b_Rap _ K(Gauss) . (1.40)
EG- F g g

We have: R?k :(Gi)j - (G’?)k +GEC'E - Gﬁbc'ﬁk (1.41)



proof: .
r :Gj‘tra+qjN >>>
T, r _ r r PN r b y

o =0 =@ LGN BN = (@)L, + G G+

+(0)) N+, (- Bit,) =[(G) + GG - th]t +[Gabak+(h)]N

where we used the Weingarten equatlon N =- ba

Similarly: tik,- =[(G); + &G - hkb?]ta +[Ghy, +(hk),»]N

Now, the third order derivatives are not depending on the order of derivation if and only
if:

t',Jk ,kj that is:

(- Uy =[G~ (G), +GGi - GG, - b +BB' K, +[Ghy + (B - Gby - (0,),IN =0
and as t'l : t'2 and N are linearly independent, the last equation means that:

[(Gﬁl)k - (Gi), +Gﬁbq?k - Gﬁcﬁ - hjh? +hkb?] =0 (1.42)
[G?bak + (blj)k - Gfibaj - (Qk),] =0

The (1.42), through the (1.39), yields: R} =(G), - (G ) +&G, - GG, , that is what we
wanted to show.

Chapter 2: The main quantities in the Theory of General Relativity.
Par. 2.1: Introductory concepts on General Relativity.

First of all, please read again the Introduction on page 2.

Moreover, we know from STR (in App. 1) that the Lorentz contraction happens just in the
direction of the movement, so, if we have a rotating system or a point which rotates, for
instance, around a circle, the movement will be sometimes along x, then along x and v,
then also along z; therefore, the Lorentz contraction is not acting still on just one
coordinate and so, the run circle will appear as squashed, when seen by a rotating
reference system, therefore, not inertial somehow, and therefore geometrically modified.
As a matter of fact, if:

dt > =c’dt?- dx®- dy®- dz®, (dt?=-h,dx'dx“, see after) (2.1)
then, in another system I' which is accelerating along x with respect to the former one,
we’'ll have:

X = x'+lat2
2
y=y
2=7
=t and:

dx = dx'+at'dt’

dy =dy'

dz=dz

dt =dt’ from which:



dt ? = c*dt™- (dx'+at')* - dy”- dz? or (2.2)
dt * =(c®- a’t?)dt*- 2at'dx'dt"- - dx*- dy**- dz* (2.3)

If, then, we also have another system I’ whose plane x-y is rotating (with angular velocity
w) with respect to that of the former system, as we then have the following
transformation system:

X = X'coswt - y'sinwt
y = xX'sinwt + y'coswt

y Yy VVN

q =wt

> X
Fig. 2.1: Two reference systems, one rotating with respect to the other.

and remembering that, easily, for instance, d(sinwt) =wcoswtdt etc, we have for dt *:
dt > =[c* - w?(x?+y")]dt? + 2wy'dx'dt'- 2wx'dy'dt'- dx'- dy*- dz* (2.4)

and we can see that in no cases ((2.2), (2.3), and (2.4), which are of the kind
dt > =- g dx"dx" ; see after) we can reduce dt *, by means of time transformations, to the

algebraic summation of the squares of the differentials of the four coordinates, as in (2.1)
and as would be, on the contrary, for another inertial reference system.

Therefore, the presence of linear accelerations of reference systems (that can cancel
gravitational fields) and also centrifugal/centripetal ones, that is, central ones, such as for
the gravity (for instance, after rotations), introduce combined terms which change the
metric, and so the geometry of the space-time. From this comes the need to formulate a
relativistic theory for gravitation (GTR).

Par. 2.2: On the metric tensor and other main quantities.

When we have dealt with the Gauss-Weingarten equations, just before, we saw that t'u,

t'V , and N are linearly independent (orthogonal) and so they really are a reference

system, but curvilinear, and local, as they lie on a point of a surface, and when we move
on it, such a tern moves and they also change their direction. That's a valid example of a
curvilinear reference system, in the opinion of the writer, of course.

In all the equations introduced in the last chapter on geometry, indexes i, j, k etc changed
from 1 to 2 or also 3. Now, getting a bit deeper in the Universe, and so in the General
Relativity, we first of all notice that our Universe looks tridimensional, therefore, on



indexes, we’ll have a variability which reaches at least three, and then, as also shown in
App. 1 on Special Relativity, there exists a mathematically four-dimensional Universe (for
the standard physics it's also really four-dimensional; to me, it's not!), in which there is
covariance, and so conservation, when passing from an inertial system to another, then,
with Einstein, we start once and for all to consider the Universe on a four-dimensional
basis and that'’s it; therefore, the indexes of all the geometrical equations introduced in
the last chapter, will have, from now on, all indexes with a variability on four values and
the fourth value is the time one (ct). Then, the Einstein’s convention will hold, according
to which if in a term of an equation an index is present twice, then the summation over it
is understood.

We report here the mains, which will be needed by us:

[ [ , . . . . . .
t; =Gt, (Gauss’ equations in a more compendious form; all in G') (i,j=1,2,3,4) (2.5)
(this gives us also the derivative of a versor)

dt > =- g, du'du“(i,j=1,2,3,4) (metric tensor g, /de-square four-distance dt *) (2.6)
G = 1g"a(ﬂgu‘a 1111931' - ﬂg”) (i,j=1,2,3,4) (dst kind Christoffel symbol) (2.7)

R, =(3),- () *+&G - GG,(,j=1,2,3,4) (Riemann combined curvature tensor) (2.8)

The metric tensor g, , in case we are dealing with Euclidean spaces, reduces to
Minkowski's tensor h, (it's 1 for i=k=1,2,3 and it’s -1 for i=k=4; it's 0 when i is different
from k) and without combined terms, that is, if i,k are not the same, then ny=0; in fact,
we should then have (u' =x,y,zct):

dt >=-h,dx'dx* =-x*- y*- 2>+ (ct)?, just like in Special Relativity (App. 1) and the x'
would represent the Euclidean coordinate system. Then, when passing to curvilinear
systems (dx' >>>>dx'), we'll have:

‘Hx ‘Hx

dt >=-h,dx'dx* =-h, ————dx"dx" =- g, dx"dx" , with 2.9
K X g (2.9)
x' x"

grm ik ﬂxm ﬂxn ( )

which is the link equation from one system to another.

In the future we’ll keep for the indexes the letters of the common alphabete (i,j,k etc) in
case of Euclidean spaces (h, ) and those of the Greek alphabete (r,n etc) for curvilinear

spaces g, , with strong gravity.

We saw with (1.1) and (1.2) that a sphere can be represented through an equation in
which there are the three classic Cartesian coordinates (x,y,z) or also by fixing a radius
and making two angles change (r,q,] ):



X2+y?+2z22=r? x.y,2)

t'S:(rcosqsinj )X+ (rsinqsinj )y +(rcosj )z (r,g,j)

Now, in case we make a change of coordinate system (x,y,z) >>>> (x',y’,z’) where the
latter is, for instance, shifted and rotated with respect to the former, there will be classic
equations to go from one system to another, but both system will still have the same
graphical representation by axes stretching from the origin to infinite, in positive as well as
in negative.

X?+y?+7%=r? (xX,y',z)

but all this in the Euclidean geometry, or non curvilinear, if we like.

y’ Zl
Ya
z
Xl

X

Fig. 2.2: Two different “Euclidean” reference systems.

If now we suppose to go from a system as that in Fig. 2.2 to another in which the space
is, for any reason, curved, for instance by the gravity of matter and energy, as supposed
in the General Relativity, then the Euclidean geometry isn't enough anymore and the
curvilinear one, the non Euclidean Riemann-like is more helpful. In fact, in the opinion of
the writer, when passing from a standard system to a curvilinear one, you cannot have the
representation of Fig. 2.2, but the curvilinear one will look like a tern of straight Cartesian
axes only in the infinitesimal range (“d” = de), as per Fig. 2.3; in fact, as it's curved, as
long as you get farther from the origin “0”, every single axis bends and loses any linearity
and proportionality.

dy’ dx’
dx dy yﬂ\
\‘ O
dz dz’

Fig. 2.3: Case of curvilinear coordinate systems.
Therefore, we'll have a system of link equations from an Euclidean system (x') to a

curvilinear one (X'), in the infinitesimal range, for all what just said so far, and that will
be, in general, like this:

xt=x(x, %%, %%, x*)
X2 =x%(x", %%, x%, x4 (2.11)
x2 =x3(x, %%, x3, xh)

x* =x*(x", %%, x%, x)



and vice versa:

x = x(xhx 2 x3,x?)
x> =x*(x*x%,x%x% (2.12)
x> =x3(x,x2,x3x%)
x* = x(x*x%,x%x%)
and for the conversion equations for the expressions for the surfaces and for geometrical

object (t' ), we obviously have (' =x1 +x2] +x%k +x*f = (x,x?,x%x*) and
( =xt, + x4, +x¥, + x4, = 0%, ¢, X))

(2.13)
and moreover, of course:
1 1 1 1
dx' = ‘ﬂxl dx' + ‘ﬂxz dx® + ‘Hx3 o + X - dx’
I I Ix I
2 2 2 2
dx? = ‘ﬂxl dx' + ‘ﬂxz dx® + ‘Hx3 ax® + ‘Hx4 dx*
ix X ix ix
3 3 3 3
X’ = ‘ﬂxl a + ‘sz A + ‘Hxs e + ‘HX4 dx? (2.14)
I I Ix Ix
4 4 4 4
4 - ﬂxl Xm + ﬂxz dXZ + ﬂx3 dX3 + ﬂx4 dX4

I Ix I I

and so: dt = dx’f +dx 2] +dx K + dx € = (dx®, dx 2, dx, dx *) = (dxt, dx?, o, dx’) =

=dt =dxt, +dxt, +dxt, +dx¥, S dxt, =dt (2.15)
and therefore (dx',dx?,dx®,dx*) are the components of tin the curvilinear base
(tll’tIZ’tIB’tl4)'

There exist a reciprocal set of four numbers (t 1.t 2, 3t *) that, by definition:

o) =d.

Now, if we go back for a while to the (2.15), where we plainly used the Einstein’s
convention, we have: dt =dxt'"

If now we want to make a change of curvilinear base, with coordinates from dx'to dx',
we will obviously write: dxit'i = dx'{ ' and, by multiplying both sides by ', we'll have:



_ X

dx =dx't'¥', but it's also true that (as well as for (2.14)):dx dx"; therefore:

K3
WX _ {1 that is:
X
=t % (2.16)

and (2.16) is the equation for the base change.

Law of transformation for the components of a 4-vector:

' r . . : : .

let V =V't, be a generic vector expressed by curvilinear coordinates in the base t'i; in
. ' r .

another base t' ', we will have: V =V"t"' and, according to the (2.16):

r i .
v=vit =i ot with:
ix’
vi=y X (2.17)
ix
which is the transformation equation for the components of a 4-vector after a base
change. Very simply, its inverse is: V"' =V' %
X

Law of transformation for the components of a 4-tensor:

in App. 1 on Special Relativity we said that we can get a tensor T with rank n when we
multiply the components of n vectors. So, if we have two vectors V and S: (where we are
simultaneously reminding how their components transformate)

m il
m_y\/n X~ e S'=g L >>>>
" X°

Tll’ﬁ :VImSII zvﬂ ﬂxn SS - - - ) -

X X ™' qx " qx
components of a rank 2 tensor transformate. Then, you can proceed similarly for higher
rank tensors.

il m il m il
I g I I ns I IX | and this is how the

Derivation of a 4-vector:

we have a 4-vector: V :V”trm ; let’s derive it:
1 m r

av _av trm+VS dt ’

dx™  dx™ dx’

Indexes changes from one term to another, as they change on four values and must not

necessarily be simultaneously the same in all terms.

Now, multiply the right side of (2.18) by the unitary (=1) quantity { m>t'm :

(2.18)



1 m r
r..r . . .
d—\{n :[dvm +V°® Olt—St "t .. ; well, the quantity between the brackets is the covariant
dx dx dx”
derivative and is a tensor, for all that has been said so far:

m r m
VA VT e Gs AV +V°Gl (covariant derivative) (2.19)
Todx” dx’ dx™

where G are said the Christoffel's symbols (affine connection) and already introduced by

(1.30).

Moreover, for the system (2.13), we could write, in a more compendious vectorial form:

trm :(é h, ?—m , and, from this, we also have a dual form for the reciprocal set of four
= X

m

¢m (so that, by definition of reciprocity:tl "t'n =d;): fm= (é )hm% and so the coefficient
- X

a

Gt in (2.19) can be espressed also in the following way:

o’ RO IPR SIS ™ X

G = (! h =h_h , that, if inserted in (2.19), can be also
M & dd TN T Taxd P T IxX Ix? ( )
written in a simpler way, without the unitary coefficients n:
n_ T X"
Gr = 2.20
SOOI Ix® ( )

Then, already in App. 1 on Special Relativity, we reminded that such a derivative (of a
vector) gives a tensor. We also notice that such a derivative is a tensor (rank 2) just
because the terms which make it, have two indexes, just like a tensor 2.

Moreover, (1.30) in the last chapter on Geometry is an example of a derivative of a vector
(versor) which looks like a tensor 2, indeed.

derivation of a tensor:

we have: T% = LT +GIT 4 GT - 6T (2.21)
’ X

in fact (T,™ are just the components, without “versors” and, moreover t'nf "=d,=1):
T(tensor)= T™t { ', from which:

1 —wr.r.n [ o, Norrr o rr. m,
— (TPt t .t )= T)t t.t )+T>(—t .t (t +T " (—t Xt
o Tt = @ TR T (AL CF T (@
r

TT:“ Gt 1.

rr
(tt°)+

)= o BT GITT R, 6T =TT v

ﬂtrmtr :-trmﬂer )
K v

I I

mwmr  raft, y
t, +t "—= |, da cui:

woE N e

(as: ﬂlwtr”trk = ﬂ%dkm =0=




Par. 2.3: On the Lorentz Transformation in the General Relativity.

Let's go back to (2.9), and we know from App. 1 on Special Relativity that dt * is Lorentz
invariant:

1 1b
dt 2 =-h,,dx dx® = -h,, XX

dx?dx?® = -hy dx%dx® , with:
‘ng N

e TX® Xt
hg =ha, ey (2.22)

Let's differentiate (2.22) on x°:
ﬂzx.a ﬂXIb N ﬂXIa ﬂzx.b
OO T X X
swapped and then we subtract the same equation, but with e and d swapped, so getting:

; now, we sum to this the same, but with g and e

1 b 2
ﬂ X~ I~ >>>>> Tx — =0, whose solution is:
* e T™Tx
x=L3x" +a® (Lorentz Transformation) (2.23)
1 1b
This one, together with (2.22), yields: h, =h,, 31)(9 %—hab LaLy .
Moreover, (2.23) in a differential form is: dx® = L5dx° . (2.24)

Let's figure out the elements of the Lorentz matrix (or of the Lorentz tensor) L% :

from the Lorentz Transformations (A1.8) in App. 1, we have that (// and ~ refers to the

direction of the movement): .

g(x,, Vt) =X, , t'=g(t- \/C_>2<x); moreover, of course, we have:
X, :(>r<>\;)\% e X, :>'<- x,, and so:
X'=%+(g- 1)(x>v)—- vt and (2.25)
vor
t=g(t- )

While, for (2.24), we have: dx'=L' dx", from which, using the common letters (i,j etc) for

the three spatial components, 0 as the fourth time coefficient and the Greek letters for all
of them:

dx' = Lijdxj +Ldx°  (for (2.24)) (2.26)
i i r. v 1,0

dx" =dx +(g- D(dx >%\/)W +gEV dx- (for (2.25)) (2.27)

(here, the last term has got a + and not a — because dx’ = - cdt)

By comparing (2.26) and (2.27), we have:

Li0:+givi and L =d! +(gV D IV , and if we use the normalization c=1, out of
Cc

simplicity:



|_i0 =+gv' e Lij :d} + (gv D 'V (Lorentz Tensor)

where the product d>r<>§'/ in (2.27) yielded just the component dx"Vj in (2.26), as in (2.26)
there was just dx’ .

If the direct Lorentz T. is given by (2.24):dx® =L7dx’, then, the inverse one will be
represented as follows: dx® =L" dx® .

Therefore, as also seen in App. 1 on Special Relativity, not only the spatial components (x)
and temporal (ct) can be Lorentz transformed, but also 4-vectors and 4-tensors can:

Vla - Lavb

T9 =L9LSLATS (remembering that the components of a tensor are obtained by
multiplying those of vectors)

Par. 2.4: The 4-vector Momentum-Energy and the Tensor Momentum-Energy.

Preamble on the Delta of Dirac:
By def|n|t|on the Delta of Dirac must satisfy the following equation:

f(y) = cf(X)d (X- Y)d
In practice, if you put it in the integral (which is a summation) it yields the same

integrated function f, but of a different variable. See some good books on the Fourier
Transform to have useful versions of the Delta of Dirac.

Preamble on currentsland densities (of matter/energy):
if in various points X (t) we have energy (and so also matter) with a volume density

e [J/m’], in order to have the total one, we obviously have to sum on n:
I ] I I
e(xt) =g gd’(x- x,(1) ,
where the Delta of Dirac gives the right value for e, in the summation for every position

X, (1)
About the relevant current density of matter/energy J(>r<,t), we obviously have:

k)= 8 a0’ (%- xn(t»dxn(”

in fact, e[J/m’], multiplied by %[m/s], really gives a current of joule per square
meter.

and, of course: J°=e and X(t) =ct.

In components: J°(x) = & ed*(X- )r("(t))_d)it(t)

Now, this summation is over the points n; in order to have the total value, one must
integrate also over the time:

a(t') :

; now, by multiplying numerator

J7 (9 = git'd (x- %, ()37 (%) = oﬂt a ed’(x- x,(t))

and denominator by c, as “de” proper time is dt —cdt , we'll have:



700 = gt 8 a0 0c- 3 ) o) tat)

J?(x) is a 4-vector, ad so X&—t() is
() _ 2 3L L () _
Moreover, Nx] t —d t .d - X,(1)—/——==
ver, NI () =8 &, rd (- X )= =+ & &g rdx- X0V
=- a gﬁd3(x- xn(t)) =- ﬁe(x,t). If now we bring - ﬂe(>r<,t) together with N xi&,t), we
will have the 4-divergence (see also App.1):
ﬂ%\]a (x) =0 (the invariance on Lorentz is clear). (2.28)

Moreover, Q(mat - energ) = ¢d*xJ°(x) = Cd3xe(§,t)

the 4-vector momentum-energy:

we already dealt with it in Special Relativity (App. 1).

a 2
Of course, p* :mo?j); ; then ?jrt) —mool X - =f? and

dt = (c?dt? - dx?)V2 = (1- \'/Z/cz)”zdt—dt/g
from WhICh for the tridimensional component and for the temporal one:
p mog\/ and p°=E,/c=mg and so: (2.29)

p° =(E0/c2)— : (2.30)

Of course, for Lorentz: p® =L% p°.

(*): In reality, we will consider the mass m as a mass referred to the unity of volume
[kg/m’]

the TENSOR momentum-energy:

Ta°(>'<,t) = é o8 (t)d3(>'<- >'<n(t)) (“0” is the temporal component) (2.31)

Tai(>r<,t) =anr (t)%d"‘({(- §n(t)) (“i” , on the contrary, refers to the three spatial
components) and, all together, in a more compendious form:

a t
T 09=8 P % Ogd- Lo o= (2.32)

The first one is a moment (p), actually, and the second is an energy, indeed (p x v). As
before, we summed over the particles n.

(Then, by summing also over the time, we'd have, here too, after having multiplied

B o (x- %,0)))

numerator and denominator by c: T = ot a P, o

Now, (2.32), through (2.30), becomes:



ab ° pnpn
T () = n(E/ )d(X 40)

We notice the simmetry T2 (x) =T"*(x); moreover, T*(x) is a tensor and, being so,

according to Lorentz, transforms, as follows:
T =TS . (2.33)

Moreover just like previously done to get (2.28), through the 4-divergence, we have:

ko =8 0250 Lo K02 mo %0 ok -

=-4p0% 1 ge(x- xn(t))—-ﬂtT”&,tHé%dS(x-xn(t))

S %Tao(x,t)in the last equation is made of those two terms it has on its sides, for the

rule of the derivation.

Therefore, iiTai + W pao :i =a dp; (t)d (x- n(t)) =G*(xt), that is:
fix fit ix® n
iTab =G*, with:
x°
a o dp, (t o dt dpi(t
e (k=8 POa- L) =8 TEBad- k=8 G 17 0e'¢- L)
O o
where f, r is obviously a force.

If particles are free, then p° =const and so >>>> ‘”ibTab =0m
X

Par. 2.5: Relativistic Hydrodynamics.

Now, it's very important to find a form for the tensor momentum-energy T* , as we’'ll see
that in the Newtonian limit of the relativistic gravitation, a component of it appears (T®),
S0 suggesting to involve, once we are out of the limit situation, all T* indeed. Out of
simplicity, now we consider that c=1 (normalization).

Now we see that T?® = ph® +(p+r)U?U® and for fields of any intensity:

T" =pg™ +(p+r)Uu"U” (c=1) (2.34)

proof:
let’'s put the symbol ~ over the quantities which refer to a system at rest; moreover, from

(2.32), we have that, in the right side, there is a product of a moment [(kg/m?®)(m/s)] by a
velocity [(m/s)] (remind the note (*) on page 26) and so:

mass x velocity x velocity (=J) divided by m?, that is a pressure p. (2.35)

Then, when the quantity dx/dt=d(ct)/dt=c is that which corresponds to the index zero, as
per (2.31), then we'll have on the right side the product p° (mc, see (2.29)) by c, but
according to the note (*) on page 26, m is a p and so we have pc®. Let's sum up:

Ti=pdi[Pa] , T°=T%=0, T®=r,thatis: (rc? with c=1 [Pa]) (2.36)



As T is a tensor, let's transform it according to Lorentz, as per (2.33), to get its values for
a generic system, that is, not at rest:

T* =L2L5T® ; we'll have: (g = ! =1 withc=1)
J1- (v¥/c?)  W1-Vv?

TV =pd" +(p+r)gV'V!
T?=(p+r)gV!
P =g%(pViHr)

in fact, as, according to the Lorentz Tensor, it is:
L0 =g L. =gV (g%ViWith c=1),L° =gV (g%\/i with c=1), L', =d! +(9V' Dviv,, it follows

2

that: T® =LOLGT® =LoLOT™ +& (LOLOT ™) = g?r +Al° V) 1p=g*(r +pV?)

TO=L LT = LT +LILIT ! =gVt + pg (L'\L9) =g?V'r + p(L\LS + L\ LS +LILY) =
J

(k,/* 0,i and j can be i, or k,l)

ZQZ\/ir + p[(1+(\/|)2 (g B 1))g\/l +Vivk (g B 1))g\/k +

v - Dy -gzv oy g (V) D v v @Dy s guivy2 Dy -
=gV +pg\/'+pg\/'(gv—21)[(v') Y -GV 3

=gV'(p+r)

On the contrary, for the calculation of TY, let’s split this in two cases:

=jeit

EI—iiJ: LigLJid)-ng — LiOLiO-‘I:oo + LiiLii-Fii + LikLik-Fkk + LiILiI-FII - (k,l 1 i) :gz(\/i)zr +[1+(\/i)2%]2 p+

v @ vt @ B gy 4 pe oy O Ry vy v+
e2pvy D =g (\/)r+p+p(v)2(g D apwy @D = prgrryr +

(\\//2) ©°-D=p+g*(vV)’r +pvV')g* =

oy D142

-1 _g®_ .
(as (gvz ):%:gﬂf c=1)

=p+g*(V) (p+r).
On the contrary, if it j:
TV =L LIT® =L LT ®+LLT + L LT+ L LT = (k i, j) =gV'VIr +

e pie (& D @ By gyt @ Dy vy €Dy

[dlk +VIVk (g 1)][d ik +VJVk (g 1)] _92\/Ivjr + pvlvj (gv )+ p(v )ZVVJ (gv )



Ij(g) le(g) ZIJ(gl)_ i\/1] IJ(g)
+pV'V e +pV)V'V v + p(V)V'V v gVVir +2pv'Vv e

pvlvj (gv ) [(V) +(V ) +(V )]_gZ\/IVJr +2pV'VJ (g ) pV'VJ (gvzl) =

2
=gVVir + pViV"—(gV_2 )(2+g- H=gVVi(p+r) (as (gv_z ):%:gzif c=1).

Totally:

T" =pd” +(p+r)VVIg? (for the spatial components)
T2 = phab +(p+r)Uty ® (for all 4 components, but in weak fields (h*))

At last, for any gravitational fields (h*® >>>> g*):

T™ =pg™ +(p+r)U™U" (c=1).

Par. 2.6: The geodetic Equation.

A free falling parachutist does not have any floor over which his body can rest; therefore,
he does not detect any gravitational acceleration and he feels as if floating in the vacuum.
He realizes he is falling only if he looks at the moving objects around. Therefore, for a free
falling particle, there is a reference system in which a=0, that is:

1*
it *

with dt > =-h, dx'dx*.

But we can see (2.37) in the following way:

=0 (free falling in Euclidean coordinates) (2.37)

b’ _o= d fx* dx™, _ fx? dzx"‘+ 1%* dx™ dx'

it O e at ) T e dt o
|
If we multiply both sides by 11]% and consider that:
a |
T fix , we'll have:
x™ x*

d?x! dx™ dx’
+

dt ? G dt dt

(equation of the geodetic, where geodetic, on the Earth, is the shortest path between two

places)

. G e
with G, = X T

=0 (free falling in curvilinear coordinates) (2.38)

Par. 2.7: The relation between g, and G, .

We already got such a relation in a context all geometric (see (1.35)). Now we get the
same relation starting from a direct calculation:



a b
We already know that: g, =h T I l

ab Wﬂ? ; how we apply ‘HT to it:
a b a b a
‘nglm = ﬂ,zx ix h,, +‘”X ﬂlzx h,, ; if we now remember that ﬂZX _q'm ‘ﬂx
™ X X" X x™ Ix X"
have:
a b a a
B _ g MM v, I Ny =GuBin * G Grm (2.39)

A T R YO Y

Similarly, we also calculate ﬂg'n'; and ‘ng: , from which:
X

X
ﬂgrm + ﬂgm _ 1-[gni

=29,,G', ; now, by defining a reciprocal matrix (or tensor) g™ so that:

®x " W
g™ gkn =d; , we'll have, therefore:
ns T[ m n T[
G = 9 ¥ g + 1%, T ) (2.40)

™®%" %
WhICh IS exactly what we got in a purely geometrical context in Chapter 1.

Par. 2.8: The Newtonian limit.

We know that in the Newtonian limit (V<<c): dt * = c’dt” - dx =c’dt? 2dt @c dt?
This is to say that V' =dx/dtp dx/dt <<dx’/dt p dx’/dt —d(ct)/dt =c, that is,

indeed: dx /dt << dX°/dt

d?x

So, (2.38) becomes: QO(—) =0 (with the convention c=1); moreover, as, in this

limit, the field is stationary, g,, tends to h, (const) and so the temporal derivatives of
g,, are zero, and so, according to (2.40):

QL =- Eg"" ST G =hy, +1hy, , with |h,[<<1and so: G =- %hab.l‘;]ThOb0 and:

2 "
d2x 1. dt,
— 2 ==(—)*N 0 from which:
dt ? 2(dt) o =
%_%th 0 and (2.41)
d4 dt

—— =0 from which: —=C..
dt 2 dt

r , from which: 5:- Gl\z/l f,
r r
GM =N(- G—M) Nf (con f =- G—) and so: g—iT =-Nf and from both this one
r

and (2.41), we have. h, =-2f +const ; as at infinite: h, =f =0 , then const=0 and:

e =hgy +hyp =-1- 2 =- (1+2f) (2.42)



Poisson’s equation:
now, we define, with simplicity, the flux of the acceleration vector a:

F(ad) ; we have: dF(a) awS—-ci—MA xid G'\ZA =- dr‘Q;’n =-GMdW, from

which:
F (8) = RxdS = GM (W= - 4pGM , but: M = r (x,y,2)dV , from which:

F&)=- 4G (x,y, 2V = @ﬁw's = for_Theorem_of _Div.= Qﬁi sadV | that is:
N4 = - 4pGr (x,Y,2)

A

L ~ '
Now, as we know from mathematics that N(E) =- LZ then: Nf =-a and so:
r r

Df =N% =4pGr (Poisson’s Equation) (2.43)

Par. 2.9: The Riemann-Christoffel Curvature Tensor.
ﬂgrm ﬂgln ) 19,4
x™
Chapter 1, through (1.35), in a purely geometrical baS|s. Now, it could be possible, but a
bit boring, to deduct the form of the Riemamm-Christoffel curvature tensor through direct
calculations, purely mathematical, exactly like in Par. 2.7, but we would get exactly what
already obtained at Chapter. 1 with (1.41), here reported again, and obtained in a more
suitable geomertical basis and where we will use Greek letters for the indexes, to show
that here we are talking about gravitational fields with any intensity and also reminding
here that those indexes have four values each (space-time), three for space and one for

time:

At Par. 2.7 we proved that G ——g”s( ) that is, exactly what we got at

Roy =(Go)s - (G +GoG - GLG, “ﬂi “ﬂ%m -a,G, 2.43)

and also R, =g¢'°R,., , from which, also:R, . =g, R, and reminding the expression

(2.40) for G, :

— _1 Sr .- sr 1-[grm 1-[grk _ 1-[gnk
Roms = G5 R =500 Ti[07 (L + - ] 20, 07 (b ot - ]+
+g|s[q:nc$§h - q\l@h (2-44)

Now, we know that g,.g>" =d, , from which: ‘”—‘"k(g,s g*") =0 and so, also through
X

ﬂgrm TIgfﬂ _ TIgl’Tﬂ 1 ﬂ

(2.39), that is, the following: Eg” =0,G +9,G; , we have:

Os %gsr =-g” %gls =-g” (C;'jl Ohs +C;Es O ) (2.45)

where we have made a small rearranging of indexes, which have (those indexes) generic
values, that is, we don’t care if we use j or k; what's important is that they can have all
four values, as we already know, and that their repetition is consistent.

If we go back to (2.44), it becomes, through (2.45):



=1
2

‘Hzg.n ) ﬂzgrm ) ﬂzglk + ﬂzgnk
O™ XX O™ XK

+g|s[q:nc$§h - q\l@h] that is:

ermk [ )]' [Gil Ohs +G!:s O ]Gfsm +[G€| Ohs +Cihs Ghi ]Q?'k+

:1[ ‘Hzg.n ) ﬂzgrm ) ﬂzglk + ﬂzgnk
2

ﬂXkﬂXm ﬂXkﬂXI ﬂXn ﬂXm ﬂXnﬂXI )] * Ohs [q; Qk - szl Gfsm] (2-46)

ermk

As already made at the end of Par. 1.3, we deduce three properties of the tensor R ;.

which are directly verifiable:
-Simmetry R = Ry

-Antisimmetry R, =- R, =- R =Ry
_CyC“CIty R| mk + R knm + R nkm — 0

The Ricci Tensor:

Rn'k:glnerk (Rn'k:ka) (247)

and one can directly verify that : R, =-9'"R, + =- 9'"R 4, =+9' "Ry,

It's then clear the strong relationship of such a tensor with the Gauss curvature (see
(1.40), bidimensional), from which its name curvature tensor, indeed.

The Bianchi’s ldentity:

if we put ourselves in a locally inertial reference system (not strong gravitational field) all
G, are zero; in fact, the difference between the geodetic equation of an Euclidean space

(2.37) and that of a space strongly curved up by gravity, that is, the (2.38), is really the
presence of a G,. In a locally inertial coordinate system, therefore, (2.46) vyields

(derivation ;n expressed by the presence of ﬂih):
X

_11 o, Tom  To , Ton

h == 2.4
Rimicn 20¢ "I XX O™ XX ) (2.48)

and so, by direct verification, we have:

ermk;h +R|nhn;k +R|nkh;n :O
By contracting (by multiplying with), in the above equation, | ,n with g'", we have:
Rin - R T Rinn =0 and by contracting again:

R, - Rin- R, =0 which is the same as to say also that (the last two terms are similar:
2x >>> 1/2):

(R"- ~4'R), =0 and (R" - ~g"R),=0 (2.49)



Chapter 3: The Einstein’s Equations of the Gravitational Field.

Par. 3.1: The ten Einstein’s Equations of the Gravitational Field.

They are 16 equations, actually, as they contain rank 2 tensors, that is, with two indexes
each, and everyone of them can have 4 values, and so 4x4=16, but such equations are
not all linearly independent among them, that is, there are doubles, and the independent
ones are ten, indeed.

We know from (2.42) that g, =- (1+2f ) (contact point with Newton’s theory and starting
base), while from (2.36) we know that, for non relativistic matter: T,, =rc®=r (with
normalization c=1); we also have that:

Dg,, = N?g,, =N7[- (1+ 2f )] =- 2N% =-8pGr =-8GT,, , that is:

N?g,, =-8pGT,, ; SO we can suppose, out of extension, that the following equality holds:
G,, =-8GT,, and for gravitational fields of any intensity:

Grm =- &)GTrm

Let’s deduce, now, five peculiarities G, must have:

A)by definition, G, is a tensor, as the momentum-energy tensor T, is

B)G,, Is consisting of terms with second derivatives of the metric tensor (just look at
N*9y)

C)G,, is symmetric, as well as T,

D)as T, is conserved (T, ., =0), then G and similars are, as well (G",,=0)

E)for weak stationary fields, non relativistic ones, we have G, =N?g,,

A and B say that G, is proportional to the curvature tensor (2.46), or better to (2.48),

clearly made of second derivatives of the metric tensor.
Moreover, the symmetry of indexes wants that the curvature tensor is represented by the
Ricci tensor R, =R, and by the symmetric, as well, R=R] (see the paragraph on the

Ricci tensor):

Grm = Can'n + ngrm R (31)
but, through (2.49), we have also seen that:

(R"- %dn”‘R);m =0, from which: R, :%dﬂmRm :%Rn ; now, multiply (3.1) by g™:
GP=CR'+C,Rg! and G, =GR, +CR, = 2R, +CR, = (2 +C)R

For the peculiarity D, C, =- % or R, =0 ; the second one must be rejected, as:

Gn=(C,+9,9™C,)R=(C, +4C,)R=-8GT," , and so, ifR, =fR/TX' becomes zero, the
same must happen to ‘ﬂTmm/‘ﬂ)é“ , but now we aren’'t yet in the case of non relativistic
matter.



Therefore: G, =C,(R,, - %gm R) (3.2)

Now, because of the peculiarity E, we figure out C;: for non relativistic systems, we always
have:

|'I'”.|<<T00 , that is: |Gij|<< G,,, from which, for the above (3.2): R; @%gin; moreover,

O, @0, (Minkowski's tensor) and so: R, @gR and R, @g :
(3.2) with m=n =0 (g, @n,,) vields:
Gy, =C(Ry, - %(- D2R,,) =2C,R,, ; moreover, in case of weak fields, we can say (see

(2.46) with G, =0 or directly (2.48)):

_1 %9, Tom  TPo , Ton
™CO2NIXMIXT XX X XX
temporal derivatives are zero:

)] and R, =h'"R . ; being the field static, the

n 1 n ﬂzg 1 ﬂzg 1 o 1co .
=h' ==h' ©)=Zhi(220Y). —h®0==N?g,,, from which:

Gy, :ZCéNZgOO =CN?g,,, from which (C,=1) G, =R, - %ng and so:

R - - 0mR = - 89GT, (33)

which are the Einstein’s equations of the gravitational field, and we rewrite them:

R - 5 9mR =~ 8T,

which tell us that the curvature (n R, ,R) of the space-time is equal to the presence of
matter-energy (u T, ) in it!!!
Now, by contracting with g™ , we have: R- 2R=-8pGT_' , that is: R=8pGT_" and so:

R, =-8G(T,, - %gm'l',' ) (another form for the Einstein’s equations).
In the vacuum, f(T)=0 and soR, =0.

Chapter 4: Classic tests of Einstein’s theory.

Par. 4.1: The metric.

We still have c=1, as a simplifying convention. Now, we define a general metric tensor
through which a gravitational field is static and isotropic; static means that the metric
tensor does not depend on time, about its form and its characteristics, with a clear
reference to its coefficients. Isotropic means that there is a dependance from the
irrotational invariants; in fact, we know that the norm of a vector and the scalar product
between two vectors are invariant for rotations:



r '
X2 =[x, (@%)?, kodk
All this for orthogonal coordinates almost Minkowskian (almost h,, )

dt2=-g_dx"d¥', dt > = F(r)dt? - 2E(r)dix>dx- D(r)(x>dx)? - C(r)dx? (4.1)
r = (x>x)2 and in spherical coordinates:
X3 A P(r, 6, ®) . rsinqdj
> 1
X, = I sing COSj ¥ R r dr
. .. X2 rd®
X, =rsingsinj
X, =T COSq X ®

2= F(r)dt? - 2rE(r)dtdr - r’D(r)(dr)*- C(r)(dr? +r%dg” +r?sin’qdj ?)
Now, we define the linear application t'=t +f (r) and get rid of the non diagonal elements
(combined) by putting:
df _ rE(r).
ar F(r)’
form the above quadratic form:
= F(r)dt- G(r)dr?- C(r)(dr? +r?dg® +r’sin®qdj ?), with:

; there exists a linear rototranslation/application which reduces to a canonical

E*(r)
G(r)=r*(D(r) + )
F(r)
Let's define r>=C(r)r?; then, we get the standard form:
t 2 =B(r')dt*- A(r')dr-r?(dg?+sin®qdj %) (4.2)

C(r) r dC(r),..,
with B(r)=F(r) A(r')=(1+ & ))(1 200 dr )?

We are now interested in the standard form (4.2):
2 =B(r)dt”- A(r)dr®- r?(dg®+sin’qdj *) and through a comparison with the general
expression of the metric (2.9), we get: g, =A(r) , g,=r>, g, =r’sn’q , g,=-B(r)

and as g, is orthogonal, we have that: g" =A'(r) , g“=r?, ¢’ =r?sn?q |,
g"=-B7(r) .
1 fig ‘Hg fig -
Then, as we know that according to (2.40 =—g'"(—= - —1), it comes out
g 0 240): G, =59 (L + L5 )
that the only non zero quantities are:
1 dA(r) . . __rsin’g . _ 1 dB(r) a1l
CO2A(r) dr e A(r) I/ Ar) 2A(r) dr G =G
1 dB(r)

C?qj :-sinqCOSq ’ qj :($r:F , ql :qq:Cth, q:qt:ZB(r) ar

Now, we calculate the Ricci tensor (I =n in R of the (2.43)):

k

|
= .ﬁj - ‘I.T”_C-}':«+® G, - GG, and we remind that 1]”% is symmetric over m and k,
X X X

also by a direct verification; therefore, we totally have:



_BU() _1B)) A1), B(), 1A()

Re 2B(r) 4 B(r)" Ar) B(r)" r A(r)
_ r . A(r), B(r) 1
R = 2A(r)( Ar) * B(r))+ A(r)
R, =sn*qgR, ., R =- B(r) +E(B'(r))(A'(r) + B'(r))_ 1B , Rp=0formin.

2A(r) 4 A(r)" Ar) B(r)" r A(r)
Par. 4.2: The Schwarschild’s Solution.

We already know that: dt > = B(r)dt*>- A(r)dr?- rdqg?®- r®sin’qdj ?
Moreover, in the vacuum R =0, so:

R”:R‘q:Rn:O; (43)

moreover, we notice that:

i+i =- i(A+E) and for the (4.3), we have:A =- E, that is:
A B rA°A B A B
A(r)B(r) = const . (4.4)

Then, for r ® ¥, the metric tensor g,, must get close to the Minkowski's tensor h . in
spherical coordinates, that is: lim,,, A(r) =lim,,, B(r) =1, from which, for the (4.4):

A(r) :ﬁ and by using this one in the expressions for R, and R, we have:

B"() , BN _Ry ().
2B(r) rB(r) 2rB(r)’

Rq =-1+B'()r+B(r) and R, = y putting R, =0 , we have:

dirB(r) =rB'(r) + B(r) =1, from which: rB(r) =r +const .
r
GM

Moreover, for r® ¥ : g,=0,=-B=-1-2f ® (f :-T)®
B(r) =[1- ZCiM] and A(r)=[1- ZGTM]'l and so, finally:
di ? =1 22 - [1- 2 tar? - r°dq” - r?sin’qd (45)

(Schwarschild’s solution)

Par. 4.3: The general equations of motion.

We know that dt?=B(r)dt*- A(r)dr’- r’dg”- r®sin®qdj > and we also consider the

. . d>x™ dx’ dx
eodetic equation (2.38): +
g ic equation (2.38) a2 G do dp

=0 (in p generic, for the moment): we have,

by making nm change:

_d’ A(r) dr, r dq,, rsin®’g dji . B'(r) dt,,
O_OI_IOZ+2'°~(f)(0|_|0) A(r)(dp) A(r) (dp) +2A(r)(dp) (4.6)



dq 2dq dr d ..

Cosq(—— 4.7
o T ap Snaeosa(y) (4.7
293,20 A g I (4.8)
dp® rdpdp dp dp
_dt B()didr (4.9)

dp®  B(r) dpdp

Now, as the field is isotropic, we put q =p/2 and so the last two equations, (4.8) and

(4.9), becomes:
d . _d dt

—[In=—+Inr?]=0 and —[In—+InB] 0 , from which:
dpo dp dpo dp

dj
r’=—=J (constant 4.10

dp ( ) (4.10)
dt
d_pB const (=1, by choice) (4.11)
from which: 3—;:% . Now, by putting (4.10), (4.11) and the condition (q =p/2) used
before, in the (4. 6) we'll have:

_dr LA d J? L B o dr

— db Itipl , , by 2A(r)— :
T’ 2A(r)(dp) S T 2amnBn 29 by multiplying, now, by 2A(r)- -
1
A @y + L2 =0 that is:
! ()(dp) = B0 i
A(r)(ﬂ)2 P (constant) (4.12)
dp” r* B(r) '

If now we make a system with the equations (q =p/2) just used, then the (4.10), (4.11)
and (4.12), we get:

dt > = Edp? (4.13)
We know that E=0 for photons and E>0 for material particles.

As A(r) is always positive, we have that the particle can reach r only if (see (4.12)):

J2 1

+EE- % Then, by using (4.11) in (4.10), (4.12) and (4.13), we get:
20
r i JB(r) (4.14)
A dry, 3% 1
(r)(dt) + 7 B0 E (4.15)
and dt * = EB*(r)dt? (4.16)

Now we know that, for weak fields: B-1=2f ® r ?j]t J and

1.dr, J2 1- E

E(dt) oz 1@ (4.17)
!

as: B(r) 1+2‘ @ forTaylor) @ (1- 2f )

(4.17) has got a similar correspondance in Newton’s classic mechanics.



For general orbits, r=r(®); then, we know that:

= dj _
dp
ar, J> 1
Ar) (=) +=-—=-E
()(dp) r’ B(r)
A(r) da,, 1 1 _ E
if we get rid of dp, we have: — )t == 4.18
e gett P, we have: = (d ) r> J°B(r) J° (4.18)
whose solution is:
. AY2(r)dr
=10 1 ()E 1 (4.19)
rZ( _ _7)1/2
J’B(r) J* r?

Par. 4.4: The deflection of light by the Sun.

Fig. 4.1: The deflection of light by the Sun.
R; = R,,; b is the collision parameter. At the infinite, b=rsin(j -j,)@( -j) and:
-V :%rcos(j - y) @3—:; V is the motion speed (constant). As at the infinite A=B=1, if

we put these two equations in (4.14) and (4.15), we have:

J=bVand (4.20)
E=1-V? (4.21)
(4.21) is trivial; in order to get the (4.20), we see that:

ba( -j,), fromwhich: 0=dr( -j,)+rdj ,andso: r ddt —-—(| jy)r=bv=1J3

- 1+V?)"? and

For r =r, we have that dr/dj =0 and (4.18) then becomes: J :rO(B ;

0
(4.19) becomes, after an easy calculation:

A"?(r)dr

2 1
B(r) VG0

(=) (6)+¢ o (4.22)

_ 1+V2)-l_ iz]l/Z
r




The total variation of @ is: 2j (r,)- j 4|, while, if the ray of light walked unperturbed, we
would have a variation of p, so, with reference to Fig. 4.1, we have: O =2 (r,)-j |- P;

for a photon, V? =1 and (4.22) yieIdS'
(01 00= AZ O (G- (4.23)

Now, by using the (Taylor S) developments due to Robertson:

I\)l—‘

GM GM

A(r) = 1+2—+ , B(r)=1- 2—+ ., we have:
GM
- )(B(“J)) 1=(") [—”] 1=(- )[1+2GM(—-—)+ ]-1@
B() f'o 1- zGiM-}- o
r
(ro-1) 2GMr
ac- )+< SR - g=[C- SR

The Iast equallty can be directly verlfled.
(4.23) becomes, for Taylor:

. , . . . r
(in order to solve the first two integrals, put o - cosx, while for the third, put TO =t and
r

. . J1-1t
the integral will be
: e
1
. . ¥ 1. r 2 GM GMr .
N-j )= AY2(r)=[(—)?- 1 1+ + +...]dr thatis:
inN-1¥)=0 ()r[(ro) ] [ e e ]

1st 2nd | 3rd
Int. Int. Int.

. . _ a0, GM i - b .
J(r)-] (¥)=sn (?)+ : [1+1 \/1 ( )? - \/r+r]+ and so:

4CM , and if we remind our normalization (c=1), we finally have: Oj = 4G|\2/| ;

D =
0 0
r, =R, =695X0°m and M =1,97x0%kg, we have:
D) =175", in perfect agreement with experimental results. In reality, when in 1919 the

deflection of star light by the Sun was measured in Brazil, during an eclipse, the accuracy
of the measurement was as big as the measure itself.

with

Par. 4.5: An alternative calculation of the deflection, with profiles of antagonism to
GTR.

This method (Firk) is based on the variation of velocity the light undergoes when it
approaches a mass; for this reason | see profiles of antagonism to pure GTR. Then, there
exsist also other methods, more or less similar, based on such a supposition (for instance
Wahlin) and it seems that, if we take into account the smallest cyphers after the point,
those results are even more similar to experimental values.

First of all, we remind that, according to Schwarzschild (see, for instance, (4.5)):



t 2 =B(r)dt”- A(r)dr®- r?dq?- rzsinzqdj 2 (4.24)
Then, we know that, in general: dt 2 =c?(dt)? - (dx)? and as, for a photon, (dx)? = c?(dt)?,
we have: dt > =0, from which, for the (4.24):
0=B(r)dt”- A(r)dr?- rdq®- r?sin’qdj *; moreover, if we consider light radially travelling
towards the Sun, we can get rid of the components in dq and dj :
0=B(r)dt*- A(r)dr? ; (4.25)
The speed of light is c=dr/dt far from the mass of the Sun, while, close to it, the (4.25)
holds, from which we get:

V =dr/dt =c(B(r)/A(r))"*t ¢ ;
From Par. 4.2, we have the values for A(r) and B(r), in which, during calculations, we do

not forget that now c=1 does not hold anymore; therefore:

a(r) =[1- 2M 26M 15 g+ ZGM]

From the developments on the variabl

2GM 2GM ZGM ZGM ZGM 2GM
V/e=(1- ]/[1+ 2 =) dl- 2 1[1- 2 1@1- e 7R
V €c V €c
5
Deflection angle
Wavefront
> V <c

V Cc
O Sun

Fig. 4.2: The velocities of the wavefronts.

With reference to Figure 4.2, the part of wavefront wich is farther from the mass M has
speed c, while the closer one has speed V <c.

YA
dx'=V'dt
/ dx=Vdt
Plane waves
of light y r
y:O |-
X

R Sun (M)

Fig. 4.3: Drawing for calculations.

Now, with reference to Figure 4.3, we have:

r’=(y+R)*+x*(eq. of a circle); (4.26)
now, we apply the operator /1y to (4.26), so having:

2r(Tr/y) =2(y +R) , from which: {r/fy =(y+ R)/r and on the surface of the mass M:



1-[r/ﬂy|y®0 = R/r

Now: v _iriv :El(c[l- ZGEA D= ZGZM r , from which:
fy Tyfr fTyfr rc r’c Ty
1\ _2GM Tr _2GM R _ 2GMR

r’c r r3c

Woo o Ty

y® 0

Now, we calculate the difference between the paths dx and dx’ of wavefronts at a vertical
distance y and y+dy, at which light has got velocities V and V' respectively:

dx’=V'dt and dx=Vdt, from which:

dx’- dx =V'dt-vdt=dt(V'-V) ; (4.27)
moreover, we have, for Taylor: V'=V +(1V/y)dy , thatis: V-V =(1V/1y)dy and (4.27)
becomes:

dx’- dx = (1V/1y)dydt (4.28)
Then, still from Figure 4.3 and from (4.28), we have:

da = (dx- dx)/dy = (TV/fy)dt = (TV/fly) dx/V .

The total deflection Da from - ¥ and +¥ is, by considering that, in such a range, V is
almost always equal to ¢ (except for when it's right close to M):

Da = c‘f:da = Qé\%(ﬂV/‘ﬂy)dx @%c‘f(ﬂV/ﬂy)dx and, close to the surface of M (y=0):

o o 1¥26GMR . _2GMR ¢ dx  _2GMR| X " _2GMR 2 that is.
CQ4 r3c c2 Q¥ (R2+X2)3/2 c2 |R2(R2+X2)1/2|_¥ c2 R?’ :
Da = 4G|\2/| =1,75"|, right what we got in Par. 4.4!!!
o

Par. 4.6: The precession of the perihelion of planets.

a focus=Sun

Fig. 4.4: The precession of the perihelion of Mercury.

For planets, and in particular for Mercury, through centuries, we notice that the perihelion
moves.



Inr, er ,we have that gTr =0. Then, we already know that (see (4.18)):

A(r)(d_r) iz%z Ez,thlsone inr, er ,becomes: izz;ziz ,
r* dj re J°B(r) J r.  J°B(r,) J
r’? r’ 1 1
from which: E—M and 32 =2() B(L) (4.29)
rz-r? 1 1
- 2o

AY2(r)dr

We have: j (r) =j (r_)+é 1 E 1., from which, for (4.29), we have:

rz[JZB(r) BN
f - @)= G (r)rzf‘z[ér T O (4.30)

The total variation of ¢ is: Dj =2j (r,)-j (r.)|. If we did not have any precession, we

would have:
2p|=2p . The precession of the orbit is: Dj =2j (r,)-j (r.)- 2p .

We remind the Robertson’s developments on pag. 39:
A(r) = 1+ZG—M+ , B(r)=1- ZG—M+
We need a 2nd order development for B!, otherwise, in (4.30), B doesn't yield anything

u iz For B '(r) we then have:
r

2 2
B'l(r)@l+zGM +48 '\ZA +.... .
r r

Through such developments, the root in (4.30) can reduce to a quadratic form in = ;
r

anyway, we can notice that such a quantity cancels for r =r, , therefore:
r[B(r) B '(r)]- ri[Br)- B(r,)] 1 1 1.1 1
r2r?[B(r,)- B )] T ( G _)
C can be calculated by executing the lim, g,

2 -1 2 -1
=L [1- B (&)] it [1_'1 B (r)] ; now, by factoring on both numerator and denominator:
r.r[B(r,)- B(r)]

2(r. - r,)MG , we get: C @l- 2MG(ri+ri); with such results in (4.30), we get:

+

i+ Miar

j(r)-j(r)@....... @1+ MG(—+ )]O 1 1 rl 1 ; how, we define:

o f [(*-f)( e

+

r
we get: (r=r ® Y =-p/2); moreover, we just get dr as a function of dY in (56.1) and

make a replacement in the integral in dr:

E_E(E i)+£(r£_ ri)siny (4.31)



o 3. 1 1 p, 1,1 1
i (- @) @..... @{1+§MG(E+?)][Y ] 2MG(r+ )oosY .

For the (4.31), at the aphelion, Y =p/2 ,s0: Oj =2 (r,)-j (r.)]- 20 6pM ——) [rad/rev]

where L = E(r— +r_) (straight semiside).

+

Now, as we know that r, =(1+€)a and L=(1- €’)a (see note (**) below), we have:

(GpMG) and, if we do not forget our initial normalization (c=1), we have:

6pMG

L =55,3X0°m, from which Dj =0,1038". Now, as in a century

Mercury makes 415 revolutions, we have Oy .., =43,03" , in perfect agreement with

experimental measurements, as the very first measurements on Mercury started in 1765,
and Clemence, in 1943, calculated:
D =4311't0,45".

(**): some considerations on the ellipse:

A y=directrix

Focus=(p,0)

Fig. 4.5: The Ellipse.

we have, by the definition of ellipse, that: d(P,F)=ed(P,d), where e is the eccentricity and
d is the directrix. Therefore: (x- p)*>+y*=€°x*, from which (1- €)x*+y*- 2px+ p®>=0;

through easy calculations, we get that, for 0O<e<1,
2 2

X_+l33/ =1, with a=pe/(l- ¢) and b=ay1- €, but we also know that b=+/a?- ¢ (by

the definition of ellipse), so, by comparison: ase=c.

Then, if we also take into consideration the other focus, we have: d(P,F)+
d(P,F)=const=2a; in fact: d(P,F)=ed(P,d) and d(P,F)=ed(P,d) and d(P,F)+
d(P,F)=e[d(P,d)+ d(P,d")]=constant, of course (by simmetry).
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App.1-Introduction:

Time is just the name which has been assigned to a mathematical ratio relation between two different spaces; when |
say that in order to go from home to my job place it takes half an hour, | just say that the space from home to my job
place corresponds to the space of half a clock circumference run by the hand of minutes. In my own opinion, no
mysterious or spatially four-dimensional stuff, as proposed by the STR (Special Theory of Relativity). On the contrary, on
a mathematical basis, time can be considered as the fourth dimension, as well as temperature can be the fifth and so
on. The speed of light (c=299.792,458 km/s) is an upper speed limit, but neither by an unexplainable mystery, nor by a
principle, as asserted in the STR and also by Einstein himself, but rather because (and still in my opinion) a body cannot
move randomly in the Universe where it's free falling with speed c, as it's linked to all the Universe around, as if the
Universe were a spider’s web that when the trapped fly tries to move, the web affects that movement and as much as
those movements are wide (v~c), that is, just to stick to the web example, if the trapped fly just wants to move a wing,
it can do that almost freely (v<<c), while, on the contrary, if it really wants to fly widely from one side to the other on
the web (v—c), the spider's web resistance becomes high (mass which tends to infinite etc). On this purpose, see
Appendix 2.



Anyway, Einstein’s theory is formally founded on two principles:

-Principle of di Relativity: laws of phisics have the same form in all inertial systems (i.e. at relative movement with a
constant speed); as it doesn't make any sense an absolute movement with respect to a standing ether which does not
exist (see Par. 3.7) all reference systems are equal laboratories to verify in all laws of physics; so there aren’t any
privileged reference sysyems (except for, in my opinion, that of the center of mass of the Universe).

Anyway, the Michelson and Morley experiment (App.1-Par. 3.7) represented the end of the ether and opened the doors
to STR.

-Principle of Constancy of the Speed of Light: the speed of light in vacuum has always the same value c=300.000 km/s.
Therefore, no matter if you chase it at 299.000 km/s of if you run away from it still with that speed; light in vacuum will
run away or chase you still at 300.000 km/s! (c=299.792,458 km/s)

In the opinion of the writer, there is something like a contradiction in the STR; the speed of light seems to be an
“absolute” object, indeed, and not “relative”, as we are here talking about “relativity”. The point here is that speeds
among objects in the Universe are relative with respect to themselves, but there is an absolute (or almost) speed c¢ with
which all objects in the Universe fall towards the centre of mass of it; from this the absolute essence of c. And here
there is also an explanation of the reason why objects at rest have energy moc? (App.1-Par. 2.4), energy given to matter
at rest by Einstein, unfortunately without telling us that such a matter is never at rest, as it's free falling with speed c
towards the center of mass of the Universe, as chance would have it. On this purpose, see my complete personal
opinion in Appendix 2.

If a common man hears the speed of light is the same everywhere and for everybody (all inertial observers), even when
they have relative movements at constant speed, nothing happens. On the contrary, if it's heard by a particular man like
Einstein, what he can understand from that can be surprising. The following simple experiment, made by a light clock on
a space ship, shows that the fact that the speed of light is ¢ for “everybody” implies that time is relative, from which the
Twin Paradox comes (App.1-Par. 1.4) etc:

counter

00:01 _ 00:02 00:02

] light source ] v ] Vv
[ | O —> —>

N
ct
ct’ ct’
=4

v L o

[ ! [ | Vit |
mirror
Fig. Al: Light clock not moving. Fig. A2: Light clock moving at speed V.

As you can see in Fig. Al, every time light (blue arrows) goes from source to mirror and back, the light clock says, for
instance, one second, or a certain time t’. The path in blue shown in Fig. Al is seen by those who are not moving with
respect to the clock, i.e. by who is on the space ship with the clock itself. On the contrary, those who are on the Earth
and see the clock moving on the ship, will see the light travelling diagonally longer paths, as shown in Fig. A2, as the
mirror moves while the light goes downwards, and the source moves, too, when the light goes back upwards. Now, as
we are talking about light, the behaviour of it during its going downwards is not like that of a suitcase falling from the
luggage compartment of a railway wagon, which is seen to fall vertically by the passenger on it and by a parabolic
trajectory by the observers not moving, on the platform at the station, so taking the same time for both of them, as in
the latter case (parabolic) the falling speed is higher; we are here talking about light, therefore its speed must be the
same for all, and c; but if it's so, then those who see the longer diagonal path must say that time taken by light to go
down and up must be longer. Therefore, despite we're talking about just one clock and one event, those two observers
come to different results, so to the relativity of time and to all its implications.

Using the Pithagorean Theorem on the triangle in Fig. A2, we have:

c’t? = ¢4 +V?4? |, from which: [t'=t,|1- —- |and so, in general: t'<t and t tends to zero when V tends to c!

I remind you that t’ is the time of the astronaut who is travelling with the clock, while t is the time elapsed on the Earth.
If all this is true for the fastest thing (light), then it's also true for standard hands clocks and also for the biologic ones
(living beings)! In the seventies, by using very sensitive atomic clocks, they proved the time dilation on the Earth,
between two atomic clocks which were synchronized, at the beginning, after that one of them flew on a plane,
underwenting a slight, but well felt, time dilation.



App.1-Chapter 1: Fundamental introductory concepts.
App.1-Par. 1.1: Galilean transformations.

They simply give the relations between spatial coordinates (and time), for two reference systems in relative motion, but
in classic physics, where the speed of light is not an upper limit.

Ya ya

v

z z
Fig. Al.1: Reference systems in relative motion.

V\rle ol}viously heFlve:I
r =r'+00'=r"+Vt, (A1.1)
from which, for the components (t=t"):

X = X'+t

y=y

7=7 (A1.2)
t=t'

and for the reverse ones, we obviously have:

X'=Xx-Vt

y'=y

2'=12 (A1.3)
t'=t

(A1.2) and (A1.3) are the Galilean Tranlsformations.
By deriving (A1.1), we have: V = V'+V which can be held as the theorem of summation of velocities in classic physics.

App.1-Par. 1.2: The (Relativistic) Lorentz Transformations.

We know that the Lorentz transformations were born before the Theory of Relativity (which is founded on them) and on
an electromagnetic basis.

They correspond to the Galilean ones, but on a relativistic basis and they are in force as long as we say that the speed
of light is an upper limit in the Universe and it's ¢ for (~)every observer.

-FIRST PROOF:

if we suppose a relative motion along x, we correct the x components of the Galilean Transformations through a
coefficient k, as follows:

X'=Kk(x- Wt) (A1.4)
X =K(X'+Vt'") (A1.5)

Now, for a photon, we obviously have:



ct'=k(c- V)t and ct=Kk(c+V)t, as light has the same speed c in both reference systems, from which, by
mutual multiplication of the corresponding sides:

V2
c’tt'= ktt'c? (1- —-) ., from which:
c

1 1
k= = (A1.6)
\/ VZ  J1- b?
1- 2
c
1 1 X 1 . . .
Moreover, from (A1.5) we have: 1'= V(E - X ) and using (A1.4) in it, we have:
1 X 1 kx X 1 \%
t'=—[—- k(x-M)]=—x- —+kt=k[t- —(1- )] =K[t- X AL7
Sl Ko V)= Ex- TRk =Kt S )] = K- X (A7)
V2
as, for (A1.6), we have: (1- 2 2?.
By the same way which led us to (A1.7), we also get the expression for t.
Finally, here are the Lorentz Transformations:
(A1.8)
(A1.9)

-SECOND PROOF:
We know that c=const in all inertial reference systems. Now, with reference to Fig. A1.1, when 0=0" and t=t’, from the
origin light is emitted through spherical waves and isotropically and so we can write that:

CZtZ _ (XZ + y2 + ZZ) - O and CZtIZ_ (X|2+y|2+Z|2) - O

as light has the same speed c in both reference systems. Therefore:

Ct? - (X*+y* +2%) =ct™- (X?+y'?+2?) and for rays along x (y=y’ and z=7):

ct?- x? =cH"-x? .Nowwesay (i =+/- 1): iIX=X, iX=X", ct=h and ct'=h"; we have:

X2 +h?2 =x"+h"?, whose solution is:

x'=xcosq - hsing
h'=xsnq +h cosq (A1.10)

and in a differential form:

dx'=dx cosq - dh sinqg
dh'=dx sing + dh cosq (A1.11)



dx
Now we notice that with respect to the origin “0”, a =0, as the reference system (0,x,y,z) is not moving with respect

to itself. On the contrary, E =-V, as the system (0',x,y’,z’)) moves with speed V with respect to “0” and, as a

dx dx' . _
consequence: — =0 and —— = - I—, but from the ratios between (A1.11) we have that:

dh dh C

dx cosg - sinq
dx' _dxcosq- dhsing _ dh _0-sng _ .V .
d_h:d - p = i =-tgq andso: tgg =i— =ib
' +
Xxsanq + Cosq sing + cosq COsq c
1 1

but we know from trigonometry that: COS( = and:

\/1+thq ) \/1- b?

. tgg _ ib
[ang = = and so the (A1.10) become:
Jl+tg’g  |1- b?
._x - ihb ._ixb +h _
X'=————and h'= , that is:

and so (A1.8) again. By the same way, we also get (A1.9).
App.1-Par. 1.3: The contraction of length, or of Lorentz.

Moving objects with speeds close to that of ligth are shorter to not moving observers. If those observers make
measurements to get the length of the running body, the best way is to use light sources (the fastest thing), by
illuminating the bow and the stern of that body, in order to see the corresponding positions, moment by moment. But
that light has a constant speed, and limited, too, and the result will be that of a shorted body. Reality or measuring
appearance? Convince yourself immidiately that (observed) reality and the measuring appearence are the same thing,
and it must be so!

Let | be the length of a segment in the O system:

|XB - XA| =1 . In 0, according to Lorentz Transformations:
|(XB - VtB) - (XA - VtA)| - |(XB - XA)| _

J1- b? J1- b?

the segment makes sense if both ends are detected “simultaneously” (ta=tg).
Whenvtendstoc, b = V/C will tend to 1 and the radical will tend to zero, as well as I!

Therefore, the length | measured in O will be that measured in O’ by a value less than 1, that is, the observer at rest (O)
will detect a shorter object.

, as in system O the measurement of

I|:|X‘B (tl) - X‘A (t|)| =



App.1-Par. 1.4: Time dilation (Twin Paradox).

It sounds strange, but time, too, can be, and is, relative. Of course, every observer, in himself, sees time going by still in
the same way; if you move with a speed close to that of light, you will not hear your heart beating slower. The
comparison between those two observers which were in relative motion will show the difference on how those two times
went by.

So, according to Lorentz Transformation, in O’ (moving system): Dt'=t';-t',, whilst in O (system at rest):
_te+txyb/c-t',-x,b/c

J1- b?

clock is at rest, as it's travelling with the system O’ itself; therefore:

Dt=t,-t,

, but, by assumption, X', = X'g, as in the system O’ (0',x’,y’,’) the

When vtendstoc, b = V/C will tend to 1 and the radical will tend to zero, as well as Dt'!

Two twins separate as one leaves for a spatial travel one month long and at speeds close to that of ligth; once back to
the Earth, he sees the other twin thirty years older! (Twin Paradox)

At a speed of 260.000 km/s you have the halving, so the radical will be ¥2 and those two times will go by one a half of
the other.

See also the proof of the time dilation by the ligth clock (in the Introduction) and also that on a Doppler Effect basis
(App.1-Par. 3.6).

App.1-Par. 1.5: The four-vector position.

Instead of writing the position vectors with the three classic components x, y and z, let's write them in a mathematically
four-dimensional form, by adding time; this will be very useful. In the (justified) opinion of the writer, our Universe is
three-dimensional and the adding of a fourth dimension is a purely mathematical operation; in fact, I defy you to show
me the fourth dimension of a whatsoever object which is held four-dimensional. In the nowadays’ STR, a real four
dimension is believed!

Well, so: X = (X, X,, X3, X,) , which is the same as: (x,y,z,ct).
By this new terminology, the Lorentz Transformations become:

X =X, +box,

X2 = XIZ

X, =X, (A1.12)
= bg>(ll+9(l4

1
where b =V/C e g=——.
/ 1- b?

You can prove the space-time distance between two points is invariant for Lorentz Transformations, i.e. it is the same in
all inertial reference systems:

2 _ 2 2 2 2 _ n2 _ 12 12 1 \2 1 \2
(DX)” = (Dx)" +(Dx,)” +(Dxy)" - (Dx,)" = (Dx)” = (Dx;)” +(Dx,)" + (Dx;)” - (DX,) (AL.13)
(This expression is a kind of Pitagorean Theorem in four dimensions).
In order to prove that, use the Lorentz transformations in (A1.13), where there are Ax; in place of x;, and you check the
equality.
In other words, three dimension length and time are relative, while their four-dimensional composition is absolute. That's
why we said the definition of physical quantities by four components would have been useful.
We can then use the Lorentz transformations on all four-vectors, in the form of (A1.12).

If we use matrixes, Lorentz Transformations can be written in the following way:

(remember the matrix product, with the components of the row of the first matrix which are multiplied by the
corresponding components of the column of the second matrix, then summing up those products to get the component
of the product matrix, indeed)



geg 0O 0 - bgggegg
(X1, X5, Xy XI4):Q oo ?QXZL and (AL1.14)
T 0 01 O :x‘?x3:
Ebg 00 g 5bus
g 0O bgt') &<, 0
§0 10 0- gx -
(X0 %o, X5, %,) ¢o 01 0% Qx (A1.15)
gbg 00 g ﬂé 4@

while, for the tensor form:
(use the Einstein convention, according to which, if in a term an index is repeated, the summation on that index is

understood)
X'i = aika (i,k=1,2,3,4) on the right side, k is repeated, so you make the summation on it (A1.16)
X =a' X, (ik=1,234) (A1.17)

App.1-Par. 1.6: Relativistic Law of Transformation of Velocities.

If I'm walking with a speed of 5 km/h in a railway train car which is travelling with a speed of 100 km/h with respect to
the platform, I'll have, with respect to the platform, a total speed of 105 km/h. This is classic physics. On the contrary,
when those two speeds get close to that of light, the simple composition by algebraic summation cannot be used
anymore, as it would show us a speed higher than that of light ¢, which must be impossible.

Therefore, we have, by definition:

—dx v —dx'
dt V= /jt'
_Gady . _ay'

Vy = At Vy= e

.= % =9

Now, by differentiating the Lorentz Transformations, we have:

_ (dx'+Vvdt")
J1- b?
dy =dy'
dz=dz
(dt+ ¥, o)
dt:#
1- b?
from which:
V, _dxd L\\//dt)
(dt'+—2dx')
v, dV dy,/l b?
T /dt T
(dt'+—2dx')
d/ dZy/l b2
dt —
(dt+—d ")

If now we divide numerator and denominator of last equations by dt’, we have:



(A1.18) and similarly:

When \% <<1 and V% << 1 we are in the classic case (galileian) of algebraic sum.

If we use again the example of the railway train car, where a guy walks inside, if we say V' = (V'X ,0,0, C) and

v =(v,,0,0,C), from (A1.18) we have:

(A1.19)

and if V'X =V =, then V, =C, and not 2¢! Therefore, if the train moves with a speed ¢ and I run inside at c, as

well, with respect to the platform, I'll have a resulting speed equal to ¢ and not 2c!
(1.19) represents the Relativistic Theorem of Addition of Velocities.

As an example: two rockets travel each with speed c¢/2 and meet; at which velocity V, do they meet?

v=-a— T =__" =_"¢c<c!

App.1-Par. 1.7: The Proper Time dt of a particle.

If a particle is at rest in (O',x,y’,2), i.e. if it moves in O’, indeed, i.e. if O’ is its “proper” reference system, then: dx'=
dy’= dz'=0 and:

(ds)® = dx® + dy® +dz* - c’dt> =0+0+0- c¢’dt'*=- c*dt”, from which:

2 2 2 2
dt'=dt = % = \/1- dx +C(33j/t2+ dz dt = 1/1- C—];(%)Z =,/1- %dt (proper time, invariant, as so is %).

Therefore, when you make calculations on a particle, you are led to use for it its proper time, indeed:

V2 dt
dt =,/(1- =)dt=— .
1 ¢ Cz) g

App.1-Chapter 2: The relativity of energies.

App.1-Par. 2.1: The momentum-energy four-vector (or linear momentum).

We know from classic physics that the linear momentum is given by the product of the mass by the velocity. Now, in the
relativistic case, for what has been said so far, we will define a four-vector and then the velocity as dx/dt will have the



proper time dt instead of dt, which is typical of the particle, indeed, for which we are going to define the four-vector:
—m X m, dX X3 Xoy = (Mo O my de my dx, m, dx,

p=(m a ™ ) (]/g dt Vg dt Vg dt Vg dt)

dx, dx2 dx3

_ dx4 . _r B
=M™ M M) T (MM =(pme) = p

1 1
where V is the (three-dimension) velocity vector, P is the three-dimension linear momentum,

m

dx dt
mc = mTt“ is the 4-dimension component, dt =— isthe proper time and M =—= = JT, is the dynamic mass,

which is the rest mass only if v=0.
We have just begun to introduce the concept of relative mass, which is increasing with speed, and becoming infinite
when v=c.

As already said before, the modules of 4-vectors are “absolute”, i.e. they are invariant for Lorentz T.; in fact:
2

m

—Z(C v?) = - mfc? = constant, i.e. it's not

(- )

2 r
|E| :|p|2 - pZ =mV’ - mPc® =-mP(c® - V?) =-

depending on v.

In Relativity there exist a Universe (mathematically 4-dimensional) described by 4-vectors, where quantities are not
changing so arbitrarily with speed and where laws of nature preserve some consistency, no matter what the state of
motion is.

App.1-Par. 2.2: The velocity four-vector.

dx
We obviously define it as follows: V = E‘ , where we use the proper time dt for reasons already shown. Numerator

and denominator are both invariant, so alsoV is.

We have:
dx, dx, dx; dx, dx, dx, dx dx4
V=(— —,— —) = WY~ X1 V2
_(CI pratio dt)(s:.ldts;ldtgdt )(9\/9\@9\/96) (gvng)
and so, as a module for such a 4-vector: |\_/|2 = gZV2 - gZC2 =-c? (constant!). (A2.1)

Par. 2.3: The four-force.

As in classic physics, force is the derivative of the linear momentum with respect to time, in relativity we define the 4-
force as the derivative of the momentum-energy 4-vector with respect to time (proper time):

dp r drd d r. d
F=—=(F,F,,F,F)=(F,F)=(—p,— =(g— ,g— : .
T (FL,F R R =( 4) (dt p at (myx)) = (9 at (myv) gdt (M) (A2.2)

d r r r
so we have: ga(mogv) =gxf =F, (A2.3)

d r_I _ .
(a(m)gv) = f is the “classic” force, and it's more so when g =1)

and so: E( r) Ié——i( r) and by components:
it m dt Q). y comp :
d F _d
g—(ov)=—"= (9V.) (=x.y.2) (A2.4)
dt m,

d
and then, about the fourth component: g ps (mae) = F, (A2.5)



d F, _d
and so: ga(g:) = E‘: = E(gc) : (A2.6)

Now, we differentiate (A2.1), that is, the following equation:
V" = g2 - g%c? =g*V2 +gA2 +g*v2 - g°c’ =- ¢?, 5o getting:
d , d , d , d 2 d d
0=(— +— +— -— = (20v, — +20v, — (v, ) +
( p (v,) p (9vy) p (ov,) p (@)7) = (20v, p (v,) +2, p (v,)
d d
+20v, —(Qv,) - 26—
V. (ov,)- 20 m ()

thatis:0= (@45 (0%) +%, (%) + 400, () Go-o-(@)  and. or (2.0)and (:29)

F .
0:(9\/xi+9\/y—y++gvzi- g:i) and for (A2.3) (gXxf = F):
m m m m,

0= (gvxi +gvy$ + +ngi - gci) , that is:
m m, m m,
_9. 07
F, _E(f x/) . (A2.7)
If now we go back to (A2.2), we finally have the 4-force, or Minkowski force:
d rg r'r
F=f=d (1) (28)

To have the transformation equations for such a 4-force, please see Subappendix 1.4.
Par. 2.4: Eg=mgcZ.

rr
According to (A2.5), we have: g%(mog;) =F, , whilst for (A2.7) we have: F, :%(f X/) . Therefore:

r r
g%(mog:) :I%(f >‘\5) that is: %(mog:z) =f NE , that is, again:
d(mgc?) = f xvdt = dL = dE (A2.9)

(A2.9) is exactly the expression for the energy in classic physics, if § =1; the integration of (2.9) with integration
constant equal to zero yields:

pa10)

In reality (A2.10) holds only for gained energies (as in particle accelerators), while for lost energies (collapsing Universe
or Atomic Physics of electrons going down in energy levels) the following must be used, and | assume it as mine:

E= é m,C® (Rubino)

(see also Appendix 2; for a convincing proof of it, please contact me: leonrubino@yahoo.it ).
Therefore, a particle whose mass is mp has got a total energy:
2
2 mC
= - A2.11
E=gnc - (A2.11)

1- =)

C
and “at rest’(V =0 and so g =1) it has a “rest” energy:

E, = mc? (A2.12)



mailto:leonrubino@yahoo.it

App.1-Par. 2.5: Relativistic kinetic energy.

The difference between (A2.11) and (A2.12) obviously yields the pure kinetic energy of a particle:

E.=E- E,=gnc’- mc®=mc’(g- = m)cz(;2 -1 (A2.13)
NS
If now ve develop, according to Taylor, the expression for g = ! — = ! — , we get, for v<<c (B<<L):
J@- ) Ja-b?)
g :ﬁ :1+%b2 +:—;’b4 +..... , thatis: (§- 1) @%b2 :%Z—z and for (A2.13):

E = 2 _ 2, 1V _1 2 _ . . ,
« =mec(g-H=mc (E?) = Emov (v<<c) which is the well known classic expression (Newton’s) for the

kinetic energy!
In order to have a proof of the (A2.13) starting from a collapsing Universe characteristics, please see into Appendix 2.

App.1-Chapter 3: Relativistic phenomena.
App.1-Par. 3.1: Time and gravity: gravity slows down the time!

Also gravity slows down the time! On a mountain time elapses faster than down in the valley. Of course, on the Earth,
the difference is imperceptible, but on a neutron star or in a black hole, that effect is very strong.

mpfmmmmm g ————— ~----- @ DE =m,gH (delta energy from the level difference)

: DE = hDn (delta energy due to the freq. decrease of

: Photon going down,  the photon). From them: D =m,gH /h.

y Wwith freq. increased 5
by gravity For a photon, E = hn , but in relativity: E = m,c”,

from which, for a photon: M, = hl’l/C2 and so,

4 Photon going up, for Dn : DN =ngH /c? and as time is the reciprocal of

1 with freq. decreased
I by gravity the frequency, we have: Dn/n = Dt/t and so:
I

el AL Ll e el @ @ Therefore, over a time t, we have a slow

Fig. A3.1: Mountain, gravity and time. down At due to gravity!
We know that the escape velocity of a celestial body whose mass is M and radius R is: V = ,IZGIVI/R . If on that

body an object is cast vertically with the escape velocity, it will quit the gravitational field of that celestial body and will
go towards the infinite, without falling down anymore.
A black hole is a body so compressed (big M and small R) that the escape velocity on its surface reaches the speed of
light and so not even the light can escape, from which the name of black hole; moreover, for what above said, we can
say that in a black hole time is approximately stopped!

App.1-Par. 3.2: Volume of moving solids.
Moving solids appear rotated.

B L c/L
Az

L

Ay
A AX D

»
Fig. A3.2: Body seen at rest. >V Fig. A3.3: Body seen moving.

--Observer--




V = DxDyDz (volume of the solid for an observer integral with it)
V'=Dx'Dy'Dz'= Dxy/1- b?DyDz =V+/1- b? (volume of the solid for an observer who sees that solid in

movement with speed V, along x).

Of course, for Lorentz Transformations, as the movement is along x, only Ax is contracted. On the other hand, the
observer at rest sees point B with a delay with respect to A, and this delay is L/c, obviously. As a further consequence, B
appears as moved back about a stretch which is (L/c)V=PL.

We have: Lsin ¢= BL, from which: sin = and ¢=arcsin .

Finally, that body appears rotated! And a sphere goes on appearing as a sphere.

App.1-Par. 3.3: The equation of waves, or of D’Alembert, holds in every inertial reference system.

Electromagnetic waves in vacuum, an so the light, too, propagates, as well known, respecting the wave equation:

DL A s S [ _iﬁ
A AL

Now, we preliminarily notice that, according to the Lorentz Transformations, we have (by deriving them):

x %' qit' vV ot Iy _1z X_IX_Ty_
LTS VAR LSS A L =g, MWW =0
" 0w YT Ty T Yy T ™

According to mathematical analysis, we have, in 0: f =f (f',t'), and so:

LA 0 S YA L 4 0 ¥

LA L g_ +(- V)g— furthermore:

CYAE VX VI VE SR T

ﬁ = ﬁ V ﬂzf Gl ﬂzf and similarly, for the other coordinates:

™ X2 ¢t Y - VX It

i T LAY G 7 O T
- =- - - = -Ng— = , =
it O % ™ e Vet Mg ™ TR e

from which, by substitution in the wave equation, we have:

ﬂzf + ﬂzf + ﬂzf 1 ﬂzf ﬂzf + ﬂzf + ﬂzf i ﬂzf that is what we wanted to prove.

ﬂXZ ﬂyZ 1‘[22 C ﬂt ﬂX'Z ﬂylz 1‘[2!2 2 1‘[ 12

App.1-Par. 3.4: The Fizeau experiment.
In 1849, a long time before the formulation of the Special Theory of Relativity by Einstein (1905), the French physicist
A.H.L. Fizeau carried out studies on the speed of light in water and in moving fluids.

Water
P=semitransparent plate

‘ Inverted prism
Mirror / —p V

v

P
<
—

<“—V

Light Water Fig. A3.4: Fizeau’s experiment.



c _3X0°m/s
In water at rest, light has velocityV = — = —————— @225.000km/ S, where n=1,33 is the refractive index of
n

133

water. If now water, or the fluid, in which we are going to measure the speed of light, flows with speed V, then,
according to Fizeau's results, the total velocity of light in the flowing fluid is:

V:E+V(l- iz), (A3.1)
n n

Cc
in total disagreement with classic physics, according to which we should more simply have: V=—+V .
n

Years later, STR has given a theorethical explanation of (A3.1). In fact, for the Theorem of Addition of Velocities given
by (A1.19), we can write that:

Cc Cc
(ﬁ +V) (ﬁ +V) v
vV = = ; how, we multiply numerator and denominator by (1- —) , and we have:
nc

Ve V
1+ — 1+ —
( nCZ) ( nC)

c c Vv c 1, V
—+V) (C+V)ad-—) —+V(1- 5)- 2 v
_'n _'n nc’ _n n?’ /nc " Vi
vV = = = , but quantities on the numerator and (—)~ on
\Y V., V (5 nc nc
1+—) 1- () 1-(
nc nc C

the denominator are both negligible (<<1) with respect to the other terms and can be neglected indeed, from which the

assertion: V = c +V(1- iz) :
n n

App.1-Par. 3.5: Relativistic Doppler Effect (longitudinal).

| ‘
%

Source Aerial S Receiving Aerial R

(@]

Y O

\4

Fig. A3.5: Longitudinal Doppler Effect (example of a source S getting farther from R with speed V. (B)).

The source aerial sends electromagnetic signals to the receiving one, and the periods is Ts;
Because of the time dilation, the receiving aerial will receive them with a period T’s , so that:

T=— 1

Ja- %)

; moreover, the fact that S is getting farther will cause a DT'gamong phase fronts, which is:

DT’ = VT's = vV_Ts =b Ts ; s0, we'll totally have Tg:
¢ cJa-by) Ja-b?
T=ToDr= Lo _+pTo =T qrp)= 1o ___(+b)=

Ja-b3) Ja-b?)  |a- b3 J@- b)/@+b)

_ T @b _
T b),/(1+b) T, 5 T,



@+b)
J@- b)

The same holds if the receiver is the one who gets farther. If, then, S and R are getting closer, through the same
reasonings which led us so far, the following holds:

(1- b) .
W (S and R getting closer). (A3.3)

For a more general treatment of this subject, see Subappendix 1.2.

and we rewrite it here: Tg =Tg ; (S and R getting farther) (A3.2)

T =Ts

App.1-Par. 3.6: The Twin Paradox explained by the Relativistic Doppler Effect!

Say a twin leaves for a space flight with a velocity equal to 3/5 ¢=180.000 km/s, getting far away from the Earth for 25
min (measured on the Earth) and then he comes back towards the Earth with the same velocity, so taking another 25
min. Out of simplicity, we neglect the acceleration and deceleration phases.

Now, in order to prove that the time dilation acts also on the cardiac (heart) rhythm of the travelling twin (but still in the
opinion of the twin at rest on the Earth, and when the twins meet on the Earth, at the end of the flight), say, out of
simplicity, both twins have one heartbeat per second and say the twin on the Earth transmits a radio pulse (whose
speed is ¢) every second, i.e. every heartbeat, towards the space ship, in order to inform his travelling twin brother on
his own cardiac rhythm. Now, remember that in the opinion of the “older” twin at rest on the Earth, the flight lasts, by
supposition, 25+25=50 min (3000 heartbeats), while, if the time dilation is true, for the “younger” travelling twin it lasts
(V=3/5 c, that is: B=3/5):

2 2
Tooung = Taan/(L- b ) =T, A - \%) =50min ,|(1- 295CCZ) =40min (=2400 heartbeats)

Moreover, under a Doppler analysis of the phenomenon, we can say that for equation (A3.2), the twin on the Earth (old)
transmits his heartbeats every second, but the flying twin will receive them, during the first “to” step of the flight, every
two seconds; in fact:

T, oung (t0) =T, 4 (t0) (d+b) =1s [1+(3/5) = 2S, so, in the *
young old \/(1_ b) \/1_ (3/5) ’ )

20 min=1200s=1200 heartbeats, has received one heartbeat every 2s from his brother on the Earth, that is just 600
heartbeats.

Therefore, the flying twin, during his 20 min(=1200s) “to” flight, has counted on himself 1200 heartbeats, but has
received only 600 from his brother on the Earth.

After 20 min of the flying twin, the direction of the flight is inverted and the return to the Earth starts, for another 20
min (still according to the time measured by the flying twin). During those further 20 min’s return flight (“from”), on the
contrary, the twin on the Earth still transmits every second, but the flying one now receives every half a second; in fact,
for equation (A3.3):

(from) =T, (from) Y& 2) 1531 B/5)
* J@+b) T 1+ (3/5)

=1200 heartbeats counted on himself, the flyer receives 2400 heartbeats from his brother on the Earth.
Therefore, the flying twin, during his further 20 min(=1200s) return flight, has obviously counted on himself another
1200 hearthbeats and has received 2400 (!) from his brother from the Earth.

to” step, the flying twin, whose “to” flight time is

=0,5s, so, during those further flyer's 20 min=1200s=

Tyoung

Sum up of the counts:

Totally, during the whole space flight, of 20+20=40 min, the flying twin has obviously counted 1200+1200=2400
hearthbeats on himself and (a piece of!) 600+2400=3000 hearthbeats from his twin brother on the Earth.

He must feel younger!!!



App.1-Par. 3.7: The Michelson and Morley experiment.

S — semireflective mirror

1S Si, S, - mirrors

A

r
L — Light source S

I ) .

Sz

=

\v4

Interferometer and binocular

Fig. A3.6: Michelson’s device (interferometer).

c+V

Fig. A3.7: Luminous paths and relevant velocities.

Before Einstein, they thought that electromagnetic waves, and so the light, had to propagate in a mean, as well as for
sounds in the air. They supposed that the space was filled with an invisible and very light gas, the ether. The Earth
rotates around the Sun with a speed V around 30 km/s, so it should move through the ether with such a speed and light
emitted by a light source which is on the Earth itself should have, in general, a speed different from ¢ (cxV along the
direction of rotation of the Earth and /¢c?- v?2 transversally).

In 1886 they started to prepare the experiment which should have proved the movement of the Earth through the ether.
In Cleveland they stopped the street traffic during the experiment in order not to have vibrations; the device was put on
a floating stone slab in a well of mercury, to easily rotate it of 90° without vibrations.

Now, if you put I; along the direction of rotation of the Earth, about the - to and fro - light path, we have:

o , 2, 1
L= S vy
c+V c¢c-V ¢ (1-V¥cd)

and for the transversal path along I:



If you make both rays enter an interferometer to make them interfere, indeed, they should arrive with a At:

2 I I 2
Di=t,-t,=— 2 - 1 L,(L+V?/2c?) - 1,(1+V?/c?
L-t C(\/(l' VZ/CZ) (1- VZ/CZ)) @E[ 1+ / c)- 1, @+ /C )]

as we have V/c @O0 *, V?/c® @02 and (L+ x)* @L+ k.

The wavelenght of the used light was | =55X10 "Mand we know that A corresponds to the full angle 2p ;

therefore, we can write the following proportion, which involves the phase difference & between the two rays and the
path difference cAt:

cbt 2pcht

, from which: d = T

I

2p
By fixing the one arm length and adjust the other arm one by a micrometric screw, you can make cAt of the same size
of A, so making the desired interference phenomenon.
Now, without bringing any change to the geometry of the device, rotate it of 90°; the roles of |; and I, are so swapped
and we’ll have:

2 | | 2

Dt'=t',-t' == L - 2_—) @-[l,(1+Vv?/2c?) - 1,a+V?/c?
C(\/(l-VZ/CZ) a-vic )) c[ ( /2¢%) - 1,( /)]
Dd _d-d'_cDt- D' _ I+, V2 _  22m

and we should also have: — =

2» 2 I | ¢ 55X0'm
rotation of the interferometer, you should see a shift of the fringes of interference of 0,4 times the distance A between
two subsequent maxima.

10°® @0,4, that is, through the

Dd
In reality, none of all that was observed, despite the accuracy of the devices was as good as to detect a 2— =0,01!

p

Michelson declared himself to be disappointed by that experiment, as he couldn’t prove the movement of the Earth
through the ether.

The question was solved in 1905 by an employee of the Patent Office of Berne, Albert Einstein, who suggested to cease
searching for a proof of the movement of the Earth through the ether, for the simple reason that the ether is not
existing!

I add that the nowadays’ dark matter will soon end up like it.

App.1-Chapter 4: Relativistic Electrodynamics.
App.1-Par. 4.1: Magnetic force is simply a Coulomb’s electric force(!).

Concerning this, let's examine the following situation, where we have a wire, of course made of positive nuclei and
electrons, and also a cathode ray (of electrons) flowing parallel to the wire:

Cathode ray Direction of the cathode ray (v)

y
F- . z
x——’
F+ ;
Wire

Fig. A4.1: Wire not flown by any current, seen from the cathode ray steady ref. system I (X', y’, Z)).

We know from magnetism that the cathode ray will not be bent towards the wire, as there isn’t any current in it. This is
the interpretation of the phenomenon on a magnetic basis; on an electric basis, we can say that every single electron in
the ray is rejected away from the electrons in the wire, through a force F identical to that F* through which it's attracted
from positive nuclei in the wire.



Now, let’s examine the situation in which we have a current in the wire (e” with speed u)

y
Cathode ray - Direction of the ray (v)

F oA
®©® 060 6060606 GO —

e+ Wire Direction of the current I,

* @ whose € speed is u

Fig. A4.2: Wire flown by a current (with e speed=u), seen from the cathode ray steady ref. system | (X, y', 7).

In this case we know from magnetism that the cathode ray must bend towards the wire, as we are in the well known
case of parallel currents in the same direction, which must attract each other.

This is the interpretation of this phenomenon on a magnetic basis; on an electric basis, we can say that as the electrons
in the wire follow those in the ray, they will have a speed lower than that of the positive nuclei, in the system I', as such
nuclei are still in the wire. As a consequence of that, spaces among the electrons in the wire will undergo a lighter
relativistic Lorentz contraction, if compared to that of the nuclei's, so there will be a lower negative charge density, if
compared to the positive one, so electrons in the ray will be electrically attracted by the wire.

This is the interpretation of the magnetic field on an electric basis. Now, although the speed of electrons in an electric
current is very low (centimeters per second), if compared to the relativistic speed of light, we must also acknowledge
that the electrons are billions and billions...., so a small Lorentz contraction on so many spaces among charges, makes a
substantial magnetic force to appear.

But now let's see if mathematics can prove we're quantitatively right on what asserted so far, by showing that the
magnetic force is an electric one itself, but seen on a relativistic basis.

On the basis of that, let’s consider a simplified situation in which an electron e”, whose charge is g, moves with speed v
and parallel to a nuclei current whose charge is Q* each (and speed u):

YA

—‘—0—'

I z d =dyy/1- u2/c2

[
»

X

Fig. A4.3: Current of positive charge (speed u) and an electron whose speed is v, in the reader’s steady system I.

a) Evaluation of F on an electromagnetic basis, in the system | :
First of all, we remind ourselves of the fact that if we have N charges Q in line and d spaced (as per Fig. A4.3), then the
linear charge density A will be:

= N>Q/N>d =Q/d

Now, still with reference to Fig. A3.3, in the system I, for the electromagnetics the electron will undergo the Lorentz
force F; =Qq(E + Vv~ B) which is made of an originally electrical component and of a magnetic one:

1
=Exq= (— —)q (— Q/d —~—)q due to the electric attraction from a linear distribution of charges Q, and:
e, 2pr e, 2pr
Q/d

_ L Qt_ Q/d/u)_ u
2pr_mJ2pr_m) 2pr - 2pr

Fmagn =m (Biot and Savart).



sor F =(- 29 - um U129 - qQ/d°<1 M)+ a1

€ 2pr 2pr 1- u?/c?

where the negative sign tells us the magnetic force is repulsive, in that case, because of the real directions of those
currents, and where the steady distance d, is contracted to d, according to Lorentz, in the system | where charges Q

have got speed u (d = d,4/1- UZ/C2 ).

b) Evaluation of F on an electric base, in the steady system I’ of q:

in the system I’ the charge q is still and so it doesn’t represent any electric current, and so there will be only a Coulomb
electric force towards charges Q:

I') (1Q/d)q_ (1Q/d0) 1
€ 2p €o 2p €o 2pr \/1- U'Z/C2
where U’ is the speed of the charge distribution Q in the system I', which is due to u and v by means of the well known
relativistic theorem of composition of speeds:

u'=(u- v)/(1- w/c?) , (A4.3)

=E= ( (A4.2)

and d,, this time, is contracted indeed according to u: d'= d,4/1- U'Z/C2
We now note that, through some algebraic calculations, the following equality holds (see (A4.3)):

(- UZ/CZ)(l- VZ/CZ)
(1- uv/c?)?

| 1 Q/d' 1 Q/d 1- uv/c?)
=g = (2 )g= U o) Ty
€ 2pr e 2pr roJ1- u?/c?|1- v/
We now want to compare (4.1) with (4.4), but we still cannot, as one is about | and the other is about I'; so, let’s scale
F', in(A4.4), to1, too, and in order to do that, we see that, by definition of the force itself, in I':
Dp, _ Fy(in_1)
Dt o W1- V3t 1- Ve
along the direction of the relative motion, so, according to the Lorentz transformations, it doesn't change, while Dt , of
course, does. So:

F,(in_1)=F', (in_I")y1- v?*/c? q(l Q/d, )\/1 (;L/-cl:\\///f-z)vz/cz J1-V?/c? =

=F,(in_lI) (A4.5)

1- u?/c? =

, Which, if replacing the radicand in (A4.2), yields:

(A4.4)

F'y(@n_lI )—

, where Dp,. =Dp,, as Dp extends along y, and not

1 Q/d, )(1- uv/c?)
€ 2pr " \1- u?/c?

Now we can compare (4.1) with (A4.5), as now both are related to the I system.
Let’s write them one over another:

=a(—

1Q/d UQ/d

g Qo 1 1
e 2or ™ 2 ) T (e ),/1- e

F(n_l)= q(

1 Q/dy, (- w/c’) _ Q/dy 1 /W 1

Fa(in_1)=q(—
: e 2pr \/1- UZ/C2 2pr e, \&C’ \/1- UZ/C2

Therefore we can state that these two equations are identical if the following identity holds: C = ]/ 1€y . and this

identity is known since 1856. As these two equations are identical, the magnetic force has been traced back to the
Coulomb’s electric force, so the unification of electric and magnetic fields has been accomplished!!



App.1-Par. 4.2: The Current Density four-vector.

We obviously have the following equations on charge density:
_dQ ~ _dQ_ dQ
I’O—I =—=——=0,

0
Moreover, notice that the following equation holds; it shows the invariance of the electric charge:
rodt,=radt .

I\{Ioreover, we know from physics that the current density is:

] = (v,

So, we are led to defilne the current density 4-vector in the following way:
j=(j,ro)=(o oV, OC) ; note the similarity with the momentum-energy 4-vector:

1 1
p = (p,mc) = (gm,V,gMn,C) . Then, we have:
2 _fe ., » 2
|J| = | J| - ], =- T 5C” and moreover, as we can apply the Lorentz Transformations to a 4-vector, as said at App.1-

Par. 1.5 — eq. (A1.12), we have:

le:gl - bgi4
1= 1,

1'5= Js or also: (A4.6)

jl4:' bg1+g4

1

where b :V/C e QZW

Now, in order to show by 4-vectors and in a more compact way what shown in App.1-Par. 4.2, we consider a wire flown
by a stationary current | in a reference system k and let | be directed along x; if, in such a system, we put a charge q
whose speed is v along x, we'll have a movement of q by the only field B, as E=0, because, on an average, we have in a
conductor as many positive charges as the negative ones are. On the contrary, if we place ourselves in a k' reference
system which is moving with speed V=v with respect to k, in k' q is at rest and theoretically the magnetic force should
disappear; but this is unacceptable for the Principle of Relativity (see the Introduction). An electric field must so appear
in k’; in fact:
.. . . !
i=j,*i . J,=(cr,)=(0,ngc) [n]=[number of g involved/m®] and

. ! I
] = (j_ ,CI ) = (- nqv,- nqc) , the first term is negative as the direction of v is opposite to the conventional one

for I (as, here q<0) and the second one is still negative, as well, still because here, g<O.

For the Lorentz Transformations (A1.12) we so have (v=V):

' =-oqVv J'.x=9(- nqv+nqV)
' . w
r',=onq r.=9(-nq+nq?)

andasnow ', - 1", an electric field must appear.

App.1-Par. 4.3: The Electromagnetic Field Tensor.

Preamble on tensors:

A vector is a tensor of rank 1.
For us it's enough to say that we get a rank 2 tensor when we make the product of the components of two vectors ¢ and

b:
c(c)=(c.C,.65.6,) . b(b) =(b,b,,b,,b,) ® A =cb

Through (A1.16) and (A1.17) we have seen how to express the Lorentz Transformations:



c =a/c, (im=1,234) and b =a[ o' (kI=1,2,34) and so:

« =¢cb = aila cC b= ailalinAllm = A (A4.7)

which is the transformation law for a rank 2 tensor.

Then, we also notice that we get a rank 2 tensor also when we derive the components of a vector b with respect to the
x coordinate:

b=ajb, , X,=ax >>> ﬂxm®ak

™ "
ﬂ_b' = ﬂtl)' L = ﬂl (a i' b )h 3 ai'ar';ﬂ—bl' ; therefore, such a derivative transforms as the components
o ™o X X, X, X

of a rank 2 tensor and so it's a rank 2 tensor, as well.

Preamble on electromagnetism:

We know from the electromagnetism that electric and magnetic fields (induction vector B) can be expressed as a
function of electrodynamic potentials ¢ and A:

L
E =-Nj - E‘anol (A4.8)
1 L 1 ﬂt
B=N" A (A4.9)
N T | i
and we also know the Lorentz Condition: N XA+ —— =N XA+ =0, (A4.10)
c” It ‘Ht
i _
and also the Continuity Equation: N ><j +— ﬂt . (A4.11)
Still from electromagnetism, we also know that:
D 115 _ ¢ =f d (A4.12)
-—— D = —— an .
e e
r19A r o
DA- —-=-m =LA A4.13
e n ( )

and we remind ourselves that we already defined the current density 4-vector j:

i=G.or) =Gy iner) (i =vr.

Now, we feel led to define the Potential Four-vector or Four-Potential F :
E =(A, Ay, AZ,]—) ; in fact, so doing, (A4.12) and (A4.13) can be so summarized:
c

T, .1,

. i L
[IF, =-nj, and if we also define the four-divergence div, =N, = —+—+—+——= ( —)

x Ty ﬂx ﬂ(ct) ﬂ(ct)

we easily get:

Lo L
N, j =0 for the Continuity Equation (A4.11) and N,F =0 for the Lorentz Condition (A4.10).

Now, from (A4.8) and (A4.9), we have:

B Bl 1-['A\z ﬂAX’ T“: 1-“:2 E :Elz_l_ ﬂA(zc(ﬂF4_ﬂF1)

v Tz ™ T " x ™ T
cannot be espressed through two 4-vectors, but through a rank 2 four-tensor, as we proved the derivative of a vector is
a 2-tensor:

etc; therefore, E and B



e TF,

q —) ; let’s write the components of Fy as a matrix:
%

Fi = (

0 cB, -cB, -E9

z

&
c- cB, 0 cB -E -
Fi =c

X y . .
~, and through (A4.7) we have proved that F; transforms in the followin
B, -cB, 0 -E* “ ?
E. E, E 03
way: By =ajaF,. (A4.14)

Notice that F; is antisymmetric, that is: Fy=-Fy;.

Then, of course:

z

20 B, -cB, -E0

. _g- B, 0 B, -E,=
¥ GeB, -cB, 0 -E,C
E., E, E, 03}

If now we remind ourselves that on the right side of (A4.14) the summation over | and m is understood, as they are
repeated there, and if we develop such an equation, we get the transformation of the electromagnetic field:

EX = EIX Bx = le

— 1 1 — 1 V 1
Ey_g(Ey+VBz) By_g(By-?Ez)

— 1 1 — 1 V 1
Ez _g(Ez-VBy) Bz _g(Bz+?Ey)
and also its inverse:

- K le:Bx

_ o \

y_g(Ey-VBz) By_g(By+?Ez)
E' =9g(E ‘= v

z_g( z+VBy) Bz_g(Bz- ?Ey)

SUBAPPENDIXES:
Subapp. 1: Lorentz Transformations in succession.

k >>>V >>> K >>>W >>> k”
We have three reference systems k, k' and k” and V and W are the relevant relative velocities.

+
Through the following terminology: blzx , b, :w, 91:]/\/1- bl2 , 0, :]/ 1- bz2 , U :%
C C
1+ —-
2

U
and b =— |, we have, for the Lorentz Transformations applied in succession:
c



X =g, (X+Vt') with t= gl(t'+% X') and

X'=g, (X" +HWM") with t'= gz(t"+ﬁ X'") and, by substitution:
C

X= 00, (X" AW VE"+b,b,X") = Gg,[(L+ by, )X +(V +W)t'] =
e YW g (A.1.1)
:glgz(1+ blbz)(x +1+—b1b2t ) =X
1 V+W

——FX"); (A.1.2)
c® (1+b,b,)

and similarly: t =g,0,(1+ b,b,)(t"+

Now, we see that:

glgz(1+ blbz) :]/\/(1' blz)(l' bzz)/(1+ blbz)z :]/\/[1+ blzbzz + 2b1b2 - (blz + bz2 + 2b1b2)]/(1+ blbz)z =

= 1/\/1- [(b,+b,)/@+b,b,)])* = ]/w/]-' U?/c? =g, and so (A.1.1) and (A.1.2) can be rewritten like that:

x=g(x"+Ut") with t= g(t"+% X'") = g(t"+2 X'") , so, instead of carrying out two Lorentz T.
C C

(9,,V and g,,W), you just make one, but usingg and U.
Subapp. 2: Transversal (relativistic) Doppler Effect.
If we represent an electromagnetic wave propagating, through its electric field E:

2p

I . rr r 2
E-= Eoe'(""t' k"); such a field propagates along r and we know that |k| = |_p and W = ? so:

|II<|I =WT , that is: |I£|:w1:ﬂ:|lg| : (A.2.1)
| c

'r
|_ =wt- kKX is evidently an invariant, but it can also be expressed as the product of two 4-vectors (invariants):

r 1
(position 4-vector and wave 4-vector) | =-r(r,ct) X (k,w/c).
N w
We know, now, that for (A.2.1), |k| = — and let’s take a light wave propagating in a system k'(V) over the plane x’, y’
c

1
and forming an angle 6’ with x’; the components of K'will be:
k',=k'cosq'= (w'/c)cosg’ , k',=k'sing'=(w'/c)sing’, k';=0 and k',=(W'/c) =K'
For the Lorentz T. , we have, on the contrary, in a system k:
k, =g(k',+bk',), k,=k',, k;=k'; and k, =g(k',+bK",); now, as also k;=0, in the system k, too, the ray
propagates on X,y; so, we have:

k = (—cosg,—sing,0,—) ; now, we calculate w and 8: on this purpose, from the transformation of k' , we have:
C C

ﬂzg(ﬂ+bﬂcosq') ,or:

C C C

.(1+bcoxq")
V(- b%)

_ _ w w o W _ _

while from the transformation of k'; , we have: —C0SQ = g(— C0Sq'+b —) and if we consider (A.2.2), we have:

C C C

_ (cosg'+b) (A.2.3)

(1+bcosq’)

w=w =w'g(l+bcosq’) (A.2.2)

w' ,
cosq =—g(cosq'+b)
w



Then, we notice that the transformation of k', and (A.2.2) yield:

o w o Ja-by) . . sng’
Snq=—8Nq=—F7——-9Nq =————- (A.2.4)
w (1+bcoxq') g(1+bcosqy')
. .___ sing . .
and from (A.2.3) and (A.2.4) we also have: SN’ = ——— , which is, then, (A.2.4) with 8’ and 6 swapped
g(1- bcosq)
and with (-B) in place of B; all this, for the relativity of the movement.
Now, suppose a source ' is at rest in a system k’(6'); then, from (A.2.3) we have:
. (cosq - b) N N - _ _
COS( = ——— (useful to get B8 immediately, from 6’) (it's the (A.2.3) with 8’ and 6 swapped and with (-B) in
(d- bcoxy)
place of B), from which:
1- b?
(A+bcoxy’) = _(@-b) and (A.2.4) becomes:
1- bcoxg
{@-b?
w=w-r—— (A.2.5)
1- bcosqg

Here w’ is the w of the moving source and W'l W . Therefore, if in the system k you see the radiation under an angle
g =P . this means that the radiation comes from right, from the system k’ which is getting farther along the x axis, and
so we can talk about a Longitudinal Doppler Effect (Par. 3.5) and, in this case, COS(] = COSP = - 1 and from (A.2.5)

: . . [1-b)
with the source getting farther (00 =P ), we have: W =W A.2.6
q=p (1+D) (A.2.6)
_ |@tbh) et _ _ :
>>> T =T (1 b) whilst, when the system k' getting closer (6=0 >>> cos 6=1), we have:
_y (@t D)
wW=w (A.2.7)
(- b)

>>> T=T' (- b) , just like in App.1-Par. 3.5.
(1+b)

Curio: by a series development on B (<<1), (A.2.6) and (A.2.7) give: W €W'(1- b) and w CW'(1+ D) so:

w-w _ Dw _ _ _ _ _

— Y == mb ; this formula is very used in astrophysics and cosmology for the red shift (remember that
W W

w=2pn and | n =c¢).

In order to go from the case of the moving emitter to that of the moving observer and vice versa, you just swap B with

— B (V with —V) and w’ with w. In any case, when there is an approaching (or a getting farther) situation, formulae for

the Longitudinal Relativistic Doppler Effect are the same, no matter who is approaching.

If, on the contraty, system k sees the radiation coming under ( =p/2, from the top, then we can talk about a

TRANSVERSAL Relativistic Doppler Effect; in this case you don't have either a getting farther or an approaching

situation, but the only Doppler kind effect is just due to the time dilation; in fact, also from (A.2.5), with = p/2, we

2

1 1 b
have: W =W'+/(1- b?) . By developing, with B<<1, we have: W @' (1- 7) (second degree in B, so, a lighter

effect, with respect to the longitudinal one). Such an effect was first observed by Ives in 1938 and this plainly proved
the theory. Moreover, the diversity between 8’ and 8 also confirms the phenomenon of the light ABERRATION, according
to which, if you are moving, you see light coming to you under a different angle, something like when you are driving a
car in a rainy day and you see the rain falling askew on the windscreen. And from (A.2.3) and (A.2.4), we have:

_sng'y/(@- b?
~ (cosq'+b)

t9q



Subapp. 3: The Transformations of the four-velocity.

We have defined the velocity 4-vector in App.1-Par. 2.2:

dx, dx, dx3 dx
\_/—(— _’F F)_(gd 9 2,0—2 m “) (v, vy, OV, 0C) = (9v o) = (U, U,,Us,U,)

By applying the Lorentz T. , we have: U, = G(u, - bu,), u',=u,, u,=u,, u,=§u, - bu,);
now, you can see that C is defined by the V of the moving system 0’ (and B=V/c), while g is referred to the velocity v
had by a particle in 0, and g' is to V' had by a particle in 0'. Now, by replacing the u by the relevant values:
gV, =Gy, - V). gV, =0V, . gV, =0, . g'c=Gge- dv,);

1

from the last one, we have: g. =, (A.3.1)
J G(l- v,)

and if you put it in the first three ones:

vV, = gIG(VX -V), v, = glvy , V, g V, , it yields the transformations of the velocities.
g g

c

It follows from (A.3.1) that if the particle is at rest in 0 (v=0 >>(Q = 1), then g': C, from which v'=-V , that is, in 0’
the particle has a velocity -V (of course).

For the case of the inverse transformations, in place of the (A.3.1), we'll have: gl =G1+—=V,).
g

Subapp. 4: The transformations of the four-force.
dp
At App.1-Par. 2.3 we have introduced the Minkowski Force, or 4-force: F = d_ = (g g (f )) (F,F,, R, Fp).

According to the Lorentz T.: F',=G(F, - bF,), F',=F,, F,=F,, F'4:G(F4 - bF) .

If now we introduce in such equations the components of the Minkowski Force, we have:

_ b I'r e T L, Loy _
=Gd, - Eg(f %)), g'f y—gy, g'f',=d,,g'(f*")=Gg(f»)-Vdf,) , from which:

r r r
=g,G(fx'B(f"5))' f'y:glfy' f'zzglfz ,(f'>5') gG((f><\5)-fo),which,for(A.S.l),
g c g g 9
becomes:
LR / s
._(X'E( X)) . _f41-b* . f1-b% T (fw)- M
fr = , fro= , b= (f%) = .
Y; LV Y v
1- c? Vy 1- c? Ve 1- c? Y o c? Y

which are the transformation equations of the 4-force.
Subapp. 5: The acceleration four-vector and the transformations of the acceleration.

Of course, the 4-vector acceleration can be defined as follows:
_d®x _ (dxldxzdx d’x,
dt? “dt? dt? dt?’ dt?

5) === _(al’aZ’aS’aA)

For the first three (spatial) components, we have: (a =1,2,3)

_d dg 20v, _ ¥, v, (V)
=— — — = +
dt(gva) ot 9 dt 1-b* c*@@-b )2 '




:d_gzg ;):gsbt&:gs\z/&.Aboutaﬁ
dt dt . Ja- b? C
d dg _cdg® s (Vi)
a =— _: = = bt&:— d so:
4 dt (g:) Cg dt 2 dt Cg C(l' b2)2 and so

—(g—(gv)“dg> @%bl 9

2 dt -b? ) ; hotice that in the system where the particle is at rest, (v=0,

0y

B=0) we have: al‘o) =¥, a§ a§°) =¥, aflo) =0, that is, the spatial part of & is equal to the common

. . 2 2, . . . L .
three-dimensional one. Moreover: |§| =¥° >0 and, as |§| is an invariant, the inequality is always true and so a is

space-type.
In order to get the transformation equations for the acceleration, know that:

V V 1 1 1 .
¥=— and ¥'=— ; moreover, V, =V, (t) and V' _=V' (t') (consistently). Then, let's name:
dt dt X X X X

; 1

v LV
b,=— and b' =—*; so, we get from (A1.18) that:
C

C
av', av'
1- b(b' - b, 1- b(b' - b’
dv, _ 1 dv, _ o dv ) g e (b dv, )
dv, g*@+bb')? ' av', g(1+bb X)Z av', gl+bb' )?
Then, from them, we have:
' "-b(b',dv -b' dv - dv -b' dv
dv, = — av', Y _av,-b(b’,dv, s V') o dVZ:de b(b',dv, bzdez) ;
g°(@+bb')* 7 g(1+bb",) g(1+bb",)
if now we divide these equations by the following well known equation (of the Lorentz T.) dt = g(dt'+%dx') , we
have:
_ 1 , _a' +b(b'a,-b' a,) _a +b(b' . a,-b' a)
&= 5 e & = 2 3 and @, =—*—— >~ 2~
g (1+bb’,) 9°(1+bb",) g°(1+bb’,)

which are the equations for the transformation of the accelerations, indeed.
At last, we notice those equations have got the velocity inside; therefore, if the three-dimension acceleration is constant,
in an inertial reference system, it will change with time in all others!



App. 2: As | see the Universe (Gravity from Electromagnetism).
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App. 2-Chapter 1: A new Universe, 100 times bigger, more massive and older.
App. 2-Par. 1.1: No dark matter!

ON DISCREPANCIES BETWEEN CALCULATED AND OBSERVED DENSITIES pUniv :
The search for 99% of matter in the Universe, after that it has been held invisible sounds somewhat strange. And it’s a
lot of matter, as dark matter should be much more than the visible one (from 10 to 100 times more).

Astrophysicists measure a p value of visible Universe which is around: I @2 10" ®kg/m®,
Prevailing cosmology nowadays gives the following value of p: (see also (A1.6)):

M wrong = Hioea /(ng) @240 *kg/m?® (too high!) . (AL1)

Let’s use the following plausible value for Hlocal (local Hubble’s constant — see (A1.7) below):

Hioey @75km/(s¥Mpc) @2,338X40°[() /m] (h1.2)

confirmed by many measurements on Coma cluster, for instance, (see (Al1.7) below) and this also confirms that the
farthest objects ever observed are travelling away with a speed close to that of light:

H

local

»CI R, e o » fromwhich: R, o » ¢/ H, ., »4000Mpc » 13,5X0°light _ year (AL.3)

local

Moreover, one can easily calculate the speed of a “gravitating” mass m at the edge of the visible Universe, by the
following equality between centrifugal and gravitational forces:



2
— X c —_ 2
m>xa=m =Gm>xM Univ- Old / RJniv- old (A1.4)
niv- Old

from which, also considering (A1.3), we have:

M Univ- Old = C3 /(G XI_I local ) @"67 >§'053 kg (A1-5)
and so:
4 4 ¢ 4 _
M wrong = Muniv- oid /(ngjniv- od) = (Cs/GHlocal )/[3[3 (T)3] = HI(chaI /(5 pG) @20 *kg/m’ (AL.6)
local

i.e. (Al.1) indeed (too high valuel)

Good..., sorry, bad; this value is ten thousand times higher than the observed density value, which has been measured
by astrophysicists. Moreover, galaxies are too “light” to spin so fast (see further on). As a consequence, they decided to
take up searching for dark matter, and a lot of, as it should be much more than the visible one (from 10 to 100 times
more).

On the contrary, astrophysicists detect a value for p around: I @2X10 *kg/m®.

Let’s try to understand which arbitrary choices, through decades, led to this discrepancy. From Hubble’s observations on,
we understood far galaxies and clusters got farther with speeds determined by measurements of the red shift. Not only;
the farthest ones have got higher speeds and it quite rightly seems there’s a law between the distance from us of such
objects and the speeds by which they get farther from us.

Fig. A1.1 below is a picture of the Coma cluster, about which hundreds of measurements are available; well, we know
the following data about it:

distance Ax=100 Mpc = 3,26 10® l.y. = 3,09 10* m

speed Av=6870 km/s=6,87 10° m/s.

Fig. A1.1: Coma cluster.

If we use data on Coma cluster to figure out the Hubble’s constant Hlocal, we get:
i m
i = DY/ Dx @200 ((T) /. )
S
That is a good value for “local” Hubble’s constant.

App. 2-Par. 1.2: The cosmic acceleration aypiy-
As a confirmation of all we just said, we also got the same Hiocal value from (A1.3) when we used data on the visible

Universe of 13,5 10° l.y. radius and ~c speed, instead of data on Coma cluster. By the same reasonings which led us so
far to get the Hlocal constant definition, we can also state that if galaxies increase their own speeds with going farther,
then they are accelerating with an acceleration we call ay,, , and, from physics, we know that:



DXZEaXth:l(a@t)XDtZEDVXIDt , from which: DtZZ)DX
2 2 2 Dv

, which, if used in the definition of

acceleration aypy, , yields:

S E— = =-—_=3,. @62 X0 ¥m/s*, cosmic acceleration (A1.8)

after that we used data on Coma cluster.

This is the acceleration by which all our visible Universe is accelerating towards the center of mass of the whole
Universe.

Now, we say the Universe is 100 times bigger and heavier:

Riniv- new @LOOR,;, @,17908X10°m (AL.9)
M @L00M .., @1,59486 40 kg (A1.10)

Univ- New Univ

This value of radius is 100 times the one previously calculated in (A1.3) and it should represent the radius between the
center of mass of the Universe and the place where we are now, place in which the speed of light is c.

((as we are not exactly on the edge of such a Universe, we can demonstrate the whole radius is larger by a factor \/E ,
that is Ryny=1,667 10°m.))

Anyway, we are dealing with linear dimensions 100 times those supported in the prevailing cosmology nowadays. We
can say that there is invisible matter, but it is beyond the range of our largest telescopes and not inside galaxies or
among them; the dark matter should upset laws of gravitations, but they hold very well.

By these new bigger values, we also realize that:

GMUniv
Vv (A1.11)
RJniv

By the assumptions in the (A1.9) and (A1.10), we get:

c’=

r =Mynv. new /(gp MR ) = 23227340 ¥kg/m® 1 (AL.12)

which is the right measured density!

And we also see that:
c? 12 2 v?
a,,, ——=1,6240 m/s , (as we know, from physics, that a = — )
niv- New r
as well as:

- =GxM,. . [R* =7,62X10 2 m/s® (from the Newton's Universal Law of Gravitation)
niv Univ- New niv- New

The new density in the (A1.12) is very very close to that observed and measured by astrophysicists and already reported
at page 69.

Nature fortunately sends encouraging and convincing signs on the pursuit of a way, when confirmations on what one
has understood are coming from branches of physics very far from that in which one is investigating.

On the basis of that, let's remind ourselves of the classic radius of an electron (“stable” and base particle in our
Universe!), which is defined by the equality of its energy E=m.c? ant its electrostatic one, imagined on its surface ( in a
classic sense):

, 1 €
m > =

2
r,= 4ple mee><:2 @2,8179%0 *m (A1.13)
0




Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it

were a small planet, we must easily conclude that: M, Xg, = G% , SO:
e
m, > Gmic’ -12 2
9. =G—2=8p%) ——=—=a,,, =7,6240 7 m/s’ (A1.14)
r €

e

that is the very value obtained in (A1.8) through different reasonings, macroscopic, and not microscopic, as it was for
(A1.14). All in all, why should gravitational behaviours of the Universe and of electrons (making it) be different?

App. 2-Par. 1.4: Further considerations on the meaning of ayny-

Well, we have to admit that if matter shows mutual attraction as gravitation, then we are in a harmonic and oscillating
Universe in contraction towards a common point, that is the center of mass of all the Universe. As a matter of fact, the
acceleration towards the center of mass of the Universe and the gravitational attractive properties are two faces of the
same medal. Moreover, all the matter around us shows it want to collapse: if I have a pen in my hand and | leave it, it
drops, so showing me it wants to collapse; then, the Moon wants to collapse into the Earth, the Earth wants to collapse
into the Sun, the Sun into the centre of the Milky Way, the Milky Way into the centre of the cluster and so on; therefore,
all the Universe is collapsing. Isn't it?

So why do we see far matter around us getting farther and not closer? Easy. If three parachutists jump in succession
from a certain altitude, all of them are falling towards the center of the Earth, where they would ideally meet, but if
parachutist n. 2, that is the middle one, looks ahead, he sees n. 1 getting farther, as he jumped earlier and so he has a
higher speed, and if he looks back at n. 3, he still sees him getting farther as n. 2, who is making observations, jumped
before n. 3 and so he has a higher speed. Therefore, although all the three are accelerating towards a common point,
they see each other getting farther. Hubble was somehow like parachutist n. 2 who is making observations here, but he
didn’t realize of the background acceleration g (ayni)-

At last, | remind you of the fact that recent measurements on la type supernovae in far galaxies, used as standard
candles, have shown an accelerating Universe; this fact is against the theory of our supposed current post Big Bang
expansion, as, after that an explosion has ceased its effect, chips spread out in expansion, ok, but they must obviously
do that without accelerating.

Moreover, on abundances of U 2 and U? we see now (trans-CNO elements created during the explosion of the
primary supernova, we see that (maybe) the Earth and the solar system are just (approximately) five or six billion years

old, but all this is not against all what just said on the real age of the Universe, as there could have been sub-cycles

from which galaxies and solar systems originated, whose duration is likely less than the age of the whole Universe.
About Ty, of the Universe, we know from physics that: v=wR and W = 2p /T , and, for the whole Universe:
c=WRyny and W =2p /T,

niv » from which:

= _ZpRJniv =247118x0%s (7.840 billion years) (A1.15)
c

About the angular frequency: W,

Univ

@/ R e oy = 25420 ®rad /s, and itis a right parameter for a

niv

; only in the portion of Universe visible by

reinterpretation of the global Hubble’s constant Hglobal , whose value is H |,

us (Wyniy = Heiopa )-

App. 2-Par. 1.5: Further confirmations and encouragements from other branches of physics.

1) Stephan-Boltzmann’s law:
e =sT*[w/m?, where s =567x0°W/(m’K*)

It's very interesting to notice that if we imagine an electron (“stable” and base particle in our Universe!) irradiating all
energy it's made of in time Ty, , we get a power which is exactly ¥z of Planck’s constants, expressed in watt!
In fact:

2

L= oy - 3316x0 W
TUniv

(One must not be surprised by the coefficient ¥%; in fact, at fundamental energy levels, it's always present, such as, for

instance, on the first orbit of the hydrogen atom, where the circumference of the orbit of the electron (2nr) really is

E| N of the electron. The photon, too, can be represented as if it were contained in a small cube whose side is
2 eBroglie

1

=1
2

photon



2) Moreover, we notice that an electron and the Universe have got the same luminosity-mass ratio:

M,..C°
in fact, L, = ——" =580x10>'W (by definition) and it's so true that:
Univ
2 2
M UnivC rnec 1 hN
. T, ¢ L T, cc o
Luniy =__unv__ — = =_Unv — =2 and, according to Stephan-Boltzmann’s law, we can
IVIUniv IVIUniv TUniv rne rne TUniv me

consider that both an “electron” and the Universe have got the same temperature, the cosmic microwave background
one:

1q

L =sT* s T=( LZ Y= (b oLy —( 2 )%1 =273K

4pR 4pR 4pRJn|v 4pr S e

And all this is no more true if we use data from the prevailing cosmology!

3) The Heisenberg Uncertainty Principle as a consequence of the essence of the macroscopic and @&, accelerating

Universe:
according to this principle, the product Ax Ap must keep above h/2, and with the equal sign, when Ax is at a
maximum, Ap must be at a minimum, and vice versa:

Dp xDx 3h/2 and Dp_ Xx. =h/2 (h=h/2p)
Now, as meax we take, for the electron (“stable” and base particle in our Universel!),

Dxmiﬂ for the electron, as it is a harmonic of the Universe in which it is (just like a sound can be considered as made of
its harmonics), we have: DX, =@, / (2p )2 , as a direct consequence of the characteristics of the Universe in

which it is; in fact, from (Al.15), RJniv = E\Jniv/wjniv , as we know from physics that a :WZR, and then
Wiy = 2P/ Tomy = 2PNy, » @nd as W, of the electron (which is a harmonic of the Universe) we therefore take the

“Ny,, —th” part of W, that is:

Univ niv ’

|We| = |WUniv/nUniv| like if the electron of the electron-positron pairs can make oscillations similar to those of the
Universe, but through a speed-amplitude ratio which is not the (global) Hubble Constant, but through Hgna divided by

n and so, if for the whole Universe: R, ., = E\Jniv/wjniv , then, for the electron:
%niv - %niv - %niv - %niv

2 2 2 2
(We) (|WUniv/nUniv|) (| HGIobaI /nUniv|) (a))

Dp, DX = mec% =0,52720 * [3s] and such a number (0,527 0 * Js), as chance would have it, is

Univ ’

Dxmin =

from which:

really h/2 1

4) As we previously did, let's remind ourselves of the classic radius of an electron (“stable” and base particle in our
Universe!), which is defined by the equality of its energy E=m.c? ant its electrostatic one, imagined on its surface ( in a
classic sense):

, 1 €
m > =

1 €
r:

*" dpe,

Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it

_gmom

were a small planet, we must easily conclude that: M, Xg, =

3 4
9. :G%:8p2e§ Gr;]jc 7,62>§LO'12m/32!!!

~ @2,817940 *m

, SO

e




1 Gny
5) We know that & = E is the value of the Fine structure Constant and the following formula 7ma hn vyields
I
e

1 _GnY
the same value only if N is the one of the Universe we just described, thatis: a = —137 = 7me hnumv , Where,
I
e
1
clearly: Ny, = (see (A1.15)) !!
TUniv

6) If 1 suppose, out of simplicity, that the Universe is made of just harmonics, as electrons € (and/or positrons e ),

M, .
their number will be: N = —Y". @), 75X10% (~Eddington); the square root of such a number is: v N @4,13X10%
m
(—Weyl).

Now, we are surprised to notice that +/ NT, @L18X0%m (1), that is, the very Ry, value we had in (A1.9)

(Runiv :\/Nre @L,18x40% m) 1

App. 2-Par. 1.6: On discrepancies between calculated and observed rotation speeds of galaxies.

Andromeda galaxy (M31):

Distance: 740 kpc; Rga=30 kpc;

Visible Mass Mga = 3 10™*Msun;

Suspect Mass (+Dark) Mipark = 1,23 10%*Msyn;
Msin=2 10*°kg; 1 pc= 3,086 10'®m;

Fig. A1.2: Andromeda galaxy (M31).

By balancing centrifugal and gravitational forces for a star at the edge of a galaxy:
2
v m,. M GM
=G—%; G from which: v=_|—Ca

F\)Gal F\)Gal F\)Gal

On the contrary, if we also consider the tidal contribution due to ay,y , i.e. the one due to all the Universe around, we
get:

My

= Mo , ; let's fi for i in M31, h Real (N k times) f f
V= [—=+a,,,Rsy ; let's figure out, for instance, in , how many Rg, (how many k times) far away from

Rea

the center of the galaxy the contribution from ay,;, can save us from supposing the existence of dark matter:

\/GM“DE‘”‘ :\/GMGE" +ay, KRsy . so k:\/G(NI +Dark _ZMGa') @4, therefore, at 4Rgy far away, the
kI:\’Gal kI:\)Gal aUniv F\)Gal

existence of ay,, makes us obtain the same high speeds observed, without any dark matter. Moreover, at 4Rg, far
away, the contribution due to aygy, is dominant.
At last, we notice that ayn, has no significant effect on objects as small as the solar system; in fact:

G h @8,9240° >> AynivReartn- sn @14

arth- Sun



All these considerations on the link between ayn, and the rotation speed of galaxies are widely open to further
speculations and the equation through which one can take into account the tidal effects of @, in the galaxies can

have a somewhat different and more difficult look, with respect to the above one, but the fact that practically all galaxies
have dimensions in a somewhat narrow range (3 — 4 Rk, way Or N0t so much more) doesn't seem to be like that just by
chance, and, in any case, none of them have radii as big as tents or hundreds of Ryiiy way , but rather by just some
times. In fact, the part due to the cosmic acceleration, by zeroing the centripetal acceleration in some phases of the
revolution of galaxies, would fringe the galaxies themselves, and, for instance, in M31, it equals the gravitational part at
a radius equal to:

GM,,, GM

F\’G— =3y, Rear- max » from which: Ry v = aU—M31 @R2,5R,, 5, ; in fact, maximum radii ever observed in
al - Max niv

galaxies are roughly this size.

App. 2-Chapter 2: The unification of electromagnetic and gravitational forces (Rubino).

App. 2-Par. 2.1: The effects of My,;, on particles.

. L . . eZ _ 2 . Z—GMUniv
We remind you that from the definition of I, in (Al.13): X— =m,C" and from the (Al.11): C" =
4peo re niv
(~Eddington), we get:
2
1 & SMywm |, (A2.1)
4peO re RJniv

As an alternative, we know that the Fine structure Constant is 1 divided by 137 and it's given by the following equation:

1
762
_ 1 _ 4pe, _ 1 . : :
a =—— =—— (Alonso-Finn), but we also see that —— is given by the following equation, which can be
137 h, 137
2p
considered suitable, as well, as the Fine structure Constant:
G
1 r Ecox mi 1
a = =_—e = P Mn , where N, =— . EBOX_Min is the smallest box of energy in the Universe (the
137 hnUniv EEmanabIe TUniv
electron), while EEmanabIe is the smallest emanable energy, as N, is the smallest frequency.

Besides, @ is also given by the speed of an electron in a hydrogen atom and the speed of light ratio:
a =Ve in n /c:e2/2e0hc , or also as the ratio between Compton wavelenght of the electron (which is the
minimum A of e when it's free and has the speed of light ¢) and the wavelength of e indeed, on the first orbit of H:

a =1 compron /I 1.1 =(Yme)/(h/MV, 4, ;). Moreover, @ = \Te/@ , where @, = 0,529 A is the Bohr's radius.

So, we could set the following equation and deduce the relevant consequences (Rubino):

1 . Gm ; ; ;
(a= 1;-7) = 4p|$0 = hnre . from which: Zpe e = ZDIS . G:ne = 5 ¢ G:ne =Ry G:ne
—C Univ 0 Univ e global e e
after that (A1.15) has been used.
1 €& _Gm

Therefore, we can write:

= (and this intermediate equation, too, shows a deep relationship
4peO RJniv re

between electromagnetism and gravitation, but let’s go on...)



Now, if we temporarily imagine, out of simplicity, that the mass of the Universe is made of N electrons € and

. + .
positrons € , we could write:

1 e? - CSI\/IUnivrne
4p€% F%mv \/RI\[RIQ
1 e? (BAAUman

& (Ru/YN) NI,

If now we suppose that RJniv =4/ NI’e (see also (A4.2)), or, by the same token,
becomes:

My = Nxm, , from which:

or also: (A2.2)

e RJniv/\/N

, then (A2.2)

1 (Rubino) that is (A2.1) again.

Now, first of all we see that the supposition RJniv = NI’e is very right, as from the definition of N above given
(A1.10), we have:

N = My @\, 75%.0% (~Eddington), from which: VN @4,13X10% (~Weyl) and

m
=+/Nr, @L,18X0%®m, that is the very R, . value obtained in (A1.9).
nv e nv

App. 2-Par. 2.2: The discovery of the common essence of gravity and electromagnetism.

Now, (A2.1) is of a paramount importance and has got a very clear meaning (Rubino) as it tells us that the electrostatic
energy of an electron in an electron-positron pair (e*e' adjacent) is exactly the gravitational energy given to this pair

by the whole Universe M at an RJ”‘V distance! (and vice versa)

Univ

Therefore, an electron gravitationally cast by an enormous mass M for a very long time TU and through a long

Univ niv

travel RJ”iV , gains a gravitationally originated kinetic energy so that, if later it has to release it all together, in a short

time, through a collision, for instance, and so through an oscillation of the e'e pair - spring, it must transfer a so huge
gravitational energy indeed, stored in billion of years that if this energy were to be due just to the gravitational potential
energy of the so small mass of the electron itself, it should fall short by many orders of size. Therefore, the effect due to

IVIUnivrne

) G
the immediate release of a big stored energy, by € , which is known to be ————————, makes the electron “appear”,
niv
in the very moment, and in a narrow range (), to be able to release energies coming from forces stronger than the

gravitational one, or like if it were able to exert a special gravitational force, through a special Gravitational Universal
Constant G, much bigger than G:

L e ey Mmm_ SULE
4pe, mom’ o, 2

run taking effect due to its eternal free (gravitational) falling in the Universe. And, at the same time, gravitation is an
effect coming from the composition of many small electric forces.

; it's only that during the sudden release of energy by the electron, there is a

I also remark here, that the energy represented by (A2.1), as chance would have it, is really meC2 111, that is a sort of

run taking kinetic energy, had by the free falling electron-positron pair , and that Einstein assigned to the rest matter,
unfortunately without telling us that such a matter is never at rest with respect to the center of mass of the Universe,
as we all are inexorably free falling, even though we see one another at rest; from which is its essence of gravitationally
originated kinetic energy meCZ:
1 & GMy,
2
nkc - X__ = Umvnk ]

4p€% @ F%mv




App. 2-Par. 2.3: The oscillatory essence of the whole Universe and of its particles.

We're talking about oscillations as this is the way the energy is transferred, and also in collisions, such as those among
billiards balls, where there do are oscillations in the contact point, and how, even though we cannot directly see them
(those of peripheral electrons, of molecules, of atoms etc, in the contact point).

So, we're properly talking about oscillations also because, for instance, a Sun/planet system or a single hydrogen atom,

ora €€ pair, which are ruled by laws of electromagnetism, behave as real springs: in fact, in polar coordinates, for an
electron orbiting around a proton, there is a balancing between the electrostatic attraction and the centrifugal force:

1 € di \»
F=-——— +m(=)% =-
"= dpe 12 me(dt)

Let’s figure out the corresponding energy by integrating such a force over the space:

1e_2+p2

dpe, r? mr

~, where %[ =W and p=MVX =MW = mwr?

2

1e2+p

U=-gdr=- 5. (A2.3)

4pe, r 2mr

u
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=V

ez
Uo r

4pe,

Fig. A2.1: Graph of the energy.

The point of minimum in (ro,Ug) is a balance and stability point (F,.=0) and can be calculated by zeroing the first
derivative of (A2.3) (i.e. setting F,=0 indeed).

Moreover, around rg, the curve for U is visibly replaceable by a parabola Upqp, SO, in that neighbourhood, we can write:
U paap = K(r = 1,)? +U, , and the relevant force is: F, == U, /Tr =- 2K(r - 1,)

r

Which is, as chance would have it, an elastic force (F =- kX - Hooke’s Law).

Moreover, the gravitational law which is followed by the Universe is a force which changes with the square value of the
distance, just like the electric one, so the gravitational force, too, leads to the Hooke’s law for the Universe.




By means of (A2.1) and of its interpretation, we have turned the essence of the electric force into that of the
gravitational one; now we do the same between the electric and magnetic force, so accomplishing the unification of
electromagnetic and gravitational fields. At last, all these fields are traced back to ay, , as gravitation does.

App. 2-Chapter 3: The unification of magnetic and electric forces.
App. 6-Par. 3.1: Magnetic force is simply a Coulomb'’s electric force(!).
Concerning this, let's examine the following situation, where we have a wire, of course made of positive nuclei and
electrons, and also a cathode ray (of electrons) flowing parallel to the wire:
Direction of the cathode ray (v)

Cathode ray X y ,
F vl A
x——’
F+

Wire

Fig. A3.1: Wire not flown by any current, seen from the cathode ray steady ref. system I (X, y’, Z)).

We know from magnetism that the cathode ray will not be bent towards the wire, as there isn’t any current in it. This is
the interpretation of the phenomenon on a magnetic basis; on an electric basis, we can say that every single electron in
the ray is rejected away from the electrons in the wire, through a force F identical to that F* through which it's attracted
from positive nuclei in the wire.

Now, let’s examine the situation in which we have a current in the wire (e” with speed u)

z

y
Cathode ray Direction of the ray (v)

_ ,
©® 060 66 ®© e —

e Wire Direction of the current 1,

* @ whose €” speed is u

Fig. A3.2: Wire flown by a current (with e speed=u), seen from the cathode ray steady ref. system | (X, y’, 7).

In this case we know from magnetism that the cathode ray must bend towards the wire, as we are in the well known
case of parallel currents in the same direction, which must attract each other.

This is the interpretation of this phenomenon on a magnetic basis; on an electric basis, we can say that as the electrons
in the wire follow those in the ray, they will have a speed lower than that of the positive nuclei, in the system I', as such
nuclei are still in the wire. As a consequence of that, spaces among the electrons in the wire will undergo a lighter
relativistic Lorentz contraction, if compared to that of the nuclei's, so there will be a lower negative charge density, if
compared to the positive one, so electrons in the ray will be electrically attracted by the wire.

This is the interpretation of the magnetic field on an electric basis. Now, although the speed of electrons in an electric
current is very low (centimeters per second), if compared to the relativistic speed of light, we must also acknowledge
that the electrons are billions and billions...., so a small Lorentz contraction on so many spaces among charges, makes a
substantial magnetic force to appear.

But now let's see if mathematics can prove we're quantitatively right on what asserted so far, by showing that the
magnetic force is an electric one itself, but seen on a relativistic basis.

On the basis of that, let’s consider a simplified situation in which an electron e”, whose charge is g, moves with speed v
and parallel to a nuclei current whose charge is Q* each (and speed u):
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Fig. A3.3: Current of positive charge (speed u) and an electron whose speed is v, in the reader’s steady system I.

a) Evaluation of F on an electromagnetic basis, in the system | :
First of all, we remind ourselves of the fact that if we have N charges Q in line and d spaced (as per Fig. A3.3), then the
linear charge density A will be:

=N>Q/Nxd =Q/d

Now, still with reference to Fig. A3.3, in the system I, for the electromagnetics the electron will undergo the Lorentz
force F; =Qq(E + Vv~ B) which is made of an originally electrical component and of a magnetic one:

1Q/
=Exq= (— —)q (——=L=)Qg due to the electric attraction from a linear distribution of charges Q, and:
e, 2pr e, 2pr

= = Q/t = Q/(d/u) = —u Q/d iot and Savar
Fmagn_rrbzr rn)zr_rn) 2pr =m 2pr (Biot and S t).
_ 1Q/d . uQ/d Q/do 1 1
So: F = q(eo 200 - vim, 200 ) = q ( - muv) ° UZ/CZ , (A3.1)

where the negative sign tells us the magnetic force is repulsive, in that case, because of the real directions of those
currents, and where the steady distance d, is contracted to d, according to Lorentz, in the system | where charges Q

have got speed u (d = d,4/1- UZ/C2 ).

b) Evaluation of F on an electric base, in the steady system I’ of q:

in the system I’ the charge q is still and so it doesn’t represent any electric current, and so there will be only a Coulomb
electric force towards charges Q:

| 1 Q/d' 1 Q/d, 1
=EN= (o )a= (2 )g=g Ly L
02p €o 2p €o 2pr \/1- u /C
where U’ is the speed of the charge distribution Q in the system I', which is due to u and v by means of the well known
relativistic theorem of composition of speeds:

u'=(u- v)/(1- w/c?) , (A3.3)

(A3.2)

and d,, this time, is contracted indeed, according to u: d'=d,/1- U'Z/C2
We now note that, through some algebraic calculations, the following equality holds (see (A3.3)):

(1- uz/cz)(l- vz/cz)
(1- uv/c?)?
Dy L 1Qd 1Q/d (L- uv/c?)
Fa—Exq—(eo oo (eo oo 9= )J1 o

We now want to compare (A3.1) with (A3.4), but we still cannot, as one is about I and the other is about I'; so, let's
scale F'y in (A3.4), to 1, too, and in order to do that, we see that, by definition of the force itself, in I':

1- U'Z/C2 = , which, if replacing the radicand in (A3.2), yields:

(A3.4)




Dp. _ Dp _ Fy(in_1)

2/.2 2
Dt. Dty 1- v¥/c?  |1- v¥/c
along the direction of the relative motion, so, according to the Lorentz transformations, it doesn't change, while Dt , of
course, does. So:

Fuin_ =P (0T = Gy ) i -

=F,(in_I) (A3.5)

F'y@n_I")= , where Dp,. =Dp,, as Dp extends along y, and not

_ (1 Q/d, )(1- uv/c%)
€ 2pr " \1- u?/c?

Now we can compare (A3.1) with (A3.5), as now both are related to the I system.
Let’s write them one over another:

F(in_1)=q(- Z/f vm)”;/d) quI/OdO(l ‘)W
. 1 Q/d,, (1- uv/c?) _

Fy(n_L =
- =atg- G

Therefore we can state that these two equations are identical if the following identity holds: C = ]/ 1€y . and this

identity is known since 1856. As these two equations are identical, the magnetic force has been traced back to the
Coulomb’s electric force, so the unification of electric and magnetic fields has been accomplished!!

=/Nr,

App. 2-Chapter 4: Justification of the equation RJ”‘V
and gravitational forces (Rubino).

App. 2-Par. 4.1: The equation R, =~/ NI, ().

First of all, we have already checked the validity of the equation RJniv =+/N I., used in (A2.2), as it has proved to be

numerically correct. And it's also justified on an oscillatory basis and now we see how; such an equation tells us the
radius of the Universe is equal to the classic radius of the electron multiplied by the square root of the number of
electrons (and positrons) N in which the Universe can be thought as made of. (We know that in reality almost all the
matter in the Universe is not made of e*e” pairs, but rather of p*e” pairs of hydrogen atoms H, but we are now
interested in considering the Universe as made of basic bricks, or in fundamental harmonics, if you like, and we know
that electrons and positrons are basic bricks, as they are stable, while the proton doesn’t seem so, and then it’s neither a
fundamental harmonic, and so nor a basic brick). Suppose that every pair e*e” (or, for the moment, also p*e” (H), if you
like) is a small spring (this fact has been already supported by reasonings made around (A2.3)), and that the Universe is
a big oscillating spring (now contracting towards its center of mass) with an oscillation amplitude obviously equal to Ryny
which is made of all microoscillations of e*e” pairs. And, at last, we confirm that those micro springs are all randomly
spread out in the Universe, as it must be; therefore, one is oscillating to the right, another to the left, another one
upwards and another downwards, and so on. Moreover e” and e components of each pair are not fixed, so we will not
consider N/2 pairs oscillating with an amplitude 2r,, but N electrons/positrons oscillating with an amplitude r,.

previously used for the unification of electric

=T —

I%.Jniv

Fig. A4.1: The Universe represented as a set of many (N) small springs, oscillating on random directions, or as a single
big oscillating spring.




Now, as those micro oscillations are randomly oriented, their random composition can be shown as in Fig. A4.2.

, , Ya
N
RJniv re

—

e #X

Fig. A4.2: Composition of N micro oscillations re randomly spread out, so forming the global oscillation Ryp-
1 1
We can obviously write that: Rj\'mv = Lt I’ and the scalar product Rﬂ\'niv with itself yields:

ﬂIV

1 1
R, RN =(RY ) =( nlv) + 2 v >¢ +172; we now take the mean value:

<<RJ“mV>2> ((RY?) + (2R ) +(12) = (RY?) + (12). (4.1

r 1
<2 niv e> =0, because I, can be oriented randomly over 360° (or over4p sr, if you like), so a vector averaging
with it, as in the previous equation, yields zero.

We so rewrite (A4.1): <(Rﬂ\'niv)2> <( ) > < ez> and proceeding, on it, by induction:
(by replacing N with N-1 and so on):

niv > <( nl\,) > <ez> , and then: <( nl\,) >=<( n|v)> <ez> etc, we get:

(R,
<(RJ,W > <( ,W)> < > <( ,W)> <rez>: .......... :O+N<I’ez>=N<l’ez>,thatis:
<

(RJ,W > = < > , from which, by taking the square roots of both sides:

<(R3\lniv)2> =Ry = \/N\/@ = \/le’e , that is:

n (Rubino) (A4.2)

Anyway, it's well known that, in physics, for instance, the walk R made over N successive steps r, and taken in random
directions, is really the square root of N by r (see, for instance, studies on Brownian movement).

App. 2-Chapter 5: “ayni,‘as absolute responsible of all forces.

App. 2-Par. 5.1: Everything from “ayn;,".

Still in agreement with what has been said so far, the cosmic acceleration itself ay;, is responsible for gravity all, and so
for the terrestrial one, too. In fact, just because the Earth is dense enough, it's got a gravitational acceleration on its
surface g=9,81 m/s?, while if today we could consider it as composed of electrons randomly spread, just like in Fig. A4.1

. . : M Earth
for the Universe, then it would have a radius _[—— X, =./Ng, 4 X,

rr]e e e’

and the gravitational acceleration on its

surface would be'

Onew = _ Meww =a,,, = 7,6240"?m/s’

('\,/ Earth af )



Therefore, once again we can say that the gravitational force is due to the collapsing of the Universe by ay,y, and all
gravitational accelerations we meet, time after time, for every celestial object, are different from ay,, according to how
much such objects are compressed.

App. 2-Par. 5.2: Summarizing table of forces.

_ Causes causes
GRAVITY

A4
A\ 4

ELECTRICITY [ WEAK FORCE

Auniv
(Rubino)

causes |(Einstein) - _
J(Maxwell) _____________________
: "  STRONG FORCE !
i (my works in progress) !
MAGNETISM : (through meson exchanges?) :

Fig. A5.1: Summarizing table of forces.

App. 2-Par. 5.3: Further considerations on composition of the Universe in pairs +/-.
The full releasing of every single small spring which stands for the electron-positron pair, is nothing but the annihilation,
with turning into photons of those two particles. In such a way, that pair wouldn't be represented anymore by a pointed

wave, pointed in certain place and time, (for instance SIN(X- Vt)/(X- Vt), or the similar d (X - Vt) of Dirac), where

the pointed part would stand for the charge of the spring, but it will be represented by a function like sin(x- Ct),

omogeneous along all its trajectory, and this is what a photon is. This will happen when the collapsing of the Universe in
its center of mass will be accomplished.

Moreover, the essence of the pairs e*e’, or, in this era, of ep”, is necessary in order not to violate Principle of
Conservation of Energy. In fact, the Universe seems to vanish towards a singularity, after its collapsing, or taking place
from nothing, during its inverse Big Bang-like process, and so doing, it would be a violation of such a conservation
principle, if not supported by the Indetermination Principle, according to which an energy AE is legitimated to appear

anyhow, unless it lasts less than At, in such a way that DE Dt £ h/2; in other words, it can appear provided that the

observer doesn’'t have enough time, in comparison to his means of measure, to figure it out, so coming to the
ascertainment of a violation. And, by the same token, the whole Universe, which is made of pairs +/-, has this property.
And the appearing of a AE made of a pair of particles, shows the particles to reject each other first, so showing the same
charge, while the successive annihilation after At shows a successive attraction, showing now opposite charges. So, the
appearing and the annihilation correspond to the expansion and collapsing of the Universe. Therefore, if we were in an
expanding Universe, we wouldn't have any gravitational force, or it were opposite to how it is now, and it’s not true that
just the electric force can be repulsive, but the gravitational force, too, can be so (in an expanding Universe); now it’s
not so, but it was!

The most immediate philosophical consideration which could be made, in such a scenario, is that, how to say, anything
can be born (can appear), provided that it dies, and quick enough; so the violation is avoided, or better, it's not
proved/provable, and the Principle of Conservation of Energy is so preserved, and the contradiction due to the appearing
of energy from nothing is gone around, or better, it is contradicted it itself.

The proton, then, plays the role of a positron, with respect to the electron and it's heavier than it because of the
possibility to exist that the fate couldn't deny to it, around the Anthropical Cosmological Principle, as such a proton
brings to atoms and cells for life which investigates over it.

When the collapse of the Universe will happen, the proton will irradiate all its mass and become a positron, ready to
annihilate with the electron. And through all this, we also answer the question on the unexplained prevailing of matter
over the antimatter: in fact, that’s not true; if we consider the proton, that is a future and ex positron, as the antimatter
of the electron, and vice versa, the balance is perfect.

App. 2-Par. 5.4: The Theory of Relativity is just an interpretation of the oscillating Universe just described,
contracting with speed ¢ and acceleration agpy-
On composition of speeds:

1) Case of a body whose mass is m. If in our reference system |, where we (the observers) are at rest, there is a body

1
whose mass is m and it's at rest, we can say: V;, =0 and E ZE mvf =0 . If now I give kinetic energy to it, it will



1
jump to speed v, so that, obviously: E2 ZEmVZZ and its delta energy of GAINED energy D_ E (delta up) is:

1 2

DE=E,- E1:§w2 - O:%m(vz- O)Zzém(Dv)2 ,with DV=V, - v,.

Now, we've obtained a DV which is simply V, -V, , but this is a PARTICULAR situation and it's true only when it starts
from rest, that is, when v, = 0.

1 1 1 1
oOn the contrary: D E=E, - E = 5 mv; - =mv’ = 2 m(V; - V2) = 2 m(D,V)®, where D, is a vectorial delta:

2

Dv=4 (sz - V12 ) ; therefore, we can say that, apart from the particular case when we start from rest (v, = 0), if we
are still moving, we won't have a simple delta, but a vectorial one; this is simple base physics.

2) Case of the Earth. In our reference system I, in which we (the observers) are at rest, the Earth (E-Earth) rotates
around the Sun with a total energy:

M SJnrnE

-S

1
, and with a kinetic energy EK :EmEvé . If now we give the Earth a delta up

1
ETot ZErnEVé -G

D E of kinetic energy in order to make it jump from its orbit to that of Mars (M-Mars), then, just like in the previous
point 1, we have:

D E:%mEvé - %I‘YIEV,\Z,I :%mE(vé - vf,,):%mE(va)z ,with D,V=4/(VZ- V;) ,and so also here the

speed deltas are vectorial-like ( Dv ).

3) Case of the Universe. In our reference system I, where we (the observers) are at rest, if we want to make a body,
whose mass is mgy and originally at rest, get speed V, we have to give it a delta v indeed, but for all what has been said
so far, as we are already moving in the Universe, (and with speed c), as for above points 1 and 2, such a delta v must
withstand the following (vectorial) equality:

— — 2\ 2
V=Dyv= \/(C = VNew- Abs- Univ- Speed) ' (AS.1)
where Ve, aps- univ- speed 1S the new absolute speed the body (mo) looks to have, not with respect to us, but with

respect to the Universe and its center of mass.
As a matter of fact, a body is inexorably linked to the Universe where it is, in which, as chance would have it, it already

moves with speed ¢ and therefore has got an intrinsic energy I‘TJOC2 .

In more details, as we want to give the body (m) a kinetic energy E, , in order to make it gain speed V (with respect to
us), and considering that, for instance, in_a spring which has a mass on one of its ends, for the harmonic motion law,
the speed follows a harmonic law like:

V= (WX )sina =V, SNa (V. avs.univ- speed = CSINA , in our case),
and for the harmonic energy we have a harmonic law like:

E=E,,Sna (mc’>=(mc*+E,)sna ,inour case),

we get Sina from the two previous equations and equal them, so getting:

_.mc
VNew- Abs- Univ- Speed — Cm

now we put this expression for Ve, aps- univ- speed N (AS.1) and get:

2
- — [(e2_\p2 — [fn2 MC  y2y = , _
V=D,v= \/(C = View- Abs- Univ- peed) = 1/[C” - (CCZ—+EK) ] =V, and we report it below:

(A5.2)



If now we get E¢ from (A5.2), we have:

1-

CZ

If now we add to Ey such an intrinsic kinetic energy of my (which also stands “at rest” — rest with respect to us, not with
respect to the center of mass of the Universe), we get the total energy:

—me2( L - o
EK =mcC (ﬁ - l) T which is exactly the Einstein’s relativistic kinetic energy!

1 1
E =E +mc’ =mc® +mec*(———- 1) =———mc’ =g XMc’ , that is the well known
\% \%
(1 2 J1- 2
E= g >ch2 (of the Special Theory of Relativity). (A5.3)

All this after that we supposed to bring kinetic energy to a body at rest (with respect to us). Equation (A5.3) works wery
well on particle accelerators, where particles gain energy, but there are cases (collapsing Universe and Atomic Physics)
where masses lose energy and radiate, instead of gaining it, and in such cases (A5.3) is completely inapplicable, as it’s in
charge for added energies, not for lost ones.

App. 2-Par. 5.5: On “Relativity” of lost energies.
In case of lost energies (further phase of the harmonic motion), the following one must be used:

E= L Xm,c*>  (Rubino) (A5.4)
g

which is intuitive just for the simple reason that, with the increase of the speed, the coefficient :I/g lowers mg in favour

of the radiation, that is of the lost of energy; unfortunately, this is not provided for by the Theory of Relativity, like in
(A5.4).
For a convincing proof of (A5.4) and of some of its implications, | have further files about.

By using (A5.4) in Atomic Physics in order to figure out the ionization energies D- EZ of atoms with just one electron,
but with a generic Z, we come to the following equation, for instance, which matches very well the experimental data:

Ze
2e,hc

and for atoms with a generic quantum number n and generic orbits:

D-E, =mc71- |1- ( )?] (A5.5)

zZe?

D.-E, =mc?il- |1- (—)? ahlin A5.6
Z-n rne [ (4neOhC) ] (W ) ( )
Orbit (n) Energy (J) Orbit (n) Energy (J)
1 2,1787 108 5 8,7147 10%
2 5,4467 107 6 6,0518 10°%°
3 2,4207 10° 7 4,4462 10°%°
4 1,3616 10™° 8 3,4041 10°%°

Tab. A5.1: Energy levels in the hydrogen atom H (Z=1), as per (A5.6).

On the contrary, the use of the here unsuitable (A5.3) doesn’t match the experimental data, but brings to complex
corrections and correction equations (Fock-Dirac etc), which tries to “correct”, indeed, an unsuitable use.

Again, in order to have clear proofs of (A5.5) and (A5.6), | have further files about.




App. 2-SUBAPPENDIXES.

App. 2-Subppendix 1: Physical constants.

Boltzmann's Constant k:  1,38X.0 2J /K

Cosmic Acceleration ayy,:  7,62X0 2m/ s?

Distance Earth-Sun AU: 1,496 40" m

Mass of the Earth Megrn: 5,96 X0 kg

Radius of the Earth Reay:  6,371X10°m

Charge of the electron e: - 1,60 °C

Number of electrons equivalent of the Universe N: 1, 75X10%
Classic radius of the electron r.;  2,818X0 *°*m

Mass of the electron me:  9,1X10° 31kg

Fine structure Constant a (@4/137) : 7,30%0°°
Frequency of the Universe N 4,05X0 *Hz

Pulsation of the Universe Wy, (= H o) : 25440 * rad/s

Univ :

Universal Gravitational Constant G: 6,67 X10" " Nm* / kg*
2,4740%s

Period of the Universe T, :
Light Year Ly.: 9,46X0"m
Parsec pc: 3,26 _al.=3,08X10"m

Density of the Universe pyny: 2,32 >§LO‘3°kg /m’

Microwave Cosmic Radiation Background Temp. T:  2,73K
Magnetic Permeability of vacuum po: 1,26 X10°°H /m

Electric Permittivity of vacuum &: 8,85X0 2F /m

Planck’s Constant h:  6,625X0 *J x5

Mass of the proton m,: 1,67 X10"* kg

Mass of the Sun Mg,,: 1,989X10% kg

Radius of the Sun Re,n: 6,96X08m

Speed of light in vacuum ¢:  2,99792458x0°m/ s
Stephan-Boltzmann's Constant o: 5,67 XL0" W / m?*K *

Radius of the Universe (from the centre to us) Rumy: 1,18 X10%m
Mass of the Universe (within Runy) Muv:  1,59%10% kg

Thank you for your attention.
Leonardo RUBINO
leonrubino@yahoo.it
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