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Maxwell’s equations, under disguise of electromagnetic fields occurred in empty space, describe
dynamics of an elastic-plastic medium with point sources of the medium stress. The condition of
incompressibility of the medium corresponds to the Coulomb gauge. Microscopically, the stress
sources in the mechanical model of electromagnetism may appear to be the radially symmetrical
point discontinuities. But this feature does not figure explicitly in the phenomenology. Because in
the case of incompressible medium the dilatation term in the motion equation is replaced by the
pressure. The stationary pressure field is concerned with the term of the external force entering the
motion equation. The key point is how to express the external force via the density of stress sources.
To this end we postulate that the increment of the external force density arising due to motion of
the stress sources is proportional to the flux of the stress sources. Supplementing this postulate by
the conservation of the total strength of the stress sources leads to the Coulomb pressure field.

In this report I describe in a concise style minimal requirements that an elastic medium should be subordinated
in order that its dynamics be isomorphic to dynamics of the electromagnetic field. The assumptions needed and
sufficient are: 1) the simplest form of the increment of the external force term in the Lame equation arising due to
motion of the point source of this force in the medium, 2) the conservation of the total strength of the stress sources.

1. JELLY-LIKE MEDIUM WITH AN EXTERNAL FORCE

Dynamic equation for small displacements s(x, t) of the linear elastic medium is known to read

∂2t s = −c2∇× (∇× s) + c2g∇(∇ · s) (1)

where c is the speed of transverse and cg of longitudinal waves. The terms in the right-hand side of (1) describe the
force exerted on the volume element of the linear-elastic medium by the environment. In case of an incompressible
still liable to shear deformations medium, i.e. the jelly, the dilatation term can be replaced by the pressure p:

ς∂2t s = −ςc2∇× (∇× s)−∇p (2)

where ς is the density of the medium, with the incompressibility condition

∇ · s = 0. (3)

Taking the curl of (2):

ς∇×
[
∂2t s + c2∇× (∇× s)

]
= −∇× (∇p) = 0. (4)

Taking the divergence of ∂2t s + c2∇× (∇× s) gives with the account of (3)

∇ ·
[
∂2t s + c2∇× (∇× s)

]
= 0. (5)

From what both the curl and divergence of a vector being nullified follows that the very vector equals to zero:

∂2t s + c2∇× (∇× s) = 0. (6)

Thus in the elastic continuum we have only waves, and in the incompressible medium these waves are transverse. In
this event, by (6) with (2), the background pressure remains unperturbed: p = const.

We may formally introduce into motion equation (1) or (2) the volume density f(x, t) of an external force:

ς∂2t s = −ςc2∇× (∇× s)−∇p+ f . (7)

An external force is regarded as the cause of the elastic deformation of the medium. It plays an important role in the
elastic model of electromagnetism. Differentiating the motion equation (7) by the time we obtain

ς∂2t u = −ςc2∇× (∇× u)−∇∂tp+ ∂tf (8)

where

u = ∂ts. (9)

Then from the divergence of (8) and curl of ∇∂tp follows that ∂tf = 0 entails ∂tp = const (= 0). That is the stationary
external force generates in the medium a stationary pressure field, irrespective of elastic waves occurred. Next, we will
specify the unknown external force so that the set of equations obtained [1] will be isomorphic to Maxwell’s equations.
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2. THE GAS, OR PLASM, OF THE POINT STRESS SOURCES

The term of the external force in the dynamic equation (7) is connected with sources of stress of the medium [2].
The collection of the point stress sources can be treated as a gas featured by the volume density %(x′, t) and the
velocity field v(x′, t). The evolution of the gas is described by the usual set of kinematic and dynamic equations
appropriate for a mechanical continuum:

∂t% = −∇′ · (%v), (10)

%
dv

dt
= F. (11)

Now we have mathematical frames for two interconnected mediums: the elastic substratum, governed by (3) and (7),
and the gas of point sources of stress, the secondary medium, governed by (10) and (11). Both sets of equations
include unknown force fields f(x, t) and F(x′, t) which still should be connected with the parameters of the mediums.

Obviously, in statics the density f(x, t) of the external force is concerned with the volume density %(x′, t) of the gas
of stress sources. The dynamic equation for f(x, t) must include also the velocity field v(x′, t).

In case if a stress source is capable to be split and distributed over the medium, the set of equations (10), (11) may
describe the Madelung fluid: after specifying the force term F(x′, t), with some math manipulation it can be reduced
to the form isomorphic to Shroedinger equation [3]. Macroscopically, the dynamic equation (11) can be approximated
by the Newton mechanics with the force term depending on the velocity field u and pressure p of the primary medium
and velocity v of the stress source: F(%,u, p,v).

Probably, the stress sources are related with the discontinuities of the medium, e.g. the singularity of the force
field f can be underlain by the singularity of the dilatation ∇ · s. However, the latter does not appear explicitly
in the motion equation (7). Since in the incompressible medium the dilatation term is replaced by the pressure.
(The singularity of ∇ · s is possibly concerned with the electric interaction. But this question is beyond the scope of
this article.) So, we will further speak about sources of stress, singularities of the force field or may be defects but
not discontinuities of the medium. Nevertheless, the motion and possibly splitting of the point stress sources in the
medium evidence to that we deal with an elastic-plastic medium.

3. SUBSTRATUM FOR ELECTRODYNAMICS

The microscopic structure of the defect is currently not known to us. So, we will construct the phenomenology of
its dynamics from minimum assumptions, and then compare it with electrodynamics.

Firstly, consider the point defect at x′. Insofar as the substratum is isotropic we may expect that in statics the
force field f(x− x′) generated by the point defect will be radially symmetrical. The radial field is potential, so that
its curl is zero. At divergence the solenoidal terms will be vanishing, and thus we have from (7) in statics

∇p = f (12)

i.e. the pressure adjusts itself to spatial field f of the external force, while the solenoidal (transverse wave) part of (7)
is independent on (12).

Let the source of stress move in aether, as it is appropriate for defects of an elastic-plastic medium. If for a small
interval of time δt the stress source has passed a distance δx′ when we may expect that the increment δf of f produced
due to this movement will be directed along the vector δx′ = vδt, where v(x′, t) is the instantaneous speed of motion
of the stress source. The fundamental feature of the system is that the increment δf of the force mentioned possesses
the properties of the point, or lumped force, we postulate

δf = 4πavδtδ(x− x′) (13)

where a is the strength of the force, and 4π is introduced for convenience in presenting the final result in the solution.
Dividing (13) by δt gives the dynamic equation for the external force

∂tf = 4πaδ(x− x′)v. (14)

Suppose the point defects are distributed in the medium with the normalized volume density %(x′, t), and the total
strength a of the defects being conserved: ∫

%(x′, t)dx′ = 1. (15)
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The continuity equation (10) is actually the consequence of (15). Then the instantaneous force field generated by this
distribution can be found multiplying equation (14) by %(x′, t) and integrating it over x′ with the account of (15):

∂tf = 4πa%v (16)

where now all fields in the right-hand part of (16) depend on x. The motion of defects represents a microscopic
mechanism of plasticity of a solid elastic medium. Equation (16) corresponds to a convolution of the Prandtl-Reuss
model of an elastic-ideal-plastic medium.

Continuity equation (10) can be rewritten from x′, t to variables x, t:

∂t% = −∇ · (%v). (17)

In case if we know the velocity field v(x′, t) for the flow of the point defects, relations (16) and (17) close the set of
equations (3), (7) describing the evolution of the incompressible elastic-plastic medium with point defects.

From the pair of equations, (16) and (17), we may deduce another equation, which enables us to obtain directly
the force field generated by the static point defect. Using (16) in (17) gives

4πa∂t% = −∂t∇ · f . (18)

From (18) we may conclude that

∇ · f = −4πa%. (19)

Equations (3), (7), (19), (16) and (11) with yet unknown dependence F(%,u, p,v) gives the full dynamics of the
incompressible elastic-plastic medium with point defects.

Taking in (19) % = δ(x− x′) we see that when the point source is at rest the field f(x) is indeed radially symmetrical.
If the radial external force f generates in the medium a displacement field s (that does not appear in Maxwell’s
equations), the latter also must be a radial function. In statics the first term of (7) equals to zero, the second one
vanishes as well since a radial field is potential. In the result (7) degenerates to (12). Hence, in the absence of elastic
waves, the solenoidal displacement field arises only when the source of the external field moves in the medium. This
may be a reason for transferring the deformation term from (7) to the equation (16) describing the evolution of the
force field. To this end we redefine the term of the external force as

ε = f − ςc2∇× (∇× s). (20)

Using (20) in (7), (16) and (19), and taking into account (9), we may obtain the set of equations in terms of the
velocity field u(x, t):

ς∂tu = ε−∇p, (21)

∂tε = 4πa%v − ςc2∇× (∇× u), (22)

∇ · ε = −4πa%. (23)

4. MAXWELL’S EQUATIONS

Vector and scalar fields A, ϕ and E can be defined:

A = κcu, (24)

ςϕ = κp, (25)

ςE = −κε. (26)

Submitting definitions (24), (25) and (26) equations (21), (22) and (23) acquire the electromagnetic form

∂tA/c+ E + ∇ϕ = 0, (27)

∂tE− c∇× (∇×A) + 4πρv = 0, (28)

∇ ·E = 4πρ (29)

where ρ = κa%/ς and the electric charge is defined via the strength a of the external force source as

q = κa/ς. (30)

Thus, the whole set of Maxwell’s equations is reproduced, with the Coulomb gauge

∇ ·A = 0 (31)

obtained from the incompressibility condition (3) using in it the definitions of the vector potential (24) and velocity
field (9) of the linear elastic medium.
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5. INTERNALIZATION OF THE EXTERNAL FORCE

In order that the above described elastic-plastic model of electrodynamics be plausible, we must find the internal
mechanism for supporting the ”external force” field in the medium. Consider the ideal fluid. The motion of the ideal
fluid is governed by the Euler equation

ς∂tui + ςuk∂kui = −∂ip (32)

where summation over recurrent index is implied throughout. Rendering (32) in the Gromeka-Lamb form

ς∂tu + ς∇u2/2− ςu× (∇× u) + ∇p = 0 (33)

we see that at ∂tu = 0 there holds along the flow line the Bernoulli equation

ςu2/2 + p = const. (34)

Relation (34) secures stationary u and p fields.
In the turbulent fluid u and p can be treated as random quantities. Averaging (32):

ς∂t 〈ui〉 = −ς 〈uk∂kui〉 − ∂i 〈p〉 . (35)

We see that even if 〈u〉 = 0 the convection term in (35) can be nonzero. This means the occurring in the turbulent
fluid of the volume force

εi = −ς 〈uk∂kui〉 = −ς∂k 〈uiuk〉 (36)

which does not vanish in the stationarity. The force (36) is concerned with a non-uniform distribution of the turbulent
energy. Equation (23) suggests that the turbulent force ε is supported if only there are sources of stress in the medium.
Microscopically this may be inclusions of voids, with the boundary condition 〈p〉 = 0 on the wall of the cavity. Because
of the cross-correlations of turbulent fluctuations the turbulent fluid exhibits the instantaneous shear elasticity.

6. DISCUSSION

Summarizing, the following main features of the mechanical medium underlying the classical electrodynamics should
be accentuated.

In statics there are no shear stresses in the incompressible elastic-plastic medium modeling the electromagnetic
substratum. The shear stresses appear only when the point defect moves in the medium. The instantaneous increment
δs of the displacement due to the motion obeys the Lame equation (7) with the external force (13):

ς∂2t δs + ςc2∇× (∇× δs) + ∇δp = avδtδ(x− x′) (37)

where δp is the increment of the pressure due to (13). This is the reason why the stationary magnetic field is
generated by the (uniformly) moving electrical charges only. So, the form (21)-(22) is indeed more adequate than
(7). The singular term in the right-hand side of the equation (37) does not mean for this derivation. We may state
instead that the increment of the ”external” force is proportional to the flux aρv of the point stress sources.

The pressure center modeling the electrical charge differs drastically from the dilatation center occurring in the
simple elastic medium. Nearby the dilatation center of the simple elastic medium the pressure is known to change with
the distance as ∼ 1/r3, which is due to shear strain, while near the pressure center in question as ∼ 1/r. This becomes
possible because the electromagnetic substratum combines in itself the features of the liquid and solid mediums, i.e.
it is an elastic medium with relaxation of shear stresses.

Concluding, we have the following structure of the problem. The kinematic equation for the primary medium:

∂tς + ∇ · (ςu) = 0 (38)

which for the incompressible medium

ς = const (39)

reduces to

∇ · u = 0. (40)
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The dynamic equation for the primary medium:

ς∂tu + ∇p = ε (41)

which is really the equation for the ideal fluid with the turbulence force ε. The equation for evolution of the ”external“
force ε:

∂tε + ςc2∇× (∇× u) = 4πa%v (42)

which includes the flux %v of the secondary medium and the term of the instantaneous shear elasticity. The kinematic
equation for the secondary medium:

∂t%+ ∇ · (%u) = 0 (43)

and the dynamic equation for the secondary medium:

%
dv

dt
= F (44)

with yet an unknown force F(%,u, p,v) which is concerned with the interaction of the stress sources.
We do not specify here the origin of the electromagnetic interaction since it probably involves the term of the

medium discontinuity which does not explicitly enter Maxwell’s equations. The Reynolds turbulence in the ideal fluid
underlying the plasticity of the electromagnetic substratum [4] is also not described in details here. The only point
that has been exposed is that the elasticity and the term of the external force ε are concerned with the (correlated)
turbulent fluctuations, i.e. with a purely kinetic factor.
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