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 In the paper [1] we have presented simple model of the energy-momentum 
transport wave function (EMTWF). In this paper we will discuss the 
physical interpretation of the EMTWF for the elementary quanta of action 
connected with the gravitational and electrostatic interactions. 
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1. Introduction 
 
In the paper [1] we have presented simple model of the energy-momentum transport wave function 
(EMTWF). For the relativistic case we have found the wave equation 
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where q is the elementary quantum of action [2, 3, 4], m – mass of the particle (body), c – speed of 
light.  
 
 
2. Physical interpretation of the EMTWF  
 
If we assume that the wave equation (1) has form 
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and additionally we assume that  
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then we get the equation  
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where
qc
E

k = , E is the energy of the particle. Equation (4) is the screened Poisson equation with the 

solution  
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2a. Gravitational interaction 
 
For the elementary quantum of action q connected with the gravitational interaction  
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where cg is the speed of gravitation, equation (5) has form   
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where: G is the gravitational constant, 2
g Gm

E

qc

E
k == , the factor k has dimension [1/m]. When the 

particle is in the rest, his energy E = mcg
2 and k = 1/rg, where rg = Gm/cg

2 is the gravitational radius 
and the equation (7) has form 
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If we will multiply both sides of the equation (7a) by the factor cg

2 then we get 
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and if assume also that r >> rg, then we get the scalar field of the square of the velocity (Vg(r))

2 [5] 1
.   
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Similarly, if we will multiply both sides of the equation (7a) by the velocity v and if assume also that  
r >> rg, then we get the vectorial field of the velocity Vgm(r) [5] (or the gravitational vectorial 
potential).  
 
We can see that the EMTWF ψ(r) for the gravitational interaction has the very simple physical 
interpretation. For the gravitational interaction the product of the 2

gc ⋅ψ(r) we can interpret as the 

scalar (Newtonian gravitional potential φg(r) (the scalar field of the square of the velocity (Vg(r))
2), 

however the product of the v⋅ψ(r) we can interpret as the vectorial gravitional potential Ag(r) (the 
vectorial field of the velocity Vgm(r)). 
 
 

                                                 
1 If we multiply both sides of the equation (8) by factor - 2

gc and assume that r >> rg, then we get the classical 

Newtonian gravitational potential φg(r). 
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2b. Electrostatic interaction 
 
For the elementary quanta of action connected with electrostatic interaction  
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equation (5) has form   
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where: 
2ke

E
qc
E

k == , re = (kee
2)/(mec

2) is the classical electron radius, ke = 1/4πε0 is the Coulomb 

law constant in the SI system of units, ε0 is the vacuum permittivity, e is the electric charge, me is the 
mass of the electron. When the particle is in the rest, his energy E = mec

2 and k = 1/re and equation 
(11) has form 
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If we multiply both sides of the equation (11a) by the factor (mec

2/e) and assume that r >> re, then we 
get the classical electrostatic potential Ve(r)  
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Similarly, if we will multiply both sides of the equation (11) by the factor (me/e)v and if assume also 
that r >> re, then we get the vectorial potential Ae(r). 
 
We can see that the EMTWF ψ(r) for the electrostatic interaction has the very simple physical 
interpretation. For the electrostatic interaction the product of the (mec

2/e)⋅ψ(r) we can interpret as the 
classical scalar electrostatic potential Ve(r), however the product of the (me/e)v⋅ψ(r) we can interpret 
as the vectorial potential Ae(r).  
 
 
The verification of the physical interpretation of the EMTWF for the both interactions 
 

Let’s multiply both sides of the equation (1) by the factor 2
gc  then we get 
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Let’s compare this equation with the equation (8d) being in the publication [5] 
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where ρ is the mass density. Both equations (16) and (17) are equal if and only if, when the νg(r, t) = 
(4πGρ(r, t))1/2, where νg is the gravitational frequency and has the dimension [1/s].  
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Let’s multiply both sides of the equation (1) by the factor (mec
2/e) then we get 
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Let’s compare this equation with the well known equation for the scalar electrostatic potential  
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where ρe is the charge density. Both equations (18) and (19) are equal if and only if, when  
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where νe(r, t) is the electrostatic frequency and has the dimension [1/s].  
 
 
Conclusion 
 
In this paper we have presented the physical interpretation of the energy-momentum transport wave 
function for the gravitational and electrostatic interaction. For those interactions the EMTWF ψ(r) 
have the very simple physical interpretation.  
 
For the gravitational interaction the product of the c2⋅ψ(r) we can interpret as the scalar gravitional 
potential φg(r) (or the scalar field of the square of the velocity (Vg(r))

2), but the product of the v⋅ψ(r) 
we can interpret as the vectorial gravitional potential Ag(r) (or the vectorial field of the velocity 
Vgm(r)). 
 
For the electrostatic interaction the product of the (mec

2/e)⋅ψ(r) we can interpret as the classical 
scalar electrostatic potential Ve(r), but the product of the (me/e)v⋅ψ(r) we can interpret as the 
vectorial potential Ae(r).  
 
We will receive these same results for the nonrelativistic case [1].  
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