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 Abstract This article is mainly conceived to gain more interest into a recent trustworthy 

development. The dynamics of the relativistic Space-Time structure, as discussed in the 
model, exhibits unforeseen analogies with the electromagnetic theory. As direct 
continuation of the analysis of the gravitational wave propagation in free space, one should 
realize (unlike Lorentz gauge in General Relativity) that the polarization state is in general 
a mixture of six independent modes as many as the independent components of the 
Riemann tensor determining the tidal forces, although one can always recover two 

polarizations for particular symmetry conditions on the direction of propagation and 
observation. Actually, in this gravitational framework, at least for one polarization state, 
transverse waves are expected to propagate causing equal in-phase deformation 
displacement for a symmetric source, not counterphase as in General Relativity. At this aim 
a new interferometry methodology is designed. Calculation of gravitational power losses 
for the keplerian system PSR 1913+16 in the solution by approximations of 
inhomogeneous problem  is carried out to the first order, which allows the assessment of a 
second gravitational constant.  
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Introduction                                      
 
Despite its impressive success [10],  linear approximation in general relativity (GR) seems 

to contradict in that the exact theory does not on principle entail emission of gravitational 

radiation i.e. waves physically meaningful as pointed out by some authors [1]
1
. Other 

ways have then been explored to search the mechanism responsible of gravitational wave 

genesis. Tailherer's model [8] (onwards Vortex Model) is one of these. Actually, the 

analysis of the motion of a continuum has shown a resemblance with Space-Time that 

might be more than superficial, for, as has been seen, it has been possible to establish 

valuable results by making use of a geometrodynamics theory whose basic equations are 

those of the vortex encountered in lagrangian description of continua [4,3] relating the 

angular velocity tensor to the deformation velocity K . In particular, the ansatz has been 

tried, thereby the presence of vorticity does also mean the presence of curvature of space 

time through the constant S, which showed itself fundamental of all reasoning bringing to 

the gravitational wave propagation scenario2 [8]:  

 

         C = -kY= S    (1) 

 

where  k = 8G / c
4  

with  G  Newton’s constant and  C  the skew-symmetric 

contracted Riemann tensor (hereafter the C Riemann tensor),  Y   skew-symmetric 

energy-momentum tensor -see  (24) further- and



     = K - K       (  ,,  = 0,1,2,3 )
3
               (2) 

 

or by performing another curl  (rotor) [cf. Tailherer (2007) equ. (4.18) ]: 

 

                              K/


- K/ 

=(

2 
K ) - (grad div K)  

                               = - K

R + K


R g

 -[1/(2S)]
 
C 

/

                    (3) 

    

with R the symmetric Riemann tensor and the slash standing for covariant or 

controvariant derivative. The previous ones  have respectively a cinematic, dynamic and 

geometric content, in particular the last one states that a variation of curvature reveals 

itself in a propagation of metric deformation or, as it will be presently seen, in a 

“gravitational current” in the the Space-Time. For this purpose let us call total dynamic 

flux crossing a two dimensional oriented surface   of parametric equations  x


(r,s) and 

complete contour l , the double covariant integral with respect to the skew indexes μ, ν  

(making use of the equality     K - K= K- K(see equ. 4.8 of [8])) : 
 

                                                        
1
 The simplest argument is that any moving body will travel a geodesic line and that will do without gravitational losses. 

2
 See  also  equ  (24), and  (25)  here  The reader should notice the change of notation  with respect to [8] to banish  

   any misleading of the  skew symmetric Riemann tensor obtained as  C= R
 

 (cf. [8] equ. 3.3; 4.12) with that  

   of classical relativity as well as the skew energy – momentum tensor  Y  with that symmetric  T   in Einstein's  

   equations     
3
 It apparently satisfies the Bianchi identity           +  +    =0 
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   

 

0 3

= -

1
= -

2

, x x x x
curlK K K drds

r s r s

x x x x
K K drds

r s r s

   

    
 

   

   




    
   

    

    
   

    





               (4) 

 

then the Green-Stokes theorem states that the previous expression equals the dynamic 

circulation of K  along the circuit l  namely the integral: 
          

l

J = K dx

                                                           (5) 

We have therefore in our case that the “flux” of the derivative of the C Riemann tensor is:  

  

      C = S J                                                       (6) 

 

If we let the surface be far enough from the masses distribution so that it allows us to 

consider the Space-Time nearly flat, we may take the derivative out of the sign of the 

integral to get: 

 C S J                                                       (7) 

We surprisingly recognize in the preceding one the striking formal resemblance with the 

Faraday Neumann law of electromagnetism in which the magnetic field and the current 

take respectively the place of the C Riemann tensor and the “gravitational current”  Jσ . 

Thus we can state that a variation of “flux” of the energy momentum tensor through (24) 

must manifest itself in an induced gravitational current of gravitational radiation. In the 

following sections we shall ensue the vortex 4-dimensional formula going deeply into the 

resolution of a well studied gravitational binary system. 
 
1. Overview: two Fundamental Cinematic Tensors  
 
In inferring the main equations,  all the points of Space-Time are considered parametrized 

with their co-ordinates which define the position vector OP in a 4-dimensional 

differentiable variety and a local frame relating to a local basis of vectors at each point of 

the cronotope   e = OP/ x 
   from which the metric tensor g   = e  e   . 

Whereas in Special Relativity g is a constant tensor, in General Theory we think of 

g(x


/) as function of the variables x
 

and   so as e  . For simplicity's sake, let us 

restrict ourselves to a sub-space of g spanned by any tern of vectors e  . It follows that if 

the relations hold in each subspace, as they do, they hold in all the 4-dimensional space for 

any equation presenting three indexes or less. Therefore, let us choose without loss of 

generality the tern referring to the space indexes h = 1,2,3. Consider now the gradient of 

the space components of  4-velocity which will be of the type: 
 

h v = qhk  e 
k 
         ( h = / x h       

h,k=1,2,3)                 (8) 
 

The matrix  qhk   can always be split up in two parts  
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qhk = (h v e k  )/c= Khk +  hk                                                                      (9) 

 

with symmetrical part the deformation velocity of the metric 
 

Khk = 1/2c(  ehe k +   ek  e h ) =1/2c( e h  e k ) = 1/2c g h k                          (10) 

 

which can be referred to the second quadratic form as already outlined in [8] , and the 

skew-symmetric part

hk = (h v  e k  - k v  e h )/2c = -kh                                       (11) 
 

Following the classical approach presented in the Ferrarese's works [4] we thus get equ.(2) 

restricted to the three-dimensional space and readily generalized therefore to the whole 

Space-Time according to our reasoning. Let us then differentiate    e ( x


/) with respect 

to x 
,
 
we get for definition of Christoffel symbols [6]:   e  = 


  e  .  From that it 

turns out that v =(v e 


) = ( v  -  

 v  ) e 


= ( v  ) e 

   
leading   (11)  to 

the expression: 

                                             = - /2 = - /2v v c v v c                                (12) 

 

taking advantage of the symmetry of Christoffel symbols with respect to inferior indexes. 

We may put (cf.[7]) the previous expression in a form evidencing the curl of the               

4-velocity:  

= /v 

                                                     (13) 

with      
Levi-Civita tensor . Thus (12) is nothing but the relativistic version of the 

well-known relation of hydrodynamics     = ½ curl vEUL   with   v EUL    eulerian 

velocity to which the known generalized Lagrange and Helmoltz theorems can be applied 

[2,5]. In particular, standing the identity (1) advanced at the beginning between the vortex 

and the skew Riemann tensor, the Lagrange theorem
4
 maintains that if present, a 

gravitational field can never destroy itself and if absent can never originate. 

  

2. Characteristics of deformation 
 
The analysis of the deformations of metric is very interesting in that we may catch 

remarkable proprieties of the solution of the differential system (2) without passing 

through its resolution but by only qualitative analysis. Indeed by taking a free falling 

frame and assuming in a fixed point P
*
 initial geodesic co-ordinates we find the finite 

deformation of the metric at the   proper time to be 
5:  

 

                2
*

c K ( x / ' )d ' =g ( x / ) - = h ( x / )


  

   


                                        (14) 

                                                        
4
  Although proved by reduction to absurdity from the case of flat space-time, a demonstration in general coordinates has  

   not given yet.  
5
 We should not be surprised at noting the fundamental tensor g to be inferred from a second quadratic form K not  

   more than in kinematics the position elicited  from the velocity through integration of the law of motion.  



   S.Antonelli                                                                                     Advancements over a Geometrodynamical Model 

 5 

 

with   Minkowski tensor. Because of the Gauss gauge g 00=1, g 0k  = 0   (k=1,2,3), it 

follows at once that    h 00 = h 0k  = 0 ,  and hence K 00 = 0 ,  K 0k = 0 .   Moreover, we note 

hto depend only on the initial condition and on the displacement in terms of cronotope 

co-ordinates  s = x
 
- x 0 .  In fact, let us try to put (14) in function of the displacement;  

since    

O P = O P
*
+ s              (15a) 

let us see what happens to the local base at the point P :  
 

= = +
x x

OP s
e c  

 

 
                                                    (15b) 

with c rectangular base such that      c  c
ν
 =δμ


. 

Then, remembering that   g   = e   e   ,  equ.(14) becomes:         

h ( x / )= + +
x x x x

s s s s
c c



     


    
   

    
                           (16a) 

 Since  s =s c


= s
 

c      equ. (16a) reads: 
 

h   ( x


/  ) = (   s  +   s  ) +   s   s


.   (16b) 
 

Thus, the characteristics of deformation consist of two terms whose the first, linear and 

symmetric in the derivatives of the displacement, occurs in infinitesimal problems well 

studied in deformations of Elasticity [7] and that the reader is also addressed to for the 

analysis of the effects of the gravitational wave on the matter. For a wave propagating 

along the z axis, that is to say, perpendicularly to the direction of observation of a free 

falling frame (so expecting    hzz ( x


/  ) = 0  if we consider s3 = 0 in (16b) at first order ), 

we may take two wave polarizations,  say 

 

     

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

A

 
 
 
 
 
 

       for deformations along the axes and     

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

A

 
 
 
 
 
 

 

for angular deformations of axes directions6.  

It may be shown [4,7] that after the deformation the angle between the axes r and s is 

given by:  

2 1 1

rs

rs

rr ss

h
arcsin

h h


  

  
 

so the presence of off diagonal elements in the matrix  h does mean angular deformations 

between  axes directions.  

                                                        
6
  Other combinations of sign as the polarization A11=- A22=1  lead to area conservation in the transverse plane (x,y)  

according to eq. (17)  referring to pure shear (so that Tr (hij)=0), which evidently is not what we expect from symmetry 

reasons.  
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Moreover, because the lengthening of any vector  OA0  whose versor a0 
 
into OA is 

determined by the linear dilatation coefficient [4] : 

0
0 0

0

1 1h k

a hk

OA OA
h a a

OA
= =


                     (17) 

we may note that the polarization  A would break a cylindrical symmetry since would 

involve opposite length variations in any perpendicular rotated directions having  a0  as 

axis (e.g. a01 : [a0x ,a0y]  and   a02 : [- a0y ,a0x ]  . In summary, there are in the general case  

six polarization modes as direct consequence of the independent components of the 

Riemann tensor [9] included in the tide forces expression: 
  fi = -m R

i
0k0 x

k    (m being the mass of a test particle in non-relativistic motion and x k  the 

displacement from the origin), that in our case are reduced to two.  
 

3.  Homogeneous solution 

 

In order to work out the “gravitational billow”, we must refer to the homogeneous solution 

of (4.21) of [8]    K( x
   ) =   +         trying to find the solution with regard to 

symmetric cylindrical boundary conditions. Hence, let us consider a wave  of  A  type.  

Thus, using the harmonic function 

( ct )
= A

 






                                                         (18) 

with  Φ   any function, we get the following  initial condition
7
: 

 

       0 0K t= = t= = A f = f                                         (19) 

 

Then, on expressing the harmonic function by a Fourier integral 
 

1 2 3i( x x x )
( , )= F e d d dx

   

       

                                    (20a) 

 

and introducing spherical co-ordinates, such that  x 
1
+ x 

2
+  x 

3 
= r cos, that is to 

say, taking the distance vector along the direction
 

of propagation   
z = x

3 
 and                                        

ddd = 2 
sinddd,  the following transforms have to calculated : 

 
3

1

2

i( )F ( , , )= f e d d d = A F  

      


 

                      (20b) 

and (remember that the harmonic condition yields the relation    δ= -(α
2
+β

2
+γ

2 
)

1/2
 , i.e. 

the usual one between frequency and wave number components  ω = c δ  ) :   
                                                   

     1 2 3i x x x

xx yyK = K = F , , +i i F , , e d d d
   

         


    
     

  
         (21) 

                                                        
7
 To simplify working out the  Fourier expressions we do  a Wick rotation   = ict  and so making euclidean the  

   Minkowski tensor and imaginary the initial deformation velocity  Φ   = ½  g   /ict)|0 . At the end of  

   calculation one has to take the imaginary part changed of sign. 
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Then, by considering the imaginary part, sign changed, after the integration, the relative 

deformations along the two axes will be: 

 

       11 22
0 0

2 2' ' ' '

xx yyh r =h r = K x / d = K x / d
 

                                (22) 

 

with r the distance between source and observer. Even examples with simple initial 

conditions entail cumbersome expressions involving delicate problems of convergence. So 

we skim over. 

 

 
Fig1: Plot  in function of r (arbitrary  units) of the characteristic gravitational billow wave shape solution 

(numerical)  hxx  with respect to a discontinuity source located  about  r=0  (as e.g.   Kxx ( t=0)=1/cosh r)   at 

fixed times  t1<t2<t3  with its attenuating moving peak at   r = ct . 

 

4. Non-homogeneous solution in gravitational energy losses of a punctual keplerian 

system 
 
By referring back to reference [8] we see the principal problem to be related to the 

following integral:     

                                              
4K = N y d y




                                    (23a) 

 

where the integral is over the coordinates   of the an astrophysical source and r the 

cronotope distance from the observation point x  to the source point   where the energy-

momentum tensor is not null. Hence  d
4  = d

3
x ' d   ,  with x '  space co-ordinates of 

the keplerian system under discussion (binaries self-gravitating stars,…). The kernel and 

the other term result to be: 
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N


= 3 / ( 2 2
) [ ( 


R+R  


 ) / r

2
+  ( 1 / r

2
) (   x


) 

 (  


R  R  

 ) ]                  (23b) 

 

with R  symmetrical Riemann tensor 
8
 and   

  4

2 2 2

1 1
3

4

/ /y C x C d
Sr r

   

      


  
      

  
                        (23c) 

Moreover, by the attempting to estimate Ras 
(1)

R= gR /4 , since                    

R = g
 R , as starting position  in a successive approximations process, we have for 

the “skew” C Riemann tensor:    

  C=  
(1)

R


 = -kY= - k(g/4) (T-1/2g)
 

           (24) 

 

with T  einstenian energy-momentum tensor of a punctual keplerian system.  

As  from  ref. [8], we pick out  the generic skew-symmetric cartesian tensor 
: 

 

0 1 0 0 0 1 0 1

1 0 1 0 1 0 1 0
= and =

0 1 0 1 0 1 0 1

0 0 1 0 0 0 1 0





    
   

    
     
   

    

                      (25) 

 

as the inverse matrix. 

It is apparent in the previous ones (23)s we may neglect  the derivative of the inverse 

squared of r  in account of very large astronomical distances between source and observer 

and bring r out of the integral sign. Once computed y  , developing the new metric the  

Riemann tensor in the first term of (23b) will be taken- however a rough estimate of it 

may seem  - as 
(2)

R (/4)C /k . This shall profit to get a radiated power 1/S
2
. 

 Weird to note how in the last expression we may put  C
  in a form evidencing a curl 

by means of the Bianchi identity (footnote 3):  C
 = - C

 + C


=  -1/2  
 

C/
 -1/2 curl  

C/
  

The previous equ.(23a) consists of 16 equations. The C Riemann tensor is obtained by 

contraction through the tensor   
whose skew-symmetry is preserved by a 

transformation of coordinates  U
 

=  x' / x such that   UU 
+ 

= ' .  Hence we may 

say  that K is known to within an antisymmetric matrix . But this does mean calibrate the 

constant S. In fact, I could choose whatever new  such that ' = into equation (24) 

for which S could be dimensioned as wanted in the fitting procedure. Nevertheless, once S 

has been determined in association with a given energy-momentum T  , I can arbitrarily 

use no longer  any  , but only that one being bond at that  S  through a similarity relation. 

This might amaze, that is, the fact that I associate a given cinematic quantity like the 

energy momentum with a determined constant tensor like  , but as in geometry I need to 

adopt a coordinate system and a sample unit  to represent a vector, so here to describe his 

                                                        
8
 We take occasion to remark the evident error of  [8] in its notation,  in equ. (4.20b)  the tensor  R  stands for     
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way of being represented in terms of the contraction tensor according                      

Y= (g /4) (T -1/2gT)   . On the other hand, we know in physics the case of  

Neumann-Faraday law in which the variation of magnetic flux is related to the 

electromotive force through the constant 1 in S.I. units. If we had chosen a different factor 

this would have meant to rescale the electromagnetic constants and the units, so in short  

  
gauges  S . So '  is fixed by means of six numbers. Moreover, the 4 conditions of 

free-divergence of the energy momentum tensor reduce the number of independent 

equations of equ.(23a) to 6. Thus the 10 unknown quantities  K  are defined through     

10-6 = 4   accessory conditions that we chose as gaussian conditions for the metric tensor.   
 

Since the keplerian motion occurs in a plane and the azimuthal angle is function of the 

time and the radial coordinate of the azimuthal angle, the quadruple integral in spherical 

co-ordinates will be taken on one independent angular variable of the reduced mass. The 

energy-momentum tensor of the single star is is  T


( 1 , 2 ) = d(1,2) u

u
 

, with u 
 the  4-

velocity components of the (1,2) star mass and d(1,2) density mass which in the case of a 

punctual mass will be a three dimensional Dirac delta function. Given therefore the 

keplerian system defined by the equations in polar coordinates (       ,    ) in the 

center of mass system : 

       m ( 2 , 1 )  ( m 1 m 2 ) ]                             (26a) 

 

with  =  / ( 1 + e cos ) ,  = a ( 1 - e
2
) ,  a major semi-axis of the ellipse, e the 

eccentricity
9
 and    the delayed phase and 

 

   
1 2

2

2
= = 1 2 1

/

, G m m a e
 


 


  
 

                                      (26b) 

 

the velocity will be taken in the non-relativistic limit so that evaluating   

u


(1,2) = 1,2/   and   u


(1,2)=/   the energy-momentum tensor of the 

system wrt the center of mass comes out taking in account that it equals the sum of the 

components: 
 

2

2

22 2

2 2

2 2

2 2 4

(2,1)
0

( 1 2)

(2,1) (2 1) (2,1)
0

(1,2)= (1,2) ( 1 2) ( 1 2)( 1 2)

0 0 0 0

(2,1)
0

( 1 2)

m
c c esin c

m m

m m , m
c esin esin esin

T d m m m mm m

m
c esin

m m



 


 

  
  

   

  


   

 
 
 
  
  

   
 
 
 
 

 

 

d(1,2) being the point mass density of mass (1,2). 

 

                                                        
9
  We recall some data of the PSR1913+16 binary system: m1: 1.4 Msun;   m2:1.38 Msun;   e: 0.617; 

    orbital period T : 7.72 hours; d   major semi-axis  a : 1.950E9 m; distance: 5kpc;   dT/dt: -2.4E-12. 
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By using the method of successive approximations to work out (23a), we choose K  = 0  

( g= const = Minkowski cartesian metric  00 = - 11 = - 22 =  - 33 = 1 )  as zero 

order approximation. So, as known, the metric tensor whereby indexes are lowered/raised 

and the matrix of transformation of tensors into spherical coordinates x'≡(ct,r,Θ,Φ) read: 
 

  
2

2 2

1 0 0 0

0 1 0 0
=

0 0 0

0 0 0

g'
r

r sin





 
 


 
 
 

 

       

1 0 0 0

0

= 0

0 0

'

sin cos sin sin cos

x cos cos cos sin sin

x r r r

sin cos

r sin r sin





    

    

 

 

 
 
 

  
 

 
 


  

       

Moreover, taking in account that d=(/ )d , the proper time in (26a)-(26b) is 

parametrized by the azimuthal variable . According to (24) the zeroth order  C  Riemann 

tensor  C  will, on using the previous contraction tensor, be of a form that is all but an 

antisymmetric tensor but this is the rudest approximation. So the skew-symmetry of the C 

Riemann as well as the symmetry of K will be considered a goodness index for the order 

of approximations. As shown below in fig.2, the C Riemann tensor antisymmetry check 

for the time space component C+ C at orbital distances of PSR1913+16 , seems quite 

adequate , although K- K does not, working out the integral of equ.(23a) , and yet 

behaving well at sidereal distances. Anyway, better can be expected at further orders.  
 

Fig 2: Plot in function of the azimuthal angle along the elliptic orbit of the approximation precision             

K 12 - K 21 and     C 12 +C 21respectively. 

 

To first order we then get K  =  y  . The next step will be if possible to determine the 

new metric = 2g ( x / )d c K (x / )d 

        on the grounds of the definition of 

the deformation velocity, then the new trace   and in account of equ. (24) the new 

Riemann tensors; hence one determines the kernel simplified (23b)  N
 

,  so that the 

next approximation will be: 

4=K N y d y




                                                            (27) 
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and so on. Moreover, inserting the final worked out tensor metric into the geodesic 

equation   
2 

x



x
 x

 = 
f 

   with 

 
f 

  representing a field matter coupling term, 

would give us the modified acceleration law   
2 = a()  which should fit in as 

experimental verification with local and solar observations (perihelion precession of 

planetary orbits, bending of light) as well as galaxies rotation curves. Also (27) is the 

obliged passage in inferring the cosmological behaviour of fundamental parameters of the 

evolution of the universe relatively to Friedmann solutions. The treatment of this matter 

will be object of next publications. The most great difficulty in expressing the energy loss 

against the major semi-axis of the elliptic orbit lies in working out the definite integrals for 

which numerical methods soon overflow in allocated memory ( growing up to nearly 400 

pages for single integrand) on behalf of the wxMaxima software preferred to Maple at this 

stage. Adopting numerical algorithms like Cavalieri-Simpson is therefore necessary (we 

took 10 steps for single variable of integration). Nonetheless it allows to give an estimate 

however rough may be of the constant  S  from known orbital data of PSR 1913+16 [10].  

Actually, by differentiating with respect to the time the third Keplero law we have (mean 

values for orbit are concerned):   

 

2
24

2 = 3
1 2

dT da
T a

dt G m m dt




                                     (28a) 

                   

On the other hand, differentiating the mean gravitational system energy                  
<E>=-G m1 m2 / (2r) one gets:   

22
=

1 2

rdr dE

dt dt G m m
                                              (28b) 

On substituting it into the previous one taking in account an orbital average value              

< r> = a∙ γ with γ =(1-e
2
) (read discussion further), from the free divergence of energy 

momentum tensor
10

 for which   dE/dτ = -c   ts
0 
n

s
 r

2
 dΩ ,     where for our purpose the 

energy-momentum tensor is     t s

= - s

  
         with the field                

    = K   /  - K   /   ,    one obtains S
 
= 5.677E19 m

-1
  or  S 

-1 
= 1.761E-20 m.  While 

the mean energy loss of Einstein's theory at  a= 1.950E9 m  amounts to  7.959E24 J/s   -

we  remember that  Einstein averaged emitted power is  [11]: 
 

 
4 2 2

2 4

5 5 2 7 2

32 1 2 1 2 73 37
= 1

5 24 961 /

G m m ( m m )
P e e

c a ( e )

  
    

  
 

-in the Vortex model it equals 1.387E25 J/s to the first approximation, thus 74% higher, as 

follows from the expression worked out (equ.29); however orbital phase average is taken 

here rather than time average, so to parallel them we should multiply the latter by (1-e
2
). 

                                                        
10

  We make note in [8] the omission of a c factor in  dE/dτ   and a  -¼  in front of the energy momentum in  [8]. 
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38 48 38 56
52

2 3 2 2

87 92 96 98 100 103

5 2 3 7 2 4 9 2 5

105 107 1

11 2 6

1 2 831 10 7 345 10 2 752 10 6 572 10
= (7 463 10

2 649 10 1 884 10 1 141 10 2 962 10 6 836 10 1 725 10

1 511 10 1 167 10 3 86 10

/

/ / /

/

. . . .
P .

aS a aa

. . . . . .

a a a a a a

. . .

a a



 
    

      

     
     

  
  

08 108 94 90

13 2 7 15 2 8

89 88 90 91 93 94

17 2 9 19 2 10 21 2 11

3 58 10 7 454 10 8 709 10

5 492 10 2 642 10 6 224 10 5 574 10 8 372 10 6 431 10
)

/ /

/ / /

. . .

a a a a

. . . . . .

a a a a a a

  
  

     
     

 

(29) 

 

 
Fig. 3: Emitted mean power for Vortex model according to equ.(29), much lower than Einstein's amounting     

to 10E48. 

 

Unfortunately, the previous expression is not monotonous as 1/a
5 

as in Einstein's 

behaviour and under 1E7m shows up sign variations preventing us from yielding an 

accurate comparison between experimental data and model previsions. We think it of as 

due to the early stage of approximation algorithm but successive approximations require 

very powerful calculus skill. We also show in fig. 4a/b the differential instantaneous 

energy loss  d
2
E/dtd   versus the orbital angle in both Vortex and Einstein cases - as 

well-known the latter proportional  to  the  third  derivative  of  quadrupole  moment [9]: 
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Fig. 4(a): 2  periodic emitted instantaneous power at given direction for Vortex model at polar angle            

Θ      and azimuth Φ=     

 

Fig. 4(b): 2  periodic emitted instantaneous power at given direction for Einstein's model at polar angle       

Θ      and azimuth Φ=     
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Finally, in order to detect a polarized wave whose effect is in-phase deformations of 

linear distances in a plan normal to the direction of propagation, Michelson interferometer 

alike VIRGO is not suitable in that it works counter-phase. A possible advisable apparatus 

could be instead a large scale version of the interferometer set up by T.J.Herzog et al. 

[12,13] in the quantum entanglement equipment  making use of a nonlinear crystal (e.g.  

Li B3O5) whose intensity at the output is proportional to (1+cos(Δφ)) where Δφ is the 

overall arms phase-displacement (fig.5). 

 

 
Fig. 5: Scheme of interferometric antenna for detection of gravitational wave in the polarization in which 
a linear crystal splits the incident beam in two ones forth and back. 

 

 

Conclusions 
 
We have described a gravitational propagation framework that we expect to be appropriate 

in the theoretical interpretation of gravitational wave detection data, in which 

perturbations of metric produced by a source are detected over macroscopic scale like 

interferometry. We have shown that taking K as a symmetric potential of a massless 

particle (graviton) recovers the two independent polarizations of the field as in Einstein 

theory, but with the difference that counter-phase effects are checkable only in the 

polarization. Great difficulty is encountered in resolving the field equations, which 

makes very hard verification of experimental data through ordinary numerical algorithms, 

so limiting the analysis to the leading approximation. Certainly, higher order 

approximations are mandatory to make a telltale check of the theory ; nevertheless for our 

purposes it is sufficient to be acquainted with the possibility of the evaluation of the 

coupling constant  S
 
= 5.677E19 m

-1
  as  measure of the intrinsic inertia of the Space-Time 

to sweep out gravitational radiation and to assure causality in relativity as stressed in the 
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reference paper [8].  Also, comparable agreement has been shown between the Vortex 

Model and the Einstein energy losses amount. As further consequence of this approach, a 

new acceleration law for test particles and a new cosmology are being developed and 

proved to be consistent with cosmic observational data. 
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