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1 Introduction

There are pressing motivations for understanding the preferred extremals of Kahler action [2]. For
instance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [13]. One problem is how
to assign a complex coordinate with the string world sheet having Minkowskian signature of metric.
One can hope that the understanding of preferred extremals could allow to identify two preferred
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complex coordinates whose existence is also suggested by number theoretical vision giving preferred
role for the rational points of partonic 2-surfaces in preferred coordinates. The best one could hope
is a general solution of field equations in accordance with the hints that TGD is integrable quantum
theory.

A lot is is known about properties of preferred extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are heuristic
and rely heavily on physical intuition. The following considerations relate to the space-time regions
having Minkowskian signature of the induced metric. The attempt to generalize the construction also
to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M* [2] define natural preferred coordinates for Minkowskian
space-time sheet and might allow to identify string world sheets for X* as those for M*.
Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual defining local 2-
plane M? C M* and complex transversal complex coordinates (w, ) for a plane E? orthogonal
to M2 at each point of M*. Clearly, hyper-complex analyticity and complex analyticity are in
question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic
2-surfaces (string world sheets).

3. The quaternionic planes of loctonion space (for quaternions containing preferred hyper-complex
plane are labelled by C P, which might be called C Py*°¢ [T1]. The identification C P, = C P4
motivates the notion of M® — —M* x C'P, duality [3]. It also inspires a concrete solution ansatz
assuming the equivalence of two different identifications of the quaternionic tangent space of the
space-time sheet and implying that string world sheets can be regarded as strings in the 6-D
coset space Go/SU(3). The group Gs of octonion automorphisms has already earlier appeared
in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the C P, =
CPod conditions reduce to string model for partonic 2-surfaces in C P, = SU(3)/U(2). String
model in both cases could mean just hypercomplex/complex analyticity for the coordinates of
the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic
2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = ¢; + I¢o2, where ¢; is quaternion and [ is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map
preferred coordinates of H = M* x C'P, to octonionic coordinate, form an arbitrary octonion
analytic function having expansion with real Taylor or Laurent coefficients to avoid problems
due to non-commutativity and non-associativity. Map the outcome to a point of H to get a
map H — H. This procedure is nothing but a generalization of Wick rotation to get an 8-D
generalization of analytic map.

2. Identify the preferred extremals of K&hler action as surfaces obtained by requiring the vanishing
of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world
sheets would correspond to commutative sub-manifolds of the space-time surface and of imbed-
ding space and would emerge naturally. The ends of braid strands at partonic 2-surface would
naturally correspond to the poles of the octonion analytic functions. This would mean a huge
generalization of conformal invariance of string models to octonionic conformal invariance and
an exact solution of the field equations of TGD and presumably of quantum TGD itself.
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2 Basic ideas about preferred extremals

2.1 The slicing of the space-time sheet by partonic 2-surfaces and string
world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.

The challenge is to formulate this more precisely at the level of the preferred extremals of K&hler
action.

1. Almost topological QFT property means that the Kéhler action reduces to Chern-Simons terms
assignable to 3-surfaces [6]. This is guaranteed by the vanishing of the Coulomb term in the
action density implied automatically if conserved Kéhler current is proportional to the instanton
current with proportionality coefficient some scalar function. An essential role is played by the
weak form of electric magnetic duality [6] in transforming the boundary term to Chern-Simons
term.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
are Beltrami flows [6] so that corresponding 1-forms J satisfy the condition J A dJ = 0. These
conditions are satisfied if

J=0oVU

hold true for conserved currents. From this one obtains that ¥ defines global coordinate varying
along flow lines of J.

3. A possible interpretation is in terms of local polarization and momentum directions defined by
the scalar functions involved and natural additional conditions are that the gradients of ¥ and
® are orthogonal:

VO-VU =0 ,

and that the ¥ satisfies massless d’Alembert equation

V20U =0

as a consequence of current conservation. If ¥ defines a light-like vector field - in other words

VU . VU =0 ,
the light-like dual of ® -call it ®.- defines a light-like like coordinate and ¢ and ®. defines a
light-like plane at each point of space-time sheet.

If also ® satisfies d’Alembert equation

V20 =0 |,

also the current

K =vVo

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to
time-lik plane defined by local light-like momentum direction.

If ® allows a contination to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of spacetime surface by ¥ and its dual (defining hyper-complex co-
ordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to provide
space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates
of M*.
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This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined
Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with
the mathematics of string models. The two complex coordinates assignable to the Yangian of
affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly
non-trivial challenge is to identify them appropriately.

2.2 Hamilton-Jacobi coordinates for M*

The earlier attempts to construct preferred extremals led to the realization that so called Hamilton-
Jacobi coordinates (m,w) for M* define its slicing by string world sheets parametrized by partonic 2-
surfaces. m would be pair of light-like conjugate coordinates associated with an integrable distribution
of planes M? and w would define a complex coordinate for the integrable distribution of 2-planes E?
orthogonal to M?2. There is a great temptation to assume that these coordinates define prefered
coorinates for M*.

1. The slicing is very much analogous to that for space-time sheets and the natural question is how
these slicings relate. What is of special interest is that the momentum plane M? can be defined
by massless momentum. The scaling of this vector does not matter so that these planes are
labelled by points z of sphere S? telling the direction of the line M2 N E2, when one assigns rest
frame and therefore S? with the preferred time coordinate defined by the line connecting the tips
of C'D. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate.
The complex scalings of the twistor (u, @) — Au,u/A) define the same plane. Projective twistor
like entities defining C'P; having only one complex component instead of three are in question.
This complex number defines with certain prerequisites a local coordinate for space-time sheet
and together with the complex coordinate of E? could serve as a pair of complex coordinates
(z,w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing
in the expansion of the generators of quantum Yangian of quantum affine algebra [13].

2. The coordinate ¥ appearing in Beltrami flow defines the light-like vector field defining M?
distribution. Its hyper-complex conjugate would define ¥, and conjugate light-like direction.
An attractive possibility is that ® allows analytic continuation to a holomorphic function of w.
In this manner one would have four coordinates for M* also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M?(x) C M* = M2 x E? representing momentum plane and polarization plane E? C
E2 x T(CP,). The moduli space of planes E? C E® is 8-dimensional and parametrized by
SO(6)/SO(2) x SO(4) for a given E2. How can one achieve this selection and what conditions
it must satisfy? Certainly the choice must be integrable but this is not the only condition.

2.3 Space-time surfaces as quaternionic surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means
that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-time [11]. It
took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to
a preferred time axes (and rest frame) identified naturally as that connecting the tips of C'D.
What modified gamma matrices mean depends on variational principle for space-time surface.
For volume action one would obtain induced gamma matrices. For Kahler action one obtains
something different. In particular, the modified gamma matrices do not define vector basis
identical with tangent vector basis of space-time surface.
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2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kahler action span quaternionic sub-
space of the octonionic tangent space [6]. A further condition is that each quaternionic space
defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at given
point. For instance, for massless extremals these densities are proportional to light-like vector
so that the situation is degenerate and the space in question reduces to 2-D hyper-complex
sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M? C M?* for preferred extremals? For massless extremals this condition would
be true. The orthogonal decomposition T(X*) = M? @, E? can be defined at each point if this
is true. For massless extremals also the functions ¥ and ® can be identified.

2. One should answer also the following delicate question. Can M? really depend on point z of
space-time? CP, as a moduli space of quaternionic planes emerges naturally if M? is same
everywhere. It however seems that one should allow an integrable distribution of M2 such that
M? is same for all points of a given partonic 2-surface.

How could one speak about fixed C'P, (the imbedding space) at the entire space-time sheet even
when M2 varies?

(a) Note first that Go| [3] defines the Lie group of octonionic automorphisms and Go action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of
Go are related by Gy automorphism. Clearly, one must assign to each point of a string
world sheet in the slicing parameterizing the partonic 2-surfaces an element of Go. One
would have Minkowskian string model with G5 as a target space. As a matter fact, this
string model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units and
octonionic unit g; with ”color isospin” Is = 1/2 and ”color hypercharge” Y = —1/3 and
its conjugate g; with opposite color isospin and hypercharge.

(¢) The CP, point assigned with the quaternionic basis would correspond to the SU(3) rotation
needed to rotate the standard basis to this basis and would actually correspond to the
first row of SU(3) rotation matrix. Hyper-complex analycity is the basic property of the
solutions of the field equations representing Minkowskian string world sheets. Also now the
same assumption is highly natural. In the case of string models in Minkowski space, the
reduction of the induced metric to standard form implies Virasoro conditions and similar
conditions are expected also now. There is no need to introduce action principle -just the
hyper-complex analyticitity is enough-since Kéhler action already defines it.

3. The [WZW model inspired approach to the situation would be following. The parametrization
corresponds to a map g : X2 — G5 for which g defines a flat G connection at string world sheet.
WZW type action would give rise to this kind of situation. The transition G2 — G2/SU(3)
would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection.
Similar procedure for CP, = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2)
gauge field. Instead of introducing these connections one can simply introduce G5/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts
gluons and electroweak gauge bosons assignable to string like objects so that the mathematical
picture would be consistent with physical intuition.
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2.4 The two interpretations of C'P,

An old observation very relevant for what I have called M® — H duality [3] is that the moduli space of
quaternionic sub-spaces of octonionic space (identifiable as M®) containing preferred hyper-complex
plane is CPs. Or equivalently, the space of two planes whose addition extends hyper-complex plane to
some quaternionic subspace can be parametrized by C'P,. This C'P, can be called it CPy*? to avoid
confusion. In the recent case this would mean that the space E%(z) C E? x T(CP,) is represented by
a point of CPy"*?. On the other hand, the imbedding of space-time surface to H defines a point of
"real” CP,. This gives two different C Pss.

1. The highly suggestive idea is that the identification CPy**¢ = CP, (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to C'P, would fix the local polarization plane completely. This condition for E?(z) would
be purely local and depend on the values of C'P, coordinates only. Second condition for E?(x)
would involve the gradients of imbedding space coordinates including those of C'P, coordinates.

2. The conditions that the planes M2 form an integrable distribution at space-like level and that
M? is determined by the modified gamma matrices. The integrability of this distribution for
M* could imply the integrability for X2. X* would differ from M* only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of C'Ps coordi-
nates and makes them non-constant but allows to depend only on transversal degrees of freedom?
This condition is too strong even for simplest massless extremals for which C'P; coordinates de-
pend on transversal coorinates defined by €-m and € - k. One could however allow dependence
of C' P, coordinates on light-like M* coordinate since the modification of the induced metric is
light-like so that light-like coordinate remains light-like coordinate in this modification of the
metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general
dependence of C'P, points on the light-like coordinates assignable to the distribution of M2
would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but
not both.

3 What could be the construction recipe for the preferred

extremals assuming C' P, = CP;"? identification?

The crucial condition is that the planes E?(x) determined by the point of C P, = C Py*°¢ identification
and by the tangent space of E2 x C' P, are same. The challenge is to transform this condition to an
explicit form. C'Py = C'P3"°? identification should be general coordinate invariant. This requires that
also the representation of E? as (e2, e®) plane is general coordinate invariant suggesting that the use
of preferred C' P, coordinates -presumably complex Eguchi-Hanson coordinates- could make life easy.
Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the
situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X*
but not in general identical with the tangent space: this would be the case only if the action were
4-volume. I will use the notation T (X?) about the modified tangent space and call the vectors of
T(X*) modified tangent vectors. I hope that this would not cause confusion.

3.1 CP,=CPy? condition

Quaternionic property of the counterpart of 7™ (X*) allows an explicit formulation using the tangent
vectors of T (X?).

1. The unit vector pair (es,e3) should correspond to a unique tangent vector of H defined by
the coordinate differentials dh* in some natural coordinates used. Complex Eguchi-Hanson
coordinates [I] are a natural candidate for C P, and require complexified octonionic imaginary
units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.
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2. The pair (e, e3) as also its complexification (¢1 = es + ie3, §; = es — ie3) is expressible as a
linear combination of octonionic units Is,...I7 should be mapped to a point of CP*°? = CPy
in canonical manner. This mapping is what should be expressed explicitly. One should express
given (eg,es3) in terms of SU(3) rotation applied to a standard vector. After that one should
define the corresponding C'P, point by the bundle projection SU(3) — CPs.

3. The tangent vector pair

(8’whk7 %h’k)

defines second representation of the tangent space of E?(x). This pair should be equivalent with
the pair (g1,q;). Here one must be however very cautious with the choice of coordinates. If the
choice of w is unique apart from constant the gradients should be unique. One can use also real
coordinates (z,y) instead of (w = x + iy, w = x — iy) and the pair (e, e3). One can project the
tangent vector pair to the standard vielbein basis which must correspond to the octonioni basis

(&Ehk,@yhk) — (azhke‘,feA,ayhke,?)eA) < (ea,e3)

where the e4 denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (es,e3) derived from the knowledge of CPy
projection.

3.2 Formulation of quaternionicity condition in terms of octonionic struc-
ture constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra.
The expressions for octonionic| resp. |quaternionic| structure constants can be found at [5] resp. [6].

1. The ansatz is

{Exy = {15, Eq, E3}
7 7
E2 = EgkekEZEgkek 5 E3:E3kekEZE3kek,
k=2 k=2
|Eo] = 1, |Es|=1. (3.1)

2. The multiplication table for quaternionic units gives

¥ By, = Fgy , [ Esp = —Fo , fH"EopFEs =67 . (3.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper
indices. Summation convention is assumed. Also the contribution of the real unit is present in
the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients Fs, and FE3, and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (Eq, E3) is of the form

(55
“1op )

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to
the highly symmetric properties of the structure constants. In fact the equations can be written
as eigen conditions
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f1 o (EQ + /LEJ) = ?i(EQ + ZE3) s

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I analogous to color hyper charge. Both values of color hyper charged are obtained.

3.3 Explicit expression for the CP, = CPy*¢ conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1,1, 3,3) under SU(3).
Note the analogy of triplet with color triplet of quarks. One can write complexified basis as
(1,e1,(q1,92,93), (G1G2,73)). The expressions for complexified basis elements are

1 ) . .
(CI17Q2,Q3) = E(ez + 1e3,e4 + €5, €6 +ze7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind o fline can
be used to form pair of complexified unit and its conjugate. In the tangent space of M* x CP,
the basis vectors g, and go are mixtures of E2 and C'P; tangent vectors. gz involves only C' Py
tangent vectors and there is a temptation to interpret it as the analog of the quark having no
color isospin.

2. The quaternionic basis is real and must transform like (1,1,¢1,G;), where ¢; is any quark in
the triplet and g, its conjugate in antitriplet. Having fixed some basis one can perform SU(3)
rotations to get a new basis. The action of the rotation is by 3 x 3 special unitary matrix. The
over all phases of its rows do not matter since they induce only a rotation in (e3,es3) plane not
affecting the plane itself. The action of SU(3) on ¢ is simply the action of its first row on

(91,2, q3) triplet:

a1 — (U@ =Unq + U2q2 + U133 = 21q1 + 22q2 + 23q3
= 21(62 + ieg) + 2’2(64 + i65) + 2’3<66 + ie7) . (33)

The triplets (21, 22, 23) defining a complex unit vector and point of S®. Since overall phase does
not matter a point of C'P; is in question. The new real octonion units are given by the formulas

ez — Re(z1)es + Re(z2)es + Re(z3)es — Im(z1)es — Im(z2)es — Im(zg)er
es — Im(z1)ea + Im(z2)eq + Im(z3)es + Re(z1)es + Re(zz)es + Re(zz)er .
(3.4)

For instance the C' P, coordinates corresponding to the coordinate patch (z1, zo, z3) with z3 # 0
are obtained as (£1,&2) = (21/23, 22/23).

Using these expressions the equations expressing the conjecture CP, = C'Py*°? equivalence can be
expressed explicitly as first order differential equations. The conditions state the equivalence

(ea,e3) <> (Bmhke‘,?eA,ayhke?eA), (3.5)

where e4 denote octonion units. The comparison of two pairs of vectors requires normalization of the
tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of
the tangent vector. After this the vectors can be equated. This allows to expresses the contractions
of the partial derivatives with vielbein vectors with the 6 components of e; and e3. Each condition
gives 6+6 first order partial differential equations which are non-linear by the presence of the overal
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normalization factor for the right hand side. The equations are invariant under scalings of (z,y). The
very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamiltonin-Jacobi coordinates for M* and Eguchi-Hanson complex co-
ordinates in which SU(2) x U(1) is represented linearly for C'P,. These coordinates are preferred
because they carry deep physical meaning.

3.4 Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP, = C P4
conditions one has what one might call string model with 6-dimensional G5/SU(3) as targent space.
The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point of Go/SU(3)
defining what one means with standard quaternionic plane at given point of string world sheet. The
hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic
2-surfaces central for the proposed mathematical applications of TGD [7, 8, 10, 14]. This duality
suggests that the solutions to the C'P, = C'Py"*? conditions could reduce to holomorphy with respect
to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The dependence
on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regaded as dual
string models in Go/SU(3) and SU(3)/U(2) and also to string model in M* and X*! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces.
TGD seems to yield an inflation of string models! This not actually surprising since the slicing of
space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds
of maps having interpretation in terms of string orbits.

3.5 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When CP; projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex C' P, coordinates analogous to the Hamilton-Jacobi coordinates for
M*. Complex Eguchi-Hanson coordinates transforming linearly under U(2) C SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kéhler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since C' P, projection of space-time sheet need not cover
the entire C'Ps.

2. For string like objects X4 = X2 x Y2 ¢ M* x CP, with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M* and complex coordinate in CP,.
If X? has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of C'P, allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M* and
C'P, but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as "romantic stuff” [I1].
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1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M*
coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M*. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in C'P, degrees of freedom followed
by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.

The problem is that one decouples M* and C'P, degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E?(z) corresponds to subspace of
E2 x T(CP). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M* x C' P,
coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of C'P,).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

3.5.1 Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?

1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Iq2: q1 and ¢ are quaternionis and [ is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [II] but have not
managed to build any satisfactory scenario.

3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [13].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.
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4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. 1

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of CD. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
2-surface represented by a collection of punctures. There is a strong temptation to assume
that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.

3.5.2 What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
Physically this would correspond to the choice of momentum plane M2 for a position dependent
light-iike momentum defining the plane of non-physical polarizations.

This question is inspired by the general solution ansatz based on the slicing of space-time sheets
which involves the dependence of the choice of the momentum plane M2 on the point of string world
sheet. This dependence is parameterized by a point of G5/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ¢; of the
quaternionic coordinate g1 = ¢1 + Ico of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
CP, would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M* defined by Hamiton-Jacobi coordinates [2], this slicing indeed exists.

3.5.3 Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of C' Ds is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting c; = 0,
where ¢ is the imaginary part of the quaternion coordinate ¢ = ¢; + Ico. Their intersections
with C'D boundaries are generally 1-dimensional and represent space-like strings.
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2. Partonic 2-surfaces could correspond to the intersections of Re(ci) = constant 3-surfaces with
the boundaries of C'D. The variation of Re(ci) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of C'D would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(cq), naturally Re(cq) = 0.

What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting ¢; = 0 (or ¢; = constant) in the decomposition
g = ¢1 + ice. This option is consistent with the above assumption if Im(c;) = 0 holds true at
the boundaries of C'D. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.

3. One can of course wonder whether also the poles of ¢; might be relevant. The most natural idea
is that the value of Re(c;) varies between 0 and oo between the ends of the orbit of partonic
2-surface. This would mean that ¢; has a pole at the other end of CD (or light-like orbit
of partonic 2-surface). In light of this the earlier proposal [10] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points ¢ = ¢; + Icg = 0
and ¢ = oo 4+ Icy, where oo means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.

3.5.4 Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.

(a) H — M?® correspondence is based on the observation that quaternionic sub-spaces of octo-

nions containing preferred complex sub-space are labelled by points of C'P,. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CPy (CPy = CPy,0q condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.
Here one should however understand the role of the M* coordinates. What is the func-
tional form of M* coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M*
coordinates for surfaces representable as graphs for maps M4 — CP,? What about other
cases such as cosmic strings [4]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(¢) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for K&hler action rather than for
minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
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real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kéahler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.

(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP; point so that CP, = CPyo?
identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.

(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP,
part of field equations coming from the variation of Kéhler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

c) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
g y g
gamma matrices this cannot be the case. One cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether CP, = C'Py*? condition implies the
integrability automatically.

3.5.5 Volume action or Kahler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.

1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kéhler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M* translations would define Beltrami flows for which the 1-forms would be gradients of linear
M* coordinates. If M* coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kahler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kahler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kahler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kéahler action
which are also quaternionic 4-surfaces.
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1. Preferred extremal property for Kéhler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kahler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of C'P, type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kéahler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...

3.5.6 Are quaternionicities defined in terms of induced gamma matrices resp. octonion
real-analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of
7 octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is
non-assciative Malcev algebra [4] which can be seen as a Lie algebra over non-associative number
field (one speaks of 7-dimensional cross product/ [8]). One must use instead of vector fields either
octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The use
of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M* coordinates or possibly Hamilton-Jacobi coordinates and C' P complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2) x U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

3.5.7 Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.


http://en.wikipedia.org/wiki/Malcev_algebra
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. The above considerations are restricted to Minkowskian regions of space-time sheets. What

happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

It would be nice to find a justification for the notion of C'D from basic principles. The condition
qq = 0 implies ¢ = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies gg = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/¢q having poles at
light-cone boundaries or C'D boundaries rather than at single point as in Euclidian realm.

This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of C'D along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of C'D meet remains after this
identification. The structure would be homologically very much like C' P, which is obtained by
compactifying E* by adding a 2-sphere at infinity. Could this CD — C P, correspondence have
some deep physical meaning? Do the boundaries of C'D somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider

the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of C'Ds. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced
by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.

3.5.8 How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df /dgq and df /do make sense hold true?

The answer is "No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make

sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df /dz locally, the answer is "No”.

Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of ¢ = ¢; + Ico could be regarded as an analytic function of complex arguments c;
and cy. This is not the case. The product of two octonions decomposed to two quaternions as
0; = qi1 + 1qi2 , i = a,b reads as

0a0b = Ga1qp1 — Gao@v2 + (G192 — Ga2qp1) - (3.6)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas o, = 0, = ¢q1 + Iq2 one has
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0° = ¢ — Gogz + 1(G102 — @201)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part g vanishes. By similar
argument real part of quaternion real-analytic function ¢ = ¢; + Ico fails to be analytic unless
one restricts the consideration to a surface at which one has co = 0. These negative results are
obviously consistent with the effective 2-dimensionality.

. One must however notice that physicists use often what might be called analytization trick [1]

working if the non-analytic function f(z,y) = f(z,%) is differentiable. The trick is to inter-
pret z and Z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dcidé;dcadcs one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ¢; and
¢; are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece

of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

4

1. The canonical Mandelbrot set| corresponds to the set of the complex parameters c in f(z) = 22 +c

for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case ¢
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

. Julia set| corresponds to the boundary of the Fatou set in which the dynamics defined by the

iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

In what sense TGD could be an integrable theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense has
accumulated. The challenge is to show that various ideas about what integrability means form pieces
of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially correct or
simply wrong. Since it is not possible to know beforehand what ideas are wrong and what are right
the situation is very much like in experimental physics and it is easy to claim (and has been and will
be claimed) that all this argumentation is useless speculation. This is the price that must be paid for
real thinking.
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Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for a
linear system. In TGD framework this translates to quantum classical correspondence. The solutions
of modified Dirac equation define the scattering data. This data should define a real analytic function
whose octonionic extension defines the space-time surface as a surface for which its imaginary part
in the representation as bi-quaternion vanishes. There are excellent hopes about this thanks to the
reduction of the modified Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories, list
some bits of evidence for integrability in TGD framework, discuss once again the question whether the
different pieces of evidence are consistent with other and what one really means with various notions.
An an outcome I represent what I regard as a more coherent view about integrability of TGD. The
notion of octonion analyticity developed in the previous section is essential for the for what follows.

4.1 What integrable theories are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable theories.

4.1.1 Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Solitons and
various other particle like structures are the characteristic phenomenon in these theories. Scattering
matrix is trivial in the sense that the particles go through each other in the scattering and suffer only
a phase change. In particular, momenta are conserved. [Korteveg-de Vries equation [I]was motivated
by the attempt to explain the experimentally discovered shallow water wave preserving its shape and
moving with a constant velocity. Sine-Gordon equation [4] describes geometrically constant curvature
surfaces and defines a Lorentz invariant non-linear field theory in 141-dimensional space-time, which
can be applied to Josephson junctions (in TGD inspired quantum biology it is encountered in the
model of nerve pulse [9]). Non-linear Schrodinger equation| [3] having applications to optics and water
waves represents a further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example of
integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its infinite-
dimensional character implies infinite number of conserved quantities. The construction of the theory
reduces to the construction of the representations of (super-)conformal algebra. One can solve 2-
point functions exactly and characterize them in terms of (possibly anomalous) scaling dimensions of
conformal fields involved and the coefficients appearing in 3-point functions can be solved in terms
of fusion rules leading to an associative algebra for conformal fields. The basic applications are to
2-dimensional critical thermodynamical systems whose scaling invariance generalizes to conformal
invariance. String models represent second application in which a collection of super-conformal field
theories associated with various genera of 2-surface is needed to describe loop corrections to the
scattering amplitudes. Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories| are also examples of integrable theories. Because of its inde-
pendence on the metric Chern-Simons action is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [7]), topological in-
variants of 3-manifolds and 4-manifolds, and topological quantum computation| (for a model of DNA
as topological quantum computer see [5]) represent applications of this approach. TGD as almost
topological QFT means that the Kéhler action for preferred extremals reduces to a surface term by
the vanishing of Coulomb term in action and by the weak form of electric-magnetic duality reduces
to Chern-Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral quan-
tum field theory. The observation that twistor amplitudes allow also a dual of the 4-D conformal
symmetry motivates the extension of this symmetry to its infinite-dimensional Yangian variant [9].
Also the enormous progress in the construction of scattering amplitudes suggests integrability. In
TGD framework Yangian symmetry would emerge naturally by extending the symplectic variant of
Kac-Moody algebra from light-cone boundary to the interior of causal diamond and the Kac-Moody
algebra from light-like 3-surface representing wormhole throats at which the signature of the induced
metric changes to the space-time interior [I3].
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4.1.2 About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed to the
development of the modern mathematical physics. Mention only quantum groups, conformal algebras,
and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem
for which the interaction is characterized by a potential function or its analog to a linear scattering
problem depending on time. For instance, for the ordinary Schrodinger function one can solve potential
once single solution of the equation is known. This does not work in practice. One can however gather
information about the asymptotic states in scattering to deduce the potential. One cannot do without
information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like bound-
aries of C'D (more precisely: the largest CD involved and defining the IR resolution for momenta).
From the scattering data coding information about scattering for various values of energy of the
incoming particle one deduced the potential function or its analog.

1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML)
transform/ described in simple terms in [5].

(a) In 141 dimensional case the S-matrix characterizing scattering is very simple since the
only thing that can take place in scattering is reflection or transmission. Therefore the S-
matrix elements describe either of these processes and by unitarity the sum of corresponding
probabilities equals to 1. The particle can arrive to the potential either from left or right
and is characterized by a momentum. The transmission coefficient can have a pole meaning
complex (imaginary in the simplest case) wave vector serving as a signal for the formation
of a bound state or resonance. The scattering data are represented by the reflection and
transmission coefficients as function of time.

(b) One can deduce an integral equation for a propagator like function K (¢, z) describing how
delta pulse moving with light velocity is scattered from the potential and is expressible
in terms of time integral over scattering data with contributions from both scattering
states and bound states. The derivation of GML transform [5] uses time reversal and time
translational invariance and causality defined in terms of light velocity. After some tricks
one obtains the integral equation as well as an expression for the time independent potential
as V(z) = K(z,z). The argument can be generalized to more complex problems to deduce
the GML transform.

2. The so called Lax pair| is one manner to describe integrable systems [2]. Lax pair consists of
two operators L and M. One studies what might be identified as ”energy” eigenstates satisfying
L(z,t)¥ = AU. X does not depend on time and one can say that the dynamics is associated
with x coordinate whereas as t is time coordinate parametrizing different variants of eigenvalue
problem with the same spectrum for L. The operator M (t) does not depend on z at all and the
independence of A on time implies the condition

oL =[L,M] .

This equation is analogous to a quantum mechanical evolution equation for an operator induced
by time dependent ”Hamiltonian” M and gives the non-linear classical evolution equation when
the commutator on the right hand side is a multiplicative operator (so that it does not involve
differential operators acting on the coordinate x). Non-linear classical dynamics for the time
dependent potential emerges as an integrability condition.

One could say that M (t) introduces the time evolution of L(t,z) as an automorphism which
depends on time and therefore does not affect the spectrum. One has L(t,x) = U (¢)L(0, z)U 1 (t)
with dU(t)/dt = M (¢)U(t). The time evolution of the analog of the quantum state is given by
a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can be
generalized so that M depends also on x. The generalization of the basic equation for M (x,t)
reads as
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4.2

WL — 0y M — [L,M] =0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential having
components A, = L, A; = M. This generalization allows a beautiful geometric formulation of
the integrability conditions and extends the applicability of the inverse scattering transform.
The monodromy of the flat connection becomes important in this approach. Flat connections
in moduli spaces are indeed important in topological quantum field theories and in conformal
field theories.

There is also a connection with the so called Riemann-Hilbert problem| [7]. The monodromies
of the flat connection define monodromy group and Riemann-Hilbert problem concerns the
existence of linear differential equations having a given monodromy group. Monodromy group
emerges in the analytic continuation of an analytic function and the action of the element of the
monodromy group tells what happens for the resulting many-valued analytic function as one
turns around a singularity once ('mono-’). The linear equations obviously relate to the linear
scattering problem. The flat connection (M, L) in turn defines the monodromy group. What is
needed is that the functions involved are analytic functions of (¢, z) replaced with a complex or
hyper-complex variable. Again Wick rotation is involved. Similar approach generalizes also to
higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of mathematical
apparatus could be used. An interesting possibility is that finite measurement resolution could
be realized in terms of a gauge group or Kac-Moody type group represented by trivial gauge
potential defining a monodromy group for n-point functions. Monodromy invariance would
hold for the full n-point functions constructed in terms of analytic n-point functions and their
conjugates. The ends of braid strands are natural candidates for the singularities around which
monodromies are defined.

Why TGD could be integrable theory in some sense?

There are many indications that TGD could be an integrable theory in some sense. The challenge is
to see which ideas are consistent with each other and to build a coherent picture where everything
finds its own place.

1.

2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for integrability.
Effective 2-dimensionality is suggested by the strong form of General Coordinate Invariance
implying also holography and generalized conformal invariance predicting infinite number of
conservation laws. The dual roles of partonic 2-surfaces and string world sheets supports a four-
dimensional generalization of conformal invariance. Twistor considerations [12] indeed suggest
that Yangian invariance and Kac-Moody invariances combine to a 4-D analog of conformal
invariance induced by 2-dimensional one by algebraic continuation.

. Octonionic representation of imbedding space Clifford algebra and the identification of the space-

time surfaces as quaternionic space-time surfaces would define a number theoretically natural
generalization of conformal invariance. The reason for using gamma matrix representation is
that vector field representation for octonionic units does not exist. The problem concerns the
precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is ana-
lytically continued from string curve to 8-D space by octonion real-analyticity. The question is
whether the Clifford algebra based notion of tangent space quaternionicity is equivalent with
octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must consider se-
riously the possibility that associativity-co-associativity dichotomy corresponds to Minkowskian-
Euclidian dichotomy.

Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form
JAdJ =0.
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(a) One can assign local momentum and polarization directions to the preferred extremals and
this gives a decomposition of Minkowskian space-time regions to massless quanta analogous
to the 14+1-dimensional decomposition to solitons. The linear superposition of modes with
4-momenta with different directions possible for free Maxwell action does not look plausible
for the preferred extremals of Kahler action. This rather quantal and solitonic character is
in accordance with the quantum classical correspondence giving very concrete connection
between quantal and classical particle pictures. For 4-D volume action one does not obtain
this kind of decomposition. In 2-D case volume action gives superposition of solutions with
different polarization directions so that the situation is nearer to that for free Maxwell
action and is not like soliton decomposition.

(b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the space-
time surface in terms of corresponding Beltrami flows. This is possible also in Euclidian
regions using two complex coordinates instead of hyper-complex coordinate and complex
coordinate. The assumption that isometry currents are parallel to the same light-like
Beltrami flow implies hydrodynamic character of the field equations in the sense that one
can say that each flow line is analogous to particle carrying some quantum numbers. This
property is not true for all extremals (say cosmic strings).

(¢) The tangent bundle theoretic view about integrability is that one can find a Lie algebra of
vector fields in some manifold spanning the tangent space of a lower-dimensional manifolds
and is expressed in terms of [Frobenius theorem [2]). The gradients of scalar functions
defining Beltrami flows appearing in the ansatz for preferred exremals would define these
vector fields and the slicing. Partonic 2-surfaces would correpond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector field
and its dual (light-like momentum directions). This slicing generalizes to the Euclidian
regions.

4. Infinite number of conservation laws is the signature of integrability. Classical field equations
follow from the condition that the vector field defined by modified gamma matrices has vanishing
divergence and can be identified an integrability condition for the modified Dirac equation
guaranteing also the conservation of super currents so that one obtains an infinite number of
conserved charges.

5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe
critical systems so that the natural guess is that quantum criticality in TGD framework relates
to the generalization of conformal invariance and to integrability. Quantum criticality implies
that Kahler coupling strength is analogous to critical temperature. This condition does affects
classical field equations only via boundary conditions expressed as weak form of electric magnetic
duality at the wormhole throats at which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by the
second derivatives of potential is similar signature and applies in catastrophe theory. Therefore
the existence of vanishing second variations of Kahler action should characterize criticality and
define a property of preferred extremals. The vanishing of second variations indeed leads to an
infinite number of conserved currents [6, [2].

4.3 Questions

There are several questions which are not completely settled yet. Even the question what preferred
extremals are is still partially open. In the following I try to de-learn what I have possibly learned
during these years and start from scratch to see which assumptions might be un-necessarily strong or
even wrong.

4.4 Could TGD be an integrable theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspondence
could be seen as a correspondence between linear quantum dynamics and non-linear classical dynamics.
Integrability would realize this correspondence. In integrable models such as Sine-Gordon equation
particle interactions are described by potential in 141 dimensions. This too primitive for the purposes
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of TGD. The vertices of generalized Feynman diagrams take care of this. At lines one has free particle
dynamics so that the situation could be much simpler than in integrable models if one restricts the
considerations to the lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized Feyn-
man diagram should be obtainable from the linear dynamics for the induced spinor fields defined by
modified Dirac operator. There are two options.

1. Strong form of the quantum classical correspondence states that each solution for the linear
dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the
potential function in terms of a single solution of Schrédinger equation. Coupling of space-time
geometry to quantum numbers via measurement interaction term is a proposal for realizing this
option. It is howwever the quantum numbers of positive/negative energy parts of zero energy
state which would be visible in the classical dynamics rather than those of induced spinor field
modes.

2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the
modified Dirac operator- is mapped to the geometry of the space-time sheet. This is much more
abstract realization of quantum classical correspondence.

3. Can these two approaches be equivalent? This might be the case since quantum numbers of the
state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying modified Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the modified
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These
correspond to basic solutions and the general solution is a superposition of these. There is no
dispersion and the dynamics is that of geometric optics at the basic level. This means geometric
optics like character of the spinor dynamics.

Solutions of the modified Dirac equation are completely analogous to the pulse solutions defining
the fundamental solution for the wave equation in the argument leading from wave equation
with external time independent potential to Marchenko-Gelfand-Levitan equation allowing to
identify potential in terms of scattering data. There is however no potential present now since
the interactions are described by the vertices of Feynman diagram where the particle lines meet.
Note that particle like regions are Euclidian and that this picture applies only to the Minkowskian
exteriors of particles.

2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected by flow
lines. Partonic 2-surfaces at which the signature of the induced metric changes are in a special
position. Only the imaginary part of the bi-quaternionic value of the octonion valued map is
non-vanishing at these surfaces which can be said to be co-complex 2-surfaces. By geometric
optics behavior the scattering data correspond to a diffeomorphism mapping initial partonic
2-surface to the final one in some preferred complex coordinates common to both ends of the
line.

3. What could be these preferred coordinates? Complex coordinates for S? at light-cone bound-
ary define natural complex coordinates for the partonic 2-surface. With these coordinates the
diffeomorphism defining scattering data is diffeomorphism of S2. Suppose that this map is real
analytic so that maps "real axis” of S? to itself. This map would be same as the map defin-
ing the octonionic real analyticity as algebraic extension of the complex real analytic map. By
octonionic analyticity one can make large number of alternative choices for the coordinates of
partonic 2-surface.

4. There can be non-uniqueness due to the possibility of G3/SU(3) valued map characterizing
the local octonionic units. The proposal is that the choice of octonionic imaginary units can
depend on the point of string like orbit: this would give string model in G2/SU(3). Conformal
invariance for this string model would imply analyticity and helps considerably but would not
probably fix the situation completely since the element of the coset space would constant at the
partonic 2-surfaces at the ends of C'D. One can of course ask whether the G5/SU(3) element
could be constant for each propagator line and would change only at the 2-D vertices?
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This would be the inverse scattering problem formulated in the spirit of TGD. There could be

also dependence of space-time surface on quantum numbers of quantum states but not on indididual
solution for the induced spinor field since the scattering data of this solution would be purely geometric.
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