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Abstract

Although an unambiguous definition of heat is available in the classical thermodynamics
for closed systems, the question of how best to define heat transfer in open systems is not
yet settled.

This article begins by reviewing the different definitions of heat for open systems used
by CALLEN, Casas-VAzQuUEz, DEGRrooT, Fox, Haasg, Jou, KONDEPUDI, LEBON,
MAZUR, MISNER, PRIGOGINE, SMITH, THORNE, and by WHEELER in irreversible ther-
modynamics, emphasizing their main pros and cons. In a posterior section, this author
introduces a new definition of heat that avoids the main difficulties of the existent defini-
tions and provides us (i) a non-redundant definition that (ii) agrees with the definition used
in the kinetic theory of gases, (iii) uses natural variables for the thermodynamic potentials,
and (iv) properly generalizes the classical thermodynamic expressions to open systems.
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1 Introduction

The true nature of heat, as a form of energy that can interconvert to other forms
of energy, was established after much debate in the last part of the 19th century
[1]. However, an unambiguous definition was lacking until Born introduced his
definition in 1921 [2]

Q=AE-W, (1)

with E and W being the total energy and work, respectively.

Although this definition (1) is not valid for open systems [1, 2] —i.e., for systems that
can interchange matter as well as energy—, this restriction has not been, in prac-
tice, a difficulty for its usage in the classical thermodynamic theory of equilibrium;
essentially, because the basic problem of classical thermodynamics is, according to
CALLEN, «the determination of the equilibrium state that eventually results after
the removal of internal constraints in an isolated, composite system> [3, 4] .

The difficulties begin with the extension of classical thermodynamics to irreversible
processes. In irreversible thermodynamics, thermodynamic systems in a nonequilib-
rium state are divided into small elements of volume and each element is assumed
to be locally at equilibrium [5]. Now, these elements of volume can interchange
matter with adjacent elements, which requires a definition of heat also valid for
open systems.

The importance of a generalization of the closed-systems definition of heat has
been emphasized many years ago; however, in despite of the existence of several
generalizations, the question of how best to define heat transfer in open systems is
not yet settled [6].

The next section reviews the available definitions of heat for open systems in ir-
reversible thermodynamics, emphasizing their main pros and cons. In a posterior
section, this author introduces a new definition of heat that avoids the main diffi-
culties of the existent definitions.

2 Review of available definitions

We start by considering an element of volume that can interchange internal energy
and matter —more general systems will be considered in the next section—. The local
production of entropy o and the entropy flow Js are

o= JyV (;) - Ek: ka<’frk) (2)
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and
1
Js = T <JU - Ek ,Uka> ) (3)

where Jy is the flow of internal energy, T the absolute temperature, and Jx and p
the flow and chemical potential of the component k, respectively.

The production of entropy (2) is the usual product of flows and thermodynamic
forces. A first definition of heat follows from considering it as the flow associated
with the gradient of temperature in the first product, i.e., Jg] = Jy. The production
of entropy can be rewritten as

_ g (L Fik
=49 (3) -2 (%) (@
and the entropy flow as

L[
Js = T (JQ - zk:,uk-/k) : (5)

This definition is preferred by DEGrooT & MAzUr [7], and used by Fox [8] and
Jou, Casas-VAzQuez, & LEBON in irreversible thermodynamics [9], by MisNEr,
THORNE, & WHEELER in curved spacetime thermodynamics [10], and by Jou,
CAsAs-VAzQuEz, & LEeBON in extended thermodynamics [9] —although in the two
last cases the production (4) and flow (5) are generalized to curved spacetime and
to an extended thermodynamic space, respectively—. The flow JB] is noted by Kon-
DEPUDI & PRIGOGINE in their study of alternative definitions [1] and is the standard
in the kinetic theory of gases [11].

The main advantages of this first definition are its agreement with the kinetic defini-
tion, its use of natural variables for the thermodynamic potentials, and its distinction
between closed and isolated systems. The main objection is found in its redundancy.
Effectively, any instance of Jg] in the equations could be substituted by Jy without
physical or mathematical changes, doing unneeded the introduction of the concept
of heat in the formalism.

A second definition of heat follows by separating the gradient of i, from the gradient
of (1/T) in (2). Using

()-ws() (Bom

the production of entropy can be rewritten as
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and the entropy flow as

J[Z]
- o

for a heat flow Jg] = Ju — >4 tkJk- This definition is used by CaLLen [3] and is
noted by DEGrooT & Mazur and by KONDEPUDI & PRIGOGINE in their study of
alternative definitions [1, 7].

The main advantages of this second definition are its use of natural variables for
the thermodynamic potentials and its non-redundancy. The main objections being
the disagreement with the kinetic definition and that it does not distinguish closed
from open systems.

The first objection acquires more relevance, when we note that CALLEN interprets,
«in a very rough intuitive way», the term uyJi as a «current density of potential
energy», so that he concludes that his Jg] represents a kind of «kinetic energy
current density» extracted from the total internal energy flow Jy [3].

The second objection is not less important. Effectively, integrating the entropy flow
(8) over the area A of the whole thermodynamic system and multiplying by dt we
obtain the well-known classical result

2l
dESEdt/JsdA: 4@ (9)
B T

which is valid for closed but not for open systems [1, 7]. Precisely CaLLEN introduces

his heat flow from Jg] = TJs, in analogy with dQ = TdS for reversible processes
in a closed system, but this generates the following difficulty.

Consider an open thermodynamic system. Adding or eliminating mass from the
system at constant temperature adds or eliminate entropy, because this is an exten-
sive quantity. Although this process is not usually considered a heating or cooling
process, the use of Jg] obligates us to interpret as heat any transfer of entropy
inside or outside the system.

A third definition of heat can be obtained by noting that the gradient of chemical
potential Vi, in (6) is still a function of the temperature. Using the next separation,
where sy is the partial molar entropy of component k [1],

V,uk = (Vﬁbk)T —-5VT (10)

and using (6), the production of entropy (2) can be rewritten as

J—J§v<;>—2;(¢>ﬂmur (1)

and the entropy flow as

J[3]

o= sk (12)
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for a heat flow Jg] = Ju — >, (pk + Tsk)Jk. This definition is preferred by Kon-
pEPUDI & PRIGOGINE [1], by Haase [2] and by Smrtu [6]; and it is noted by
DEGROOT & MAZUR in their study of alternative definitions [7].

The main advantages of this third definition are its non-redundancy and its dis-
tinction between closed and isolated systems. The main objections being the dis-
agreement with the kinetic definition and that it is not defined in natural variables.
Indeed, this definition explicitly involves s, = s¢(T, n).

Precisely KONDEPUDI & PRIGOGINE introduce Jg] after changing the internal energy
density from u = u(s, n) to u = u(T, n) in the energy balance equation [1]. Neither
s nor u are thermodynamic potentials in a temperature-composition state space.

3 New definition of heat flow

We start by considering an element of volume that can interchange internal energy,
matter, and other extensive thermodynamic quantities, whose densities are x;. The
local production of entropy (2) and the entropy flow (3) are generalized to

1 Uk Vi
o JUV<T> zk:ka(T>+zi:Jv<T> (13)
and
1
Js = - (JU - zk:Mka + Z’Y;-ﬁ) , (14)
where J; and ~;/T are the flow and intensive entropic parameters, respectively,
associated to the quantity /. The production of entropy (13) continues showing the

usual product of flows and thermodynamic forces.

The new definition of heat follows by separating the gradient of ~; from the gradient
of (1/T) in (13). Using

WY v LY 4 (v,
v(2) =9 (3)+ (3)v (15)
the production of entropy can be rewritten as
1 Lk J;
o= JoV (T> - zk:w(T> + Z<T>Vm~ (16)

and the entropy flow as

Js = E (JQ - ZMM) , (17)

k
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for a heat flow Jo = Jy+>_;7iJi. This new definition has a number of advantages
over the existent definitions, as showed next.

Unlike Jg], the new definition is not redundant because it is not just Jy. However,
Jg correctly reduces to the heat flow used in the kinetic theory of gases, where the
only local extensive variables are the energy and composition.

This new definition distinguishes closed from open systems, eliminating another
main objection to Jg]. Using (17), the external variation of entropy is now

1
deS = — (dQ - zk:,ukdnk> , (18)

instead of (9). The standard expression d.S = dQ/T is recovered from (18) for

closed systems. Unlike Jg], the use of the new Jg does not obligate us to interpret
as heat any transfer of entropy inside or outside a thermodynamic system.

Integrating the new heat flow Jg over the area A of the whole system and over
the time interval At needed to achieve a final equilibrium state, from an initial
equilibrium state, gives a generalization of the Born heat definition (1)

Q=ADE - W+ udn, (19)
k

with W being the total work.

The main advantages of Jg over J[g] are that the new definition retains the natural
variables for the thermodynamic potentials and that correctly reduces to the kinetic
definition. Comparison of (12) with (17) provides a relation between both flows

Jo = J[g] + Z ukJk, (20)
k

where the partial molar internal energy, ux = ux + Tsk, of the component k has
been used [1]. Precisely )", uxJk is the term that guarantees the compatibility of
Jo with kinetic theory.

Summarizing, the new definition of heat flow Jo = Jy+)_; viJi is (i) non-redundant,
(ii) agrees with the definition used in the kinetic theory of gases, (iii) uses natural
variables for the thermodynamic potentials, and (iv) properly generalizes classical
thermodynamic expressions —such as d@ = TdS and Born definition (1)- to open
systems.
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