
Graduate Textbook in Mathematics

LINFAN MAO

SMARANDACHE MULTI-SPACE THEORY

Second Edition

The Education Publisher Inc.

2011



Linfan MAO

Academy of Mathematics and Systems
Chinese Academy of Sciences
Beijing 100190, P.R.China

and

Beijing Institute of Civil Engineering and Architecture
Beijing 100044, P.R.China

Email: maolinfan@163.com

Smarandache Multi-Space Theory

Second Edition

The Education Publisher Inc.

2011



This book can be ordered from:

The Educational Publisher, Inc.

1313 Chesapeake Ave.

Columbus, Ohio 43212, USA

Toll Free: 1-866-880-5373

E-mail: info@edupublisher.com

Website: www.EduPublisher.com

Peer Reviewers:

Y.P.Liu, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044,

P.R.China.

F.Tian, Academy of Mathematics and Systems, Chinese Academy of Sciences, Beijing

100190, P.R.China.

J.Y.Yan, Graduate Student College of Chinese Academy of Sciences, Beijing 100083,

P.R.China.

R.X.Hao, Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044,

P.R.China.

Copyright 2011 by The Education Publisher Inc. and Linfan Mao

Many books can be downloaded from the followingDigital Library of Science:

http://www.gallup.unm.edu/∼smarandache/eBooks-otherformats.htm

ISBN: 978-1-59973-165-0

Printed in America



Preface to the Second Edition

Our WORLD is a multiple one both shown by the natural world andhuman beings. For

example, the observation enables one knowing that there areinfinite planets in the uni-

verse. Each of them revolves on its own axis and has its own seasons. In the human

society, these rich or poor, big or small countries appear and each of them has its own sys-

tem. All of these show that our WORLD is not in homogenous but in multiple. Besides,

all things that one can acknowledge is determined by his eyes, or ears, or nose, or tongue,

or body or passions, i.e., these six organs, which means the WORLD consists ofhaveand

not haveparts for human beings. For thousands years, human being hasnever stopped his

steps for exploring its behaviors of all kinds.

We are used to the idea that our space has three dimensions:length, breadthand

heightwith time providing the fourth dimension of spacetime by Einstein. In the string or

superstring theories, we encounter 10 dimensions. However, we do not even know what

the right degree of freedom is, as Witten said. Today, we have known two heartening no-

tions for sciences. One is theSmarandache multi-spacecame into being by purely logic.

Another is themathematical combinatoricsmotivated by a combinatorial speculation, i.e.,

a mathematical science can be reconstructed from or made by combinatorialization. Both

of them contribute sciences for consistency of research with that human progress in 21st

century.

What is a Smarandache multi-space? It is nothing but a union ofn different spaces

equipped with different structures for an integern ≥ 2, which can be used both for discrete

or connected spaces, particularly for systems in nature or human beings. We think the

Smarandache multi-spaceand themathematical combinatoricsare the best candidates for

21st century sciences. This is the reason that the author wrote this book in 2006, published

by HEXIS in USA. Now 5 years have pasted after the first editionpublished. More and
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more results on Smarandache multi-spaces appeared. The purpose of this edition is to

survey Smarandache multi-space theory including new published results, also show its

applications to physics, economy and epidemiology.

There are 10 chapters with 71 research problems in this edition. Chapter 1 is a

preparation for the following chapters. The materials, such as those of groups, rings,

commutative rings, vector spaces, metric spaces and Smarandache multi-spaces including

important results are introduced in this chapter.

Chapter 2 concentrates on multi-spaces determined by graphs. Topics, such as those

of the valency sequence, the eccentricity value sequence, the semi-arc automorphism,

the decomposition of graph, operations on graphs, hamiltonian graphs and Smarandache

sequences on symmetric graphs with results are discussed inthis chapter, which can be

also viewed as an introduction to graphs and multi-sets underlying structures.

Algebraic multi-spaces are introduced in Chapter 3. Various algebraic multi-spaces,

such as those of multi-systems, multi-groups, multi-rings, vector multi-spaces, multi-

modules are discussed and elementary results are obtained in this chapter.

Chapters 4-5 continue the discussion of graph multi-spaces. Chapter 4 concentrates

on voltage assignments by multi-groups and constructs multi-voltage graphs of type I, II

with liftings. Chapter 5 introduces the multi-embeddings of graphs in spaces. Topics such

as those of topological surfaces, graph embeddings in spaces, multi-surface embeddings,

2-cell embeddings, and particularly, combinatorial maps,manifold graphs with classifi-

cation, graph phase spaces are included in this chapter.

Chapters 6-8 introduce Smarandache geometry, i.e., geometrical multi-spaces. Chap-

ter 6 discusses the map geometry with or without boundary, including a short introduction

on these paradoxist geometry, non-geometry, counter-projective geometry, anti-geometry

with classification, constructs these Smarandache geometry by map geometry and finds

curvature equations in map geometry. Chapter 7 considers these elements of geometry,

such as those of points, lines, polygons, circles and line bundles in planar map geom-

etry and Chapter 8 concentrates on pseudo-Euclidean geometry on Rn, including inte-

gral curves, stability of differential equations, pseudo-Euclidean geometry, differential

pseudo-manifolds,· · ·, etc..

Chapter 9 discusses spacial combinatorics, which is the combinatorial counterpart

of multi-space, also an approach for constructing Smarandache multi-spaces. Topics in

this chapter includes the inherited graph in multi-space, algebraic multi-systems, such as
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those of multi-groups, multi-rings and vector multi-spaces underlying a graph, combi-

natorial Euclidean spaces, combinatorial manifolds, topological groups and topological

multi-groups and combinatorial metric spaces. It should benoted that the topological

group is a typical example of Smarandache multi-spaces in classical mathematics. The

final chapter presents applications of Smarandache multi-spaces, particularly to physics,

economy and epidemiology.

In fact, Smarandache multi-spaces underlying graphs are animportant systemati-

cally notion for scientific research in 21st century. As a textbook, this book can be appli-

cable for graduate students in combinatorics, topologicalgraphs, Smarandache geometry,

physics and macro-economy.

This edition was began to prepare in 2010. Many colleagues and friends of mine

have given me enthusiastic support and endless helps in writing. Here I must mention

some of them. On the first, I would like to give my sincerely thanks to Dr.Perze for

his encourage and endless help. Without his encourage, I would do some else works,

can not investigate Smarandache multi-spaces for years andfinish this edition. Second, I

would like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xu, Jiyi Yan, Fuji Zhang

and Wenpeng Zhang for them interested in my research works. Their encouraging and

warmhearted supports advance this book. Thanks are also given to Professors Han Ren,

Yuanqiu Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and

Erling Wei for their kindly helps and often discussing problems in mathematics altogether.

Partially research results of mine were reported at ChineseAcademy of Mathematics

& System Sciences, Beijing Jiaotong University, Beijing Normal University, East-China

Normal University and Hunan Normal University in past years. Some of them were also

reported atThe 2nd, 3rd and 7th Conference on Graph Theory and Combinatorics of

China in 2006, 2008 and 2011. My sincerely thanks are also give to these audiences

discussing mathematical topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented here.

Any suggestions for improving this book or solutions for open problems in this book are

welcome.

L.F.Mao

October 20, 2011
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CHAPTER 1.

Preliminaries

What is a Smarandache multi-space? Why is it important to modern Science?

A Smarandache multi-spacẽS is a union ofn different spacesS1, S2, Sn

equipped with some different structures, such as those of algebraic, topolog-

ical, differential,· · · structures for an integern ≥ 2, introduced by Smaran-

dache in 1969 [Sma2]. Whence, it is a systematic notion for developing mod-

ern sciences, not isolated but an unified way connected with other fields. To-

day, this notion is widely accepted by the scientific society. Applying it fur-

ther will develops mathematical sciences in the 21st century, also enhances

the ability of human beings understanding the WORLD. For introducing the

readers knowing this notion, preliminaries, such as those of sets and neutro-

sophic sets, groups, rings, vector spaces and metric spaceswere introduced

in this chapter, which are more useful in the following chapters. The reader

familiar with these topics can skips over this chapter.



2 Chap.1 Preliminaries

§1.1 SETS

1.1.1 Set.A setΞ is a category consisting of parts, i.e., a collection of objects possessing

with a propertyP, denoted usually by

Ξ = { x | x possesses the propertyP }.

If an elementx possesses the propertyP, we say thatx is an element of the setΞ, denoted

by x ∈ Ξ. On the other hand, if an elementy does not possesses the propertyP, then we

say it is not an element ofΞ and denoted byy < Ξ.

For examples,

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

B = {p| p is a prime number},

C = {(x, y)|x2 + y2 = 1},

D = {the cities in the World}

are 4 sets by definition.

Two setsΞ1 andΞ2 are said to beidenticalif and only if for∀x ∈ Ξ1, we havex ∈ Ξ2

and for∀x ∈ Ξ2, we also havex ∈ Ξ1. For example, the following two sets

E = {1, 2,−2} andF = { x |x3 − x2 − 4x+ 4 = 0}

are identical since we can solve the equationx3 − x2 − 4x + 4 = 0 and get the solutions

x = 1, 2 or−2.

Let S,T be two sets. Define binary operationsunion S∪ T, intersection S∩ T and

S minusT respectively by

S
⋃

T = {x|x ∈ S or x ∈ T}, S
⋂

T = {x|x ∈ S andx ∈ T}

and

S \ T = {x|x ∈ S but x < T}.

Calculation shows that

A
⋃

E = {1, 2,−2, 3, 4, 5, 6, 7, 8, 9,10},

A
⋂

E = {1, 2},

A \ E = {3, 4, 5, 6, 7, 8, 9, 10},

E \ A = {−2}.
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The operations∪ and∩ possess the following properties.

Theorem 1.1.1 Let X,T and R be sets. Then

(i) X
⋃

X = X and X
⋂

X = X;

(ii ) X
⋃

T = T
⋃

X and X
⋂

T = T
⋂

X;

(iii ) X
⋃

(T
⋃

R) = (X
⋃

T)
⋃

R and X
⋂

(T
⋂

R) = (X
⋂

T)
⋂

R;

(iv) X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R),

X
⋂

(T
⋃

R) = (X
⋂

T)
⋃

(X
⋂

R).

Proof These laws (i)-(iii ) can be verified immediately by definition. For the law (iv),

let x ∈ X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R). Thenx ∈ X or x ∈ T
⋂

R, i.e., x ∈ T and

x ∈ R. Now if x ∈ X, we know thatx ∈ X ∪ T and x ∈ X ∪ R. Whence, we get that

x ∈ (X
⋃

T)
⋂

(X
⋃

R). Otherwise,x ∈ T
⋂

R, i.e., x ∈ T andx ∈ R. We also get that

x ∈ (X
⋃

T)
⋂

(X
⋃

R).

Conversely, for∀x ∈ (X
⋃

T)
⋂

(X
⋃

R), we know thatx ∈ X
⋃

T andx ∈ X
⋃

R,

i.e., x ∈ X or x ∈ T and x ∈ R. If x ∈ X, we get thatx ∈ X
⋃

(T
⋂

R). If x ∈ T and

x ∈ R, we also get thatx ∈ X
⋃

(T
⋂

R). Therefore,X
⋃

(T
⋂

R) = (X
⋃

T)
⋂

(X
⋃

R) by

definition.

Similarly, we can also get the lawX ∩ T = X ∪ T. �

Let Ξ1 andΞ2 be two sets. If for∀x ∈ Ξ1, there must bex ∈ Ξ2, then we say thatΞ1

is asubsetof Ξ2, denoted byΞ1 ⊆ Ξ2. A subsetΞ1 of Ξ2 is proper, denoted byΞ1 ⊂ Ξ2 if

there exists an elementy ∈ Ξ2 with y < Ξ1 hold. It should be noted that the void (empty)

set∅ is a subset of all sets by definition. All subsets of a setΞ naturally form a setP(Ξ),

called thepower setof Ξ.

For a setX ∈P(Ξ), its complementX is defined byX = { y | y ∈ Ξ buty < X}. Then

we know the following result.

Theorem 1.1.2 LetΞ be a set, S,T ⊂ Ξ. Then

(1) X ∩ X = ∅ andX ∪ X = Ξ;

(2) X = X;

(3) X ∪ T = X ∩ T andX ∩ T = X ∪ T.

Proof The laws (1) and (2) can be immediately verified by definition.For (3), let
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x ∈ X ∪ T. Thenx ∈ Ξ but x < X ∪ T, i.e., x < X andx < T. Whence,x ∈ X andx ∈ T.

Therefore,x ∈ X ∩ T. Now for ∀x ∈ X ∩ T, there must bex ∈ X andx ∈ T, i.e., x ∈ Ξ
but x < X andx < T. Hence,x < X ∪ T. This fact implies thatx ∈ X ∪ T. By definition,

we find thatX ∪ T = X ∩ T. Similarly, we can also get the lawX ∩ T = X ∪ T. This

completes the proof. �

For a setΞ andH ⊆ Ξ, the setΞ \ H is said thecomplementof H in Ξ, denoted

by H(Ξ). We also abbreviate it toH if each set considered in the situation is a subset of

Ξ = Ω, i.e., theuniversal set.

These operations on sets inP(Ξ) observe the following laws.

L1 Itempotent law. For∀S ⊆ Ω,

A
⋃

A = A
⋂

A = A.

L2 Commutative law. For∀U,V ⊆ Ω,

U
⋃

V = V
⋃

U; U
⋂

V = V
⋂

U.

L3 Associative law. For∀U,V,W ⊆ Ω,

U
⋃(

V
⋃

W
)
=

(
U

⋃
V
)⋃

W; U
⋂(

V
⋂

W
)
=

(
U

⋂
V
)⋂

W.

L4 Absorption law. For∀U,V ⊆ Ω,

U
⋂(

U
⋃

V
)
= U

⋃(
U

⋂
V
)
= U.

L5 Distributive law. For∀U,V,W ⊆ Ω,

U
⋃(

V
⋂

W
)
=

(
U

⋃
V
)⋂(

U
⋃

W
)
; U

⋂(
V

⋃
W

)
=

(
U

⋂
V
)⋃(

U
⋂

W
)
.

L6 Universal bound law. For∀U ⊆ Ω,

∅
⋂

U = ∅, ∅
⋃

U = U; Ω
⋂

U = U,Ω
⋃

U = Ω.

L7 Unary complement law. For∀U ⊆ Ω,

U
⋂

U = ∅; U
⋃

U = Ω.

A set with two operations�⋂�and�⋃�satisfying the lawsL1 ∼ L7 is said to be a

Boolean algebra. Whence, we get the following result.
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Theorem1.1.3 For any set U, all its subsets form a Boolean algebra under theoperations�⋂�and�⋃�.

1.1.2 Partially Order Set. Let Ξ be a set. TheCartesian productΞ × Ξ is defined by

Ξ × Ξ = {(x, y)|∀x, y ∈ Ξ}

and a subsetR ⊆ Ξ × Ξ is called abinary relationonΞ. We usually writexRyto denote

that∀(x, y) ∈ R. A partially order setis a setΞ with a binary relation� such that the

following laws hold.

O1 Reflective Law. For x ∈ Ξ, xRx.

O2 Antisymmetry Law. For x, y ∈ Ξ, xRyandyRx⇒ x = y.

O3 Transitive Law. For x, y, z ∈ Ξ, xRyandyRz⇒ xRz.

Denote by (Ξ,�) a partially order setΞ with a binary relation�. A partially ordered

set with finite number of elements can be conveniently represented by a diagram in such

a way that each element in the setΞ is represented by a point so placed on the plane that

point a is above another pointb if and only if b ≺ a. This kind of diagram is essentially

a directed graph. In fact, a directed graph is correspondentwith a partially set and vice

versa. For example, a few partially order sets are shown in Fig.1.1 where each diagram

represents a finite partially order set.

(c)(b)(a) (d)

Fig.1.1

An elementa in a partially order set (Ξ,�) is calledmaximal(or minimal) if for

∀x ∈ Ξ, a � x ⇒ x = a (or x � a ⇒ x = a). The following result is obtained by the

definition of partially order sets and the induction principle.
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Theorem 1.1.4 Any finite non-empty partially order set(Ξ,�) has maximal and minimal

elements.

A partially order set (Ξ,�) is anorder setif for any ∀x, y ∈ Ξ, there must bex � y

or y � x. For example, (b) in Fig.1.1 is such a ordered set. Obviously, any partially order

set contains an order subset, which is easily find in Fig.1.1.

An equivalence relation R⊆ Ξ × Ξ on a setΞ is defined by

R1 Reflective Law. For x ∈ Ξ, xRx.

R2 Symmetry Law. For x, y ∈ Ξ, xRy⇒ yRx

R3 Transitive Law. For x, y, z ∈ Ξ, xRyandyRz⇒ xRz.

Let Rbe an equivalence relation on setΞ. We classify elements inΞ by R with

R(x) = {y| y ∈ Ξ andyRx}.

Then we get a useful result for the combinatorial enumeration following.

Theorem 1.1.5 Let R be an equivalence relation on setΞ. For ∀x, y ∈ Ξ, if there is an

bijectionς between R(x) and R(y), then the number of equivalence classes under R is

|Ξ|
|R(x)| ,

where x is a chosen element inΞ.

Proof Notice that there is an bijectionς betweenR(x) and R(y) for ∀x, y ∈ Ξ.

Whence,|R(x)| = |R(y)|. By definition, for∀x, y ∈ Ξ, R(x)
⋂

R(y) = ∅ or R(x) = R(y). Let

T be a representation set of equivalence classes, i.e., choice one element in each class.

Then we get that

|Ξ| =
∑

x∈T
|R(x)| = |T ||R(x)|.

Whence, we know that

|T | = |Ξ|
|R(x)| . �

1.1.3 Neutrosophic Set.Let [0, 1] be a closed interval. For three subsetsT, I , F ⊆ [0, 1]

andS ⊆ Ω, define a relation of elementx ∈ Ω with the subsetS to be x(T, I , F), i,e.,

theconfidence set T, the indefinite set Iand thefail set F for x ∈ S. A setS with three
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subsetsT, I , F is said to be aneutrosophic set. We clarify the conception of neutrosophic

set by set theory following.

Let Ξ be a set andA1,A2, · · · ,Ak ⊆ Ξ. Define 3k functions f x
1 , f x

2 , · · · , f x
k by f x

i :

Ai → [0, 1], 1 ≤ i ≤ k, wherex = T, I , F. Denoted by (Ai ; f T
i , f I

i , f F
i ) the subsetAi with

three functionsf T
i , f I

i , f F
i , 1≤ i ≤ k. Then

k⋃

i=1

(
Ai; f T

i , f I
i , f F

i

)

is a union of neutrosophic sets. Some extremal cases for thisunion is in the following,

which convince us that neutrosophic sets are a generalization of classical sets.

Case1 f T
i = 1, f I

i = f F
i = 0 for i = 1, 2, · · · , k.

In this case,
k⋃

i=1

(
Ai; f T

i , f I
i , f F

i

)
=

k⋃

i=1

Ai .

Case2 f T
i = f I

i = 0, f F
i = 1 for i = 1, 2, · · · , k.

In this case,
k⋃

i=1

(
Ai; f T

i , f I
i , f F

i

)
=


k⋃

i=1

Ai

.

Case3 There is an integers such thatf T
i = 1 f I

i = f F
i = 0, 1 ≤ i ≤ s but f T

j = f I
j =

0, f F
j = 1 for s+ 1 ≤ j ≤ k.

In this case,
k⋃

i=1

(Ai , fi) =
s⋃

i=1

Ai

⋃
k⋃

i=s+1

Ai

.

Case4 There is an integerl such thatf T
l , 1 or f F

l , 1.

In this case, the union is a general neutrosophic set. It can not be represented by

abstract sets. IfA
⋂

B = ∅, define the function value of a functionf on the union set

A
⋃

B to be

f
(
A

⋃
B
)
= f (A) + f (B)

and

f
(
A

⋂
B
)
= f (A) f (B).
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Then if A
⋂

B , ∅, we get that

f
(
A

⋃
B
)
= f (A) + f (B) − f (A) f (B).

Generally, we get the following formulae.

f


l⋂

i=1

Ai

 =
l∏

i=1

f (Ai) ,

f


k⋃

i=1

Ai

 =
k∑

j=1

(−1)j−1
j∏

s=1

f (As) .

by applying the inclusion-exclusion principle to a union ofsets.

§1.2 GROUPS

1.2.1 Group. A setG with a binary operation◦, denoted by (G; ◦), is called agroup if

x ◦ y ∈ G for ∀x, y ∈ G with conditions following hold:

(1) (x ◦ y) ◦ z= x ◦ (y ◦ z) for ∀x, y, z ∈ G;

(2) There is an element 1G, 1G ∈ G such thatx ◦ 1G = x;

(3) For∀x ∈ G, there is an elementy, y ∈ G, such thatx ◦ y = 1G.

A groupG is Abelianif the following additional condition holds.

(4) For∀x, y ∈ G, x ◦ y = y ◦ x.

A setG with a binary operation◦ satisfying the condition (1) is called to be asemi-

group. Similarly, if it satisfies the conditions (1) and (4), then it is called anAbelian

semigroup.

Example1.2.1 The following sets with operations are groups:

(1) (R;+) and (R; ·), whereR is the set of real numbers.

(2) (U2; ·), whereU2 = {1,−1} and generally, (Un; ·), whereUn =
{
ei 2πk

n , k = 1, 2,

· · · , n}.
(3) For a finite setX, the setS ymXof all permutations onX with respect to permu-

tation composition.

Clearly, the groups (1) and (2) are Abelian, but (3) is not in general.
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Example 1.2.2 Let GL(n,R) be the set of all invertiblen× n matrixes with coefficients

in R and+, · the ordinary matrix addition and multiplication. Then

(1) (GL(n,R);+) is an Abelian infinite group with identity 0n×n, then×n zero matrix

and inverse−A for A ∈ GL(n,R), where−A is the matrix replacing each entrya by −a in

matrix A.

(2) (GL(n,R); ·) is a non-Abelian infinite group ifn ≥ 2 with identity 1n×n, then× n

unit matrix and inverseA−1 for A ∈ GL(n,R), whereA · A−1 = 1n×n. For its non-Abelian,

let n = 2 for simplicity and

A =


1 2

2 1

 , B =


2 −3

3 1

 .

Calculations show that


1 2

2 1

 ·


2 −3

3 1

 =


8 −1

7 −5

 ,


2 −3

3 1

 ·


1 2

2 1

 =

−4 1

5 7

 .

Whence,A · B , B · A.

1.2.2 Group Property. A few properties of groups are listed in the following.

P1. There is only one unit1G in a group(G ; ◦).

In fact, if there are two units 1G and 1′
G

in (G ; ◦), then we get 1G = 1G ◦ 1′
G
= 1′

G
, a

contradiction.

P2. There is only one inverse a−1 for a ∈ G in a group(G ; ◦).

If a−1
1 , a

−1
2 both are the inverses ofa ∈ G , then we get thata−1

1 = a−1
1 ◦ a ◦ a−1

2 = a−1
2 ,

a contradiction.

P3. (a−1)−1 = a, a ∈ G .

P4. If a ◦ b = a ◦ c or b◦ a = c ◦ a, where a, b, c ∈ G , then b= c.

If a◦b = a◦ c, thena−1 ◦ (a◦b) = a−1 ◦ (a◦ c). According to the associative law, we

get thatb = 1G ◦ b = (a−1 ◦ a) ◦ b = a−1 ◦ (a◦ c) = (a−1 ◦ a) ◦ c = 1G ◦ c = c. Similarly, if

b ◦ a = c ◦ a, we can also getb = c.

P5. There is a unique solution for equations a◦ x = b and y◦a = b in a group(G ; ◦)
for a, b ∈ G .
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Denote byan = a ◦ a ◦ · · · ◦ a︸          ︷︷          ︸
n

. Then the following property is obvious.

P6. For any integers n,m and a, b ∈ G , an ◦ am = an+m, (an)m = anm. Particularly, if

(G ; ◦) is Abelian, then(a ◦ b)n = an ◦ bn.

1.2.3 Subgroup. A subsetH of a groupG is asubgroupif H is also a group under the

same operation inG, denoted byH ≤ G. The following results are well-known.

Theorem 1.2.1 Let H be a subset of a group(G; ◦). Then(H; ◦) is a subgroup of(G; ◦)
if and only if H, ∅ and a◦ b−1 ∈ H for ∀a, b ∈ H.

Proof By definition if (H; ◦) is a group itself, thenH , ∅, there isb−1 ∈ H anda◦b−1

is closed inH, i.e.,a ◦ b−1 ∈ H for ∀a, b ∈ H.

Now if H , ∅ anda ◦ b−1 ∈ H for ∀a, b ∈ H, then,

(1) there exists anh ∈ H and 1G = h ◦ h−1 ∈ H;

(2) if x, y ∈ H, theny−1 = 1G ◦ y−1 ∈ H and hencex ◦ (y−1)−1 = x ◦ y ∈ H;

(3) the associative lawx◦ (y◦ z) = (x◦ y) ◦ z for x, y, z ∈ H is hold in (G; ◦). By (2),

it is also hold inH. Thus, combining (1)-(3) enables us to know that (H; ◦) is a group.�

Corollary 1.2.1 Let H1 ≤ G and H2 ≤ G. Then H1 ∩ H2 ≤ G.

Proof Obviously, 1G = 1H1 = 1H2 ∈ H1 ∩ H2. SoH1 ∩ H2 , ∅. Let x, y ∈ H1 ∩ H2.

Applying Theorem 1.2.2, we get that

x ◦ y−1 ∈ H1, x ◦ y−1 ∈ H2.

Whence,

x ◦ y−1 ∈ H1 ∩ H2.

Thus, (H1 ∩ H2; ◦) is a subgroup of (G; ◦). �

Theorem 1.2.2 (Lagrange)Let H ≤ G. Then|G| = |H||G : H|.

Proof Let

G =
⋃

t∈G:H

t ◦ H.

Notice thatt1 ◦ H ∩ t2 ◦ H = ∅ if t1 , t2 and|t ◦ H| = |H|. We get that

|G| =
∑

t∈G:H

t ◦H = |H||G : H|. �
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Let H ≤ G be a subgroup ofG. For ∀x ∈ G, denote the sets{xh | ∀h ∈ H},
{hx | ∀h ∈ H} by xH andHx, respectively. A subgroupH of a group (G ; ◦) is called a

normal subgroupif for ∀x ∈ G, xH = Hx. Such a subgroupH is denoted byH ⊳ G

For two subsetsA, B of group (G; ◦), the productA ◦ B is defined by

A ◦ B = {a ◦ b| ∀a ∈ A, ∀b ∈ b }.

Furthermore, ifH is normal, i.e.,H ⊳ G, it can be verified easily that

(xH) ◦ (yH) = (x ◦ y)H and (Hx) ◦ (Hy) = H(x ◦ y)

for ∀x, y ∈ G. Thus the operation ”◦” is closed on the set{xH|x ∈ G} = {Hx|x ∈ G}. Such

a set is usually denoted byG/H. Notice that

(xH ◦ yH) ◦ zH = xH ◦ (yH ◦ zH), ∀x, y, z ∈ G

and

(xH) ◦ H = xH, (xH) ◦ (x−1H) = H.

Whence,G/H is also a group by definition, called aquotient group. Furthermore, we

know the following result.

Theorem 1.2.3 G/H is a group if and only if H is normal.

Proof If H is a normal subgroup, then

(a ◦ H)(b ◦ H) = a ◦ (H ◦ b) ◦ H = a ◦ (b ◦ H) ◦ H = (a ◦ b) ◦ H

by the definition of normal subgroup. This equality enables us to check laws of a group

following.

(1) Associative laws inG/H.

[(a ◦ H)(b ◦ H)](c ◦ H) = [(a ◦ b) ◦ c] ◦ H = [a ◦ (b ◦ c)] ◦ H

= (a ◦ H)[(b ◦ H)(c ◦ H)].

(2) Existence of identity element 1G/H in G/H.

In fact, 1G/H = 1 ◦ H = H.

(3) Inverse element for∀x ◦ H ∈ G/H.
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Because of (x−1◦H)(x◦H) = (x−1◦ x)◦H = H = 1G/H, we know the inverse element

of x ◦ H ∈ G/H is x−1 ◦ H.

Conversely, ifG/H is a group, then fora ◦ H, b ◦ H ∈ G/H, we have

(a ◦ H)(b ◦ H) = c ◦ H.

Obviously,a ◦ b ∈ (a ◦ H)(b ◦ H). Therefore,

(a ◦ H)(b ◦ H) = (a ◦ b) ◦ H.

Multiply both sides bya−1, we get that

H ◦ b ◦ H = b ◦ H.

Notice that 1G ∈ H, we know that

b ◦ H ⊂ H ◦ b ◦ H = b ◦ H,

i.e.,b◦ H ◦ b−1 ⊂ H. Consequently, we also findb−1 ◦ H ◦ b ⊂ H if replaceb by b−1, i.e.,

H ⊂ b ◦ H ◦ b−1. Whence,

b−1 ◦ H ◦ b = H

for ∀b ∈ G. Namely,H is a normal subgroup ofG. �

A normal seriesof a group (G; ◦) is a sequence of normal subgroups

{1G} = G0 ⊳ G1 ⊳ G2 ⊳ · · ·⊳ Gs = G,

where theGi , 1 ≤ i ≤ s are theterms, the quotient groupsGi+1/Gi , 1 ≤ i ≤ s− 1 are the

factorsof the series and if allGi are distinct, and the integers is called thelengthof the

series. Particularly, if the lengths = 2, i.e., there are only normal subgroups{1G} andG

in (G; ◦), such a group (G; ◦) is said to besimple.

1.2.4 Isomorphism Theorem. For two groupsG,G′, letσ be a mapping fromG to G′.

If

σ(x ◦ y) = σ(x) ◦ σ(y)

for ∀x, y ∈ G, thenσ is called ahomomorphismfrom G to G′. Usually, a one to one

homomorphism is called amonomorphismand an onto homomorphism anepimorphism.

A homomorphism is abijection if it is both one to one and onto. Two groupsG,G′ are
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said to beisomorphicif there exists a bijective homomorphismσ between them, denoted

by G ≃ G′.

Some properties of homomorphism are listed following. Theyare easily verified by

definition.

H1. φ(xn) = φn(x) for all integers n, x∈ G , whence,φ(1G ) = 1H andφ(x−1) =

φ−1(x).

H2. o(φ(x))|o(x), x ∈ G .

H3. If x ◦ y = y ◦ x, thenφ(x) · φ(y) = φ(y) · φ(x).

H4. Imφ ≤H and Kerφ⊳ G .

Now let φ : G → G′ be a homomorphism. Itsimage Imφ and kernel Kerφ are

respectively defined by

Imφ = Gφ = {φ(x) | ∀x ∈ G }

and

Kerφ = { x | ∀x ∈ G, φ(x) = 1G′ }.

The following result, usually called thehomomorphism theoremis well-known.

Theorem 1.2.4 Letφ : G→ G′ be a homomorphism of group. Then

(G, ◦)/Kerφ ≃ Imφ.

Proof Notice that Imφ ≤ H and Kerφ ⊳ G by definition. SoG/Kerφ is a group by

Theorem 1.2.3. We only need to check thatφ is a bijection. In fact,x ◦ Kerφ ∈ Kerφ if

and only ifx ∈ Kerφ. Thusφ is an isomorphism fromG/Kerφ to Imφ. �

Corollary 1.2.1(Fundamental Homomorphism Theorem)If φ : G → H is an epimor-

phism, then G/Kerφ is isomorphic to H.

§1.3 RINGS

1.3.1 Ring. A setR with two binary operations�+�and�◦�, denoted by (R;+, ◦), is

said to be aring if x + y ∈ R, x ◦ y ∈ R for ∀x, y ∈ R such that the following conditions

hold.

(1) (R;+) is an Abelian group with unit 0, and in;
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(2) (R; ◦) is a semigroup;

(3) For∀x, y, z ∈ R, x ◦ (y+ z) = x ◦ y+ x ◦ zand (x+ y) ◦ z= x ◦ z+ y ◦ z.

Denote the unit by 0, the inverse ofa by −a in the Abelian group (R;+). A ring

(R;+, ◦) is finite if |R| < +∞. Otherwise,infinite.

Example1.3.1 Some examples of rings are as follows.

(1) (Z;+, ·), whereZ is the set of integers.

(2) (pZ;+, ·), wherep is a prime number andpZ = {pn|n ∈ Z}.
(3) (Mn(Z);+, ·), whereMn(Z) is the set ofn× n matrices with each entry being an

integer,n ≥ 2.

Some elementary properties of rings (R;+, ◦) can be found in the following:

R1. 0 ◦ a = a ◦ 0 = 0 for ∀a ∈ R.

In fact, letb ∈ R be an element inR. By a ◦ b = a ◦ (b + 0) = a ◦ b + a ◦ 0 and

b ◦ a = (b+ 0) ◦ a = b ◦ a+ 0 ◦ a, we are easily know thata ◦ 0 = 0 ◦ a = 0.

R1. (−a) ◦ b = a ◦ (−b) = −a ◦ b and (−a) ◦ (−b) = a ◦ b for ∀a, b ∈ R.

By definition, we are easily know that (−a) ◦ b+ a ◦ b = (−a + a) ◦ b = 0 ◦ b = 0

in (R;+, ◦). Thus (−a) ◦ b = −a ◦ b. Similarly, we can get thata ◦ (−b) = −a ◦ b.

Consequently,

(−a) ◦ (−b) = −a ◦ (−b) = −(−a ◦ b) = a ◦ b.

R3. For any integern,m≥ 1 anda, b ∈ R,

(n+m)a = na+ma,

n(ma) = (nm)a,

n(a+ b) = na+ nb,

an ◦ am = an+m,

(an)m
= anm,

wherena= a+ a+ · · · + a︸            ︷︷            ︸
n

andan = a ◦ a ◦ · · · ◦ a︸          ︷︷          ︸
n

.

All these identities can be verified by induction on the integerm. We only prove the

last identity. Form= 1, we are easily know that (an)1 = (an) = an1, i.e., (an)m = anm holds

for m= 1. If it is held form= k ≥ 1, then

(an)k+1
=

(
(an)k

)
◦ (an)
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= ank ◦
a ◦ a ◦ · · · ◦ a︸          ︷︷          ︸

n



= ank+n = an(k+1).

Thus(an)m = anm is held form= k+ 1. By the induction principle, we know it is true for

any integern, m≥ 1.

If R contains an element 1R such that for∀x ∈ R, x ◦ 1R = 1R ◦ x = x, we callR a

ring with unit. All of these examples of rings in the above are rings with unit. For (1), the

unit is 1, (2) isZ and (3) isIn×n.

The unit of (R;+) in a ring (R;+, ◦) is calledzero, denoted by 0. For∀a, b ∈ R, if

a ◦ b = 0,

thena andb are calleddivisors of zero. In some rings, such as the (Z;+, ·) and (pZ ;+, ·),
there must bea or b be 0. We call it only has atrivial divisor of zero. But in the ring

(pqZ;+, ·) with p, q both being prime, since

pZ · qZ = 0

andpZ , 0, qZ , 0, we get non-zero divisors of zero, which is called to havenon-trivial

divisors of zero. The ring (Mn(Z);+, ·) also has non-trivial divisors of zero



1 1 · · · 1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



·



0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

1 1 · · · 1



= On×n.

A division ringis a ring which has no non-trivial divisors of zero. The integer ring (Z;+, ·)
is a divisor ring, but the matrix ring (Mn(Z);+, ·) is not. Furthermore, if (R \ {0}; ◦) is a

group, then the ring (R;+, ◦) is called askew field. Clearly, a skew field is a divisor ring

by properties of groups.

1.3.2 Subring. A non-empty subsetR′ of a ring (R;+, ◦) is called asubringif (R′;+, ◦) is

also a ring. The following result for subrings can be obtained immediately by definition.

Theorem1.3.1 Let R′ ⊂ R be a subset of a ring(R;+, ◦). If (R′;+) is a subgroup of(R;+)

and R′ is closed under the operation�◦�, then(R′;+, ◦) is a subring of(R,+.◦).
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Proof BecauseR′ ⊂ Rand (R;+, ◦) is a ring, we know that (R′; ◦) is also a semigroup

and the distribute lowsx◦ (y+z) = x◦y+x◦z, (x+y)◦z= x◦z+y◦zhold for∀x, y, z ∈ R′.

Thus ()R′;+, ◦ is also a ring. �

Combining Theorems 1.3.1 with 1.2.1, we know the following criterion for subrings

of a ring.

Theorem1.3.2 Let R′ ⊂ R be a subset of a ring(R;+, ◦). If a−b, a·b ∈ R′ for ∀a, b ∈ R′,

then(R′;+, ◦) is a subring of(R,+.◦).

Example 1.3.2 Let (M3(Z);+, ·) be the ring determined in Example 1.3.1(3). Then all

matrixes with following forms


a b 0

c d 0

0 0 0


, a, b, c, d ∈ Z

consist of a subring of (M3(Z);+, ·).

1.3.3 Commutative Ring. A commutative ringis such a ring (R;+, ◦) thata ◦ b = b ◦ a

for ∀a, b ∈ R. Furthermore, if (R \ {0}; ◦) is an Abelian group, then (R;+, ◦) is called a

field. For example, the rational number ring (N;+, ·) is a field.

A commutative ring (R;+, ◦) is called anintegral domainis there are no non-trivial

divisors of zero inR. We know the following result for finite integral domains.

Theorem 1.3.3 Any finite integral domain is a field.

Proof Let (R;+◦) be a finite integral domain withR = {a1 = 1R, a2, · · · , an}, b ∈ R

and a sequence

b ◦ a1, b ◦ a2, · · · , b ◦ an.

Then for any integeri , j, 1 ≤ i, j ≤ m, b◦ai , b◦a j. Otherwise, we getb◦ (ai −a j) = 0

with a , 0 andai − a j , 0. Contradicts to the definition of integral domain. Therefore,

R= {b ◦ a1, b ◦ a2, · · · , b ◦ an}.

Consequently, there must be an integerk, 1 ≤ k ≤ n such thatb◦ ak = 1R. Thusb−1 = ak.

This implies that (R\ {0}; ◦) is a group, i.e., (R;+◦) is a field. �

Let D be an integral domain. Define the quotient fieldQ[D] by

Q[D] = { (a, b) | a, b ∈ D, b , 0 }
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with the convention that

(a, b) ≡ (a′, b′) if and only if ab′ = a′b.

Define operations of sums and products respectively by

(a, b) + (a′, b′) = (ab′ + a′b, bb′)

(a, b) · (a′, b′) = (aa′, bb′).

Theorem 1.3.4 Q[D] is a field for any integral domain D.

Proof It is easily to verify thatQ[D] is also an integral domain with identity elements

(0, 1) for addition and (1, 1) for multiplication. We prove that there exists an inversefor

every elementu , 0 in Q[D]. In fact, for (a, b) . (0, 1),

(a, b) · (b, a) = (ab, ab) ≡ (1, 1).

Thus (a, b)−1 = (b, a). Whence,Q[D] is a field by definition. �

For seeingD is actually a subdomain ofQ[D], associate each elementa ∈ D with

(a, 1) ∈ Q[D]. Then it is easily to verify that

(a, 1)+ (b, 1) = (a · 1+ b · 1, 1 · 1) = (a+ b, 1),

(a, 1) · (b, 1) = (ab, 1 · 1) = (ab, 1),

(a, 1) ≡ (b, 1) if and only if a = b.

Thus the 1-1 mappinga↔ (a, 1) is an isomorphism between the domainD and a subdo-

main{ (a, 1) | a ∈ D } of Q[D]. We get a result following.

Theorem 1.3.5 Any integral domain D can be embedded isomorphically in a field Q[D].

Particularly, let D= Z. Then the integral domainZ can be embedded in Q[Z] = Q.

1.3.4 Ideal. An ideal I of a ring (R;+, ◦) is a non-void subset ofR with properties:

(1) (I ;+) is a subgroup of (R;+);

(2) a ◦ x ∈ I andx ◦ a ∈ I for ∀a ∈ I ,∀x ∈ R.

Let (R;+, ◦) be a ring. A chain

R≻ R1 ≻ · · · ≻ Rl = {1◦}
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satisfying thatRi+1 is an ideal ofRi for any integeri, 1 ≤ i ≤ l, is called anideal chain

of (R,+, ◦). A ring whose every ideal chain only has finite terms is called anArtin ring.

Similar to the case of normal subgroup, consider the setx+ I in the group (R;+). Calcu-

lation shows thatR/I = {x+ I | x ∈ R} is also a ring under these operations�+�and�◦�,

called aquotient ringof R to I .

For two rings rings (R;+, ◦), (R′; ∗, •), let ι : R→ R′ be a mapping fromR to R′. If

ι(x+ y) = ι(x) ∗ ι(y),

ι(x ◦ y) = ι(x) • ι(y)

for ∀x, y ∈ R, thenι is called ahomomorphismfrom (R;+, ◦) to (R′; ∗, •). Furthermore, if

ι is an objection, then ring (R;+, ◦) is said to beisomorphicto ring (R′; ∗, •) and denoted

by rings (R;+, ◦) ≃ (R′; ∗, •). Similar to Theorem 1.2.4, we know the following result.

Theorem 1.3.6 Let ι : R→ R′ be a homomorphism from(R;+, ◦) to (R′; ∗, •). Then

(R;+, ◦)/Kerι ≃ Imι.

§1.4 VECTOR SPACES

1.4.1 Vector Space.A vector spaceor linear spaceconsists of the following:

(1) A field F of scalars;

(2) A setV of objects, called vectors;

(3) An operation, called vector addition, which associateswith each pair of vectors

a, b in V a vectora+ b in V, called the sum ofa andb, in such a way that

(a) Addition is commutative,a+ b = b + a;

(b) Addition is associative, (a+ b) + c = a+ (b + c);

(c) There is a unique vector0 in V, called the zero vector, such thata+ 0 = a for all

a in V;

(d) For each vectora in Vthere is a unique vector−a in V such thata+ (−a) = 0;

(4) An operation�·�, called scalar multiplication, which associates with eachscalar

k in F and a vectora in V a vectork · a in V, called the product ofk with a, in such a way

that
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(a) 1 · a = a for everya in V;

(b) (k1k2) · a = k1(k2 · a);

(c) k · (a+ b) = k · a+ k · b;

(d) (k1 + k2) · a = k1 · a+ k2 · a.

We say thatV is avector space over the field F, denoted by(V ;+, ·).

Example1.4.1 Two vector spaces are listed in the following.

(1) The n-tuple spaceRn over the real number field R. Let V be the set of alln-

tuples (x1, x2, · · · , xn) with xi ∈ R, 1 ≤ i ≤ n. If ∀a = (x1, x2, · · · , xn), b = (y1, y2, · · · , yn) ∈
V, then the sum ofa andb is defined by

a+ b = (x1 + y1, x2 + y2, · · · , xn + yn).

The product of a real numberk with a is defined by

ka = (kx1, kx2, · · · , kxn).

(2) The spaceQm×n of m×n matrices over the rational number fieldQ. Let Qm×n

be the set of allm× n matrices over the natural number fieldQ. The sum of two vectors

A andB in Qm×n is defined by

(A+ B)i j = Ai j + Bi j ,

and the product of a rational numberp with a matrixA is defined by

(pA)i j = pAi j .

1.4.2 Vector Subspace.Let V be a vector space over a fieldF. A subspace Wof V is a

subsetW of V which is itself a vector space overF with the operations of vector addition

and scalar multiplication onV. The following result for subspaces of a vector space is

easily obtained.

Theorem 1.4.1 A non-empty subset W of a vector space(V;+, ·) over the field F is a

subspace of(V;+, ·) if and only if for each pair of vectorsa, b in W and each scalarα in

F the vectorα · a+ b is also in W.

Proof Let W be a non-empty subset ofV such thatα·a+b belongs toW for ∀a, b ∈ V

and all scalarsα in F. Notice thatW , ∅, there are a vectorx ∈ W. By assumption, we
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get that (−1)x + x = 0 ∈ W. Hence,αx + 0 = αx ∈ W for x ∈ W andα ∈ F. Particularly,

(−1)x = −x ∈W. Finally, if x, y ∈W, thenx + y ∈ W. ThusW is a subspace ofV.

Conversely, ifW ⊂ V is a subspace ofV, a, b in W andα is scalarF, thenα·a+b ∈W

by definition. �

This theorem enables one to get the following result.

Theorem 1.4.2 Let V be a vector space over a field F. Then the intersection of any

collection of subspaces of V is a subspace of V.

Proof Let W =
⋂
i∈I

Wi, whereWi is a subspace ofV for eachi ∈ I . First, we know

that0 ∈ Wi for i ∈ I by definition. Whence,0 ∈ W. Now leta, b ∈ W andα ∈ F. Then

a, b ∈Wi for W ⊂Wi for ∀i ∈ I . According Theorem 1.4.1, we know thatα · a+ b ∈ Wi.

Soα · a+ b ∈ ⋂
i∈I

Wi =W. Whence,W is a subspace ofV by Theorem 1.4.1. �

Let U be a set of some vectors in a vector spaceV overF. The subspace spanned by

U is defined by

〈U〉 = { α1 · a1 + α2 · a2 + · · · + αl · al | l ≥ 1, αi ∈ F, andaj ∈ S, 1 ≤ i ≤ l }.

A subsetS of V is said to belinearly dependentif there exist distinct vectorsa1, a2, · · · , an

in S and scalarsα1, α2, · · · , αn in F, not all of which are 0, such that

α1 · a1 + α2 · a2 + · · · + αn · an = 0.

A set which is not linearly dependent is usually calledlinearly independent, i.e., for dis-

tinct vectorsa1, a2, · · · , an in S if there are scalarsα1, α2, · · · , αn in F such that

α1 · a1 + α2 · a2 + · · · + αn · an = 0,

thenαi = 0 for integers 1≤ i ≤ n.

Let V be a vector space over a fieldF. A basisfor V is a linearly independent set of

vectors inV which spans the spaceV. Such a spaceV is calledfinite-dimensionalif it has

a finite basis.

Theorem 1.4.3 Let V be a vector space spanned by a finite set of vectorsa1, a2, · · · , am.

then each independent set of vectors in V is finite, and contains no more than m elements.

Proof Let S be a set ofV containing more thanm vectors. We only need to show

thatS is linearly dependent. Choosex1, x2, · · · , xn ∈ S with n > m. Sincea1, a2, · · · , am



Sec.1.4 Vector Spaces 21

spanV, there must exist scalarsAi j ∈ F such that

x j =

m∑

i=1

Ai j ai.

Whence, for anyn scalarsα1, α2, · · · , αn, we get that

α1x1 + αx2 + · · · + αnxn =

n∑

j=1

α j

m∑

i=1

Ai j ai

=

n∑

j=1

m∑

i=1

(
Ai jα j

)
ai =

m∑

i=1


n∑

j=1

Ai jα j

ai .

Notice thatn > m. There exist scalarsα1, α2, · · · , αn not all 0 such that
n∑

j=1

Ai jα j = 0, 1 ≤ i ≤ m.

Thusα1x1 + αx2 + · · · + αnxn = 0. Whence,S is linearly dependent. �

Theorem 1.4.3 enables one knowing the following consequences.

Corollary 1.4.1 If V is a finite-dimensional, then any two bases of V have the same

number of vectors.

Proof Let a1, a2, · · · , am be a basis ofV. according to Theorem 1.4.3, every basis of

V is finite and contains no more thanmvectors. Thus ifb1, b2, · · · , bn is a basis ofV, then

n ≤ m. Similarly, e also know thatm≤ n. Whence,n = m. �

This consequence allows one to define the dimension dimV of a finite-dimensional

vector space as the number of elements in a basis ofV.

Corollary 1.4.2 Let V be a finite-dimensional vector space with n= dimV. Then no

subset of V containing fewer than n vectors can span V.

Let dimV = n < +∞. An ordered basisfor V is a finite sequence{a1, a2, · · · , an} of

vectors which is linearly independent and spansV. Whence, for any vectorx ∈ V, there

is ann-tuple (x1, x2, · · · , xn) such that

x =
n∑

i=1

xiai .

Then-tuple is unique, because if there is anothern-tuple (z1, z2, · · · , zn) such that

x =
n∑

i=1

ziai ,
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Then there must be
n∑

i=1

(xi − zi) ai = 0.

We getzi = xi for 1 ≤ i ≤ n by the linear independence of{a1, a2, · · · , an}. Thus each

ordered basis forV determines a 1-1 correspondence

x↔ (x1, x2, · · · , xn)

between the set of all vectors inV and the set of alln-tuples inFn = F × F × · · · × F︸              ︷︷              ︸
n

.

The following result shows that the dimensions of subspacesof a finite-dimensional

vector space is finite.

Theorem 1.4.4 If W is a subspace of a finite-dimensional vector space V, thenevery

linearly independent subset of W is finite and is part of basisfor W.

Proof Let S0 = {a1, a2, · · · , an} be a linearly independent subset ofW. By Theorem

1.4.3, n ≤ dimW. We extendS0 to a basis forW. If S0 spansW, thenS0 is a basis ofW.

Otherwise, we can find a vectorb1 ∈W which can not be spanned by elements inS0. Then

S0 ∪ {b1} is also linearly independent. Otherwise, there exist scalarsα0, αi , 1 ≤ i ≤ |S0|
with α0 , 0 such that

α0b1 +

|S0|∑

i=1

αiai = 0.

Whence

b1 = −
1
α0

|S0|∑

i=1

αiai,

a contradiction.

Let S1 = S0 ∪ {b1}. If S1 spansW, we get a basis ofW containingS0. Otherwise,

we can similarly find a vectorb2 such thatS2 = S0 ∪ {b1, b2} is linearly independent.

Continue i this way, we can get a set

Sm = S0 ∪ {b1, b2, · · · , bm}

in at more than dimW− n ≤ dimV − n step such thatSm is a basis forW. �

For two subspacesU,W of a spaceV, the sum of subspacesU,W is defined by

U +W = { u + w | u ∈ U, w ∈W }.

Then, we have results in the following result.
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Theorem 1.4.5 If W1 and W2 are finite-dimensional subspaces of a vector space V, then

W1 +W2 is finite-dimensional and

dimW1 + dimW2 = dim
(
W1

⋂
W2

)
+ dim(W1 +W2) .

Proof According to Theorem 1.4.4,W1∩W2 has a finite basis{a1, a2, · · · , ak}which is

part of a basis{a1, a2, · · · , ak, b1, · · · , bl} for W1 and part of a basis{a1, a2, · · · , ak, c1, · · · , cm}
for W2. Clearly,W1 +W2 is spanned by vectorsa1, a2, · · · , ak, b1, · · · , bl , c1, · · · , cm. If

there are scalarsαi, β j andγr , 1≤ i ≤ k, 1 ≤ j ≤ l, 1≤ r ≤ m such that

k∑

i=1

αiai +

l∑

j=1

β jb j +

m∑

r=1

γrcr = 0,

then

−
m∑

r=1

γrcr =

k∑

i=1

αiai +

l∑

j=1

β jb j ,

which implies thatv =
m∑

r=1
γrcr belongs toW1. Becausev also belongs toW2 it follows

thatv belongs toW1 ∩W2. So there are scalarsδ1, δ2, · · · , δk such that

v =
m∑

r=1

γrcr =

k∑

i=1

δiai.

Notice that{a1, a2, · · · , ak, c1, · · · , cm} is linearly independent. There must beγr = 0 for

1 ≤ r ≤ m. We therefore get that

k∑

i=1

αiai +

l∑

j=1

β jb j = 0.

But {a1, a2, · · · , ak, b1, · · · , bl} is also linearly independent. We get also thatαi = 0, 1 ≤
i ≤ k andβ j = 0, 1 ≤ j ≤ l. Thus

{a1, a2, · · · , ak, b1, · · · , bl, c1, · · · , cm}

is a basis forW1 +W2. Counting numbers in this basis forW1 +W2, we get that

dimW1 + dimW2 = (k+ l) + k +m= k+ (k+ l +m)

= dim
(
W1

⋂
W2

)
+ dim(W1 +W2) .

This completes the proof. �
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1.4.3 Linear Transformation. Let V andW be vector spaces over a fieldF. A linear

transformationfrom V to W is a mappingT from V to W such that

T(αa+ b) = α(T(a)) + T(b)

for all a, b in V and all scalarsα in F. If such a linear transformation is 1-1, the spaceV

is calledlinear isomorphicto W, denoted byV
l≃W.

Theorem 1.4.6 Every finite-dimensional vector space V over a field F is isomorphic to

space Fn, i.e., V
l≃ Fn, where n= dimV.

Proof Let {a1, a2, · · · , an} be an ordered basis forV. Then for any vectorx in V, there

exist scalarsx1, x2, · · · , xn such that

x = x1a1 + x2a2 + · · · + xnan.

Define a linear mapping fromV to Fn by

T : x↔ (x1, x− 2, · · · , xn).

Then such a mappingT is linear, 1-1 and mappingsV ontoFn. ThusV
l≃ Fn. �

Let {a1, a2, · · · , an} and{b1, b2, · · · , bm} be ordered bases for vectorsV andW, respec-

tively. Then a linear transformationT is determined by its action ona j, 1≤ j ≤ n. In fact,

eachT(a j) is a linear combination

T(a j) =
m∑

i=1

Ai j bi

of bi, the scalarsA1 j ,A2 j, · · · ,Am j being the coordinates ofT(a j) in the ordered basis

{b1, b2, · · · , bm}. Define anm× n matrix byA = [Ai j ] with entry Ai j in the position (i, j).

Such a matrix is called atransformation matrix, denoted byA = [T]a1,a2,···,an.

Now let a = α1a1 + α2a2 + · · · + αnan be a vector inV. Then

T(a) = T


n∑

j=1

α ja j

 =
n∑

j=1

α jT
(
a j

)

=

n∑

j=1

α j

m∑

i=1

Ai j bi =

m∑

i=1


n∑

j=1

α jAi jα j

 bi .

Whence, ifX is the coordinate matrix ofa in the ordered basis{b1, b2, · · · , bm}, thenAX

is the coordinate matrix ofT(a) in the same basis because the scalars
n∑

j=1
Ai jα j is the entry
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in the ith row of the column matrixAX. On the other hand, ifA is anm× n matrix over a

field F, then

T


n∑

j=1

α ja j

 =
m∑

i=1


n∑

j=1

α jAi jα j

bi

indeed defines a linear transformationT from V into W with a transformation matrixA.

This enables one getting the following result.

Theorem 1.4.7 Let {a1, a2, · · · , an} and {b1, b2, · · · , bm} be ordered bases for vectors V

and W over a field F, respectively. Then for each linear transformation T from V into W,

there is an m× n matrix A with entries in F such that

[T(a)]b1,b2,···,bm
= A [a]b1,b2,···,bm

for everya in V. Furthermore, T→ A is a 1-1 correspondence between the set of all

linear transformations from V into W and the set of all m× n matrix over F.

Let V be a vector space over a fieldF. A linear operatorof V is a linear transforma-

tion from V to V. Calculation can show easily the following result.

Theorem 1.4.8 Let V be a vector space over a field F with ordered bases{a1, a2, · · · , an}
and {a′1, a′2, · · · , a′n} and T a linear operator on V. If A= [A1,A2, · · · ,An] is the n× n

matrix with columns Aj = [a′j]a1,a2,···,an, then

[T]a′1,a
′
2,···,a

′
n
= A−1 [T]a1,a2,···,an

A.

Generally, if T′ is an invertible operator on V determined by T′(a j) = a′j for j = 1, 2,

· · · , n, then

[T]a′1,a
′
2,···,a

′
n
= [T′]−1

a1,a2,···,an
[T]a1,a2,···,an[T

′]a1,a2,···,an.

§1.5 METRIC SPACES

1.5.1 Metric Space. A metric space(X; d) is a setX associated with a metric function

d : M × M → R+ = {x | x ∈ R, x ≥ 0} with conditions following hold for∀x, y, z ∈ M.

(1)(definiteness) d(x, y) = 0 if and only if x = y;

(2)(symmetry) d(x, y) = d(y, x);
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(3)(triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

Example1.5.1 Euclidean SpaceRn.

Let Rn = { (x1, x2, · · · , xn) | xi ∈ R, 1 ≤ i ≤ n }. For ∀x = (x1, x2, · · · , xn) and

y = (y1, y2, · · · , yn) ∈ Rn, define

ρ(x, y) =

√√
n∑

i=1

(xi − yi).

Thend is a metric onRn.

Clearly, conditions (1) and (2) are true. We only need to verify the condition (3).

Notice that
n∑

i=1

b2
i + 2x

n∑

i=1

aibi + x2
n∑

i=1

b2
i =

n∑

i=1

(ai + xbi)
2 ≥ 0.

Consequently, the discriminant


n∑

i=1

aibi


2

−


n∑

i=1

a2
i




n∑

i=1

b2
i

 ≤ 0.

Thus 
n∑

i=1

aibi


2

≤


n∑

i=1

a2
i




n∑

i=1

b2
i

 .

Applying this inequality, we know that

n∑

i=1

(ai + bi)
2 =

n∑

i=1

a2
i + 2

n∑

i=1

aibi +

n∑

i=1

b2
i

≤
n∑

i=1

a2
i + 2

√√
n∑

i=1

a2
i

n∑

i=1

a2
i +

n∑

i=1

b2
i

=



√√
n∑

i=1

a2
i +

√√
n∑

i=1

b2
i



2

.

Let ai = xi − yi, bi = yi − zi. Thenxi − zi = ai + bi for integers 1≤ i ≤ n. Substitute these

numbers in the previous inequality, we get that

n∑

i=1

(xi − zi)
2 ≤



√√
n∑

i=1

(xi − yi)2 +

√√
n∑

i=1

(yi − zi)2



2

.

Thusd(x, z) ≤ d(x, y) + d(y, z).
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Example1.5.2 If (X; d) is a metric space. Define

d1(x, y) =
d(x, y)

1+ d(x, y)
.

Then (X; d1) is also a metric space. In fact, by noting that the functiong(x) =
x

1+ x
is an

increasing function forx ≥ 0, it is easily to verify that conditions (1)− (3) hold.

1.5.2 Convergent Sequence.Any x, x ∈ X is called a point of (X; d). A sequence{xn}
is said to beconvergent to xif for any numberǫ > 0 there is an integerN such thatn ≥ N

impliesd(xn, x) < ǫ, denoted by lim
n

xn = x. We have known the following results.

Theorem 1.5.1 Any sequence{xn} in a metric space has at most one limit point.

Proof Otherwise, if{xn} has two limit points lim
n→∞

xn→ x and lim
n→∞

xn → x′, then

0 ≤ d(x, x′) ≤ d(xn, x) + d(xn, x
′)

for an integern ≥ 1. Letn→ ∞. thend(x, x′) = 0. Thusx = x′ by the condition (1). �

Theorem 1.5.2 Let (X; d) be a metric space. If xn → x0 and yn → y0, then d(xn, yn) →
d(x0, y0) when n→ ∞, i.e., d(x, y) is continuous.

Proof Applying the condition (3), we get inequalities

d(xn, yn) ≤ d(xn, x0) + d(x0, y0) + d(yn, y0)

and

d(x0, y0) ≤ d(x0, xn) + d(xn, yn) + d(yn, y0).

Whence,

|d(xn, yn) − d(x0, y0)| ≤ d(xn, x0) + d(yn, y0)→ 0

if n→ ∞. Thusd(xn, yn)→ d(x0, y0) whenn→ ∞. �

For x0 ∈ X andǫ > 0, anǫ-disk aboutx0 is defined by

B(x0, ǫ) = { x | x ∈ X, d(x, x0) < ǫ}.

If A ⊂ X and there is anǫ-disk B(x0, ǫ) ⊃ A, we sayA is a bounded point set ofX.

Theorem 1.5.3 Any convergent sequence{xn} in a metric space(X; d) is bounded.
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Proof Let xn → x0 whenn→∞ andε = 1. Then there exists an integerN such that

for any integern > N, d(xn, x0) < 1. Denotec = max{d(x1, x0), d(x2, x0), · · · , d(xN, x0)}.
We get that

d(xn, x0) < 1+ c, n = 1, 2, · · ·k, · · · .

Let R= 1+ c. Then{xn} ⊂ B(x0,R). �

1.5.3 Completed Space.Let (X; d) be a metric space and{xn} a sequence inX. If for any

numberε > 0, ε ∈ R, there is an integerN such thatn,m≥ N impliesρ(xn, xm) < ε, then

we call {xn} a Cauchy sequence. A metric space (X; d) is completedif its every Cauchy

sequence converges.

Theorem 1.5.3 For a completed metric space(X; d), if an ε-disk sequence{Bn} satisfies

(1) B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · ·;
(2) lim

n
εn = 0,

whereεn > 0 and Bn = { x | x ∈ X, d(x, xn) ≤ εn} for any integer n, n = 1, 2, · · ·, then
∞⋂

n=1
Bn

only has one point.

Proof First, we prove the sequence{xn} consisting of centers ofε-disk Bn is an

Cauchy sequence. In fact, by the condition (1), ifm ≥ n, then xm ∈ Bm ⊂ Bn. Thus

d(xm, xn) ≤ εn. According to the condition (2), for any positive numberε > 0, there

exists an integerN such thatεn < ε if n > N. Whence, ifm, n > N, there must be that

d(xm, xn) < ε, i.e.,{xn} is a Cauchy sequence.

By assumption, (X; d) is completed. We know that{xn} convergent to a pointx0 ∈ X.

Let m→ ∞ in the inequalityd(xm, xn) ≤ εn. We get thatd(x,xn) ≤ εn for all n = 1, 2, · · ·.
Whence,x0 ∈ Bn for all integersn ≥ 1. Thusx0 ∈

∞⋂
i=1

Bn.

If there exists another pointy ∈
∞⋂
i=1

Bn, there must bed(y, xn) ≤ εn for n = 1, 2, · · ·.
By Theorem 1.5.2, we have that

0 ≤ d(y, x0) = lim
n
≤ lim

n
εn = 0.

Thusd(y, x0) = 0, i.e.,y = x0. �

For a metric space (X; d) and a mappingT : X→ X on (X; d), if there exists a point

x∗ ∈ X such that

T x∗ = x∗,
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thenx∗ is called afixed pointof T. If there exists a constantη, 0 < η < 1 such that

ρ(T x,Ty) ≤ ηd(x, y)

for ∀x, y ∈ X, thenT is called acontraction.

Theorem 1.5.4 (Banach)Let (X; d) be a completed metric space and let T: X→ X be a

contraction. Then T only has one fixed point.

Proof Choosex0 ∈ X. Let

x1 = T(x0), x2 = T(x1), · · · , xn+1 = T(xn), · · · .

We prove first such a sequence{xn} is a Cauchy sequence. In fact, for integersm, n,

m< n, by

d(xm+1, xm) = d(T(xm), d(xm−1)) ≤ ηd(xm, xm−1)

≤ η2d(xm−1, xm−2) ≤ · · · ≤ ηmd(x1, x0).

we know that

d(xm, xn) ≤ d(xm, xm=1) + d(xm+1, xm+2) + · · · + d(xn−1, xn)

≤
(
ηm+ ηm−1 + · · · + ηn−1

)
d(x1, x0)

= ηm × 1− ηn−m

1− η d(x1, x0)

≤ ηmd(x1, x0)
1− η → 0 (if m, n→ 0).

Because (X; d) is completed, there must exists a pointx∗ ∈ X such thatxn→ x∗ when

n→∞. Such ax∗ is in fact a fixed point ofT by

0 ≤ d(x∗,T(x∗)) ≤ d(x∗, xn) + d(xn,T(x∗))

= d(x∗, xn) + d(T(xn−1),T(x∗))

≤ d(x∗, xn) + ηd(xn−1, x
∗)→ 0 (if n→ ∞).

Whence,T(x∗) = x∗. Now if there is another pointx∗1 ∈ X such thatT(x∗1) = x∗1, by

1 < η < 1 and

d(x∗, x∗1) = d(T(x∗),T(x∗1)) ≤ ηd(x∗, x∗1)

There must bed(x∗, x∗1) = 0, i.e.,x∗ = x∗1. Thus such a fixed pointx∗ is unique. �
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§1.6 SMARANDACHE MULTI-SPACES

1.6.1 Smarandache Multi-Space.Let Σ be a finite or infinite set. Arule or a law on a

setΣ is a mappingΣ × Σ · · · × Σ︸          ︷︷          ︸
n

→ Σ for some integersn. Then amathematical spaceis

nothing but a pair (Σ;R), whereR consists those of rules onΣ by logic providing all these

resultants are still inΣ.

Definition 1.6.1 Let (Σ1;R1) and (Σ2;R2) be two mathematical spaces. IfΣ1 , Σ2 or

Σ1 = Σ2 butR1 , R are said to be different, otherwise, identical.

The Smarandache multi-space is a qualitative notion definedfollowing.

Definition 1.6.2 Let (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) be m mathematical spaces, different

two by two. A Smarandache multi-spaceΣ̃ is a union
m⋃

i=1
Σi with rulesR̃ =

m⋃
i=1
Ri on Σ̃, i.e.,

the ruleRi onΣi for integers1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

1.6.2 Multi-Space Type. By Definition 1.6.2, a Smarandache multi-space
(
Σ̃; R̃

)
is

dependent on spacesΣ1,Σ2, · · · ,Σm and rulersR1,R2, · · · ,Rm. There are many types of

Smarandache multi-spaces.

Definition 1.6.3 A Smarandache multi-space
(
Σ̃; R̃

)
with Σ̃ =

m⋃
i=1
Σi and R̃ =

m⋃
i=1
Ri is a

finite if eachΣi, 1 ≤ i ≤ m is finite, otherwise, infinite.

Definition 1.6.4 A Smarandache multi-space
(
Σ̃; R̃

)
with Σ̃ =

m⋃
i=1
Σi and R̃ =

m⋃
i=1
Ri is a

metric space if each(Σi;Ri) is a metric space, otherwise, a non-metric space.

Definition 1.6.5 A Smarandache multi-space
(
Σ̃; R̃

)
with Σ̃ =

m⋃
i=1
Σi and R̃ =

m⋃
i=1
Ri is

countable if each(Σi;Ri) is countable, otherwise, uncountable.

1.6.3 Example. As we known, there are many kinds of spaces such as those of topolog-

ical spaces, Euclidean spaces, metric spaces,· · · in classical mathematics and spacetimes

in physics. All of them can be combined into a Smarandache multi-space (̃Σ; R̃). We list

some of these Smarandache multi-spaces following.

Example1.6.1 Let S1,S2, · · · ,Sm bemfinite or infinite sets. By Definition 1.6.2, we get

a multi-spacẽS =
m⋃

i=1
Si. In fact, it is still a finite or infinite set.

Example1.6.2 LetT1,T2, · · · ,Tm bem partially order sets. By Definition 1.6.2, we get a

partially order multi-spacẽT =
m⋃

i=1
Ti. In fact, it is also a partially order set.
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Example1.6.3 Let (A1; ◦1), (A2; ◦2), · · · , (Am; ◦m) bemfinite or infinite algebraic systems

such as those of groups, rings or fields. By Definition 1.6.2, we get an algebraic multi-

space
(
Ã; O

)
with Ã =

m⋃
i=1

Ai andO = {◦i; 1 ≤ i ≤ m}. It maybe with differentm closed

operations.

Example 1.6.4 Let M1,M2, · · · ,Mm be m vector spaces. By Definition 1.6.2, we get a

vector multi-spacẽM =
m⋃

i=1
Mi. It may be a linear space or not.

Example 1.6.5 Let T1,T2, · · · ,Tm be m metric spaces. By Definition 1.6.2, we get a

metric multi-spacẽT =
m⋃

i=1
Ti. It maybe withm different metrics.

Example 1.6.6 Let Q1,Q2, · · · ,Qm be m spacetimes. By Definition 1.6.2, we get a

multi-spacetimẽT =
m⋃

i=1
Ti. It maybe used to characterize particles in a parallel universe.

Example 1.6.7 Let R1,R2, · · · ,Rm be m gravitational, electrostatic or electromagnetic

field. By Definition 1.6.2, we get a multi-fieldR̃ =
m⋃

i=1
Ri. It contains partially gravita-

tional or electrostatic fields, or partially electromagnetic fields.

§1.7 REMARKS

1.7.1 The multi-space and neutrosophic set were introduced by Smarandache in [Sma2]

and then discussed himself in [Sma2]-[Sma5]. Indeed, the neutrosophic set is a simple

way for measuring different degrees of spaces in a multi-space. Generally, we can define

a functionµ :
n⋃

i=1
Si → [0, 1] with µ(Si) , µ(S j) if i , j for distinguishing each space

Si, 1 ≤ i ≤ n. More conceptions appeared in Smarandache mathematics canbe found in

[Del1].

1.7.2 There are many standard textbooks on groups, rings, vector or metric spaces, such

as those of [BiM1] and [NiD1] for modern algebra, [HoK1] for linear algebra, [Wan1],

[Xum1] and [Rob1] for groups, [Xon1] for rings and [LiQ1] formetric spaces. The

reference [BiM1] is an excellent textbook on modern algebrawith first edition in 1941.

The reader is inferred to these references [BiM1] and [NiD1]for topics discussed in this

chapter, and then understand conceptions such as those of multi-group, multi-ring, multi-

field, vector multi-space, metric multi-space, pseudo-Euclidean space and Smarandache

geometry appeared in this book.



CHAPTER 2.

Graph Multi-Spaces

A graphG consisting of vertices and edges is itself a Smarandache multi-

space, i.e., Smarandache multi-set if it is not an isolated vertex graph and

vertices, edges distinct two by two, i.e., they are not equalin status in consid-

eration. Whence, we are easily get two kinds of Smarandache multi-spaces by

graphs. One consists of those of labeled graphs with order≥ 2 or bouquetsBn

with n ≥ 1. Another consists of those of graphsG possessing a graphical prop-

ertyP validated and invalided, or only invalided but in multiple distinct ways

onG. For introducing such Smarandache multi-space, graphs andgraph fam-

ilies, such as those of regular graphs, planar graphs and hamiltonian graphs

are discussed in the first sections, including graphical sequences, eccentricity

value sequences of graphs. Operations, i.e., these union, join and Cartesian

product on graphs are introduced in Section 2.3 for finding multi-space rep-

resentations of graphs. Then in Section 2.4, we show how to decompose

a complete graph or a Cayley graph to typical graphs, i.e., a Smarandache

multi-space consisting of these typical graphs. Section 2.5 concentrates on

labeling symmetric graphs by Smarandache digital, Smarandache symmet-

ric sequences and find symmetries both on graph structures and digits, i.e.,

beautiful geometrical figures with digits.
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§2.1 GRAPHS

2.1.1 Graph. A graph Gis an ordered 3-tuple (V,E; I ), whereV,E are finite sets,V , ∅
andI : E → V × V, where each element inV or E is a label on G. The setsV andE are

called respectively thevertex setandedge setof G, denoted byV(G) andE(G).

An elementsv ∈ V(G) is incidentwith an elemente ∈ E(G) if I (e) = (v, x) or (x, v)

for anx ∈ V(G). Usually, if (u, v) = (v, u), denoted byuvor vu∈ E(G) for ∀(u, v) ∈ E(G),

thenG is called to be a graph without orientation and abbreviated to graphfor simplicity.

Otherwise, it is called to be a directed graph with an orientation u → v on each edge

(u, v). The cardinal numbers of|V(G)| and|E(G)| are called itsorder andsizeof a graph

G, denoted by|G| andε(G), respectively.

Let G be a graph. We can represent a graphG by locating each vertexu in G by a

point p(u), p(u) , p(v) if u , v and an edge (u, v) by a curve connecting pointsp(u) and

p(v) on a planeR2, wherep : G → p(G) is a mapping from theG to R2. For example,

a graphG = (V,E; I ) with V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} and

I (ei) = (vi , vi), 1 ≤ i ≤ 4; I (e5) = (v1, v2) = (v2, v1), I (e8) = (v3, v4) = (v4, v3), I (e6) =

I (e7) = (v2, v3) = (v3, v2), I (e8) = I (e9) = (v4, v1) = (v1, v4) can be drawn on a plane as

shown in Fig.2.1.1.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig. 2.1.1

In a graphG = (V,E; I ), for ∀e ∈ E, if I (e) = (u, u), u ∈ V, thene is called aloop. For

∀e1, e2 ∈ E, if I (e1) = I (e2) and they are not loops, thene1 ande2 are calledmultiple edges

of G. A graph issimpleif it is loopless and without multiple edges, i.e.,∀e1, e2 ∈ E(Γ),

I (e1) , I (e2) if e1 , e2 and for∀e ∈ E, if I (e) = (u, v), thenu , v. In a simple graph, an

edge (u, v) can be abbreviated touv.

An edgee ∈ E(G) can be divided into two semi-arcseu, ev if I (e) = (u, v). Call u the

root vertexof the semi-arceu. Two semi-arceu, fv are said to bev-incidentor e−incident
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if u = v or e= f . The set of all semi-arcs of a graphG is denoted byX1
2
(G).

A walk in a graphΓ is an alternating sequence of vertices and edgesu1, e1, u2, e2,

· · · , en, un1 with ei = (ui , ui+1) for 1 ≤ i ≤ n. The numbern is the length of the walk. If

u1 = un+1, the walk is said to beclosed, andopenotherwise. For example, the sequence

v1e1v1e5v2e6v3e3v3e7v2e2v2 is a walk in Fig.2.1.1. A walk is a trail if all its edges are

distinct and apath if all the vertices are distinct also. A closed path is usually called a

circuit or cycle. For example,v1v2v3v4 andv1v2v3v4v1 are respective path and circuit in

Fig.2.1.1.

A graphG = (V,E; I ) is connectedif there is a path connecting any two vertices in

this graph. In a graph, a maximal connected subgraph is called acomponent. A graphG

is k-connectedif removing vertices less thank from G remains a connected graph.

A graphG is n-partite for an integern ≥ 1, if it is possible to partitionV(G) into n

subsetsV1,V2, · · · ,Vn such that every edge joints a vertex ofVito a vertex ofV j, j , i, 1 ≤
i, j ≤ n. A complete n-partite graph Gis such ann-partite graph with edgesuv ∈ E(G) for

∀u ∈ Vi andv ∈ V j for 1 ≤ i, j ≤ n, denoted byK(p1, p2, · · · , pn) if |Vi | = pi for integers

1 ≤ i ≤ n. Particularly, if|Vi | = 1 for integers 1≤ i ≤ n, such a completen-partite graph

is calledcomplete graphand denoted byKn. In Fig.2.1.2, we can find the bipartite graph

K(4, 4) and the complete graphK6. Usually, a complete subgraph of a graph is called a

clique, and its ak-regular vertex-spanning subgraph also called ak-factor.

K(4, 4) K6

Fig.2.1.2

2.1.2 Isomorphic Graph. Let G1 = (V1,E1; I1) andG2 = (V2,E2; I2) be two graphs.

They areidentical, denoted byG1 = G2 if V1 = V2,E1 = E2 and I1 = I2. If there exists

a 1− 1 mappingφ : E1 → E2 andφ : V1 → V2 such thatφI1(e) = I2φ(e) for ∀e ∈ E1

with the convention thatφ(u, v) = (φ(u), φ(v)), then we say thatG1 is isomorphicto G2,

denoted byG1 ≃ G2 andφ anisomorphismbetweenG1 andG2. For simple graphsH1,H2,

this definition can be simplified by (u, v) ∈ I1(E1) if and only if (φ(u), φ(v)) ∈ I2(E2) for

∀u, v ∈ V1.
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For example, letG1 = (V1,E1; I1) andG2 = (V2,E2; I2) be two graphs with

V1 = {v1, v2, v3}, E1 = {e1, e2, e3, e4},

I1(e1) = (v1, v2), I1(e2) = (v2, v3), I1(e3) = (v3, v1), I1(e4) = (v1, v1)

and

V2 = {u1, u2, u3}, E2 = { f1, f2, f3, f4},

I2( f1) = (u1, u2), I2( f2) = (u2, u3), I2( f3) = (u3, u1), I2( f4) = (u2, u2),

i.e., the graphs shown in Fig.2.1.3.

u1

v2v3

e1

e2

e3

e4

G1

v1

u2u3

f1 f2

f3

f4

G2

Fig. 2.1.3

Define a mappingφ : E1
⋃

V1→ E2
⋃

V2 by φ(e1) = f2, φ(e2) = f3, φ(e3) = f1, φ(e4) = f4

andφ(vi) = ui for 1 ≤ i ≤ 3. It can be verified immediately thatφI1(e) = I2φ(e) for ∀e ∈
E1. Therefore,φ is an isomorphism betweenG1 andG2, i.e.,G1 andG2 are isomorphic.

If G1 = G2 = G, an isomorphism betweenG1 andG2 is said to be anautomorphism

of G. All automorphisms of a graphG form a group under the composition operation, i.e.,

φθ(x) = φ(θ(x)) for x ∈ E(G)
⋃

V(G), denoted by AutG.

2.1.3 Subgraph. A graphH = (V1,E1; I1) is a subgraphof a graphG = (V,E; I ) if

V1 ⊆ V, E1 ⊆ E andI1 : E1 → V1 × V1. We useH ≺ G to denote thatH is a subgraph of

G. For example, graphsG1,G2,G3 are subgraphs of the graphG in Fig.2.1.4.

u1 u2

u3u4

G

u1 u2

u3 u4

u1 u2

u3 u4

G1 G2 G3

Fig. 2.1.4
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For a nonempty subsetU of the vertex setV(G) of a graphG, the subgraph〈U〉 of G

inducedby U is a graph having vertex setU and whose edge set consists of these edges

of G incident with elements ofU. A subgraphH of G is calledvertex-inducedif H ≃ 〈U〉
for some subsetU of V(G). Similarly, for a nonempty subsetF of E(G), the subgraph〈F〉
induced byF in G is a graph having edge setF and whose vertex set consists of vertices

of G incident with at least one edge ofF. A subgraphH of G is edge-inducedif H ≃ 〈F〉
for some subsetF of E(G). In Fig.2.1.4, subgraphsG1 andG2 are both vertex-induced

subgraphs〈{u1, u4}〉, 〈{u2, u3}〉 and edge-induced subgraphs〈{(u1, u4)}〉, 〈{(u2, u3)}〉. For

a subgraphH of G, if |V(H)| = |V(G)|, thenH is called aspanning subgraphof G. In

Fig.2.1.4, the subgraphG3 is a spanning subgraph of the graphG.

A spanning subgraph without circuits is called aspanning forest. It is called aspan-

ning treeif it is connected. A path is also a tree in which each vertex has valency 2 unless

the two pendent vertices valency 1. We define thelengthof Pn to ben− 1. The following

characteristic for spanning trees of a connected graph is well-known.

Theorem 2.1.1 A subgraph T of a connected graph G is a spanning tree if and only if T

is connected and E(T) = |V(G)| − 1.

Proof The necessity is obvious. For its sufficiency, sinceT is connected andE(T) =

|V(G)| − 1, there are no circuits inT. Whence,T is a spanning tree. �

2.1.4 Graphical Sequence.Let G be a graph. For∀u ∈ V(G), the neighborhoodNG(u)

of vertexu in G is defined byNG(u) = {v|∀(u, v) ∈ E(G)}. The cardinal number|NG(u)|
is called thevalency of vertex uin the graphG and denoted byρG(u). A vertexv with

ρG(v) = 0 is called anisolated vertexandρG(v) = 1 apendent vertex. Now we arrange all

vertices valency ofG as a sequenceρG(u) ≥ ρG(v) ≥ · · · ≥ ρG(w). Call this sequence the

valency sequenceof G. By enumerating edges inE(G), the following result

∑

u∈V(G)

ρG(u) = 2|E(G)|

holds. Letρ1, ρ2, · · · , ρp be a sequence of non-negative integers. If there exists a graph

whose valency sequence isρ1 ≥ ρ2 ≥ · · · ≥ ρp, we say thatρ1, ρ2, · · · , ρp is agraphical

sequence. We know results following for graphical sequences.

Theorem2.1.2(Havel,1955 and Hakimi, 1962)A sequenceρ1, ρ2, · · · , ρp of non-negative

integers withρ1 ≥ ρ2 ≥ · · · ≥ ρp, p ≥ 2, ρ1 ≥ 1 is graphical if and only if the sequence
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ρ2 − 1, ρ3 − 1, · · · , ρρ1+1 − 1, ρρ1+2, · · · , ρp is graphical.

Theorem 2.1.3(Erdös and Gallai, 1960)A sequenceρ1, ρ2, · · · , ρp of non-negative inte-

gers withρ1 ≥ ρ2 ≥ · · · ≥ ρp is graphical if and only if
p∑

i=1
ρi is even and for each integer

n, 1 ≤ n ≤ p− 1,
n∑

i=1

ρi ≤ n(n− 1)+
p∑

i=n+1

min{n, ρi}.

A graphG with vertex setV(G) = {v1, v2, · · · , vp} and edge setE(G) = {e1, e2, · · · , eq}
can be also described by that of matrixes. One such a matrix isa p× q adjacency matrix

A(G) = [ai j ]p×q, whereai j = |I−1(vi , vj)|. Thus, the adjacency matrix of a graphG is

symmetric and is a 0, 1-matrix having 0 entries on its main diagonal ifG is simple. For

example, the adjacency matrixA(G) of the graph in Fig.2.1.1 is

A(G) =



1 1 0 2

1 1 2 0

0 2 1 1

2 0 1 1



2.1.5 Eccentricity Value Sequence. For a connected graphG, let x, y ∈ V(G). The

distanced(x, y) from x to y in G is defined by

dG(x, y) = min{ |V(P(x, y))| − 1 | P(x, y) is a path connecting x andy }

and theeccentricity eG(u) of for u ∈ V(G) is defined by

eG(u) = max{ dG(u, x) | x ∈ V(G)}.

A vertexu+ is called anultimate vertexof vertexu if d(u, u+) = eG(u). Not loss of

generality, arrange these eccentricities of vertices inG in ordereG(v1), eG(v2), · · · , eG(vn)

with eG(v1) ≤ eG(v2) ≤ · · · ≤ eG(vn), where {v1, v2, · · · , vn} = V(G). The sequence

{eG(vi)}1≤i≤s is called theeccentricity sequenceof G. If {e1, e2, · · · , es} = {eG(v1), eG(v2), · · · ,
eG(vn)} ande1 < e2 < · · · < es, the sequence{ei}1≤i≤s is called theeccentricity value se-

quenceof G. For convenience, we abbreviate an integer sequence{r − 1 + i}1≤i≤s+1 to

[r, r + s].

The radius r(G) anddiameter D(G) of graphG are respectively defined byr(G) =

min{eG(u)|u ∈ V(G)} and D(G) = max{eG(u)|u ∈ V(G)}. Particularly, if r(G) = D(G),
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such a graphG is called to be aself-centered graph, i.e., its eccentricity value sequence is

nothing but [r(G), r(G)].

For∀x ∈ V(G), define adistance decomposition{Vi(x)}1≤i≤eG(x) of G in root xby

G = V1(x)
⊕

V2(x)
⊕
· · ·

⊕
VeG(x)(x),

whereVi(x) = { u |d(x, u) = i, u ∈ V(G)} for any integeri, 0 ≤ i ≤ eG(x). Then a

necessary and sufficient condition for the eccentricity value sequence of simple graph is

obtained in the following.

Theorem 2.1.4 A non-decreasing integer sequence{r i}1≤i≤s is a graphical eccentricity

value sequence if and only if

(1) r1 ≤ rs ≤ 2r1;

(2) △(r i+1, r i) = |r i+1 − r i | = 1 for any integer i, 1 ≤ i ≤ s− 1.

Proof If there is a graphG whose eccentricity value sequence is{r i}1≤i≤s, thenr1 ≤ rs

is trivial. Now we choose three different verticesu1, u2, u3 in G such thateG(u1) = r1

and dG(u2, u3) = rs. By definition, we know thatd(u1, u2) ≤ r1 and d(u1, u3) ≤ r1.

According to the triangle inequality on distance, we know thatrs = d(u2, u3) ≤ dG(u2, u1)+

dG(u1, u3) = dG(u1, u2) + dG(u1, u3) ≤ 2r1. Thusr1 ≤ rs ≤ 2r1.

Now if {ei}1≤i≤s is the eccentricity value sequence of a graphG, define△(i) = ei+1−ei,

1 ≤ i ≤ n − 1. We assert that 0≤ △(i) ≤ 1. If this assertion is not true, then there must

exists a positive integerI , 1 ≤ I ≤ n− 1 such that△(I ) = eI+1 − eI ≥ 2. Choose a vertex

x ∈ V(G) such thateG(x) = eI and consider the distance decomposition{Vi(x)}0≤i≤eG(x) of

G in root x.

Clearly,eG(x) − 1 ≤ eG(u1) ≤ eG(x) + 1 for any vertexu1 ∈ V1(G). Since△(I ) ≥ 2,

there does not exist a vertex with the eccentricityeG(x)+1. Whence, we geteG(u1) ≤ eG(x)

for ∀u1 ∈ V1(x). Now if we have proved thateG(u j) ≤ eG(x) for ∀u j ∈ V j(x), 1 ≤ j <

eG(x), we consider these eccentricity values of vertices inV j+1(x). Let u j+1 ∈ V j+1(x).

According to the definition of{Vi(x)}0≤i≤eG(x), there must exists a vertexu j ∈ V j(x) such

that (u j , u j+1) ∈ E(G). Consider the distance decomposition{Vi(u j)}0≤ j≤eG(u) of G in root

u j. Notice thatu j+1 ∈ V1(u j). Thereby we get that

eG(u j+1) ≤ eG(u j) + 1 ≤ eG(x) + 1.

Because we have assumed that there are no vertices with the eccentricityeG(x) + 1,

soeG(u j+1) ≤ eG(x) for any vertexu j+1 ∈ V j+1(x). Continuing this process, we know that
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eG(y) ≤ eG(x) = eI for any vertexy ∈ V(G). But then there are no vertices with the

eccentricityeI + 1, contradicts to the assumption that△(I ) ≥ 2. Therefore 0≤ △(i) ≤ 1

and△(r i+1, r i) = 1, 1 ≤ i ≤ s− 1.

For any integer sequence{r i}1≤i≤s with conditions (i) and (ii ) hold, it can be simply

written as{r, r + 1, · · · , r + s− 1} = [r, r + s− 1, wheres ≤ r. We construct a graph with

the eccentricity value sequence [r, r + s− 1] in the following.

Case1. s= 1.

In this case,{r i}1≤i≤s = [r, r]. We can choose any self-centered graph withr(G) = r,

for example, the circuitC2r . Clearly, the eccentricity value sequence ofC2r is [r, r].

Case2. s≥ 2.

Choose a self-centered graphH with r(H) = r, x ∈ V(H) and a pathPs = u0u1 · · ·us−1.

Define a new graphG = Ps

⊙
H as follows:

V(G) = V(Ps)
⋃

V(H) \ {u0}, E(G) = E(Ps)
⋃
{xu1}

⋃
E(H) \ {u1u0}

such as the graphG shown in Fig.2.1.5.

Hx
u1u2us−2us−1

G = Ps

⊙
H

Fig 2.1.5

Then we know thateG(x) = r, eG(us−1) = r + s− 1 andr ≤ eG(x) ≤ r + s− 1 for all other

verticesx ∈ V(G). Therefore, the eccentricity value sequence of G is [r, r + s− 1]. This

completes the proof. �

For a given eccentricity valuel, the multiplicity set NG(l) is defined byNG(l) =

{ x | x ∈ V(G), e(x) = l }. Jordan proved that the〈NG(r(G))〉 in a tree is a vertex or two

adjacent vertices in 1869. For a general graph, maybe a tree,we get the following result

which generalizes Jordan’s result on trees.
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Theorem 2.1.5 Let {r i}1≤i≤s be a graphical eccentricity value sequence. If|NG(r I )| = 1,

then there must be I= 1, i.e., |NG(r i)| ≥ 2 for any integer i, 2 ≤ i ≤ s.

Proof Let G be a graph with the eccentricity value sequence{r i}1≤i≤s andNG(r I ) =

{x0}, eG(x0) = r I . We prove thateG(x) > eG(x0) for any vertexx ∈ V(G) \ {x0}. Consider

the distance decomposition{Vi(x0)}0≤i≤eG(x0) of G in root x0. First, we prove thateG(v1) =

eG(x0)+1 for any vertexv1 ∈ V1(x0). SinceeG(x0)−1 ≤ eG(v1) ≤ eG(x0)+1 for any vertex

v1 ∈ V1(x0), we only need to prove thateG(v1) > eG(x0) for any vertexv1 ∈ V1(x0). In fact,

since for any ultimate vertexx+0 of x0, we havedG(x0, x+0 ) = eG(x0). SoeG(x+0 ) ≥ eG(x0).

Notice thatNG(eG(x0)) = {x0}, x+0 < NG(eG(x0)). Consequently,eG(x+0 ) > eG(x0). Choose

v1 ∈ V1(x0). Assume the shortest path fromv1 to x+0 is P1 = v1v2 · · · vsx+0 andx0 < V(P1).

Otherwise, we already haveeG(v1) > eG(x0). Now consider the distance decomposition

{Vi(x+0 )}0≤i≤eG(x+0 ) of G in root x+0 . We know thatvs ∈ V1(x+0 ). Thus we get that

eG(x+0 ) − 1 ≤ eG(vs) ≤ eG(x+0 ) + 1.

Therefore,eG(vs) ≥ eG(x+0 ) − 1 ≥ eG(x0). BecauseNG(eG(x0)) = {x0}, sovs < NG(eG(x0)).

This fact enables us finally getting thateG(vs) > eG(x0).

Similarly, choosevs, vs−1, · · · , v2 to be root vertices respectively and consider these

distance decompositions ofG in rootsvs, vs−1, · · · , v2, we find that

eG(vs) > eG(x0),

eG(vs−1) > eG(x0),

· · · · · · · · · · · · · · · ,

eG(v1) > eG(x0).

Therefore,eG(v1) = eG(x0) + 1 for any vertexv1 ∈ V1(x0). Now consider these vertices

in V2(x0). For∀v2 ∈ V2(x0), assume thatv2 is adjacent tou1, u1 ∈ V1(x0). We know that

eG(v2) ≥ eG(u1)−1 ≥ eG(x0). Since|NG(eG(x0))| = |NG(r I )| = 1, we geteG(v2) ≥ eG(x0)+1.

Now if we have provedeG(vk) ≥ eG(x0)+ 1 for any vertexvk ∈ V1(x0)
⋃

V2(x0)
⋃ · · ·

⋃
Vk(x0) for 1 ≤ k < eG(x0). Let vk+1 ∈ Vk+1(x0) and assume thatvk+1 is adjacent touk in

Vk(x0). Then we know thateG(vk+1) ≥ eG(uk)− 1 ≥ eG(x0). Since|NG(eG(x0))| = 1, we get

thateG(vk+1) ≥ eG(x0) + 1. Therefore,eG(x) > eG(x0) for any vertexx, x ∈ V(G) \ {x0}.
Thus, if |NG(r I )| = 1, then there must beI = 1. �

Theorem 2.1.5 is the best possible in some cases of trees. For example, theeccentric-

ity value sequence of a pathP2r+1 is [r, 2r] and we have that|NG(r)| = 1 and|NG(k)| = 2
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for r+1 ≤ k ≤ 2r. But for graphs not being trees, we only found some examples satisfying

|NG(r1)| = 1 and|NG(r i)| > 2. A non-tree graph with the eccentricity value sequence [2, 3]

and|NG(2)| = 1 can be found in Fig.2 in the reference [MaL2].

§2.2 GRAPH EXAMPLES

Some important classes of graphs are introduced in the following.

2.2.1 Bouquet and Dipole. In graphs, two simple cases is these graphs with one or two

vertices, which are just bouquets or dipoles. A graphBn = (Vb,Eb; Ib) with Vb = { O },
Eb = {e1, e2, · · · , en} and Ib(ei) = (O,O) for any integeri, 1 ≤ i ≤ n is called abouquet

of n edges. Similarly, a graphDs.l.t = (Vd,Ed; Id) is called adipole if Vd = {O1,O2},
Ed = {e1, e2, · · · , es, es+1, · · · , es+l , es+l+1, · · · , es+l+t} and

Id(ei) =



(O1,O1), if 1 ≤ i ≤ s,

(O1,O2), if s+ 1 ≤ i ≤ s+ l,

(O2,O2), if s+ l + 1 ≤ i ≤ s+ l + t.

For example,B3 andD2,3,2 are shown in Fig.2.2.1.

O

O1 O2

Fig. 2.2.1

In the past two decades, the behavior of bouquets on surfacesfascinated many mathemati-

cians on topological graphs. Indeed, its behaviors on surfaces simplify the conception of

surface. For such a contribution, a typical example is the classification theorem of sur-

faces. Thus by a combinatorial view, these connected sums oftori, or these connected

sums of projective planes are nothing but a bouquet on surfaces.

2.2.2 Complete Graph. A complete graph Kn = (Vc,Ec; Ic) is a simple graph withVc =

{v1, v2, · · · , vn}, Ec = {ei j , 1 ≤ i, j ≤ n, i , j} andIc(ei j ) = (vi , vj). SinceKn is simple, it can

be also defined by a pair (V,E) with V = {v1, v2, · · · , vn} andE = {vivj , 1 ≤ i, j ≤ n, i , j}.
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The one edge graphK2 and the triangle graphK3 are both complete graphs.

A complete subgraph in a graph is called aclique. Obviously, every graph is a union

of its cliques.

2.2.3 r-Partite Graph. A simple graphG = (V,E; I ) is r-partite for an integerr ≥ 1 if it

is possible to partitionV into r subsetsV1,V2, · · · ,Vr such that for∀e ∈ E, I (e) = (vi , vj)

for vi ∈ Vi, vj ∈ V j and i , j, 1 ≤ i, j ≤ r. Notice that by definition, there are no edges

between vertices ofVi, 1 ≤ i ≤ r. A vertex subset of this kind in a graph is called an

independent vertex subset.

Forn = 2, a 2-partite graph is also called abipartite. It can be shown thata graph is

bipartite if and only if there are no odd circuits in this graph. As a consequence, a tree or

a forest is a bipartite graph since they are circuit-free.

Let G = (V,E; I ) be an r-partite graph and letV1,V2, · · · ,Vr be its r-partite vertex

subsets. If there is an edgeei j ∈ E for ∀vi ∈ Vi and∀vj ∈ V j, where 1≤ i, j ≤ r, i , j

such thatI (e) = (vi , vj), then we callG a complete r-partite graph, denoted byG =

K(|V1|, |V2|, · · · , |Vr |). Whence, a complete graph is just a complete 1-partite graph. For

an integern, the complete bipartite graphK(n, 1) is called astar. For a graphG, we

have an obvious formula shown in the following, which corresponds to the neighborhood

decomposition in topology.

E(G) =
⋃

x∈V(G)

EG (x,NG(x)) .

2.2.4 Regular Graph. A graphG is regular of valency kif ρG(u) = k for ∀u ∈ V(G).

These graphs are also calledk-regular. There 3-regular graphs are referred to ascubic

graphs. A k-regular vertex-spanning subgraph of a graphG is also called ak-factor ofG.

For ak-regular graphG, by k|V(G)| = 2|E(G)|, thereby one ofk and|V(G)| must be

an even number, i.e., there are nok-regular graphs of odd order withk ≡ 1(mod2). A

complete graphKn is (n − 1)-regular and a completes-partite graphK(p1, p2, · · · , ps) of

ordern with p1 = p2 = · · · = ps = p is (n− p)-regular.

In regular graphs, those of simple graphs with high symmetryare particularly im-

portant to mathematics. They are related combinatorics with group theory and crystal

geometry. We briefly introduce them in the following.

Let G be a simple graph andH a subgroup of AutG. G is said to beH-vertex tran-

sitive, H-edge transitiveor H-symmetricif H acts transitively on the vertex setV(G),
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the edge setE(G) or the set of ordered adjacent pairs of vertex ofG. If H = AutG, an

H-vertex transitive, anH-edge transitive or anH-symmetric graph is abbreviated to a

vertex-transitive, anedge-transitiveor asymmetricgraph.

Now letΓ be a finite generated group andS ⊆ Γ such that 1Γ < S andS−1 = {x−1|x ∈
S} = S. A Cayley graph Cay(Γ : S) is a simple graph with vertex setV(G) = Γ and edge

setE(G) = {(g, h)|g−1h ∈ S}. By the definition of Cayley graphs, we know thata Cayley

graph Cay(Γ : S) is complete if and only if S= Γ \ {1Γ} and connected if and only if

Γ = 〈S〉.

Theorem 2.2.1 A Cayley graph Cay(Γ : S) is vertex-transitive.

Proof For∀g ∈ Γ, define a permutationζg on V(Cay(Γ : S)) = Γ by ζg(h) = gh, h ∈
Γ. Thenζg is an automorphism of Cay(Γ : S) for (h, k) ∈ E(Cay(Γ : S)) ⇒ h−1k ∈ S ⇒
(gh)−1(gk) ∈ S⇒ (ζg(h), ζg(k)) ∈ E(Cay(Γ : S)).

Now we know thatζkh−1(h) = (kh−1)h = k for ∀h, k ∈ Γ. Whence, Cay(Γ : S) is

vertex-transitive. �

It should be noted that not every vertex-transitive graph isa Cayley graph of a fi-

nite group. For example, the Petersen graph is vertex-transitive but not a Cayley graph

(see[CaM1], [GoR1 and [Yap1] for details). However, every vertex-transitive graph can

be constructed almost like a Cayley graph. This result is dueto Sabidussi in 1964. The

readers can see [Yap1] for a complete proof of this result.

Theorem 2.2.2 Let G be a vertex-transitive graph whose automorphism groupis A. Let

H = Ab be the stabilizer of b∈ V(G). Then G is isomorphic with the group-coset graph

C(A/H,S), where S is the set of all automorphisms x of G such that(b, x(b)) ∈ E(G),

V(C(A/H,S)) = A/H and E(C(A/H,S)) = {(xH, yH)|x−1y ∈ HS H}.

tetrahedron cube

Fig. 2.2.2

2.2.5 Planar Graph. Every graph is drawn on the plane. A graph isplanar if it can be

drawn on the plane in such a way that edges are disjoint expectpossibly for endpoints.

When we remove vertices and edges of a planar graphG from the plane, each remained
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connected region is called afaceof G. The length of the boundary of a face is called its

valency. Two planar graphs are shown in Fig.2.2.2.

For a planar graphG, its order, size and number of faces are related by a well-known

formula discovered by Euler.

Theorem 2.2.3 let G be a planar graph withφ(G) faces. Then

|G| − ε(G) + φ(G) = 2.

Proof This result can be proved by induction onε(G). See [GrT1] or [MoT1] for a

complete proof. �

For an integers, s≥ 3, ans-regular planar graph with the same lengthr for all faces

is often called an (s, r)-polyhedron, which are completely classified by the ancient Greeks.

tetrahedron hexahedron octahedron

dodecahedron icosahedron

(3,3) (3,4) (4,3)

(3,5) (5,3)

Fig 2.2.3

Theorem 2.2.4 There are exactly five polyhedrons, two of them are shown in Fig.2.2.3.

Proof Let G be ak-regular planar graph withl faces. By definition, we know that

|G|k = φ(G)l = 2ε(G). Whence, we get that|G| = 2ε(G)
k

andφ(G) =
2ε(G)

l
. According

to Theorem 2.2.3, we get that

2ε(G)
k
− ε(G) +

2ε(G)
l
= 2,

i.e.,

ε(G) =
2

2
k
− 1+

2
l

.
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Whence,
2
k
+

2
l
− 1 > 0. Sincek, l are both integers andk ≥ 3, l ≥ 3, if k ≥ 6, we get

2
k
+

2
l
− 1 ≤ 2

3
+

2
6
− 1 = 0,

contradicts to that
2
k
+

2
l
− 1 > 0. Therefore,k ≤ 5. Similarly, l ≤ 5. So we have

3 ≤ k ≤ 5 and 3≤ l ≤ 5. Calculation shows that all possibilities for (k, l) are (k, l) =

(3, 3), (3, 4), (3, 5), (4, 3) and (5, 3). The (3, 3), (3, 4), (3, 5), (4, 3) and (5, 3) polyhedrons

are shown in Fig.2.2.3. �

An elementary subdivisionon a graphG is a graph obtained fromG replacing an edge

e = uv by a pathuwv, where,w < V(G). A subdivisionof G is a graph obtained fromG

by a succession of elementary subdivision. A graphH is defined to be ahomeomorphism

of G if either H ≃ G or H is isomorphic to a subdivision ofG. Kuratowski found the

following characterization for planar graphs in 1930. For its a complete proof, see [BoM1]

or [ChL1] for details.

Theorem 2.2.5 A graph is planar if and only if it contains no subgraph homeomorphic

with K5 or K(3, 3).

2.2.6 Hamiltonian Graph. A graphG is hamiltonianif it has a circuit containing all

vertices ofG. Such a circuit is called ahamiltonian circuit. Similarly, if a path containing

all vertices of a graphG, such a path is called ahamiltonian path.

For a given graphG andV1,V2 ∈ V(G), define anedge cut EG(V1,V2) by

EG(V1,V2) = { (u, v) ∈ E(G) | u ∈ V1, v ∈ V2}.

Then we have the following result for characterizing hamiltonian circuits.

Theorem2.2.6 A circuit C of a graph G without isolated vertices is a hamiltonian circuit

if and only if for any edge cutC, |E(C)
⋂

E(C)| ≡ 0(mod2) and |E(C)
⋂

E(C)| ≥ 2.

Proof For any circuitC and an edge cutC, the times crossingC as we travel along

C must be even. Otherwise, we can not come back to the initial vertex. Whence, ifC is a

hamiltonian circuit, then|E(C)
⋂

E(C)| , 0. So|E(C)
⋂

E(C)| ≥ 2 and|E(C)
⋂

E(C)| ≡
0(mod2) for any edge cutC.

Conversely, if a circuitC satisfies|E(C)
⋂

E(C)| ≥ 2 and|E(C)
⋂

E(C)| ≡ 0(mod2)

for any edge cutC, we prove thatC is a hamiltonian circuit ofG. In fact, if V(G) \V(C) ,
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∅, choosex ∈ V(G) \ V(C). Consider an edge cutEG({x},V(G) \ {x}). SinceρG(x) , 0,

we know that|EG({x},V(G) \ {x})| ≥ 1. But sinceV(C)
⋂

(V(G) \ V(C)) = ∅, there must

be |EG({x},V(G) \ {x}) ⋂ E(C)| = 0, contradicts to the fact that|E(C)
⋂

E(C)| ≥ 2 for any

edge cutC. ThereforeV(C) = V(G) andC is a hamiltonian circuit ofG. �

Let G be a simple graph. Theclosureof G, denoted byC(G) is defined to be a graph

obtained fromG by recursively joining pairs of non-adjacent vertices whose valency sum

is at least|G| until no such pair remains. In 1976, Bondy and Chv´atal proved a very useful

theorem for hamiltonian graphs in [BoC1], seeing also [BoM1] following.

Theorem 2.2.7 A simple graph is hamiltonian if and only if its closure is hamiltonian.

This theorem generalizes Dirac’s and Ore’s theorems simultaneously following:

Dirac (1952): Every connected simple graph G of order n≥ 3 with the minimum

valency≥ n
2 is hamiltonian.

Ore (1960): If G is a simple graph of order n≥ 3 such thatρG(u)+ ρG(v) ≥ n for all

distinct non-adjacent vertices u and v, then G is hamiltonian.

In 1984, Fan generalized Dirac’s theorem to a localized formand proved that:

Let G be a2-connected simple graph of order n. If the condition

max{ρG(u), ρG(v)} ≥ n
2

holds for∀u, v ∈ V(G) provided dG(u, v) = 2, then G is hamiltonian.

After Fan’s paper [Fan1], many researches concentrated on weakening Fan’s condi-

tion and found new localized conditions for hamiltonian graphs. For example, the next

result on hamiltonian graphs obtained by Shi in 1992 is such aresult.

Theorem 2.2.8(Shi, 1992) Let G be a2-connected simple graph of order n. Then G

contains a circuit passing through all vertices of valency≥ n
2

.

Proof Assume the assertion is false. LetC = v1v2 · · · vkv1 be a circuit containing as

many vertices of valency≥ n
2

as possible and with an orientation on it. For∀v ∈ V(C),

v+ denotes the successor andv− the predecessor ofv on C. SetR = V(G) \ V(C). Since

G is 2-connected, there exists a path length than 2 connectingtwo vertices ofC that is

internally disjoint fromC and containing one internal vertexx of valency≥ n
2

at least.

AssumeC andP are chosen in such a way that the length ofP as small as possible. Let
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NR(x) = NG(x)
⋂

R, NC(x) = NG(x)
⋂

C, N+C(x) = {v|v− ∈ NC(x)} andN−C(x) = {v|v+ ∈
NC(x)}.

Not loss of generality, we assumev1 ∈ V(P)
⋂

V(C). Let vt be the other vertex in

V(P)
⋂

V(C). By the wayC was chosen, there exists a vertexvs with 1 < s< t such that

ρG(vs) ≥
n
2

andρ(vi) <
n
2

for 1 < i < s.

If s≥ 3, by the choice ofC andP the sets

N−C(vs) \ {v1}, NC(x), NR(vs), NR(x), {x, vs−1}

are pairwise disjoint, which implies that

n ≥ |N−C(vs) \ {v1}| + |NC(x)| + |NR(vs)| + |NR(x)| + |{x, vs−1}|

= ρG(vs) + ρG(x) + 1 ≥ n+ 1,

a contradiction. Ifs= 2, then the sets

N−C(vs), NC(x), NR(vs), NR(x), {x}

are pairwise disjoint, which yields a similar contradiction. �

There are three induced subgraphs shown in Fig.2.2.4, which are usually used for

finding local conditions for hamiltonian graphs.

K1.3 Z1 Z2

Fig 2.2.4

For an induced subgraphL of a simple graphG, a condition is called alocalized

condition DL(l) if dL(x, y) = l implies thatmax{ρG(x), ρG(y)} ≥ |G|
2

for ∀x, y ∈ V(L). Then

we get the following result.

Theorem 2.2.9 Let G be a2-connected simple graph. If the localized condition DL(2)

holds for induced subgraphs L≃ K1.3 or Z2 in G, then G is hamiltonian.
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Proof By Theorem 2.2.8, we denote bycn
2
(G) the maximum length of circuits pass-

ing through all vertices≥ n
2

. Similar to the proof of Theorem 2.2.7, we know that for

x, y ∈ V(G), if ρG(x) ≥ n
2

, ρG(y) ≥ n
2

and xy < E(G), then cn
2
(G

⋃{xy}) = cn
2
(G).

Otherwise, ifcn
2
(G

⋃{xy}) > cn
2
(G), there exists a circuit of lengthcn

2
(G

⋃{xy}) and pass-

ing through all vertices≥ n
2

. Let Cn
2

be such a circuit andCn
2
= xx1x2 · · · xsyx with

s= cn
2
(G

⋃{xy}) − 2. Notice that

NG(x)
⋂(

V(G) \ V
(
Cn

2

(
G

⋃
{xy}

)))
= ∅

and

NG(y)
⋂(

V(G) \ V
(
Cn

2

(
G

⋃
{xy}

)))
= ∅.

If there exists an integeri, 1 ≤ i ≤ s, xxi ∈ E(G), thenxi−1y < E(G). Otherwise, there is

a circuitC′ = xxi xi+1 · · · xsyxi−1xi−2 · · · x in G passing through all vertices≥ n
2

with length

cn
2
(G

⋃{xy}), contradicts to the assumption thatcn
2
(G

⋃{xy}) > cn
2
(G). Whence,

ρG(x) + ρG(y) ≤
∣∣∣V(G) \ V(C(Cn

2
))
∣∣∣ +

∣∣∣V(C(Cn
2
))
∣∣∣ − 1 = n− 1,

also contradicts to thatρG(x) ≥ n
2

andρG(y) ≥ n
2

. Therefore,cn
2
(G

⋃{xy}) = cn
2
(G) and

generally,cn
2
(C(G)) = cn

2
(G).

Now letC be a maximal circuit passing through all vertices≥ n
2

in the closureC(G)

of G with an orientation
−→
C. According to Theorem 2.2.7, if C(G) is non-hamiltonian,

we can chooseH be a component inC(G) \ C. DefineNC(H) = (
⋃
x∈H

NC(G)(x))
⋂

V(C).

SinceC(G) is 2-connected, we get that|NC(H)| ≥ 2. This enables one to choose vertices

x1, x2 ∈ NC(H), x1 , x2 andx1 can arrive atx2 along
−→
C. Denote byx1

−→
C x2 the path from

x1 to x2 on
−→
C andx2

←−
C x1 the reverse. LetP be a shortest path connectingx1, x2 in C(G)

and

u1 ∈ NC(G)(x1)
⋂

V(H)
⋂

V(P), u2 ∈ NC(G)(x2)
⋂

V(H)
⋂

V(P).

Then

E(C(G))
⋂({

x−1 x−2 , x
+
1 x+2

}⋃
EC(G)

({u1, u2} ,
{
x−1 , x

+
1 , x

−
2 , x

+
2

}))
= ∅

and
〈
{x−1 , x1, x+1 , u1}

〉
; K1.3 or

〈
{x−2 , x2, x+2 , u2}

〉
; K1.3. Otherwise, there exists a circuit

longer thanC, a contradiction. We need to consider two cases following.

Case1.
〈
{x−1 , x1, x+1 , u1}

〉
; K1.3 and

〈
{x−2 , x2, x+2 , u2}

〉
; K1.3.

In this case,x−1 x+1 ∈ E(C(G)) andx−2 x+2 ∈ E(C(G)). By the maximality ofC in C(G),

we have two claims.
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Claim 1.1 u1 = u2 = u.

Otherwise, letP = x1u1y1 · · · ylu2. By the choice ofP, there must be

〈{x−1 , x1, x
+
1 , u1, y1}

〉 ≃ Z2 and
〈{x−2 , x2, x

+
2 , u2, yl}

〉 ≃ Z2

SinceC(G) also has theDL(2) property, we get that

max{ρC(G)(x
−
1 ), ρC(G)(u1)} ≥

n
2
, max{ρC(G)(x12

−), ρC(G)(u2)} ≥
n
2
.

Whence,ρC(G)(x−1 ) ≥ n
2

, ρC(G)(x−2 ) ≥ n
2

andx−1 x−2 ∈ E(C(G)), a contradiction.

Claim 1.2 x1x2 ∈ E(C(G)).

If x1x2 < E(C(G)), then
〈
{x−1 , x1, x+1 , u, x2}

〉
≃ Z2. Otherwise,x2x−1 ∈ E(C(G)) or

x2x+1 ∈ E(C(G)). But then there is a circuit

C1 = x+2
−→
C x−1 x2ux1

−→
C x−2 x+2 or C2 = x+2

−→
C x1ux2x+1

−→
C x−2 x+2 ,

contradicts the maximality ofC. Therefore, we know that

〈{x−1 , x1, x
+
1 , u, x2}

〉 ≃ Z2.

By the propertyDL(2), we get thatρC(G)(x−1 ) ≥ n
2

Similarly, consider the induced subgraph
〈
{x−2 , x2, x+2 , u, x2}

〉
, we get thatρC(G)(x−2 )

≥ n
2

. Whence,x−1 x−2 ∈ E(C(G)), also a contradiction. Thereby we know the structure of

G as shown in Fig.2.2.5.

u

x1
x2

x+1 x−2

x−1 x+2

Fig 2.2.5

By the maximality ofC in C(G), it is obvious thatx−−1 , x+2 . We construct an

induced subgraph sequence{Gi}1≤i≤m, m= |V(x−1
←−
C x+2 )|−2 and prove there exists an integer

r, 1 ≤ r ≤ m such thatGr ≃ Z2.
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First, we consider the induced subgraphG1 =
〈
{x1, u, x2, x−1 , x

−−
1 }

〉
. If G1 ≃ Z2, take

r = 1. Otherwise, there must be

{x−1 x2, x
−−
1 x2, x

−−
1 u, x−−1 x1}

⋂
E(C(G)) , ∅.

If x−1 x2 ∈ E(C(G)), or x−−1 x2 ∈ E(C(G)), or x−−1 u ∈ E(C(G)), there is a circuitC3 =

x−1
←−
C x+2 x−2

←−
C x1ux2x−1 , or C4 = x−−1

←−
C x+2 x−2

←−
C x+1 x−1 x1ux2x−−1 , or C5 = x−−1

←−
C x+1 x−1 x1ux−−1 . Each

of these circuits contradicts the maximality ofC. Therefore,x−−1 x1 ∈ E(C(G)).

Now let x−1
←−
C x+2 = x−1y1y2 · · · ymx+2 , wherey0 = x−1 , y1 = x−−1 andym = x++2 . If we have

defined an induced subgraphGk for any integerk and have gottenyi x1 ∈ E(C(G)) for any

integeri, 1 ≤ i ≤ k andyk+1 , x++2 , then we define

Gk+1 = 〈{yk+1, yk, x1, x2, u}〉 .

If Gk+1 ≃ Z2, thenr = k+ 1. Otherwise, there must be

{yku, ykx2, yk+1u, yk+1x2, yk+1x1}
⋂

E(C(G)) , ∅.

If yku ∈ E(C(G)), or ykx2 ∈ E(C(G)), or yk+1u ∈ E(C(G)), or yk+1x2 ∈ E(C(G)),

there is a circuitC6 = yk
←−
C x+1 x−1

←−
Cyk−1x1uyk, or C7 = yk

←−
C x+2 x−2

←−
C x+1 x−1

←−
C yk−1x1ux2yk, or

C8 = yk+1
←−
C x+1 x−1

←−
Cykx1uyk+1, or C9 = yk+1

←−
C x+2 x−2

←−
C x+1 x−1

←−
Cykx1u x2yk+1. Each of these

circuits contradicts the maximality ofC. Thereby,yk+1x1 ∈ E(C(G)).

Continue this process. If there are no subgraphs in{Gi}1≤i≤m isomorphic toZ2, we

finally get x1x++2 ∈ E(C(G)). But then there is a circuitC10 = x−1
←−
C x++2 x1ux2x+2

←−
C x+1 x−1 in

C(G). Also contradicts the maximality ofC in C(G). Therefore, there must be an integer

r, 1 ≤ r ≤ m such thatGr ≃ Z2.

Similarly, let x−2
←−
C x+1 = x−2z1z2 · · · ztx−1 , wheret = |V(x−2

←−
C x+1 )| − 2, z0 = x−2 , z

++
1 =

x2, zt = x++1 . We can also construct an induced subgraph sequence{Gi}1≤i≤t and know that

there exists an integerh, 1 ≤ h ≤ t such thatGh ≃ Z2 andx2zi ∈ E(C(G)) for 0 ≤ i ≤ h−1.

Since the localized conditionDL(2) holds for an induced subgraphZ2 in C(G),

we get that max{ρC(G)(u), ρC(G)(yr−1)} ≥
n
2

and max{ρC(G)(u), ρC(G)(zh−1)} ≥
n
2

. Whence

ρC(G)(yr−1) ≥
n
2

, ρC(G)(zh−1) ≥
n
2

andyr−1zh−1 ∈ E(C(G)). But then there is a circuit

C11 = yr−1
←−
C x+2 x−2

←−
Czh−2x2ux1yr−2

−→
C x−1 x+1

−→
Czh−1yr−1

in C(G), where ifh = 1, or r = 1, x−2
←−
Czh−2 = ∅, or yr−2

−→
C x−1 = ∅. Also contradicts the

maximality ofC in C(G).
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Case2.
〈
{x−1 , x1, x+1 , u1}

〉
; K1.3,

〈
{x−2 , x2, x+2 , u2}

〉
≃ K1.3 or

〈
{x−1 , x1, x+1 , u1}

〉
≃ K1.3, but〈

{x−2 , x2, x+2 , u2}
〉
; K1.3

Not loss of generality, we assume that

〈{x−1 , x1, x
+
1 , u1}

〉
; K1.3,

〈{x−2 , x2, x
+
2 , u2}

〉 ≃ K1.3.

Since each induced subgraphK1.3 in C(G) possessesDL(2), we get that max{ρC(G)(u),

ρC(G)(x−2 )} ≥ n
2

and max{ρC(G)(u), ρC(G)(x+2 )} ≥ n
2

. WhenceρC(G)(x−2 ) ≥ n
2
, ρC(G)(x

+
2 ) ≥ n

2
andx−2 x+2 ∈ E(C(G)). Therefore, the discussion of Case 1 also holds in this case and yields

similar contradictions.

Combining Case 1 with Case 2, the proof is complete. �

Let G, F1, F2, · · · , Fk be k + 1 graphs. If there are no induced subgraphs ofG iso-

morphic toFi , 1 ≤ i ≤ k, thenG is called{F1, F2, · · · , Fk}-free. We immediately get a

consequence by Theorem 2.2.9.

Corollary 2.2.1 Every2-connected{K1.3,Z2}-free graph is hamiltonian.

For a graphG, u ∈ V(G) with ρG(u) = l, let H be a graph withl pendent vertices

v1, v2, · · · , vl. Define a splitting operatorϑ : G→ Gϑ(u) on u by

V(Gϑ(u)) = (V(G) \ {u})
⋃

(V(H) \ {v1, v2, · · · , vl}),

E(Gϑ(u)) = (E(G) \ {uxi ∈ E(G), 1 ≤ i ≤ l})
⋃

(E(H) \ {viyi ∈ E(H), 1 ≤ i ≤ l})
⋃
{xiyi , 1 ≤ i ≤ l}.

Such numberl is called thedegree of the splitting operatorϑ andN(ϑ(u)) = H \ {xiyi , 1 ≤
i ≤ l} thenucleus ofϑ . A splitting operator is shown in Fig.2.2.6.

u

x1

x2

x3

xl

H
θ

x1

y1
x2

y2

x3

y3

xl

yl

Fig 2.2.6

Erdös and Rényi raised a question in 1961:in what model of random graphs is it true

that almost every graph is hamiltonian?Pósa and Korshuuov proved independently that
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for some constantc almost every labeled graph withn vertices and at leastn logn edges

is hamiltonian in 1974. Contrasting this probabilistic result, there is another property for

hamiltonian graphs, i.e., there is a splitting operatorϑ such thatGϑ(u) is non-hamiltonian

for ∀u ∈ V(G) of a graphG.

Theorem 2.2.10 Let G be a graph. For∀u ∈ V(G), ρG(u) = d, there exists a splitting

operatorϑ of degree d on u such that Gϑ(u) is non-hamiltonian.

Proof For any positive integeri, define a simple graphΘi by V(Θi) = {xi, yi, zi, ui}
andE(Θi) = {xiyi , xizi, yizi , yiui , ziui}. For integersi, j ≥ 1, the point productΘi ⊙ Θ j of Θi

andΘ j is defined by

V(Θi ⊙ Θ j) = V(Θi)
⋃

V(Θ j) \ {u j},

E(Θi ⊙ Θ j) = E(Θi)
⋃

E(Θ j)
⋃
{xiyj, xizj} \ {xjyj , xjzj}.

Now let Hd be a simple graph with

V(Hd) = V(Θ1 ⊙ Θ2 ⊙ · · ·Θd+1)
⋃
{v1, v2, · · · , vd},

E(Hd) = E(Θ1 ⊙ Θ2 ⊙ · · ·Θd+1)
⋃
{v1u1, v2u2, · · · , vdud}.

Thenϑ : G→ Gϑ(w) is a splitting operator of degreed as shown in Fig.2.2.7.

x1 xd+1

v1 v2 vd

u1 u2 ud

Fig 2.2.7

For any graphG andw ∈ V(G), ρG(w) = d, we prove thatGϑ(w) is non-hamiltonian.

In fact, If Gϑ(w) is a hamiltonian graph, then there must be a hamiltonian pathP(ui , u j)

connecting two verticesui, u j for some integersi, j, 1 ≤ i, j ≤ d in the graphHd \
{v1, v2, · · · , vd}. However, there are no hamiltonian path connecting vertices ui , u j in the

graphHd \ {v1, v2, · · · , vd} for any integeri, j, 1 ≤ i, j ≤ d. Therefore,Gϑ(w) is non-

hamiltonian. �
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§2.3 GRAPH OPERATIONS WITH SEMI-ARC AUTOMORPHISMS

For two given graphsG1 = (V1.E1; I1) andG2 = (V2,E2; I2), there are a number of ways

to produce new graphs fromG1 andG2. Some of them are introduced in the following.

2.3.1 Union. A union G1
⋃

G2 of graphsG1 with G2 is defined by

V(G1

⋃
G2) = V1

⋃
V2, E(G1

⋃
G2) = E1

⋃
E2, I (E1

⋃
E2) = I1(E1)

⋃
I2(E2).

A graph consists ofk disjoint copies of a graphH, k ≥ 1 is denoted byG = kH. As an

example, we find that

K6 =

5⋃

i=1

S1.i

for graphs shown in Fig.2.3.1 following

1

2 3
4

5
6

2

3
4

5

6
3

4
5

6
4

5

6
5

6

S1.5 S1.4 S1.3 S1.2 S1.1

Fig. 2.3.1

and generally,Kn =
n−1⋃
i=1

S1.i. Notice thatkG is a multigraph with edge multiplek for any

integerk, k ≥ 2 and a simple graphG.

+

C3 C4 C3 +C4

Fig 2.3.2

2.3.2 Complement and Join. A complementG of a graphG is a graph with vertex set

V(G) such that vertices are adjacent inG if and only if these are not adjacent inG. A join

G1 +G2 of G1 with G2 is defined by

V(G1 +G2) = V(G1)
⋃

V(G2),
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E(G1 +G2) = E(G1)
⋃

E(G2)
⋃{(u, v)|u ∈ V(G1), v ∈ V(G2)}

I (G1 +G2) = I (G1)
⋃

I (G2)
⋃{I (u, v) = (u, v)|u ∈ V(G1), v ∈ V(G2)}.

Applying the join operation, we know thatK(m, n) ≃ Km + Kn. The join graph of circuits

C3 andC4 is given in Fig.2.3.2.

2.3.3 Cartesian Product. A Cartesian product G1 ×G2 of graphsG1 with G2 is defined

by V(G1 × G2) = V(G1) × V(G2) and two vertices (u1, u2) and (v1, v2) of G1 × G2 are

adjacent if and only if eitheru1 = v1 and (u2, v2) ∈ E(G2) or u2 = v2 and (u1, v1) ∈ E(G1).

For example,K2 × P6 is shown in Fig.2.3.3 following.

u

v

1 2 3 4 5
K2

6

P6

K2 × P6

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig.2.3.3

2.3.4 Semi-Arc Automorphism. For a simple graphG with n vertices, it is easy to

verify that AutG ≤ Sn, the symmetry group action on thesen vertices ofG.

G AutG order

Pn Z2 2

Cn Dn 2n

Kn Sn n!

Km,n(m, n) Sm× Sn m!n!

Kn,n S2[Sn] 2n!2

Table 2.3.1

But in general, the situation is more complex. In Table 2.3.1, we present automorphism

groups of some graphs. For generalizing the conception of automorphism, the semi-arc

automorphism of a graph is introduced in the following.
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Definition 2.3.1 A one-to-one mappingξ on X1
2
(G) is called a semi-arc automorphism of

a graph G ifξ(eu) and ξ( fv) are v−incident or e−incident if eu and fv are v−incident or

e−incident for∀eu, fv ∈ X1
2
(G).

All semi-arc automorphisms of a graph also form a group, denoted by Aut1
2
G.The

Table 2.3.2 following lists semi-arc automorphism groups of a few well-known graphs.

G Aut 1
2
G order

Kn Sn n!

Kn,n S2[Sn] 2n!2

Bn Sn[S2] 2nn!

D0.n.0 S2 × Sn 2n!

Dn.k.l(k , l) S2[Sk] × Sn × S2[Sl] 2k+ln!k!l!

Dn.k.k S2 × Sn × (S2[Sk])2 22k+1n!k!2

Table 2.3.2

In this table,D0.n.0 is a dipole graph with 2 vertices,n multiple edges andDn.k.l is a

generalized dipole graph with 2 vertices,n multiple edges, and one vertex withk bouquets

and another,l bouquets. This table also enables us to find some useful information for

semi-arc automorphism groups. For example, Aut1
2
Kn = AutKn = Sn, Aut1

2
Bn = Sn[S2]

but AutBn = Sn, i.e., Aut1
2
Bn , AutBn for any integern ≥ 1.

For∀g ∈ AutG, there is an induced actiong| 12 : X1
2
(G)→ X1

2
(G) defined by

∀eu ∈ X1
2
(G), g(eu) = g(e)g(u).

All such induced actions onX1
2
(G) by elements in AutG are denoted by AutG| 12 .

The graphBn shows that Aut1
2
G may be not the same as AutG| 12 . However, we get a

result in the following.

Theorem 2.3.1 For a graph G without loops,

Aut 1
2
G = AutG| 12 .

Proof By the definition, we only need to prove that for∀ξ 1
2
∈ Aut 1

2
G, ξ = ξ 1

2
|G ∈

AutG andξ 1
2
= ξ| 12 . In fact, Lete◦u, f •x ∈ X1

2
(G) with ◦, • ∈ {+,−}, wheree = uv ∈ E(G),

f = xy ∈ E(G). Now if

ξ 1
2
(e◦u) = f •x ,
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by definition, we know thatξ 1
2
(e◦v) = f •y . Whence,ξ 1

2
(e) = f . That is,ξ 1

2
|G ∈ AutG.

By assumption, there are no loops inG. Whence, we know thatξ 1
2
|G = 1AutG if and

only if ξ 1
2
= 1Aut 1

2
G. Soξ 1

2
is induced byξ 1

2
|G on X1

2
(G). Thus,

Aut 1
2
G = AutG| 12 . �

We have know that Aut1
2
Bn , AutBn for any integern ≥ 1. Combining this fact with

Theorem 2.1.3, we know the following.

Theorem 2.3.2 Aut1
2
G = AutG| 12 if and only if G is a loopless graph.

§2.4 DECOMPOSITIONS

2.4.1 Decomposition. A graph G can be really represented as a graph multi-space

by decomposing it into subgraphs. for example, the completegraphK6 with vertex set

{1, 2, 3, 4, 5, 6} has two families of subgraphs{C6,C1
3,C

2
3,P

1
2,P

2
2,P

3
2} and {S1.5,S1.4,S1.3,

S1.2,S1.1}, such as those shown in Fig.2.4.1 and Fig.2.4.2.

C6 P1
2 P2

2 P3
2 C1

3 C2
3

1 2 1 2 3 1 2

3

45

6

4 5 6 5 4

3 6

Fig 2.4.1

S1.5 S1.4 S1.3 S1.2 S1.1

1

2

3 4

5

6 2

3 4

5

6 3

4
5

6 4

5

6 5

6

Fig 2.4.2
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Whence, we know that

E(K6) = E(C6)
⋃

E(C1
3)

⋃
E(C2

3)
⋃

E(P1
2)

⋃
E(P2

2)
⋃

E(P3
2),

E(K6) = E(S1.5)
⋃

E(S1.4)
⋃

E(S1.3)
⋃

E(S1.2)
⋃

E(S1.1).

These formulae imply the conception of decomposition of graphs.

Generally, letG be a graph. Adecompositionof G is a collection{Hi}1≤i≤s of sub-

graphs ofG such that for any integeri, 1 ≤ i ≤ s, Hi = 〈Ei〉 for some subsetsEi of E(G)

and{Ei}1≤i≤s is a partition ofE(G), denoted by

G = H1

⊕
H2

⊕
· · ·

⊕
Hs.

By definition, we easily get decompositions for some well-known graphs such as

Bn =

n⋃

i=1

B1(O), Dk,m,n = (
k⋃

i=1

B1(O1))
⋃

(
m⋃

i=1

K2)
⋃

(
n⋃

i=1

B1(O2)),

whereV(B1)(O1) = {O1},V(B1)(O2) = {O2} andV(K2) = {O1,O2}. The following result

is obvious.

Theorem2.4.1 Any graph G can be decomposed to bouquets and dipoles, in where K2 is

seen as a dipole D0.1.0.

Theorem2.4.2 For every positive integer n, the complete graph K2n+1 can be decomposed

to n hamiltonian circuits.

Proof For n = 1, K3 is just a hamiltonian circuit. Now letn ≥ 2 andV(K2n+1) =

{v0, v1, v2, · · · , v2n}. Arrange these verticesv1, v2, · · · , v2n on vertices of a regular 2n-gon

and placev0 in a convenient position not in the 2n-gon. Fori = 1, 2, · · · , n, we define the

edge set ofHi to be consisted ofv0vi , v0vn+i and edges parallel tovivi+1 or edges parallel

to vi−1vi+1, where the subscripts are expressed modulo 2n. Then we get that

K2n+1 = H1

⊕
H2

⊕
· · ·

⊕
Hn

with eachHi , 1 ≤ i ≤ n being a hamiltonian circuit

v0vivi+1vi−1vi+1vi−2 · · · vn+i−1vn+i+1vn+iv0. �

Theorem 2.4.2 implies thatK2n+1 =
n⋃

i=1
Hi with

Hi = v0vivi+1vi−1vi+1vi−2 · · · vn+i−1vn+i+1vn+iv0.
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2.4.2 Factorization of Cayley Graph. Generally, every Cayley graph of a finite group

Γ can be decomposed into 1-factors or 2-factors in a natural way shown in the following.

Theorem 2.4.3 Let G be a vertex-transitive graph and let H be a regular subgroup of

AutG. Then for any chosen vertex x, x ∈ V(G), there is a factorization

G =


⊕

y∈NG(x),|H(x,y) |=1

(x, y)H


⊕


⊕

y∈NG(x),|H(x,y) |=2

(x, y)H

 ,

for G such that(x, y)H is a 2-factor if |H(x,y)| = 1 and a1-factor if |H(x,y)| = 2.

Proof We prove the following claims.

Claim 1. ∀x ∈ V(G), xH = V(G) and Hx = 1H.

Claim 2. For ∀(x, y), (u,w) ∈ E(G), (x, y)H ⋂
(u,w)H = ∅ or (x, y)H = (u,w)H.

Claims 1 and 2 are holden by definition.

Claim 3. For ∀(x, y) ∈ E(G), |H(x,y)| = 1 or 2.

Assume that|H(x,y)| , 1. Since we know that (x, y)h = (x, y), i.e., (xh, yh) = (x, y) for

any elementh ∈ H(x,y). Thereby we get thatxh = x andyh = y or xh = y andyh = x. For

the first case we knowh = 1H by Claim 1. For the second, we get thatxh2
= x. Therefore,

h2 = 1H .

Now if there exists an elementg ∈ H(x,y)\{1H, h}, then we getxg = y = xh and

yg = x = yh. Thereby we getg = h by Claim 1, a contradiction. So we get that|H(x,y)| = 2.

Claim 4. For any(x, y) ∈ E(G), if |H(x,y)| = 1, then(x, y)H is a 2-factor.

BecausexH = V(G) ⊂ V(
〈
(x, y)H

〉
) ⊂ V(G), so V(

〈
(x, y)H

〉
) = V(G). Therefore,

(x, y)H is a spanning subgraph ofG.

SinceH acting onV(G) is transitive, there exists an elementh ∈ H such thatxh = y. It

is obvious thato(h) is finite ando(h) , 2. Otherwise, we have|H(x,y)| ≥ 2, a contradiction.

Now (x, y)〈h〉 = xxhxh2 · · · xho(h)−1
x is a circuit in the graphG. Consider the right coset

decomposition ofH on 〈h〉. SupposeH =
s⋃

i=1
〈h〉 ai, 〈h〉 ai

⋂ 〈h〉a j = ∅, if i , j, and

a1 = 1H.

Now let X = {a1, a2, ..., as}. We know that for anya, b ∈ X, (〈h〉 a)
⋂

(〈h〉b) = ∅
if a , b. Since (x, y)〈h〉a = ((x, y)〈h〉)a and (x, y)〈h〉b = ((x, y)〈h〉)b are also circuits, if

V(
〈
(x, y)〈h〉a

〉
)
⋂

V(
〈
(x, y)〈h〉b

〉
) , ∅ for somea, b ∈ X, a , b, then there must be two
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elementsf , g ∈ 〈h〉 such thatxf a = xgb . According to Claim 1, we get thatf a = gb, that

is ab−1 ∈ 〈h〉. So〈h〉a = 〈h〉b anda = b, contradicts to the assumption thata , b.

Thereafter we know that (x, y)H =
⋃
a∈X

(x, y)〈h〉a is a disjoint union of circuits. So

(x, y)H is a 2-factor of the graphG.

Claim 5. For any(x, y) ∈ E(G), (x, y)H is an1-factor if |H(x,y)| = 2.

Similar to the proof of Claim 4, we know thatV(
〈
(x, y)H

〉
) = V(G) and (x, y)H is a

spanning subgraph of the graphG.

Let H(x,y) = {1H, h}, where xh = y and yh = x. Notice that (x, y)a = (x, y) for

∀a ∈ H(x,y). Consider the coset decomposition ofH onH(x,y), we know thatH =
t⋃

i=1
H(x,y)bi

, whereH(x,y)bi
⋂

H(x,y)b j = ∅ if i , j, 1 ≤ i, j ≤ t. Now let L = {H(x,y)bi, 1 ≤ i ≤ t}. We

get a decomposition

(x, y)H =
⋃

b∈L
(x, y)b

for (x, y)H. Notice that ifb = H(x,y)bi ∈ L, (x, y)b is an edge ofG. Now if there exist two

elementsc, d ∈ L, c = H(x,y) f andd = H(x,y)g, f , g such thatV(〈(x, y)c〉) ⋂ V(
〈
(x, y)d

〉
) ,

∅, there must bexf = xg or xf = yg. If xf = xg, we getf = g by Claim 1, contradicts to the

assumption thatf , g. If xf = yg = xhg, whereh ∈ H(x,y), we getf = hgand f g−1 ∈ H(x,y),

soH(x,y) f = H(x,y)g. According to the definition ofL, we get f = g, also contradicts to the

assumption thatf , g. Therefore, (x, y)H is an 1-factor of the graphG.

Now we can prove the assertion in this theorem. According to Claim 1- Claim 4, we

get that

G =


⊕

y∈NG(x),|H(x,y) |=1

(x, y)H


⊕


⊕

y∈NG(x),|H(x,y) |=2

(x, y)H

 .

for any chosen vertexx, x ∈ V(G). By Claims 5 and 6, we know that (x, y)H is a 2-factor

if |H(x,y)| = 1 and is a 1-factor if|H(x,y)| = 2. Whence, the desired factorization forG is

obtained. �

For a Cayley graph Cay(Γ : S), by Theorem 2.2.2 we can always choose the vertex

x = 1Γ andH the right regular transformation group onΓ. After then, Theorem 2.4.3 can

be restated as follows.

Theorem 2.4.4 Let Γ be a finite group with a subset S,S−1 = S ,1Γ < S and H is the

right transformation group onΓ. Then there is a factorization
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G = (
⊕

s∈S,s2,1Γ

(1Γ, s)
H)

⊕
(

⊕

s∈S,s2=1Γ

(1Γ, s)
H)

for the Cayley graphCay(Γ : S) such that(1Γ, s)H is a 2-factor if s2
, 1Γ and1-factor if

s2 = 1Γ.

Proof For anyh ∈ H(1Γ ,s), if h , 1Γ, then we get that 1Γh = s and sh = 1Γ, that

is s2 = 1Γ. According to Theorem 2.4.3, we get the factorization for the Cayley graph

Cay(Γ : S). �

§2.5 SMARANDACHE SEQUENCES ON SYMMETRIC GRAPHS

2.5.1 Smarandache Sequence with Symmetry.Let Z+ be the set of non-negative

integers andΓ a group. We consider sequences{i(n)|n ∈ Z+} and {gn ∈ Γ|n ∈ Z+} in

this paper. There are many interesting sequences appeared in literature. For example, the

sequences presented by Prof.Smarandache in references [Del1] and [Sma6] following:

(1) Consecutive sequence

1, 12, 123, 1234, 12345, 123456,1234567,12345678, · · ·;

(2) Digital sequence

1, 11, 111, 1111, 11111, 11111,1111111,11111111, · · ·

(3) Circular sequence

1, 12, 21, 123, 231, 312, 1234, 2341, 3412, 4123, · · ·;

(4) Symmetric sequence

1, 11, 121, 1221, 12321, 123321,1234321,12344321,123454321,1234554321, · · ·;

(5) Divisor product sequence

1, 2, 3, 8, 5, 36, 7, 64, 27,100,11,1728,13,196,225,1024, 17,5832, 19, · · ·;

(6) Cube-free sieve

2, 3, 4, 5, 6, 7, 9, 10, 11,12, 13, 14, 15,17,18,19,20, 21, 22, 23, 25,26,28,29, 30, · · ·.

Smarandache found the following nice symmetries for these integer sequences.
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1× 1 = 1

11× 11= 121

111× 111= 12321

1111× 1111= 1234321

11111× 11111= 12345431

111111× 111111= 12345654321

1111111× 1111111= 1234567654321

11111111× 11111111= 13456787654321

111111111× 111111111= 12345678987654321

2.5.2 Smarandache Sequence on Symmetric Graph.Let lSG : V(G) → {1, 11, 111,

1111, 11111, 111111, 1111111, 11111111, 111111111} be a vertex labeling of a graphG

with edge labelinglSG(u, v) induced bylSG(u)lSG(v) for (u, v) ∈ E(G) such thatlSG(E(G)) =

{1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321,

12345678987654321}, i.e., lSG(V(G)∪E(G)) contains all numbers appeared in the Smaran-

dache’s symmetry. Denote all graphs withlSG labeling byL S. Then it is easily find a graph

with a labelinglSG in Fig.2.5.1 following.

1 1
11 11

111 111
1111 1111

11111 11111
111111 111111

1111111 1111111
11111111 11111111

111111111 111111111

1
121

12321
1234321

123454321
12345654321

1234567654321
123456787654321

12345678987654321

Fig.2.5.1

We know the following result.

Theorem 2.5.1 Let G ∈ L S. Then G=
n⋃

i=1
Hi for an integer n≥ 9, where each Hi is

a connected graph. Furthermore, if G is vertex-transitive graph, then G= nH for an

integer n≥ 9, where H is a vertex-transitive graph.

Proof Let C(i) be the connected component with a labeli for a vertexu, where
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i ∈ {1, 11, 111, 1111, 11111, 111111,1111111,11111111,111111111}. Then all vertices

v in C(i) must be with labellSG(v) = i. Otherwise, if there is a vertexv with lSG(v) =

j ∈ {1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111} \ {i}, let P(u, v) be

a path connecting verticesu andv. Then there must be an edge (x, y) on P(u, v) such that

lSG(x) = i, lSG(y) = j. By definition,i × j < lSG(E(G)), a contradiction. So there are at least

9 components inG.

Now if G is vertex-transitive, we are easily know that each connected component

C(i) must be vertex-transitive and all components are isomorphic. �

The smallest graph inL S
v is the graph 9K2 shown in Fig.2.5.1. It should be noted

that each graph inL S
v is not connected. For finding a connected one, we construct a graph

Q̂k following on the digital sequence

1, 11, 111, 1111, 11111, · · · , 11· · ·1︸  ︷︷  ︸
k

.

by

V(Q̃k) = {1, 11, · · · , 11· · ·1︸  ︷︷  ︸
k

}
⋃
{1′, 11′, · · · , 11· · ·1′︸   ︷︷   ︸

k

},

E(Q̃k) = {(1, 11· · ·1︸  ︷︷  ︸
k

), (x, x′), (x, y)|x, y ∈ V(Q̃) differ in precisely one 1}.

Now labelx ∈ V(Q̃) by lG(x) = lG(x′) = x and (u, v) ∈ E(Q̃) by lG(u)lG(v). Then we have

the following result for the graph̃Qk.

Theorem 2.5.2 For any integer m≥ 3, the graphQ̃m is a connected vertex-transitive

graph of order2m with edge labels

lG(E(Q̃)) = {1, 11, 121, 1221, 12321, 123321,1234321, 12344321, 12345431, · · ·},

i.e., the Smarandache symmetric sequence.

Proof Clearly, Q̃m is connected. We prove it is a vertex-transitive graph. For sim-

plicity, denote 11· · ·1︸  ︷︷  ︸
i

, 11· · ·1′︸   ︷︷   ︸
i

by i andi
′
, respectively. ThenV(Q̃m) = {1, 2, · · · ,m}. We

define an operation+ onV(Q̃k) by

k+ l = 11· · ·1︸  ︷︷  ︸
k+l(modk)

and k
′
+ l
′
= k+ l

′
, k

′′
= k

for integers 1≤ k, l ≤ m. Then an elementi naturally induces a mapping

i∗ : x→ x+ i, for x ∈ V(Q̃m).
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It should be noted thati∗ is an automorphism of̃Qm because tuplesx and y differ in

precisely one 1 if and only ifx+ i andy+ i differ in precisely one 1 by definition. On the

other hand, the mappingτ : x→ x′ for ∀x ∈ is clearly an automorphism of̃Qm. Whence,

G = 〈 τ, i∗ | 1 ≤ i ≤ m〉 � AutQ̃m,

which acts transitively onV(Q̃) because (y− x)∗(x) = y for x, y ∈ V(Q̃m) andτ : x→ x′.

Calculation shows easily that

lG(E(Q̃m)) = {1, 11, 121, 1221, 12321, 123321, 1234321, 12344321, 12345431, · · ·},

i.e., the Smarandache symmetric sequence. This completes the proof. �

By the definition of graph̃Qm, w consequently get the following result by Theorem

2.5.2.

Corollary 2.5.1 For any integer m≥ 3, Q̃m ≃ Cm× P2.

The smallest graph containing the third symmetry isQ̃9 shown in Fig.2.5.2 follow-

ing,

c1 c111 11
111 111

1111 1111
11111 11111

111111 111111
1111111 1111111

11111111 11111111
111111111 111111111

1
121

12321
1234321

123454321
12345654321

1234567654321
123456787654321

12345678987654321

c2

11

c2

c3 c3

c4 c4

c5 c5

c6 c6

c7 c7

c8 c8

c9 c9

Fig.2.5.2

wherec1 = 11, c2 = 1221, c3 = 123321, c4 = 12344321,c5 = 12344321,c5 =

1234554321,c6 = 123456654321,c7 = 12345677654321,c8 = 1234567887654321,

c9 = 123456789987654321.

2.5.3 Group on Symmetric Graph. In fact, the Smarandache digital or symmetric se-

quences are subsequences ofZ, a special infinite Abelian group. We consider generalized

labelings on vertex-transitive graphs following.
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Problem 2.5.1 Let (Γ; ◦) be an Abelian group generated by x1, · · · , xn. ThusΓ = 〈x1, x2,

· · · , xn|W1, · · ·〉. Find connected vertex-transitive graphs G with a labelinglG : V(G) →
{1Γ, x1, x2, · · · , xn} and induced edge labeling lG(u, v) = lG(u)◦ lG(v) for (u, v) ∈ E(G) such

that

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x

2
n}.

Similar to that of Theorem 2.5.2, we know the following result.

Theorem 2.5.3 Let (Γ; ◦) be an Abelian group generated by x1, x2, · · · , xn for an inte-

ger n ≥ 1. Then there are vertex-transitive graphs G with a labeling lG : V(G) →
{1Γ, x1, x2, · · · , xn} such that the induced edge labeling by lG(u, v) = lG(u) ◦ lG(v) with

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x

2
n}.

Proof For any integerm≥ 1, define a grapĥQm,n,k by

V(Q̂m,n,k) =


m−1⋃

i=0

U(i)[x]


⋃

m−1⋃

i=0

W(i)[y]


⋃
· · ·

⋃
m−1⋃

i=0

U(i)[z]



where|{U(i)[x], v(i)[y], · · · ,W(i)[z]}| = k and

U(i)[x] = {x(i)
0 , x

(i)
1 , x

(i)
2 , · · · , x

(i)
n },

V(i)[y] = {(y0)
(i), y(i)

1 , y
(i)
2 , · · · , y

(i)
n },

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

W(i)[z] = {(z0)
(i), z(i)

1 , z
(i)
2 , · · · , z

(i)
n }

for integers 0≤ i ≤ m− 1, and

E(Q̂m,n) = E1

⋃
E2

⋃
E3,

whereE1 = { (x(i)
l , y

(i)
l ), · · · , (z(i)

l , x
(i)
l ) | 0 ≤ l ≤ n − 1, 0 ≤ i ≤ m− 1}, E2 = { (x(i)

l , x
(i)
l+1),

(y(i)
l , y

(i)
l+1), · · · , (z

(i)
l , z

(i)
l+1) | 0 ≤ l ≤ n − 1, 0 ≤ i ≤ m − 1, where l + 1 ≡ (modn)} and

E3 = {(x(i)
l , x

(i+1)
l ), (y(i)

l , y
(i+1)
l ), · · · , (z(i)

l , z
(i+1)
l )|0 ≤ l ≤ n− 1, 0 ≤ i ≤ m− 1, wherei + 1 ≡

(modm)}. Then is clear that̂Qm,n,k is connected. We prove this graph is vertex-transitive.

In fact, by defining three mappings

θ : x(i)
l → x(i)

l+1, y(i)
l → y(i)

l+1, · · · , z
(i)
l → z(i)

l+1,

τ : x(i)
l → y(i)

l , · · · , z
(i)
l → x(i)

l ,
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σ : x(i)
l → x(i+1)

l , y(i)
l → y(i+1)

l , · · · , z(i)
l → z(i+1)

l ,

where 1≤ l ≤ n, 1 ≤ i ≤ m, i +1(modm), l +1(modn). Then it is easily to check thatθ, τ

andσ are automorphisms of the grapĥQm,n,k and the subgroup〈θ, τ, σ〉 acts transitively

on V(Q̂m,n,k).

Now we define a labelingl Q̂ on vertices of̂Qm,n,k by

l Q̂(x(i)
0 ) = l Q̂(y(i)

0 ) = · · · = l Q̂(z(i)
0 ) = 1Γ,

l Q̂(x(i)
l ) = l Q̂(y(i)

l ) = · · · = l Q̂(z(i)
l ) = xl , 1 ≤ i ≤ m, 1 ≤ l ≤ n.

Then we know thatlG(E(G)) = {1Γ, x1, x2, · · · , xn} and

lG(E(G)) = {1Γ, x2
1, x1 ◦ x2, x

2
2, x2 ◦ x3, · · · , xn−1 ◦ xn, x

2
n}. �

Particularly, letΓ be a subgroup of (Z111111111,×) generated by

{1, 11, 111, 1111, 11111, 111111, 1111111,11111111,111111111}

andm = 1. We get the symmetric sequence on a symmetric graph shown inFig.2.5.2

again. Letm = 5, n = 3 andk = 2, i.e., the grapĥQ5,3,2 with a labelinglG : V(Q̂5,3,2) →
{1Γ, x1, x2, x3, x4} is shown in Fig.2.5.3 following.

1Γ

1Γ

1Γ

1Γ

1Γ

1Γ

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

x3

x4

x4

x4

x4

x4

x4

Fig.4.1

Denote byNG[x] all vertices in a graphG labeled by an elementx ∈ Γ. Then we

immediately get results following by the proof of Theorem 2.5.3.

Corollary 2.5.2 For integers m, n ≥ 1, Q̂m,n,k ≃ Cm ×Cn ×Ck.

Corollary 2.5.3 |NQ̂m,n,k
[x]| = mk for∀x ∈ {1Γ, x1, · · · , xn} and integers m, n, k ≥ 1.
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§2.6 RESEARCH PROBLEMS

2.6.1 For catering to the need of computer science, graphs were outof games and turned

into a theory for dealing with objects with relations in lastcentury. There are many

excellent monographs for its theoretical results with applications, such as these references

[BoM1], [ChL1], [GoR1] and [Whi1] for graphs with structures and [GrT1], [MoT1] and

[Liu1]-[Liu3] for graphs on surfaces.

2.6.2 A graph property P isSmarandachelyif it behaves in at least two different ways on

a graph, i.e., validated and invalided, or only invalided but in multiple distinct ways. Such

a graph with at least one Smarandachely graph property is called aSmarandachely graph.

Whence, one can generalizes conceptions in graphs by this Smarandache notion. We list

such conceptions with open problems following.

Smarandachelyk-Constrained Labeling. A Smarandachely k-constrained label-

ing of a graphG(V,E) is a bijective mappingf : V ∪ E → {1, 2, .., |V| + |E|} with the

additional conditions that| f (u) − f (v)| ≥ k wheneveruv ∈ E, | f (u) − f (uv)| ≥ k and

| f (uv)− f (vw)| ≥ k wheneveru , w, for an integerk ≥ 2. A graphG which admits a such

labeling is called a Smarandachelyk-constrained total graph, abbreviated ask−CTG. An

example fork = 5 onP7 is shown in Fig.2.6.1.

11 1 7 13 3 9 15 5
6 12 2 8 14 4 10

Fig.2.6.1

The minimum positive integern such that the graphG ∪ Kn is ak − CTG is called

k-constrained numberof the graphG and denoted bytk(G).

Problem 2.6.1 Determine tk(G) for a graph G.

Smarandachely Superm-Mean Labeling. Let G be a graph andf : V(G) →
{1, 2, 3, · · · , |V| + |E(G)|} be an injection. For each edgee = uv and an integerm ≥ 2, the

inducedSmarandachely edge m-labeling f∗
S is defined by

f ∗S(e) =

⌈
f (u) + f (v)

m

⌉
.

Then f is called aSmarandachely super m-mean labelingif f (V(G)) ∪ { f ∗(e) : e ∈
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E(G)} = {1, 2, 3, · · · , |V| + |E(G)|}. A graph that admits a Smarandachely super meanm-

labeling is called Smarandachely superm-mean graph. Particularly, ifm = 2, we know

that

f ∗(e) =



f (u) + f (v)
2

if f (u) + f (v) is even;
f (u) + f (v) + 1

2
if f (u) + f (v) is odd.

A Smarandache super 2-mean labeling onP2
6 is shown in Fig.2.6.2.

1 2 3 5 7 8 9 11 13 14 15

4 6 10 12

Fig.2.6.2

Problem 2.6.2 Determine which graph G possesses a Smarandachely super m-mean

labeling.

SmarandachelyΛ-Coloring. LetΛ be a subgraph of a graphG. A Smarandachely

Λ-coloring of a graphG by colors inC is a mappingϕΛ : C → V(G) ∪ E(G) such that

ϕ(u) , ϕ(v) if u andv are elements of a subgraph isomorphic toΛ in G. Similarly, a

SmarandachelyΛ-coloringϕΛ|V(G) : C → V(G) or ϕΛ|E(G) : C → E(G) is called avertex

SmarandachelyΛ-coloringor anedge SmarandachelyΛ-coloring.

Problem 2.6.3 For a graph G andΛ ≺ G, determine the numbersχΛ(G) andχΛ1 (G).

Smarandachely (P1,P2)-Decomposition. Let P1 and P2 be graphical prop-

erties. ASmarandachely(P1,P2)-decompositionof a graphG is a decomposition ofG

into subgraphsG1,G2, · · · ,Gl ∈P such thatGi ∈P1 orGi <P2 for integers 1≤ i ≤ l. If

P1 or P2 = {all graphs}, a Smarandachely (P1,P2)-decomposition of a graphG is said

to be aSmarandachelyP-decomposition. The minimum cardinality of Smarandachely

(P1,P2)-decomposition are denoted byΠP1,P2(G).

Problem 2.6.4 For a graph G and propertiesP, P ′, determineΠP(G) andΠP,P′(G).
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2.6.3 Smarandache also found the following two symmetries on digits:

1× 8+ 1 = 9 1× 9+ 2 = 11

12× 8+ 2 = 98 12× 9+ 3 = 111

123× 8+ 3 = 987 123× 9+ 4 = 1111

1234× 8+ 4 = 9876 1234× 9+ 5 = 11111

12345× 8+ 5 = 98765 12345× 9+ 6 = 111111

123456× 8+ 6 = 987654 123456× 9+ 7 = 1111111

1234567× 8+ 7 = 9876543 1234567× 9+ 8 = 11111111

12345678× 8+ 8 = 98765432 12345678× 9+ 9 = 111111111

123456789× 8+ 9 = 987654321 123456789× 9+ 10= 1111111111

Thus we can also label verticeslV(G) : V(G) → C of a graph by consecutive sequenceC

with an induced edge labelinglE(G)(uv) = clV(G)(u) + lG(V) for ∀uv ∈ E(G), wherec is a

chosen digit. For example, letlV(G) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 123, 1234, 12345,123456,

1234567, 12345678, 123456789}, c = 8 or lV(G) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 123, 1234,

12345, 123456, 1234567, 12345678, 123456789}, c = 9, we can extend these previous

digital symmetries on symmetric graphs with digits. Generally, there is an open problem

following.

Problem 2.6.5 Let (A ;+, ·) be an algebraic system with operations+, ·. Find graphs G

with vertex labeling lV(G) : V(G) → A and edge labeling lE(G)(uv) = c1 · lV(G)(u) + c2 ·
lV(G)(v) (or lE(G)(uv) = (c1+ lV(G)(u)) · (c2+ lV(G)(v))) for c1, c2 ∈ A , ∀uv ∈ E(G) such that

they are both symmetric in graph and element.

Particularly, let T be a set of symmetric elements inA . For example,T = { a ·
b, b · a | a, b ∈ A }. Find symmetric graphs with vertex labeling lV(G) : V(G) → T

and edge labeling lE(G)(uv) = lV(G)(u) + lV(G)(v) (or lE(G)(uv) = lV(G)(u) · lV(G)(v)) such that

lV(G)(u) + lV(G)(v) (or lE(G)(uv) = lV(G)(u) · lV(G)(v)) is itself a symmetric element inA for

∀uv ∈ E(G), for example, the labeled graph shown in Fig.2.5.2.



CHAPTER 3.

Algebraic Multi-Spaces

Accompanied with humanity into the 21st century, a highlight trend for de-

veloping a science is its overlap and hybrid, and harmoniously with other sci-

ences. Algebraic systems, such as those of operation systems, groups, rings,

fields, vector spaces and modules characterize algebraic structures on sets,

which are discrete representations for phenomena in the natural world. The

notion of multi-space enables one to construct algebraic multi-structures and

discusses multi-systems, multi-groups, multi-rings, multi-fields, vector multi-

spaces and multi-modules in this chapter, maybe completed or not in cases.

These algebraic multi-spaces also show us that a theorem in mathematics is

truth under conditions, i.e., a lateral feature on mathematical systems. Cer-

tainly, more consideration should be done on these algebraic multi-spaces,

especially, by an analogous thinking as those in classical algebra. For this

objective, a few open problems on algebraic multi-spaces cabe found in final

section of this chapter.
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§3.1 ALGEBRAIC MULTI-STRUCTURES

3.1.1 Algebraic Multi-Structure. Algebraic systems, such as those of group, ring,

field, linear algebra, etc. enable one to construct algebraic multi-structures and raise the

following definition by Smarandache’s notion.

Definition 3.1.1 An algebraic multi-system is a pair
(
Ã; Õ

)
with a setÃ =

n⋃
i=1

Ai and an

operation set

Õ = {◦i | 1 ≤ i ≤ n}

on Ã such that each pair(Ai; ◦i) is an algebraic system.

A multi-system
(
Ã; Õ

)
is associativeif for ∀a, b, c ∈ Ã, ∀◦1, ◦2 ∈ Õ, there is

(a ◦1 b) ◦2 c = a ◦1 (b ◦2 c).

Such a system is called anassociative multi-system.

Let
(
Ã; Õ

)
be a multi-system and̃B ⊂ Ã, Q̃ ⊂ Õ. If

(
B̃; Q̃

)
is itself a multi-system,

we call
(
B̃; Q̃

)
amulti-subsystem of

(
Ã; Õ

)
, denoted by

(
B̃; Q̃

)
≺

(
Ã; Õ

)
.

Assume
(
B̃; Õ

)
≺

(
Ã; Õ

)
. For∀a ∈ Ã and◦i ∈ Õ, where 1≤ i ≤ l, define a coset

a ◦i B̃ by

a ◦i B̃ = { a ◦i b | for ∀b ∈ B̃},

and let

Ã =
⋃

a∈R,◦∈P̃⊂Õ

a ◦ B̃.

Then the set

Q =
{

a ◦ B̃ | a ∈ R, ◦ ∈ P̃ ⊂ Õ
}

is called aquotient set of̃B in Ã with a representation pair(R, P̃), denoted bỹA/B̃
∣∣∣(R,P̃) .

Two multi-systems
(
Ã1; Õ1

)
and

(
Ã2; Õ2

)
are calledhomomorphicif there is a map-

pingω : Ã1 → Ã2 with ω : Õ1→ Õ2 such that fora1, b1 ∈ Ã1 and◦1 ∈ Õ1, there exists an

operation◦2 = ω(◦1) ∈ Õ2 enables that

ω(a1 ◦1 b1) = ω(a1) ◦2 ω(b1).

Similarly, if ω is a bijection,
(
Ã1; Õ1

)
and

(
Ã2; Õ2

)
are calledisomorphic, and ifÃ1 = Ã2 =

Ã, ω is called anautomorphism oñA.
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For a binary operation�◦�, if there exists an element 1l
◦ (or 1r

◦) such that

1l
◦ ◦ a = a or a ◦ 1r

◦ = a

for ∀a ∈ Ai , 1 ≤ i ≤ n, then 1l◦ (1r
◦) is called aleft (right) unit. If 1l

◦ and 1r◦ exist

simultaneously, then there must be

1l
◦ = 1l

◦ ◦ 1r
◦ = 1r

◦ = 1◦.

Call 1◦ aunit of Ai.

Remark 3.1.1 In Definition 3.1.1, the following three cases are permitted:

(1) A1 = A2 = · · · = An, i.e.,n operations on one set.

(2) ◦1 = ◦2 = · · · = ◦n, i.e.,n set with one law.

3.1.2 Example. Some examples for multi-system are present in the following.

Example3.1.1 Taken disjoint two by two cyclic groupsC1,C2, · · · ,Cn, n ≥ 2 with

C1 = (〈a〉 ;+1),C2 = (〈b〉 ;+2), · · · ,Cn = (〈c〉 ;+n),

where�+1,+2, · · · ,+n�aren binary operations. Then their unioñC =
n⋃

i=1
Ci is a multi-

space. In this multi-space, for∀x, y ∈ C̃, if x, y ∈ Ck for some integerk, then we know

x+k y ∈ Ck. But if x ∈ Cs, y ∈ Ct ands, t, then we do not know which binary operation

between them and what is the resulting element corresponding to them.

Example 3.1.2 Let (G; ◦) be a group with a binary operation�◦�. Choosen different

elementsh1, h2, · · · , hn, n ≥ 2 and make the extension of the group (G; ◦) by h1, h2, · · · , hn

respectively as follows:

(G
⋃{h1};×1), where the binary operation×1 = ◦ for elements inG, otherwise, new

operation;

(G
⋃{h2};×2), where the binary operation×2 = ◦ for elements inG, otherwise, new

operation;

· · · · · · · · · · · · · · · · · · ;

(G
⋃{hn};×n), where the binary operation×n = ◦ for elements inG, otherwise, new

operation.
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Define

G̃ =
n⋃

i=1

(
G

⋃
{hi};×i

)
.

ThenG̃ is a multi-space with binary operations�×1,×2, · · · ,×n�. In this multi-space, for

∀x, y ∈ G̃, we know the binary operation betweenx, y and the resulting element unless

the exception casesx = hi , y = h j with i , j.

For n = 3, such a multi-space is shown in Fig.3.1.1, in where the central circle

represents the groupG and each angle field the extension ofG. Whence, this kind of

multi-space is called afan multi-space.

G

h1

h2h3

Fig.3.1.1

Similarly, we can also use a ringR to get fan multi-spaces. For example, let (R;+, ◦)
be a ring and letr1, r2, · · · , rs be two by two different elements. Make these extensions of

(R;+, ◦) by r1, r2, · · · , rs respectively as follows:

(R
⋃{r1};+1,×1), where binary operations+1 = +, ×1 = ◦ for elements inR, other-

wise, new operation;

(R
⋃{r2};+2,×2), where binary operations+2 = +, ×2 = ◦ for elements inR,

otherwise, new operation;

· · · · · · · · · · · · · · · · · · ;

(R
⋃{rs};+s,×s), where binary operations+s = +, ×s = ◦ for elements inR, other-

wise, new operation.

Define

R̃=
s⋃

j=1

(
R

⋃
{r j};+ j,× j

)
.
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ThenR̃ is a fan multi-space with ring-like structure. Also we can define a fan multi-space

with field-like, vector-like, semigroup-like,· · ·, etc. multi-structures.

These multi-spaces constructed in Examples 3.1.1 and 3.1.2 are notcompleted, i.e.,

there exist some elements in this space have not binary operation between them. In alge-

bra, we wish to construct acompleted multi-space, i.e., there is a binary operation between

any two elements at least and their resulting is still in thisspace. The following examples

constructed by applyingLatin squaresare such multi-spaces.

Example 3.1.3 Let S be a finite set with|S| = n ≥ 2. Construct ann × n Latin square

by elements inS, i.e., every element just appears one time on its each row andcolumn.

Choosek Latin squaresM1,M2, · · · ,Mk, k ≤
n∏

s=1
s!.

By a result in reference [Rys1], there are at least
n∏

s=1
s! distinct n × n Latin squares.

Whence, we can always chooseM1,M2, · · · ,Mk distinct two by two. For a Latin square

Mi , 1 ≤ i ≤ k, define an operation�×i�by

×i : (s, f ) ∈ S × S→ (Mi)s f.

For example, ifn = 3, thenS = {1, 2, 3} and there are 2 Latin squaresL1, L2 with

L1 =



1 2 3

2 3 1

3 1 2


, L2 =



1 2 3

3 1 2

2 3 1


.

Therefore, we get operations�×1�and�×2�in Table 3.1.1 by Latin squaresL1, L2

following.

×1 1 2 3

1 1 2 3

2 2 3 1

3 3 1 2

×2 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

Table 1.3.1

Generally, for∀x, y, z ∈ S and two operations�×i�and�× j�, 1≤ i, j ≤ k define

x×i y× j z= (x×i y) × j z.
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For example, ifn = 3, then

1×1 2×2 3 = (1×2) ×2 3 = 2×2 3 = 2

and

2×1 3×2 2 = (2×1 3)×2 2 = 1×2 3 = 3.

ThusS is a completed multi-space withk operations.

Notice that AutZn ≃ Z∗n, whereZ∗n is the group of reduced residue class modn under

the multiply operation. It is known that|AutZn| = ϕ(n), whereϕ(n) is the Euler function.

Thus the automorphism group of the multi-spaceC̃ in Example 3.1.1 is

AutC̃ = Sn[Z
∗
n].

Whence,|AutC̃| = ϕ(n)nn!. For determining the automorphism groups of multi-spacesin

Example 3.1.3 is an interesting problem for combinatorial design. The following example

also constructs completed multi-spaces by algebraic systems.

Example 3.1.4 For constructing a completed multi-space, let (S ; ◦) be an algebraic

system, i.e.,a ◦ b ∈ S for ∀a, b ∈ S. Whence, we can takeC,C ⊆ S being a cyclic group.

Now consider a partition ofS

S =
m⋃

k=1

Gk

with m≥ 2 such thatGi
⋂

G j = C for ∀i, j, 1 ≤ i, j ≤ m.

For an integerk, 1 ≤ k ≤ m, assumeGk = {gk1, gk2, · · · , gkl}. Define an operation�×k�onGk as follows, which enables (Gk;×k) to be a cyclic group.

gk1 ×k gk1 = gk2,

gk2 ×k gk1 = gk3,

· · · · · · · · · · · · · · · · · · ,

gk(l−1) ×k gk1 = gkl,

and

gkl) ×k gk1 = gk1.

ThenS =
m⋃

k=1
Gk is a completed multi-space withm+ 1 operations. The approach enables

one to construct complete multi-spacesÃ =
n⋃

i=1
with k operations fork ≥ n+ 1.
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3.1.3 Elementary Property. First, we introduce the following definition.

Definition 3.1.2 A mapping f on a set X is called faithful if f(x) = x for ∀x ∈ X, then

f = 1X, the unit mapping on X fixing each element in X.

Notice that if f is faithful and f1(x) = f (x) for ∀x ∈ X, then f −1
1 f = 1X, i.e., f1 = f .

For each operation�×�and a chosen elementg in a subspaceAi ,Ai ⊂ Ã =
n⋃

i=1
Ai,

there is aleft-mapping flg : Ai → Ai defined by

f l
g : a→ g× a, a ∈ Ai .

Similarly, we can define theright-mapping frg .

Convention 3.1.1 Each operation�×�in a subset Ai ,Ai ⊂ Ã with Ã =
n⋃

i=1
Ai is faithful,

i.e., for∀g ∈ Ai, ς : g→ f l
g ( or τ : g→ f r

g ) is faithful.

Define the kernelKerς of a mappingς by

Kerς = {g|g ∈ Ai andς(g) = 1Ai }.

Then Convention 3.1.1 is equivalent to the following.

Convention3.1.2 For eachς : g→ f l
g ( or ς : g→ f r

g ) induced by an operation�×�has

kernel

Kerς = {1l
×}

if 1l
× exists. Otherwise,Kerς = ∅.

We get results following on multi-spaces̃A.

Theorem 3.1.1 For a multi-space
(
Ã; Õ

)
with Ã =

n⋃
i=1

Ai and an operation�×�, the left

unit 1l
× and right unit1r

× are unique if they exist.

Proof If there are two left units 1l×, I
l
× in a subsetAi of a multi-spacẽA, then for

∀x ∈ Ai, their induced left-mappingsf l
1l
×

and f l
I l
×

satisfy

f l
1l
×
(x) = 1l

× × x = x, f l
I l
×
(x) = I l

× × x = x.

Therefore, we get thatf l
1l
×
= f l

I l
×
. Since the mappingsς1 : 1l

× → f l
1l
×

andς2 : I l
× → f l

I l
×

are

faithful, we know that 1l× = I l
× . Similarly, we can also prove that the right unit 1r

× is also

unique. �
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For two elementsa, b in multi-spacẽA, if a× b = 1l
×, thenb is called aleft-inverse

of a. If a× b = 1r
×, thena is called aright-inverseof b. Certainly, ifa× b = 1×, thena is

called aninverseof b andb an inverseof a.

Theorem 3.1.2 For a multi-space
(
Ã; Õ

)
with Ã =

n⋃
i=1

Ai, a ∈ H , the left-inverse and

right-inverse of a are unique if they exist.

Proof Notice thatκa : x→ ax is faithful, i.e., Kerκ = {1l
×} for 1l

× existing now.

If there exist two left-inversesb1, b2 in H such thata × b1 = 1l
× anda × b2 = 1l

×,

then we know thatb1 = b2 = 1l
×. Similarly, we can also prove that the right-inverse ofa

is also unique. �

Corollary 3.1.1 If�×�is an operation of a multi-spaceH with unit1×, then the equation

a× x = b has at most one solution for the indeterminate x.

Proof According to Theorem 3.1.2, there is at most one left-inversea1 of a such that

a1 × a = 1×. Whence, we know thatx = a1 × a× x = a1 × b. �

We also get a consequence for solutions of an equation in a multi-space by this result.

Corollary 3.1.2 Let
(
Ã; Õ

)
be a multi-space. Then the equationa◦ x = b has at most|Õ|

solutions, where◦ ∈ Õ.

§3.2 MULTI-GROUPS

3.2.1 Multi-Group. Let G̃ be a set with binary operations̃O. By definition
(
G̃; Õ

)
is an

algebraic multi-systemif for ∀a, b ∈ G̃ and◦ ∈ Õ, a ◦ b ∈ G̃ provideda ◦ b existing.

Definition 3.2.1 For an integer n≥ 1, an algebraic multi-system
(
G̃; Õ

)
is an n-multi-

group for an integer n≥ 1 if there are G1,G2, · · · ,Gn ⊂ G̃, Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃

i=1
Gi;

(2) (Gi; ◦i) is a group for1 ≤ i ≤ n.

For∀◦ ∈ Õ, denoted byG◦ the group (G; ◦) andGmax
◦ themaximal group(G; ◦), i.e.,

(
Gmax
◦ ; ◦) is a group but

(
Gmax
◦ ∪ {x}; ◦) is not for∀x ∈ G̃ \Gmax

◦ in
(
G̃; Õ

)
.

A distributed multi-group is such a multi-group with distributive laws hold for some
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operations, formally defined in the following.

Definition 3.2.2 Let G̃ =
n⋃

i=1
Gi be a complete multi-space with an operation set O

(
G̃
)
=

{×i , 1 ≤ i ≤ n}. If (Gi;×i) is a group for any integer i, 1 ≤ i ≤ n and for∀x, y, z ∈ G̃ and

∀×, ◦ ∈ O(G̃), × , ◦, there is one operation, for example the operation�×�satisfying the

distribution law to the operation�◦�provided all of these operating results exist , i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),

(y ◦ z) × x = (y× x) ◦ (z× x),

thenG̃ is called a distributed multi-group.

Remark 3.2.1 The following special cases forn = 2 convince us that distributed multi-

groups are a generalization of groups, skew fields, fields,· · ·, etc..

(1) If G1 = G2 = G̃ are groups, theñG is a skew field.

(2) If (G1;×1) and (G2;×2) are commutative groups, theñG is a field.

Definition 3.2.3 Let
(
G̃1; Õ1

)
and

(
G̃2; Õ2

)
be multi-groups. Then

(
G̃1; Õ1

)
is isomorphic

to
(
G̃2; Õ2

)
, denoted by(ϑ, ι) :

(
G̃1; Õ1

)
→

(
G̃2; Õ2

)
if there are bijectionsϑ : G̃1 → G̃2

andι : Õ1→ Õ2 such that for a, b ∈ G̃1 and◦ ∈ Õ1, ϑ(a◦b) = ϑ(a)ι(◦)ϑ(b) provided a◦b

existing in
(
G̃1; Õ1

)
. Such isomorphic multi-groups are denoted by

(
G̃1; Õ1

)
≃

(
G̃2; Õ2

)

Clearly, if
(
G̃1; Õ1

)
is ann-multi-group with (ϑ, ι) an isomorphism, the image of (ϑ, ι)

is also ann-multi-group. Now let (ϑ, ι) :
(
G̃1; Õ1

)
→

(
G̃2; Õ2

)
with G̃1 =

n⋃
i=1

G1i , G̃2 =

n⋃
i=1

G2i, Õ1 = {◦1i, 1 ≤ i ≤ n} andÕ2 = {◦2i, 1 ≤ i ≤ n}, then for◦ ∈ Õ, G max
◦ is isomorphic

to ϑ(G )max
ι(◦) by definition. The following result shows that its converse is also true.

Theorem 3.2.1 Let
(
G̃1; Õ1

)
and

(
G̃2; Õ2

)
be n-multi-groups with

G̃1 =

n⋃

i=1

G1i, G̃2 =

n⋃

i=1

G2i,

Õ1 = {◦i1, 1 ≤ i ≤ n}, Õ2 = {◦i2, 1 ≤ i ≤ n}. If φi : G1i → G2i is an isomorphism for each

integer i, 1 ≤ i ≤ n with φk|G1k∩G1l = φl |G1k∩G1l for integers1 ≤ k, l ≤ n, then
(
G̃1; Õ1

)
is

isomorphic to
(
G̃2; Õ2

)
.

Proof Define mappingsϑ : G̃1→ G̃2 andι : Õ1→ Õ1 by
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ϑ(a) = φi(a) if a ∈ Gi ⊂ G̃ andι(◦1i) = ◦2i for each integer 1≤ i ≤ n.

Notice thatφk|G1k∩G1l = φl |G1k∩G1l for integers 1≤ k, l ≤ n. We know thatϑ, ι both are

bijections. Leta, b ∈ G1s for an integers, 1 ≤ s≤ n. Then

ϑ(a ◦1s b) = φs(a ◦1s b) = φs(a) ◦2s φs(b) = ϑ(a)ι(◦1s)ϑ(b).

Whence, (ϑ, ι) :
(
G̃1; Õ1

)
→

(
G̃1; Õ1

)
. �

3.2.2 Multi-Subgroup. Let
(
G̃ ; Õ

)
be a multi-group,H̃ ⊂ G̃ andO ⊂ Õ. If

(
H̃ ; O

)
is

multi-group itself, then(H ; O) is called a multi-subgroup, denoted by
(
H̃ ; O

)
≤

(
G̃ ; Õ

)
.

Then the following criterion is clear for multi-subgroups.

Theorem 3.2.2 An multi-subsystem
(
H̃ ; O

)
of a multi-group

(
G̃ ; Õ

)
is a multi-subgroup

if and only ifH̃ ∩ G◦ ≤ G max
◦ for ∀◦ ∈ O.

Proof By definition, if (H̃ ; O) is a multi-group, then for∀◦ ∈ O, H̃ ∩G◦ is a group.

Whence,H̃ ∩ G◦ ≤ G max
◦ .

Conversely, ifH̃ ∩ G◦ ≤ G max
◦ for ∀◦ ∈ O, thenH̃ ∩ G◦ is a group. Therefore,(

H̃ ; O
)

is a multi-group by definition. �

Applying Theorem 3.2.2, we get conclusions following.

Corollary 3.2.1 An multi-subsystem
(
H̃ ; O

)
of a multi-group

(
G̃ ; Õ

)
is a multi-subgroup

if and only if a◦ b−1 ∈ H̃ ∩ G max
◦ for ∀◦ ∈ O and a, b ∈ H̃ provided a◦ b existing in(

H̃ ; O
)
.

Particularly, ifO = {◦}, we get a conclusion following.

Corollary 3.2.2 Let ◦ ∈ Õ. Then(H ; ◦) is multi-subgroup of a multi-group
(
G̃ ; Õ

)
for

H ⊂ G̃ if and only if(H ; ◦) is a group, i.e., a◦ b−1 ∈H for a, b ∈H .

Corollary 3.2.3 For a distributed multi-group̃G =
n⋃

i=1
Gi with an operation set O

(
G̃
)
=

{×i |1 ≤ i ≤ n}, a subset̃G1 ⊂ G̃ is a distributed multi-subgroup of̃G if and only if(
G̃1

⋂
Gk;×k

)
is a subgroup of(Gk;×k) or G̃1

⋂
Gk = ∅ for any integer k, 1 ≤ k ≤ n.

Proof Clearly, G̃1 is a multi-subgroup of̃G by Theorem 3.2.2. Furthermore, the

distribute laws are true for̃G1 becausẽG1 ⊂ G̃ andO
(
G̃1

)
⊂ O

(
G̃
)
. �

For finite multi-subgroups, we get a criterion following.

Theorem3.2.3 LetG̃ be a finite multi-group with an operation set O
(
G̃
)
= {×i |1 ≤ i ≤ n}.
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A subset̃G1 of G̃ is a multi-subgroup under an operation subset O
(
G̃1

)
⊂ O

(
G̃
)

if and

only if (G̃1;×) is closed for each operation�×�in O
(
G̃1

)
.

Proof Notice that for a multi-group̃G, its each multi-subgroup̃G1 is complete. Now

if G̃1 is a complete set under each operation�×i�in O
(
G̃1

)
, we know that

(
G̃1

⋂
Gi;×i

)

is a group or an empty set. Whence, we get that

G̃1 =

n⋃

i=1

(
G̃1

⋂
Gi

)
.

Therefore,̃G1 is a multi-subgroup of̃G under the operation setO(G̃1). �

For a multi-subgroup̃H of multi-groupG̃, g ∈ G̃, define

gH̃ = {g× h|h ∈ H̃,× ∈ O(H̃)}.

Then for∀x, y ∈ G̃,

xH̃
⋂

yH̃ = ∅ or xH̃ = yH̃.

In fact, if xH̃
⋂

yH̃ , ∅, let z ∈ xH̃
⋂

yH̃, then there exist elementsh1, h2 ∈ H̃ and

operations�×i�and�× j�such that

z= x×i h1 = y× j h2.

SinceH̃ is a multi-subgroup, (̃H
⋂

Gi;×i) is a subgroup. Whence, there exists an inverse

elementh−1
1 in (H̃

⋂
Gi;×i). We get that

x×i h1 ×i h−1
1 = y× j h2 ×i h−1

1 .

i.e.,

x = y× j h2 ×i h−1
1 .

Whence,

xH̃ ⊆ yH̃.

Similarly, we can also get that

xH̃ ⊇ yH̃.

Therefore,

xH̃ = yH̃.



80 Chap.3 Algebraic Multi-Spaces

Denote the union of two setA andB by A
⊕

B if A
⋂

B = ∅. The following result is

implied in the previous discussion.

Theorem 3.2.4 For any multi-subgroup̃H of a multi-groupG̃, there is a representation

set T, T⊂ G̃, such that

G̃ =
⊕

x∈T
xH̃.

For the case of finite group, since there is only one binary operation�×�and|xH̃| =
|yH̃| for anyx, y ∈ G̃, We get a consequence following, which is just the Lagrange theorem

for finite groups.

Corollary 3.2.4(Lagrange theorem)For any finite group G, if H is a subgroup of G, then

|H| is a divisor of|G|.

A multi-group (G̃ ; Õ) is said to be asymmetric n-multi-groupif there are

S1,S2, · · · ,Sn ⊂ G̃ ,

Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃

i=1
Si;

(2) (Si ; ◦i) is a symmetric groupSΩi for 1 ≤ i ≤ n. We call then-tuple (|Ω1|, |Ω2|,
· · · , |Ωn||) thedegree of the symmetric n-multi-group(G̃ ; Õ).

Now let multi-group (G̃ ; Õ) be an-multi-group withG1,G2, · · · ,Gn ⊂ G̃ , Õ = {◦i, 1 ≤
i ≤ n}. For any integeri, 1 ≤ i ≤ n, let G◦i = {ai1 = 1G◦i

, ai2, · · · , ain◦i
}. For ∀aik ∈ G◦i ,

define

σaik =


ai1 ai2 · · · ain

ai1 ◦ aik ai2 ◦ aik · · · ain◦i
◦ aik

 =


a

a ◦ aik

 ,

τaik =


ai1 ai2 · · · ain◦i

a−1
ik ◦ ai1 a−1

ik ◦ ai2 · · · a−1
ik ◦ ain◦i

 =


a

a−1
ik ◦ a



Denote byRGi = {σai1, σai2, · · · , σain◦i
} and LGi = {τai1, τai2, · · · , τain◦i

} and×r
i or ×l

i the

induced multiplication inRGi or LGi . Then we get two sets of permutations

R
G̃
=

n⋃

i=1

{σai1, σai2, · · · , σain◦i
} and LG =

n⋃

i=1

{τai1, τai2, · · · , τain◦i
}.
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We sayR
G̃

, L
G̃

the right or left regular representationof G̃ , respectively. Similar to the

Cayleytheorem, we get the following representation result for multi-groups.

Theorem3.2.5 Every multi-group is isomorphic to a multi-subgroup of symmetric multi-

group.

Proof Let multi=group
(
G̃ ; Õ

)
be an-multi=group withG1,G2, · · · ,Gn ⊂ G̃ , Õ =

{◦i, 1 ≤ i ≤ n}. For any integeri, 1 ≤ i ≤ n. ThenRGi andLGi both are subgroups of the

symmetric groupSGi for any integer 1≤ i ≤ n. Whence, (R
G̃

; Or) and (L
G̃

; Ol) both are

multi-subgroup of symmetric multi-group by definition, where Or = {×r
i |1 ≤ i ≤ n} and

Ol = {×l
i |1 ≤ i ≤ n}.

We only need to prove that
(
G̃ ; Õ

)
is isomorphic to (R

G̃
; Or). For this objective,

define a mapping (f , ι) : (G̃ ; Õ)→ (R
G̃

; Or) by

f (aik) = σaik and ι(◦i) = ×r
i

for integers 1≤ i ≤ n. Such a mapping is one-to-one by definition. It is easily to see that

f (ai j ◦i aik) = σai j◦iaik = σai j ×r
i σaik = f (ai j )ι(◦i) f (aik)

for integers 1≤ i, k, l ≤ n. Whence, (f , ι) is an isomorphism from (̃G ; Õ) to (R
G̃

; Or).

Similarly, we can also prove that
(
G̃ ; Õ

)
≃ (L

G̃
; Ol). �

3.2.3 Normal Multi-Subgroup. A multi-subgroup
(
H̃ ; O

)
of

(
G̃ ; Õ

)
is normal, denoted

by
(
H̃ ; O

)
⊳

(
G̃ ; Õ

)
if for ∀g ∈ G̃ and∀◦ ∈ O, g◦ H̃ = H̃ ◦g, whereg◦ H̃ = {g◦h|h ∈

H̃ providedg◦ h existing} andH̃ ◦ g is similarly defined. We get a criterion for normal

multi-subgroups of a multi-group following.

Theorem 3.2.6 Let
(
H̃ ; O

)
≤

(
G̃ ; Õ

)
. Then

(
H̃ ; O

)
⊳

(
G̃ ; Õ

)
if and only if

H̃ ∩ G
max
◦ ⊳ G

max
◦

for ∀◦ ∈ O.

Proof If H̃ ∩ G max
◦ ⊳ G max

◦ for ∀◦ ∈ O, theng ◦ H̃ = H̃ ◦ g for ∀g ∈ G max
◦ by

definition, i.e., all suchg ∈ G̃ andh ∈ H̃ with g◦handh◦gdefined. So
(
H̃ ; O

)
⊳

(
G̃ ; Õ

)
.

Now if
(
H̃ ; O

)
⊳

(
G̃ ; Õ

)
, it is clear thatH̃ ∩ G max

◦ ⊳ G max
◦ for ∀◦ ∈ O. �

Corollary 3.2.5 Let G̃ =
n⋃

i=1
Gi be a multi-group with an operation set O

(
G̃
)
= {×i |1 ≤

i ≤ n}. Then a multi-subgroup̃H of G̃ is normal if and only if
(
H̃

⋂
Gi;×i

)
is a normal

subgroup of(Gi;×i) or H̃
⋂

Gi = ∅ for any integer i, 1 ≤ i ≤ n.
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For a normal multi-subgroup
(
H̃ ; O

)
of

(
G̃ ; Õ

)
, we know that

(
a ◦ H̃

)⋂(
b · H̃

)
= ∅ or a ◦ H̃ = b · H̃ .

In fact, if c ∈
(
a ◦ H̃

)⋂ (
b · H̃

)
, then there existsh1, h2 ∈ H̃ such that

a ◦ h1 = c = b · h2.

Soa−1 andb−1 exist inG max
◦ andG max

· , respectively. Thus,

b−1 · a ◦ h1 = b−1 · b · h2 = h2.

Whence,

b−1 · a = h2 ◦ h−1
1 ∈ H̃ .

We find that

a ◦ H̃ = b · (h2 ◦ h1) ◦ H̃ = b · H̃ .

This fact enables one to find a partition of̃G following

G̃ =
⋃

g∈G̃ ,◦∈Õ

g ◦ H̃ .

Choose an elementh from eachg ◦ H̃ and denoted byH all such elements, called

therepresentationof a partition ofG̃ , i.e.,

G̃ =
⋃

h∈H,◦∈Õ

h ◦ H̃ .

Define thequotient setof G̃ by H̃ to be

G̃ /H̃ = {h ◦ H̃ |h ∈ H, ◦ ∈ O}.

Notice thatH̃ is normal. We find that

(
a ◦ H̃

)
·
(
b • H̃

)
= H̃ ◦ a · b • H̃ = (a · b) ◦ H̃ • H̃ = (a · b) ◦ H̃

in G̃ /H̃ for ◦, •, · ∈ Õ, i.e., (G̃ /H̃ ; O) is an algebraic system. It is easily to check that(
G̃ /H̃ ; O

)
is a multi-group by definition, called thequotient multi-groupof G̃ by H̃ .

Now let
(
G̃1; Õ1

)
and

(
G̃2; Õ2

)
be multi-groups. A mapping pair (φ, ι) with φ : G̃1 →

G̃2 and ι : Õ1 → Õ2 is a homomorphismif φ(a ◦ b) = φ(a)ι(◦)φ(b) for ∀a, b ∈ G and



Sec.3.1 Multi-Groups 83

◦ ∈ Õ1 provideda ◦ b existing in
(
G̃1; Õ1

)
. Define theimageIm(φ, ι) andkernelKer(φ, ι)

respectively by

Im(φ, ι) =
{
φ(g) | g ∈ G̃1

}
,

Ker(φ, ι) =
{

g | φ(g) = 1G◦ , g ∈ G̃1 , ◦ ∈ Õ2

}
.

Then we get the following isomorphism theorem for multi-groups.

Theorem 3.2.7 Let (φ, ι) :
(
G̃1; Õ1

)
→

(
G̃2; Õ2

)
be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Proof Notice that Ker(φ, ι) is a normal multi-subgroup of
(
G̃1; Õ1

)
. We prove that the

induced mapping (σ,ω) determined by (σ,ω) : x ◦ Ker(φ, ι) → φ(x) is an isomorphism

from G̃1/Ker(φ, ι) to Im(φ, ι).

Now if (σ,ω)(x1) = (σ,ω)(x2), then we get that (σ,ω)(x1◦x−1
2 ) = 1G◦ providedx1◦x−1

2

existing in (G̃1; Õ1), i.e., x1 ◦ x−1 ∈ Ker(φ, ι). Thusx1 ◦ Ker(φ, ι) = x2 ◦ Ker(φ, ι), i.e., the

mapping (σ,ω) is one-to-one. Whence it is a bijection from̃G1/Ker(φ, ι) to Im(φ, ι).

For∀a ◦ Ker(φ, ι), b ◦ Ker(φ, ι) ∈ G̃1/Ker(φ, ι) and· ∈ Õ1, we get that

(σ,ω)[a ◦ Ker(φ, ι) · b • Ker(φ, ι)]

= (σ,ω)[(a · b) ◦ Ker(φ, ι)] = φ(a · b) = φ(a)ι(·)φ(b)

= (σ,ω)[a ◦ Ker(φ, ι)]ι(·)(σ,ω)[b • Ker(φ, ι)].

Whence, (σ,ω) is an isomorphism from̃G1/Ker(φ, ι) to Im(φ, ι). �

Particularly, let
(
G̃2; Õ2

)
be a group in Theorem 3.2.7, we get a generalization of the

fundamental homomorphism theorem following.

Corollary 3.2.6 Let
(
G̃ ; Õ

)
be a multi-group and(ω, ι) :

(
G̃ ; Õ

)
→ (A ; ◦) an epimor-

phism from
(
G̃ ; Õ

)
to a group(A ; ◦). Then

G̃ /Ker(ω, ι) ≃ (A ; ◦).

3.2.4 Multi-Subgroup Series. For a multi-groupG̃ with an operation setO
(
G̃
)
=

{×i | 1 ≤ i ≤ n}, an order of operations inO
(
G̃
)

is said to be anoriented operation

sequence, denoted by
−→
O

(
G̃
)
. For example, ifO

(
G̃
)
= {×1,×2×3}, then×1 ≻ ×2 ≻ ×3 is

an oriented operation sequence and×2 ≻ ×1 ≻ ×3 is also an oriented operation sequence.
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For a given oriented operation sequence
−→
O

(
G̃
)
, we construct a series of normal multi-

subgroups

G̃ ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃m = {1×n}

by the following programming.

STEP 1: Construct a series̃G ⊲ G̃11 ⊲ G̃12 ⊲ · · · ⊲ G̃1l1 under the operation�×1�.

STEP2: If a seriesG̃(k−1)l1⊲G̃k1⊲G̃k2⊲· · ·⊲G̃klk has be constructed under the operation�×k�andG̃klk , {1×n}, then construct a series̃Gkl1 ⊲ G̃(k+1)1 ⊲ G̃(k+1)2 ⊲ · · · ⊲ G̃(k+1)lk+1 under

the operation�×k+1�.

This programming is terminated until the seriesG̃(n−1)l1 ⊲ G̃n1 ⊲ G̃n2 ⊲ · · · ⊲ G̃nln = {1×n}
has be constructed under the operation�×n�.

The numberm is called thelength of the series of normal multi-subgroups. Call a

series of normal multi-subgroups̃G ⊲ G̃1 ⊲ G̃2 ⊲ · · · ⊲ G̃n = {1×n} maximalif there exists

a normal multi-subgroup̃H for any integerk, s, 1 ≤ k ≤ n, 1 ≤ s ≤ lk such thatG̃ks ⊲

H̃ ⊲ G̃k(s+1), then H̃ = G̃ks or H̃ = G̃k(s+1). For a maximal series of finite normal multi-

subgroup, we get a result in the following.

Theorem 3.2.8 For a finite multi-groupG̃ =
n⋃

i=1
Gi and an oriented operation sequence

−→
O

(
G̃
)
, the length of the maximal series of normal multi-subgroup in G̃ is a constant, only

dependent oñG itself.

Proof The proof is by the induction principle on the integern. For n = 1, the

maximal series of normal multi-subgroups ofG̃ is just a composition series of a finite

group. By Jordan-Hölder theorem (see [NiD1] for details),we know the length of a

composition series is a constant, only dependent onG̃. Whence, the assertion is true in

the case ofn = 1.

Assume that the assertion is true for all cases ofn ≤ k. We prove it is also true in the

case ofn = k + 1. Not loss of generality, assume the order of those binary operations in
−→
O(G̃) being×1 ≻ ×2 ≻ · · · ≻ ×n and the composition series of the group (G1,×1) being

G1 ⊲G2 ⊲ · · · ⊲Gs = {1×1}.

By Jordan-Hölder theorem, we know the length of this composition series is a constant,

dependent only on (G1;×1). According to Corollary 3.2.5, we know a maximal series of
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normal multi-subgroups of̃G gotten by STEP 1 under the operation�×1�is

G̃ ⊲ G̃ \ (G1 \G2) ⊲ G̃ \ (G1 \G3) ⊲ · · · ⊲ G̃ \ (G1 \ {1×1}).

Notice thatG̃ \ (G1 \ {1×1}) is still a multi-group with less or equal tok operations. By

the induction assumption, we know the length of the maximal series of normal multi-

subgroups iñG\(G1\{1×1}) is a constant only dependent oñG\(G1\{1×1}). Therefore, the

length of a maximal series of normal multi-subgroups is alsoa constant, only dependent

on G̃.

Applying the induction principle, we know that the length ofa maximal series of

normal multi-subgroups of̃G is a constant under an oriented operations
−→
O(G̃), only de-

pendent oñG itself. �

As a special case of Theorem 3.2.8, we get a consequence following.

Corollary 3.2.7(Jordan-Hölder theorem)For a finite group G, the length of its composi-

tion series is a constant, only dependent on G.

§3.3 MULTI-RINGS

3.3.1 Multi-Ring. It should be noted that these multi-spaces constructed groups, i.e.,

distributed multi-groups
(
G̃; O

(
G̃
))

generalize rings. Similarly, we can also construct

multi-spaces by rings or fields.

Definition 3.3.1 Let R̃ =
m⋃

i=1
Ri be a complete multi-space with a double operation set

O
(
R̃
)
= O1

⋃O2, whereO1 = { ·i, 1 ≤ i ≤ m}, O2 = {+i , 1 ≤ i ≤ m}. If for any integers

i, 1 ≤ i ≤ m, (Ri;+i, ·i) is a ring, thenR̃ is called a multi-ring, denoted by
(
R̃;O1 ֒→ O2

)

and (+i , ·i) a double operation for any integer i. If(R;+i, ·i) is a skew field or a field for

integers1 ≤ i ≤ m, then
(
R̃;O1 ֒→ O2

)
is called a skew multi-field or a multi-field.

For a multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri, let S̃ ⊂ R̃ andO1

(
S̃
)
⊂ O1

(
R̃
)
,

O2

(
S̃
)
⊂ O2

(
R̃
)
, if S̃ is a multi-ring with a double operation setO

(
S̃
)
= O1

(
S̃
)⋃O2

(
S̃
)
,

such ãS is called amulti-subringof R̃.

Theorem 3.3.1 For a multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri, a subset̃S ⊂ R̃ with

O
(
S̃
)
⊂ O

(
R̃
)

is a multi-subring ofR̃ if and only if
(
S̃

⋂
Rk;+k, ·k

)
is a subring of
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(Rk;+k, ·k) or S̃
⋂

Rk = ∅ for any integer k, 1 ≤ k ≤ m.

Proof For any integerk, 1 ≤ k ≤ m, if
(
S̃

⋂
Rk;+k, ·k

)
is a subring of (Rk;+k, ·k) or

S̃
⋂

Rk = ∅, thenS̃ =
m⋃

i=1

(
S̃

⋂
Ri

)
is a multi-subring by definition.

Now if S̃ =
s⋃

j=1
Si j is a multi-subring of

(
R̃;O1 ֒→ O2

)
with a double operation set

O1

(
S̃
)
= { ·i j , 1 ≤ j ≤ s} andO2

(
S̃
)
= {+i j , 1 ≤ j ≤ s}, then (Si j ;+i j , ·i j ) is a subring of

(Ri j ;+i j , ·i j ). Therefore,Si j = Ri j

⋂
S̃ for any integerj, 1 ≤ j ≤ s. But S̃

⋂
Sl = ∅ for

other integerl ∈ {i; 1 ≤ i ≤ m} \ {i j; 1 ≤ j ≤ s}. �

Applying the criterions for subrings of a ring, we get a result for multi-subrings by

Theorem 3.3.1 following.

Theorem 3.3.2 For a multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri, a subset̃S ⊂ R̃ with

O
(
S̃
)
⊂ O

(
R̃
)

is a multi-subring of̃R if and only if
(
S̃

⋂
Rj;+ j

)
≺ (Rj;+ j) and

(
S̃; · j

)
is

complete for any double operation(+ j , · j) ∈ O
(
S̃
)
.

Proof According to Theorem 3.3.1, we know that̃S is a multi-subring if and only

if
(
S̃

⋂
Ri;+i, ·i

)
is a subring of (Ri;+i, ·i) or S̃

⋂
Ri = ∅ for any integeri, 1 ≤ i ≤ m.

By a well known criterion for subrings of a ring (see [NiD1] for details), we know that(
S̃

⋂
Ri;+i , ·i

)
is a subring of (Ri;+i, ·i) if and only if

(
S̃

⋂
Rj;+ j

)
≺ (Rj;+ j) and

(
S̃; · j

)
is

a complete set for any double operation (+ j , · j) ∈ O
(
S̃
)
. �

A multi-ring
(
R̃;O1 ֒→ O2

)
with O1 = { ·i |1 ≤ i ≤ l}, O2 = {+i |1 ≤ i ≤ l} is integral if

for ∀a, b ∈ H and an integeri, 1 ≤ i ≤ l, a ·i b = b ·i a, 1·i , 0+i anda ·i b = 0+i implies

thata = 0+i or b = 0+i . If l = 1, an integrall-ring is the integral ring by definition. For the

case of multi-rings with finite elements, an integral multi-ring is nothing but a multi-field,

such as those shown in the next result.

Theorem 3.3.3 A finitely integral multi-ring is a multi-field.

Proof Let
(
R̃;O1 ֒→ O2

)
be a finitely integral multi-ring with̃R = {a1, a2 · · · , an},

whereO1 = { ·i |1 ≤ i ≤ l}, O2 = {+i |1 ≤ i ≤ l}. For any integeri, 1 ≤ i ≤ l, choose an

elementa ∈ R̃anda , 0+i . Then

a ·i a1, a ·i a2, · · · , a ·i an

aren elements. Ifa ·i as = a ·i at, i.e.,a ·i (as +i a−1
t ) = 0+i . By definition, we know that

as+i a−1
t = 0+i, namely,as = at. That is, thesea ·i a1, a ·i a2, · · · , a ·i an are different two
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by two. Whence,

R̃= { a ·i a1, a ·i a2, · · · , a ·i an }.

Now assumea ·i as = 1·i , thena−1 = as, i.e., each element of̃R has an inverse in

(R̃; ·i), which implies it is a commutative group. Therefore,
(
R̃;+i , ·i

)
is a field for any

integeri, 1 ≤ i ≤ l. �

Corollary 3.3.1 Any finitely integral domain is a field.

3.3.2 Multi-Ideal. A multi-ideal Ĩ of multi-ring
(
R̃;O1 ֒→ O2

)
is such a multi-subring

of
(
R̃;O1 ֒→ O2

)
satisfying conditions following:

(1) Ĩ is a multi-subgroup with an operation set
{
+|+ ∈ O2

(
Ĩ
)}

;

(2) For anyr ∈ R̃, a ∈ Ĩ and× ∈ O1

(
Ĩ
)
, r × a ∈ Ĩ anda× r ∈ Ĩ provided all of these

operating results exist.

Theorem3.3.4 A subset̃I with O1

(
Ĩ
)
⊂ O1

(
R̃
)
, O2

(
Ĩ ) ⊂ O2(R̃

)
of a multi-ring

(
R̃;O1 ֒→ O2

)

with R̃ =
m⋃

i=1
Ri, O1

(
R̃
)
= {×i | 1 ≤ i ≤ m} and O2

(
R̃
)
= {+i | 1 ≤ i ≤ m} is a multi-ideal

if and only if
(
Ĩ
⋂

Ri ,+i,×i

)
is an ideal of ring(Ri,+i ,×i) or Ĩ

⋂
Ri = ∅ for any integer

i, 1 ≤ i ≤ m.

Proof By the definition of multi-ideal, the necessity of these conditions is obvious.

For the sufficiency, denote bỹR(+,×) the set of elements iñRwith binary operations�+�and�×�. If there exists an integeri such that̃I
⋂

Ri , ∅ and
(
Ĩ
⋂

Ri,+i ,×i

)
is an

ideal of (Ri ,+i ,×i), then for∀a ∈ Ĩ
⋂

Ri, ∀r i ∈ Ri, we know that

r i ×i a ∈ Ĩ
⋂

Ri; a×i r i ∈ Ĩ
⋂

Ri.

Notice that̃R(+i ,×i) = Ri. Therefore, we get that

r ×i a ∈ Ĩ
⋂

Ri and a×i r ∈ Ĩ
⋂

Ri,

for ∀r ∈ R̃provided all of these operating results exist. Whence,Ĩ is a multi-ideal of̃R. �

3.3.3 Multi-Ideal Chain. A multi-ideal Ĩ of a multi-ring
(
R̃;O1 ֒→ O2

)
is said to be

maximalif for any multi-ideal Ĩ ′, R̃ ⊇ Ĩ ′ ⊇ Ĩ implies that̃I ′ = R̃ or Ĩ ′ = Ĩ . For an order

of the double operations inO
(
R̃
)

of a multi-ring
(
R̃;O1 ֒→ O2

)
, not loss of generality,

let it to be (+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+m,×m), we can define amulti-ideal chainof(
R̃;O1 ֒→ O2

)
by the following programming.
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(1) Construct a multi-ideal chaiñR ⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1s1 under the double

operation (+1,×1), whereR̃11 is a maximal multi-ideal of̃R and in general,̃R1(i+1) is a

maximal multi-ideal of̃R1i for any integeri, 1 ≤ i ≤ m− 1.

(2) If a multi-ideal chainR̃ ⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1s1 ⊃ · · · ⊃ R̃i1 ⊃ · · · ⊃ R̃isi

has been constructed for (+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+i ,×i), 1 ≤ i ≤ m − 1, then

construct a multi-ideal chain of̃Risi by R̃isi ⊃ R̃(i+1)1 ⊃ R̃(i+1)2 ⊃ · · · ⊃ R̃(i+1)s1 under

the double operation (+i+1,×i+1), whereR̃(i+1)1 is a maximal multi-ideal of̃Risi and in

general,R̃(i+1)(i+1) is a maximal multi-ideal of̃R(i+1) j for any integerj, 1 ≤ j ≤ si − 1.

Define a multi-ideal chain of̃R under (+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+i+1,×i+1) to be

R̃⊃ R̃11 ⊃ · · · ⊃ R̃1s1 ⊃ · · · ⊃ R̃i1 ⊃ · · · ⊃ R̃isi ⊃ R̃(i+1)1 ⊃ · · · ⊃ R̃(i+1)si+1.

We get a result on multi-ideal chains of multi-rings following.

Theorem 3.3.5 For a multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri, its multi-ideal chain has

finite terms if and only if the ideal chain of ring(Ri;+i,×i) has finite terms, i.e., each ring

(Ri;+i ,×i) is an Artin ring for any integer i, 1 ≤ i ≤ m.

Proof Let

(+1,×1) ≻ (+2,×2) ≻ · · · ≻ (+m,×m)

be the order of these double operations in
−→
O

(
R̃
)

and let

R1 ≻ R11 ≻ · · · ≻ R1t1

be a maximal ideal chain in ring (R1;+1,×1). Calculation shows that

R̃11 = R̃\ {R1 \ R11} = R11

⋃
(

m⋃

i=2

Ri),

R̃12 = R̃11 \ {R11 \ R12} = R12

⋃
(

m⋃

i=2

Ri),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

R̃1t1 = R̃1t1 \ {R1(t1−1) \ R1t1} = R1t1

⋃
(

m⋃

i=2

Ri).

According to Theorem 3.3.4, we know that

R̃⊃ R̃11 ⊃ R̃12 ⊃ · · · ⊃ R̃1t1

is a maximal multi-ideal chain of̃R under the double operation (+1,×1). In general, for

any integeri, 1 ≤ i ≤ m− 1, we assume that

Ri ≻ Ri1 ≻ · · · ≻ Riti
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is a maximal ideal chain in ring (R(i−1)ti−1;+i,×i). Calculation shows that

R̃ik = Rik

⋃
(

m⋃

j=i+1

R̃ik

⋂
Ri).

Then we know that

R̃(i−1)ti−1 ⊃ R̃i1 ⊃ R̃i2 ⊃ · · · ⊃ R̃iti

is a maximal multi-ideal chain of̃R(i−1)ti−1 under the double operation (+i ,×i) by Theorem

3.3.4. Whence, if the ideal chain of ring (Ri;+i,×i) has finite terms for any integeri, 1 ≤
i ≤ m, then the multi-ideal chain of multi-ring̃Ronly has finite terms. Now if there exists

an integeri0 such that the ideal chain of ring (Ri0,+i0,×i0) has infinite terms, then there

must also be infinite terms in a multi-ideal chain of multi-ring
(
R̃;O1 ֒→ O2

)
. �

A multi-ring is called anArtin multi-ring if its each multi-ideal chain only has finite

terms. We get a consequence following by Theorem 3.3.5.

Corollary 3.3.2 A multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri and a double operation set

O
(
R̃
)
= {(+i ,×i)| 1 ≤ i ≤ m} is an Artin multi-ring if and only if each ring(Ri;+i,×i) is

an Artin ring for integers i, 1 ≤ i ≤ m.

For a multi-ring
(
R̃;O1 ֒→ O2

)
with R̃ =

m⋃
i=1

Ri and double operation setO
(
R̃
)
=

{(+i ,×i)| 1 ≤ i ≤ m}, an elemente is anidempotentelement ife2
× = e× e= e for a double

binary operation (+,×) ∈ O
(
R̃
)
. Define thedirected sum̃I of two multi-ideals̃I1, Ĩ2 by

(1) Ĩ = Ĩ1
⋃

Ĩ2;

(2) Ĩ1
⋂

Ĩ2 = {0+}, or Ĩ1
⋂

Ĩ2 = ∅, where 0+ denotes the unit under the operation+.

Such a directed sum of̃I1, Ĩ2 is usually denote by

Ĩ = Ĩ1

⊕
Ĩ2.

Now if Ĩ = Ĩ1

⊕
Ĩ2 for any Ĩ1, Ĩ2 implies that Ĩ1 = Ĩ or Ĩ2 = Ĩ , then Ĩ is called

non-reducible. We get the following result for Artin multi-rings.

Theorem3.3.6 Every Artin multi-ring
(
R̃;O1 ֒→ O2

)
with R̃=

m⋃
i=1

Ri and a double opera-

tion set O
(
R̃
)
= {(+i ,×i)| 1 ≤ i ≤ m} is a directed sum of finite non-reducible multi-ideals,

and if (Ri;+i ,×i) has unit1×i for any integer i, 1 ≤ i ≤ m, then

R̃=
m⊕

i=1

(
si⊕

j=1

(Ri ×i ei j )
⋃

(ei j ×i Ri)),
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where ei j , 1 ≤ j ≤ si are orthogonal idempotent elements of ring(Ri;+i ,×i).

Proof Denote byM̃ the set of multi-ideals which can not be represented by a directed

sum of finite multi-ideals iñR. According to Theorem 3..3.5, there is a minimal multi-

ideal Ĩ0 in M̃. It is obvious that̃I0 is reducible.

Assume that̃I0 = Ĩ1 + Ĩ2. Then Ĩ1 < M̃ and Ĩ2 < M̃. Therefore,̃I1 and Ĩ2 can be

represented by a directed sum of finite multi-ideals. Thereby Ĩ0 can be also represented

by a directed sum of finite multi-ideals, contradicts to thatĨ0 ∈ M̃.

Now let

R̃=
s⊕

i=1

Ĩ i ,

where each̃I i , 1 ≤ i ≤ s is non-reducible. Notice that for a double operation (+,×), each

non-reducible multi-ideal of̃R has the form

(e× R(×))
⋃

(R(×) × e), e ∈ R(×).

Whence, there is a setT ⊂ R̃ such that

R̃=
⊕

e∈T, ×∈O(R̃)

(e× R(×))
⋃

(R(×) × e).

Now let 1× be the unit for an operation× ∈ O(R̃). Assume that

1× = e1 ⊕ e2 ⊕ · · · ⊕ el, ei ∈ T, 1 ≤ i ≤ s.

Then

ei × 1× = (ei × e1) ⊕ (ei × e2) ⊕ · · · ⊕ (ei × el).

Therefore, we get that

ei = ei × ei = e2
i and ei × ej = 0i for i , j.

That is,ei , 1 ≤ i ≤ l are orthogonal idempotent elements ofR̃(×). Notice that̃R(×) = Rh

for some integerh. We know thatei , 1 ≤ i ≤ l are orthogonal idempotent elements of the

ring (Rh,+h,×h). Denote byehi for ei, 1≤ i ≤ l. Consider all units iñR, we get that

R̃=
m⊕

i=1

(
si⊕

j=1

(Ri ×i ei j )
⋃

(ei j ×i Ri)).

This completes the proof. �
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Corollary 3.3.3 Every Artin ring (R;+,×) is a directed sum of finite ideals, and if

(R ;+,×) has unit1×, then

R=
s⊕

i=1

Riei ,

where ei , 1 ≤ i ≤ s are orthogonal idempotent elements of ring(R;+,×).

§3.4 VECTOR MULTI-SPACES

3.4.1 Vector Multi-Space. Let Ṽ =
k⋃

i=1
Vi be a complete multi-space with an operation

setO
(
Ṽ
)
= {(+̇i, ·i) | 1 ≤ i ≤ m} and letF̃ =

k⋃
i=1

Fi be a multi-filed with a double operation

setO
(
F̃
)
= {(+i ,×i) | 1 ≤ i ≤ k}. If for any integersi, 1 ≤ i ≤ k, (Vi; Fi) is a vector space

on Fi with vector additive�+̇i�and scalar multiplication�·i�, thenṼ is called a vector

multi-space on the multi-filed̃F, denoted by
(
Ṽ; F̃

)
.

For subsets̃V1 ⊂ Ṽ and F̃1 ⊂ F̃, if
(
Ṽ1; F̃1

)
is also a vector multi-space, then we

call
(
Ṽ1; F̃1

)
a vector multi-subspaceof

(
Ṽ; F̃

)
. Similar to the linear spaces, we get the

following criterion for vector multi-subspaces.

Theorem 3.4.1 For a vector multi-space
(
Ṽ; F̃

)
, Ṽ1 ⊂ Ṽ andF̃1 ⊂ F̃,

(
Ṽ1; F̃1

)
is a vector

multi-subspace of(Ṽ; F̃) if and only if for any vector additive�+̇�, scalar multiplication�·�in
(
Ṽ1; F̃1

)
and∀a, b ∈ Ṽ,∀α ∈ F̃,

α · a+̇b ∈ Ṽ1

provided these operating results exist.

Proof Denote bỹV =
k⋃

i=1
Vi , F̃ =

k⋃
i=1

Fi. Notice that̃V1 =
k⋃

i=1

(
Ṽ1

⋂
Vi

)
. By definition,

we know that
(
Ṽ1; F̃1

)
is a vector multi-subspace of

(
Ṽ; F̃

)
if and only if for any integer

i, 1 ≤ i ≤ k,
(
Ṽ1

⋂
Vi; +̇i, ·i

)
is a vector subspace of (Vi , +̇i , ·i) and F̃1 is a multi-filed

subspace of̃F or Ṽ1
⋂

Vi = ∅.
By Theorem 1.4.1, we know that

(
Ṽ1

⋂
Vi; +̇i , ·i

)
is a vector subspace of (Vi , +̇i , ·i) for

any integeri, 1 ≤ i ≤ k if and only if for ∀a, b ∈ Ṽ1
⋂

Vi, α ∈ Fi,

α ·i a+̇ib ∈ Ṽ1

⋂
Vi .

That is, for any vector additive�+̇�, scalar multiplication�·�in (Ṽ1; F̃1) and∀a, b ∈ Ṽ,

∀α ∈ F̃, if α · a+̇b exists, thenα · a+̇b ∈ Ṽ1. �
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Corollary 3.4.1 Let
(
Ũ; F̃1

)
,
(
W̃; F̃2

)
be two vector multi-subspaces of a vector multi-

space
(
Ṽ; F̃

)
. Then

(
Ũ

⋂
W̃; F̃1

⋂
F̃2

)
is a vector multi-space.

3.4.2 Basis. For a vector multi-space
(
Ṽ; F̃

)
, vectorsa1, a2, · · · , an ∈ Ṽ, if there are

scalarsα1, α2, · · · , αn ∈ F̃ such that

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where0 ∈ Ṽ is the unit under an operation�+�in Ṽ and+̇i , ·i ∈ O
(
Ṽ
)
, then these vectors

a1, a2, · · · , an are said to belinearly dependent. Otherwise, vectorsa1, a2, · · · , an are said

to belinearly independent.

Notice that there are two cases for linearly independent vectors a1, a2, · · · , an in a

vector multi-space:

(1) For scalarsα1, α2, · · · , αn ∈ F̃, if

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where0 is the unit of̃V under an operation�+�in O
(
Ṽ
)
, thenα1 = 0+1, α2 = 0+2, · · · , αn =

0+n, where 0+i is the unit under the operation�+i�in F̃ for integeri, 1 ≤ i ≤ n.

(2) The operating result ofα1 ·1a1+̇1α2 ·2a2+̇2 · · · +̇n−1αn ·nan does not exist in
(
Ṽ; F̃

)
.

Now for a subset̂S ⊂ Ṽ, define itslinearly spanning set
〈
Ŝ
〉

by

〈
Ŝ
〉
= { a | a = α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · ∈ Ṽ, ai ∈ Ŝ, αi ∈ F̃, i ≥ 1}.

For a vector multi-space
(
Ṽ; F̃

)
, if there exists a subset̂S, Ŝ ⊂ Ṽ such that̃V =

〈
Ŝ
〉
,

then we saŷS is a linearly spanning setof the vector multi-spacẽV. If these vectors in a

linearly spanning set̂S of vector multi-spacẽV are linearly independent, then̂S is said to

be abasisof
(
Ṽ; F̃

)
.

Theorem3.4.2 A vector multi-space
(
Ṽ; F̃

)
with Ṽ =

k⋃
i=1

Vi , F̃ =
k⋃

i=1
Fi has a basis if each

vector space(Vi; Fi) has a basis for integers1 ≤ i ≤ n.

Proof Let ∆i = {ai1, ai2, · · · , aini } be a basis of vector space (Vi; Fi) for 1 ≤ i ≤ k.

Define

∆̂ =

k⋃

i=1

∆i.

Then∆̂ is a linearly spanning set for̃V by definition.
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If these vectors in̂∆ are linearly independent, then̂∆ is a basis of̃V. Otherwise,

choose a vectorb1 ∈ ∆̂ and definê∆1 = ∆̂ \ {b1}.
If we have obtained a set̂∆s, s ≥ 1 and it is not a basis, choose a vectorbs+1 ∈ ∆̂s

and definê∆s+1 = ∆̂s \ {bs+1}.
If these vectors in̂∆s+1 are linearly independent, then̂∆s+1 is a basis of̃V. Otherwise,

we can define a set̂∆s+2 again. Continue this process. Notice that all vectors in∆i are

linearly independent for any integeri, 1 ≤ i ≤ k. Thus we finally get a basis of̃V. �

A multi-vector spacẽV isfinite-dimensionalif it has a finite basis. By Theorem 3.4.2,

if the vector space (Vi; Fi) is finite-dimensional for any integeri, 1 ≤ i ≤ k, then
(
Ṽ; F̃

)

is finite-dimensional. On the other hand, if there is an integer i0, 1 ≤ i0 ≤ k such that the

vector space (Vi0; Fi0) is infinite-dimensional, then
(
Ṽ; F̃

)
must be infinite-dimensional.

This fact enables one to get a consequence following.

Corollary 3.4.2 Let
(
Ṽ; F̃

)
be a vector multi-space with̃V =

k⋃
i=1

Vi , F̃ =
k⋃

i=1
Fi. Then

(
Ṽ; F̃

)
is finite-dimensional if and only if(Vi;+i, ·i) is finite-dimensional for any integer

i, 1 ≤ i ≤ k.

Furthermore, we know the following result on finite-dimensional multi-spaces.

Theorem 3.4.3 For a finite-dimensional multi-vector space
(
Ṽ; F̃

)
, any two bases have

the same number of vectors.

Proof Let Ṽ =
k⋃

i=1
Vi andF̃ =

k⋃
i=1

Fi. The proof is by the induction onk. For k = 1,

the assertion is true by Corollary 1.4.1.

If k = 2, let W1,W2 be two subspaces of a finite-dimensional vector space. By

Theorem 1.4.5 if the basis ofW1
⋂

W2 is {a1, a2, · · · , at}, then the basis ofW1
⋃

W2 is

{a1, a2, · · · , at, bt+1, bt+2, · · · , bdimW1, ct+1, ct+2, · · · , cdimW2},

where{a1, a2, · · · , at, bt+1, bt+2, · · · , bdimW1} is a basis ofW1 and {a1, a2, · · · , at, ct+1, ct+2,

· · · , cdimW2} a basis ofW2.

Whence, if̃V =W1
⋃

W2 andF̃ = F1
⋃

F2, then the basis of̃V is

{a1, a2, · · · , at, bt+1, bt+2, · · · , bdimW1, ct+1, ct+2, · · · , cdimW2}.

Now assume the assertion is true fork = l, l ≥ 2. We consider the case ofk = l + 1.
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Notice that

Ṽ =


l⋃

i=1

Vi


⋃

Vl+1, F̃ =


l⋃

i=1

Fi


⋃

Fl+1.

By the induction assumption, we know that any two bases of themulti-vector space(
l⋃

i=1
Vi;

l⋃
i=1

Fi

)
have the same numberp of vectors. If the basis of

(
l⋃

i=1
Vi

)⋂
Vl+1 is {e1, e2,

· · · , en}, then the basis of̃V is

{e1, e2, · · · , en, fn+1, fn+2, · · · , fp, gn+1, gn+2, · · · , gdimVl+1},

where{e1, e2, · · · , en, fn+1, fn+2, · · · , fp} is a basis of

(
l⋃

i=1
Vi;

l⋃
i=1

Fi

)
and {e1, e2, · · · , en, gn+1,

gn+2, · · · , gdimVl+1} is a basis ofVl+1. Whence, the number of vectors in a basis ofṼ is

p+ dimVl+1 − n for the casen = l + 1.

Therefore, the assertion is true for any integerk by the induction principle. �

3.4.3 Dimension. By Theorem 3.4.3, the cardinal number in a basis of a finite dimen-

sional vector multi-spacẽV is defined to be itsdimensionand denoted by dim̃V.

Theorem3.4.4(dimensional formula) For a vector multi-space
(
Ṽ; F̃

)
with Ṽ =

k⋃
i=1

Vi and

F̃ =
k⋃

i=1
Fi, the dimensiondimṼ of

(
Ṽ; F̃

)
is

dimṼ =
k∑

i=1

(−1)i−1
∑

{i1,i2,···,ii }⊂{1,2,···,k}
dim

(
Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

)
.

Proof The proof is by induction onk. If k = 1, the formula is turn to a trivial case

dimṼ = dimV1. If k = 2, the formula is

dimṼ = dimV1 + dimV2 − dim
(
V1

⋂
dimV2

)
,

which is true by Theorem 1.4.5.

Now assume that the formula is true fork = n. Consider the case ofk = n + 1.

According to Theorem 3.4.3, we know that

dimṼ = dim


n⋃

i=1

Vi

 + dimVn+1 − dim




n⋃

i=1

Vi


⋂

Vn+1



= dim


n⋃

i=1

Vi

 + dimVn+1 − dim


n⋃

i=1

(
Vi

⋂
Vn+1

)
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= dimVn+1 +

n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii }⊂{1,2,···,n}
dim

(
Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

)

+

n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii }⊂{1,2,···,n}
dim

(
Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

⋂
Vn+1

)

=

n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii }⊂{1,2,···,k}
dim

(
Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

)
.

By the induction principle, the formula is true for any integerk. �

As a consequence, we get the following formula.

Corollary 3.4.3(additive formula) For any two vector multi-spaces̃V1, Ṽ2,

dim(Ṽ1

⋃
Ṽ2) = dimṼ1 + dimṼ2 − dim

(
Ṽ1

⋂
Ṽ2

)
.

§3.5 MULTI-MODULES

3.5.1 Multi-Module. The multi-modules are generalization of vector multi-spaces. Let

O = { +i | 1 ≤ i ≤ m}, O1 = {·i |1 ≤ i ≤ m} andO2 = {+̇i |1 ≤ i ≤ m} be operation sets,

(M ;O) a commutativem-group with units 0+i and (R;O1 ֒→ O2) a multi-ring with a unit

1· for ∀· ∈ O1. For any integeri, 1 ≤ i ≤ m, define a binary operation×i : R ×M →M

by a ×i x for a ∈ R, x ∈ M such that for∀a, b ∈ R, ∀x, y ∈ M , conditions following

hold:

(1) a×i (x+i y) = a×i x+i a×i y;

(2) (a+̇ib) ×i x = a×i x+i b×i x;

(3) (a ·i b) ×i x = a×i (b×i x);

(4) 1·i ×i x = x.

Then (M ;O) is said analgebraic multi-module over(R;O1 ֒→ O2) abbreviated to anm-

moduleand denoted byMod(M (O) : R(O1 ֒→ O2)). In the case ofm = 1, It is obvious

thatMod(M (O) : R(O1 ֒→ O2)) is a module, particularly, if (R;O1 ֒→ O2) is a field,

thenMod(M (O) : R(O1 ֒→ O2)) is a linear spacein classical algebra.

For any integerk, ai ∈ R andxi ∈ M , where 1≤ i, k ≤ s, equalities following are

hold by induction on the definition ofm-modules.
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a×k (x1 +k x2 +k · · · +k xs) = a×k x1 +k a×k x2 +k · · · +k as×k x,

(a1+̇ka2+̇k · · · +̇kas) ×k x = a1 ×k x+k a2 ×k x+k · · · +k as×k x,

(a1 ·k a2 ·k · · · ·k as) ×k x = a1 ×k (a2 ×k · · · × (as×k x) · · ·)

and

1·i1 ×i1 (1·i2 ×i2 · · · ×is−1 (1·is ×is x) · · ·) = x

for integersi1, i2, · · · , is ∈ {1, 2, · · · ,m}.
Notice that for∀a, x ∈M , 1 ≤ i ≤ m,

a×i x = a×i (x+i 0+i ) = a×i x+i a×i 0+i ,

we find thata×i 0+i = 0+i . Similarly, 0+̇i ×i a = 0+i . Applying this fact, we know that

a×i x+i a−
+̇i
×i x = (a+̇ia−+̇i

) ×i x = 0+̇i ×i x = 0+i

and

a×i x+i a×i x−+i
= a×i (x+i x−+i

) = a×i 0+i = 0+i .

We know that

(a×i x)−+i
= a−+̇i

×i x = a×i x−+i
.

Notice thata ×i x = 0+i does not always meana = 0+̇i or x = 0+i in an m-module

Mod(M (O) : R(O1 ֒→ O2)) unlessa−
+̇i

is existing in (R; +̇i , ·i) if x , 0+i .

Now chooseMod(M1(O1) : R1(O1
1 ֒→ O1

2)) anm-module with operation setsO1 =

{ +′i | 1 ≤ i ≤ m}, O1
1 = {·1i |1 ≤ i ≤ m}, O1

2 = {+̇
1
i |1 ≤ i ≤ m} andMod(M2(O2) : R2(O2

1 ֒→
O2

2)) an n-module with operation setsO2 = { +′′i | 1 ≤ i ≤ n}, O2
1 = {·2i |1 ≤ i ≤ n},

O2
2 = {+̇

2
i |1 ≤ i ≤ n}. They are saidhomomorphicif there is a mappingι : M1 → M2

such that for any integeri, 1 ≤ i ≤ m,

(1) ι(x+′i y) = ι(x) +′′ ι(y) for ∀x, y ∈M1, whereι(+′i ) = +
′′ ∈ O2;

(2) ι(a×i x) = a×i ι(x) for ∀x ∈M1.

If ι is a bijection, these modulesMod(M1(O1) : R1(O1
1 ֒→ O1

2)) andMod(M2(O2) :

R2(O2
1 ֒→ O2

2)) are said to beisomorphic, denoted by

Mod(M1(O1) : R1(O1
1 ֒→ O1

2)) ≃ Mod(M2(O2) : R2(O2
1 ֒→ O2

2)).

Let Mod(M (O) : R(O1 ֒→ O2)) be anm-module. For a multi-subgroup (N ;O) of

(M ;O), if for any integeri, 1 ≤ i ≤ m, a ×i x ∈ N for ∀a ∈ R andx ∈ N , then by
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definition it is itself anm-module, called a multi-submodule ofMod(M (O) : R(O1 ֒→
O2)).

Now if Mod(N (O) : R(O1 ֒→ O2)) is a multi-submodule ofMod(M (O) : R(O1 ֒→
O2)), by Theorem 2.3.2, we can get a quotient multi-groupM

N
|(R,P̃) with a representation

pair (R, P̃) under operations

(a+i N ) + (b+ j N ) = (a+ b) +i N

for ∀a, b ∈ R,+ ∈ O. For convenience, we denote elementsx+i N in M

N
|(R,P̃) by x(i). For

an integeri, 1 ≤ i ≤ m and∀a ∈ R, define

a×i x(i) = (a×i x)(i).

Then it can be shown immediately that

(1) a×i (x(i) +i y(i)) = a×i x(i) +i a×i y(i);

(2) (a+̇ib) ×i x(i) = a×i x(i) +i b×i x(i);

(3) (a ·i b) ×i x(i) = a×i (b×i x(i));

(4) 1·i ×i x(i) = x(i),

i.e.,(M
N
|(R,P̃) : R) is also anm-module, called a quotient module ofMod(M (O) : R(O1 ֒→

O2)) to Mod(N (O) : R(O1 ֒→ O2)). Denoted byMod(M /N ).

The result on homomorphisms ofm-modules following is an immediately conse-

quence of Theorem 3.2.7.

Theorem 3.5.1 Let Mod(M1(O1) : R1(O1
1 ֒→ O1

2)), Mod(M2(O2) : R2(O2
1 ֒→ O2

2)) be

multi-modules withO1 = { +′i | 1 ≤ i ≤ m}, O2 = { +′′i | 1 ≤ i ≤ n}, O1
1 = {·1i |1 ≤ i ≤ m},

O1
2 = {+̇

1
i |1 ≤ i ≤ m}, O2

1 = {·2i |1 ≤ i ≤ n}, O2
2 = {+̇

2
i |1 ≤ i ≤ n} and ι : Mod(M1(O1) :

R1(O1
1 ֒→ O1

2)) → Mod(M2(O2) : R2(O2
1 ֒→ O2

2)) be a onto homomorphism with

(I(O2);O2) a multi-group, whereI(O2
2) denotes all units in the commutative multi-group

(M2;O2). Then there exist representation pairs(R1, P̃1), (R2, P̃2) such that

Mod(M /N )|(R1,P̃1) ≃ Mod(M2(O2)/I(O2))|(R2,P̃2),

whereN = Kerι is the kernel ofι. Particularly, if (I(O2);O2) is trivial, i.e., |I(O2)| = 1,

then

Mod(M /N )|(R1,P̃1) ≃ Mod(M2(O2) : R2(O2
1 ֒→ O2

2))|(R2,P̃2).
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Proof Notice that (I(O2);O2) is a commutative multi-group. We can certainly con-

struct a quotient moduleMod(M2(O2)/I(O2)). Applying Theorem 3.2.7, we find that

Mod(M /N )|(R1,P̃1) ≃ Mod(M2(O2)/I(O2))|(R2,P̃2).

Notice thatMod(M2(O2)/I(O2)) = Mod(M2(O2) : R2(O2
1 ֒→ O2

2)) in the case of

|I(O2)| = 1. We get the isomorphism as desired. �

Corollary 3.5.1 Let Mod(M (O) : R(O1 ֒→ O2)) be an m-module withO = { +i | 1 ≤
i ≤ m}, O1 = {·i |1 ≤ i ≤ m}, O2 = {+̇i |1 ≤ i ≤ m}, M a module on a ring(R;+, ·) and

ι : Mod(M1(O1) : R1(O1
1 ֒→ O1

2)) → M a onto homomorphism withKerι = N . Then

there exists a representation pair(R′, P̃) such that

Mod(M /N )|(R′,P̃) ≃ M,

particularly, if Mod(M (O) : R(O1 ֒→ O2)) is a moduleM , then

M /N ≃ M.

3.5.2 Finite Dimensional Multi-Module. For constructing multi-submodules of anm-

moduleMod(M (O) : R(O1 ֒→ O2)) with O = { +i | 1 ≤ i ≤ m}, O1 = {·i |1 ≤ i ≤ m},
O2 = {+̇i |1 ≤ i ≤ m}, a general way is described in the following.

Let Ŝ ⊂ M with |Ŝ| = n. Define itslinearly spanning set
〈
Ŝ|R

〉
in Mod(M (O) :

R(O1 ֒→ O2)) to be

〈
Ŝ|R

〉
=


m⊕

i=1

n⊕

j=1

αi j ×i xi j | αi j ∈ R, xi j ∈ Ŝ

 ,

where

m⊕

i=1

n⊕

j=1

ai j ×i j xi = a11 ×1 x11 +1 · · · +1 a1n ×1 x1n

+(1)a21 ×2 x21 +2 · · · +2 a2n ×2 x2n

+(2) · · · · · · · · · · · · · · · · · · · · · · · · · · · +(3)

am1 ×m xm1 +m · · · +m amn×m xmn

with +(1),+(2),+(3) ∈ O and particularly, if+1 = +2 = · · · = +m, it is denoted by
m∑

i=1
xi

as usual. It can be checked easily that
〈
Ŝ|R

〉
is a multi-submodule ofMod(M (O) :



Sec.3.5 Multi-Modules 99

R(O1 ֒→ O2)), call it generated bŷS inMod(M (O) : R(O1 ֒→ O2)). If Ŝ is finite, we

also say that
〈
Ŝ|R

〉
is finitely generated. Particularly, ifŜ = {x}, then

〈
Ŝ|R

〉
is called a

cyclic multi-submodule ofMod(M (O) : R(O1 ֒→ O2)), denoted byRx. Notice that

Rx =


m⊕

i=1

ai ×i x | ai ∈ R



by definition. For any finite set̂S, if for any integers, 1 ≤ s≤ m,

m⊕

i=1

si⊕

j=1

αi j ×i xi j = 0+s

implies thatαi j = 0+̇s for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then we say that{xi j |1 ≤ i ≤ m, 1 ≤ j ≤ n}
is independent and̂S a basis of the multi-moduleMod(M (O) : R(O1 ֒→ O2)), denoted

by
〈
Ŝ|R

〉
= Mod(M (O) : R(O1 ֒→ O2)).

For a multi-ring (R;O1 ֒→ O2) with a unit 1· for ∀· ∈ O1, whereO1 = {·i |1 ≤ i ≤ m}
andO2 = {+̇i |1 ≤ i ≤ m}, let

R
(n) = {(x1, x2, · · · , xn)| xi ∈ R, 1 ≤ i ≤ n}.

Define operations

(x1, x2, · · · , xn) +i (y1, y2, · · · , yn) = (x1+̇iy1, x2+̇iy2, · · · , xn+̇iyn),

a×i (x1, x2, · · · , xn) = (a ·i x1, a ·i x2, · · · , a ·i xn)

for ∀a ∈ R and integers 1≤ i ≤ m. Then it can be immediately known thatR(n) is a multi-

moduleMod(R(n) : R(O1 ֒→ O2)). We construct a basis of this special multi-module in

the following.

For any integerk, 1 ≤ k ≤ n, let

e1 = (1·k, 0+̇k, · · · , 0+̇k);

e2 = (0+̇k, 1·k, · · · , 0+̇k);

· · · · · · · · · · · · · · · · · · ;

en = (0+̇k, · · · , 0+̇k, 1·k).

Notice that

(x1, x2, · · · , xn) = x1 ×k e1 +k x2 ×k e2 +k · · · +k xn ×k en.
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We find that each element inR(n) is generated bye1, e2, · · · , en. Now since

(x1, x2, · · · , xn) = (0+̇k, 0+̇k, · · · , 0+̇k)

implies thatxi = 0+̇k for any integeri, 1 ≤ i ≤ n. Whence,{e1, e2, · · · , en} is a basis of

Mod(R(n) : R(O1 ֒→ O2)).

Theorem 3.5.2 Let Mod(M (O) : R(O1 ֒→ O2)) =
〈
Ŝ|R

〉
be a finitely generated multi-

module witĥS = {u1, u2, · · · , un}. Then

Mod(M (O) : R(O1 ֒→ O2)) ≃ Mod(R(n) : R(O1 ֒→ O2)).

Proof Define a mappingϑ : M (O) → R(n) by ϑ(ui) = ei, ϑ(a × j ui) = a × j ej and

ϑ(ui +k u j) = ei +k ej for any integersi, j, k, where 1≤ i, j, k ≤ n. Then we know that

ϑ(
m⊕

i=1

n⊕

j=1

ai j ×i ui) =
m⊕

i=1

n⊕

j=1

ai j ×i ei .

Whence,ϑ is a homomorphism. Notice that it is also 1− 1 and onto. We know thatϑ is

an isomorphism betweenMod(M (O) : R(O1 ֒→ O2)) andMod(R(n) : R(O1 ֒→ O2)).�

§3.6 RESEARCH PROBLEMS

3.6.1 The conceptions of bi-group and bi-subgroup were first appeared in [Mag1] and

[MaK1]. Certainly, they are special cases of multi-group and multi-subgroup. More

results on bi-groups can be found in [Kan1]. We list some openproblems in the following.

Problem 3.6.1 Establish a decomposition theory for multi-groups.

In group theory, we know the following decomposition resultfor groups.

Theorem 3.6.1([Rob1]) Let G be a finiteΩ-group. Then G can be uniquely decomposed

as a direct product of finite non-decompositionΩ-subgroups.

Theorem 3.6.2([Wan1]) Each finite Abelian group is a direct product of its Sylow p-

subgroups.

Then Problem 3.6.1 can be restated as follows.

Problem 3.6.2 Whether can we establish a decomposition theory for multi-groups similar

to the above two results in group theory, especially, for finite multi-groups?
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Problem 3.6.2 Define the conception of simple multi-groups. For finite multi-groups,

whether can we find all simple multi-groups?

We have known that there are four simple group classes following ([XHLL1]):

Class1: The cyclic groups of prime order;

Class2: The alternating groupsAn, n ≥ 5;

Class3: The 16 groups of Lie types;

Class4: The 26 sporadic simple groups.

Problem 3.6.3 Determine the structure properties of multi-groups generated by finite

elements.

For a subsetA of a multi-groupG̃, define its spanning set by

〈A〉 =
{
a ◦ b|a, b ∈ A and◦ ∈ O(G̃)

}
.

If there exists a subsetA ⊂ G̃ such thatG̃ = 〈A〉, then callG̃ is generated byA. Call G̃

finitely generatedif there exist a finite setA such thatG̃ = 〈A〉. Then Problem 3.6.3 can

be restated as follows:

Problem 3.6.4 Can we establish a finite generated multi-group theory similar to that of

finite generated groups?

Problem 3.6.5 Determine the structure of a Noether multi-ring.

3.6.2 A ring R is called to be aNoether ringif its every ideal chain only has finite terms.

Similarly, for a multi-ringR̃, if its every multi-ideal chain only has finite terms, it is called

to be aNoether multi-ring.

Problem 3.6.6 Can we find the structures of Noether multi-rings likewise that of Corol-

lary 3.3.3 and Theorem3.3.6?

Problem 3.6.7 Define a Jacobson or Brown-McCoy radical for multi-rings similar to

that in rings, and determine their contribution to multi-rings.

3.6.3 Notice that Theorems 3.4.2 and 3.4.3 imply that we can establish a linear theory for

multi-vector spaces, but the situation is complex than thatof classical linear spaces. The

following problems are interesting.
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Problem 3.6.8 Similar to that of linear spaces, define linear transformations on vector

multi-spaces. Can we establish a matrix theory for those linear transformations?

Problem 3.6.9 Whether a vector multi-space must be a linear space?

Conjecture 3.6.1 There exists non-linear vector multi-spaces in vector multi-spaces.

If Conjecture 3.6.1 is true, there is a fundamental problem on vector multi-spaces

should be considered following.

Problem 3.6.10 Can we apply vector multi-spaces to those non-linear spaces?

3.6.4 For a complete multi-space
(
Ã; O

(
Ã
))

, we can get amulti-operation system̃A. For

example, ifÃ is a multi-fieldF̃ =
n⋃

i=1
Fi with a double operation setO

(
F̃
)
= {(+i ,×i)| 1 ≤

i ≤ n}, then
(
F̃;+1,+2, · · · ,+n

)
,
(
F̃;×1,×2, · · · ,×n

)
and

(
F̃; (+1,×1), (+2,×2), · · · , (+n,×n)

)

are multi-operation systems. By this view, the classical operation system (R ;+) and

(R ;×) are systems with one operation. For a multi-operation system Ã, we can de-

fine these conceptions of equality and inequality,· · ·, etc.. For example, in the multi-

operation system
(
F̃;+1,+2, · · · ,+n

)
, we define the equalities=1,=2, · · · ,=n such as those

in sole operation systems
(
F̃;+1

)
,
(
F̃;+2

)
, · · · ,

(
F̃;+n

)
, for example, 2=1 2, 1.4 =2

1.4, · · · ,
√

3 =n

√
3 which is the same as the usual meaning and similarly, for thecon-

ceptions≥1,≥2, · · · ,≥n and≤1,≤2, · · · ,≤n.

In the classical operation system (R;+), the equation system

x+ 2+ 4+ 6 = 15

x+ 1+ 3+ 6 = 12

x+ 1+ 4+ 7 = 13

can not has a solution. But in
(
F̃;+1,+2, · · · ,+n

)
, the equation system

x+1 2+1 4+1 6 =1 15

x+2 1+2 3+2 6 =2 12

x+3 1+3 4+3 7 =3 13

has a solutionx if

15+1 (−1)+1 (−4)+1 (−16) = 12+2 (−1)+2 (−3)+2 (−6)

= 13+3 (−1)+3 (−4)+3 (−7).
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in (F̃;+1,+2, · · · ,+n). Whence, an element maybe have different disguises in a multi-

operation system.

Problem 3.6.11 Find necessary and sufficient conditions for a multi-operation system

with more than3 operations to be the rational number field Q, the real number field R or

the complex number field C.

For a multi-operation system (N ; (+1,×1), (+2,×2), · · · , (+n,×n)) and integersa, b, c ∈
N, if a = b×i c for an integeri, 1 ≤ i ≤ n, thenb andc are calledfactorsof a. An integer

p is called aprimeif there exist integersn1, n2 andi, 1 ≤ i ≤ n such thatp = n1×i n2, then

p = n1 or p = n2. Two problems for primes of a multi-operation system (N ; (+1,×1),

(+2,×2), · · · , (+n,×n)) are presented in the following.

Problem 3.6.12 For a positive real number x, denote byπm(x) the number of primes≤ x

in (N ; (+1,×1), (+2,×2), · · · , (+n,×n)). Determine or estimateπm(x).

Notice that for the positive integer system, by a well-knowntheorem, i.e.,Gauss

prime theorem, we have known that

π(x) ∼ x
logx

.

Problem3.6.13 Find the additive number properties for(N ; (+1,×1), (+2,×2), · · · , (+n,×n)),

for example, we have weakly forms for Goldbach’s conjectureand Fermat’s problem as

follows.

Conjecture 3.6.2 For any even integer n, n ≥ 4, there exist odd primes p1, p2 and an

integer i, 1 ≤ i ≤ n such that n= p1 +i p2.

Conjecture 3.6.3 For any positive integer q, the Diophantine equation xq + yq = zq has

non-trivial integer solutions(x, y, z) at least for an operation�+i�with 1 ≤ i ≤ n.

3.6.5 A Smarandache n-structure on a set Smeans a weak structure{w(0)} on S such

that there exists a chain of proper subsetsP(n − 1) ⊂ P(n − 2) ⊂ · · · ⊂ P(1) ⊂ S whose

corresponding structures verify the inverse chain{w(n−1)} ⊃ {w(n−2)} ⊃ · · · ⊃ {w(1)} ⊃
{w(0)}, i.e., structures satisfying more axioms.

Problem 3.6.14 For Smarandache multi-structures, solves Problems3.6.1− 3.6.10.



CHAPTER 4.

Multi-Voltage Graphs

There is a convenient way for constructing regular coveringspaces of a graph

G in topological graph theory, i.e., by a voltage assignmentα : G → Γ on

G, first introduced by Gustin in 1963 and then generalized by Gross in 1974,

where (Γ; ◦) is a finite group. Youngs extensively used voltage graphs inprov-

ing Heawood map coloring theorem. Today, this approach has been also ap-

plied for finding regular maps on surface. However, there arefew attentions

on irregular coverings of graphs. We generalize such graphsG by a voltage

assignmentα : G → Γ to α : G → Γ̃, i.e., multi-voltage graphs, where

(̃Γ; O) is a finite multi-group. By applying results in last chapter, two kind of

multi-voltage graphs are introduced for finding irregular coverings of graphs.

Elementary properties and results on these multi-voltage graphs are obtained

in Sections 4.2-4.3. Furthermore, we also construct graph models for alge-

braic multi-systems, including Cayley graphs on multi-groups in Section 4.4

and get results on structural properties of algebraic systems by such graph

models.
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§4.1 VOLTAGE GRAPHS

4.1.1 Voltage Graph. Let G be a connected graph and (Γ; ◦) a group. For each edge

e ∈ E(G), e = uv, anorientationon e is such an orientation one from u to v, denoted

by e = (u, v), called theplus orientationand itsminus orientation, from v to u, denoted

by e−1 = (v, u). For a given graphG with plus and minus orientation on edges, avoltage

assignmenton G is a mappingσ from the plus-edges ofG into a groupΓ satisfying

σ(e−1) = σ−1(e), e ∈ E(G). These elementsσ(e), e ∈ E(G) are called voltages, and (G, σ)

avoltage graphwith a voltage assignmentσ : G→ Γ.
For a voltage graph (G, σ) with a voltage assignmentσ : G → Γ, its lifting Gσ =

(V(Gσ),E(Gσ); I (Gσ)) is defined by

V(Gσ) = V(G) × Γ, and ∀(u, a) ∈ V(G) × Γ is abbreviated toua,

E(Gσ) = {(ua, va◦b)|e+ = (u, v) ∈ E(G), σ(e+) = b}

and

I (Gσ) = {(ua, va◦b)|I (e) = (ua, va◦b) i f e = (ua, va◦b) ∈ E(Gσ)}.

For example, letG = K3 andΓ = Z2. Then the voltage graph (K3, σ) with σ : K3 → Z2

and its lifting are shown in Fig.4.1.1.

u

w

10

0
(G, σ)

v

u0

u1

v0

v1

w0

w1

Gσ

Fig.6.1.1

Let (G;σ) be a voltage graph with a voltage assignmentσ : G → Γ. Then for

∀v ∈ V(G) ande ∈ E(G), the sets

[v]Γ = { va | a ∈ Γ }, [e]Γ = { ea | a ∈ Γ }

are defined the fibers overv or e, respectively andp : Gσ → G determined byp : va→
v and ea→ e for v ∈ V(G), e ∈ E(G) anda ∈ Γ thenatural projectionof (G;σ). Clearly,

p is a |G|-sheet covering for any pointx ∈ G.
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4.1.2 Lifted Walk. For a walkW = eσ1
1 , eσ2

2 , · · · , eσn
n with σi ∈ {+,−}, define itsnet

voltageby

σ(W) = σ(e1)σ(e2) · · ·σ(en).

For example, the net voltage on the walkuv+, vw+,wv− in Fig.4.1.1 is 1+ 0 + 0 = 1. A

lifting of such a walkW is determined bỹW = ẽσ1
1 , ẽσ2

2 , · · · , ẽσn
n such thatp(̃ei) ∈ [ei]Γ

for integers 1≤ i ≤ n. For instance, the liftings of the walkuv+, vw+,wv− in Fig.4.1.1 are

u0v+1 , v1w+1 ,w1v−1 andu1v+0 , v0w+0 ,w0v−0 . Particularly, lete+ = (u, v) ∈ E(G) with σ(e+) = b,

o(b) = n, we get ann-circuit starting atua, i.e.,

ua, e
+
a , ua◦b, e

+
a◦b, ua◦b2, e+a◦b2, · · · , ua◦bn−1, e+a◦bn−1, ua◦bn = ua

in the lifting Gσ.

Theorem 4.1.1 If W is a walk in a voltage graph(G;σ) with a voltage assignment

σ : G → Γ such that the initial vertex of W is u, then for each vertex ua in the fiber[u]

there is a unique lifting of W that starts at ua.

Proof AssumeW = u, eσ1
1 , v1, e

σ2
2 , v2, · · ·. If σ1 = +, then, since there is only one

plus-directed edge, i.e., the edgee+1 in the fiber [e1]Γ starts at vertexua, the edge must be

the first edge in the lifting ofW starting atua. If σ = −, similarly, since there is only one

minus-directed edge, i.e., (e1)−a◦σ(e−) in the fiber [e1]Γ starts atua, it follows the edge must

be the first edge in the lifting ofW starting atua. Similarly, there is only one possible

choice of the second edgeeσ2
2 in the lifting of W because its initial vertex must be the

terminal vertex of the first edge and its lifting must in the fiber [e2]Γ. Continuing this

process, the uniqueness of lifting walkW starting atua holds. �

Theorem 4.1.2 If W is a walk from u to v in a voltage graph(G;σ) with a voltage

assignmentσ : G→ Γ andσ(W) = b, then the lifting Wa starting at ua terminates at the

vertex va◦b.

Proof Let b1, b2, · · · , bl be the successive voltage encountered on a traversal of walk

W. Then it is clear that these subscripts of the successive vertices on the liftingWσ of Wa

area, s◦ b1, a ◦ b1 ◦ b2, · · · , a ◦ b1 ◦ b2 ◦ · · · ◦ bl = a ◦ b. Thus the terminal vertex ofWσ

starts atua is va◦b. �

Corollary 4.1.1 Let P(u, v) be a path from u to v in a voltage graph(G;σ) with a voltage

assignmentσ : G→ Γ andσ(P(u, v)) = b. then the lifting of P(u, v) is a path P(ua, va◦b).
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Furthermore, ifW is a circuit in (G;σ), we get the following result.

Theorem 4.1.3 Let C be a circuit of length m in a voltage graph(G;σ) with a voltage

assignmentσ : G→ Γ and o(σ(C)) = n. Then each connected component of p−1(C) is a

circuit of length mn, and there are
|Γ|
n

such components.

Proof Let C be the walkW = u, eσ1
1 , v, e

σ2
2 , · · · , e

σm
m , u, σi ∈ {+,−}, σ(W) = b and

ua ∈ [u]Γ. Applying Theorem 4.1.2, we know that the component ofp−1(C) containingua

is formed by edges in walks

Wa,Wa◦b, · · · ,Wa◦bn−1,

which form a circuit of lengthmn by edges in these walk attached end-by-end. Notice

that there are
|Γ|
〈b〉 left cosets of the cyclic group〈b〉 in (Γ; ◦) and each of them uniquely

determine a component ofp−1. Thus there are
|Γ|
n

lifted circuits of lengthC. �

4.1.3 Group Action. Let G be a graph and (Γ; ◦) a group. If for each elementg ∈ Γ,
there is an automorphismφg of G such that the following two conditions hold:

(1) φ1Γ is the identity automorphism ofG;

(2) φg · φh = φg◦h for g, h ∈ Γ,

then the group (Γ; ◦) is said toact on the graph G. For∀v ∈ V(G), e ∈ E(G), the sets

vΓ = { vg | g ∈ Γ } and eΓ = { eg | g ∈ Γ }

are called the vertex orbit or edge orbit under the action of (Γ; ◦). The sets of vertex orbits

and edge orbits are respectively denoted byV/Γ and E/Γ. Moreover, if the additional

condition

(3) For each element 1Γ , g ∈ Γ, there are no vertexv ∈ V(G) such thatφg(v) = v

and no edgee ∈ E(G) such thatφg(e) = e

holds, then (Γ; ◦) is said toact freelyonG.

Theregular quotient G/Γ is such a graph with vertex setV/Γ and edge setE/Γ such

that a vertex orbitvΓ is an end-vertex of the orbiteΓ if any vertexv in vΓ is an end-vertex

of an edge ineΓ. There are easily to verify that such a graphG/Γ is well-defined, i.e.,e is

an edge with an end-vertexv if and only if eΓ with an end-vertexvΓ.

Now let (G;σ) be a voltage graph with a voltage assignmentσ : G→ Γ. There is a

natural action of (Γ, ◦) onGσ by rulesφg(va) = vvg◦a on vertices andφg(ea) = eg◦a on edges



108 Chap.4 Multi-Voltage Graphs

for g ∈ Γ. Such an actionφg is an automorphism ofGΓ by verifying thatφg · φh = φg◦h.

Then the following result is clear by definition.

Theorem 4.1.4 Let (G;σ) be a voltage graph with a voltage assignmentσ : G→ Γ and

va ∈ V(Gσ), ea ∈ E(Gσ). Then vΓa = p−1(v) and eΓa = p−1(e).

Proof Forva ∈ V(Gσ), by definition we know that

vΓa = { φg(va) = vg◦a | g ∈ Γ } = { vh | h ∈ Γ} = p−1(v).

Similarly, we geteΓa = p−1(e). �

4.1.4 Lifted Graph. For a voltage graph (G;σ) with a voltage assignmentσ : G→ Γ,
we know that (Γ; ◦) is act-free onGσ because ifφg(va) = va or φg(ea) = ea, theng = 1Γ.

This fact enables Gross and Tucker found a necessary and sufficient condition for a graph

being that lifting of a voltage graph following.

Theorem4.1.5(Gross and Tucker, 1974)Let (Γ; ◦) be a group acting freely on a graph̃G

and G= G̃/Γ. Then there is a voltage assignmentσ : G → Γ and a labeling of vertices

on G by elements of V(G) × Γ such thatG̃ = Gσ and the action is the natural action of

(Γ; ◦) on Gσ.

Proof First, we choose positive directions for edges in the graphG andG̃ so that

the quotient mapqΓ : G̃ → G is direction-preserving and that the action of (Γ; ◦) on G̃

preserves directions. Second, for∀v ∈ V(G), label one vertex of the orbitp−1(v) in G̃ as

v1Γ and for every elementg ∈ Γ, g , 1Γ, label the vertexφa(vΓ1) asva. Now if the edgeeof

G runs fromu to w, we assigns the labelea to the edge of the orbitp−1(e) that originates

at the vertexva. Since (Γ; ◦) acts freely onG̃, there are just|Γ| edges in the orbitp−1(e),

one originating at each of the vertices in the vertex orbitp−1(v). Thus, the choice of an

edge to be labelledea is unique. Finally, if the terminal vertex of the edgee1Γ is wb, one

assigns a voltageb to the edgee in graphG. Thusσ(e+) = b. To show that this labelling

of edges inp−1(e) and the choice of voltagesb for the edgee really yields an isomorphism

ϑ : G̃→ Gσ, one needs to show that for∀a ∈ Γ that the edgeea terminates at the vertex

wa◦b. However, sinceea = φa(e1Γ), the terminal vertex of the edgeea must be the terminal

vertex of the edgeφa(e1Γi
), i.e.,

φa(wb) = φa · φb(w1Γ) = φ(a ◦ b)(w1Γ) = wa◦b.
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Under this labelling process, the isomorphismϑ : G̃ → Gσ identifies orbits inG̃ with

fibers ofGσ. Moreover, it is defined precisely so that the action of (Γ; ◦) onG̃ is consistent

with the natural action on the lifted graphGσ. This completes the proof. �

§4.2 MULTI-VOLTAGE GRAPHS–TYPE I

4.2.1 Multi-Voltage Graph of Type I. The first type of multi-voltage graph is labeling

edges in a graph by elements in a finite multi-group
(̃
Γ; O

)
. Formally, it is defined in the

following.

Definition 4.2.1 Let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γi, O

(̃
Γ
)
= {◦i |1 ≤ i ≤ n}

and G a graph. If there is a mappingψ : X1
2
(G) → Γ̃ such thatψ(e−1) = (ψ(e+))−1 for

∀e+ ∈ X1
2
(G), then the 2-tuple(G, ψ) is called a multi-voltage graph of type I.

Geometrically, a multi-voltage graph is nothing but a weighted graph with weights

in a multi-group. Similar to voltage graphs, the importanceof a multi-voltage graph is in

its lifting defined in the definition following.

Definition 4.2.2 For a multi-voltage graph(G, ψ) of type I, its lifting graph Gψ = (V(Gψ),

E(Gψ); I (Gψ)) is defined by

V(Gψ) = V(G) × Γ̃,

E(Gψ) = {(ua, va◦b)|e+ = (u, v) ∈ X1
2
(G), ψ(e+) = b, a ◦ b ∈ Γ̃}

and

I (Gψ) = {(ua, va◦b)|I (e) = (ua, va◦b) i f e = (ua, va◦b) ∈ E(Gψ)}.

For abbreviation, a vertex (x, g) in Gψ is also denoted byxg. Now for ∀v ∈ V(G),

v × Γ̃ = {vg|g ∈ Γ̃} is called afiber over v, denoted byFv. Similarly, for ∀e+ = (u, v) ∈
X1

2
(G) with ψ(e+) = b, all edges{(ug, vg◦b)|g, g ◦ b ∈ Γ̃} is called thefiber over e, denoted

by Fe.

For a multi-voltage graph (G, ψ) and its liftingGψ, there is also anatural projection

p : Gψ → G defined byp(Fv) = v for ∀v ∈ V(G). It can be verified easily thatp(Fe) = e

for ∀e ∈ E(G).

Foe example, choosẽΓ = Γ1
⋃
Γ2 with Γ1 = {1, a, a2}, Γ2 = {1, b, b2} anda , b. A

multi-voltage graph and its lifting are shown in Fig.4.2.1.
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Fig 4.2.1

Let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γi, O = {◦; 1 ≤ i ≤ n}. We know

the liftings of walks in multi-voltage graphs of type I similar to that of voltage graphs

following.

Theorem 4.2.1 Let W= e1e2 · · ·ek be a walk in a multi-voltage graph(G, ψ) with initial

vertex u. Then there exists a lifting Wψ start at ua in Gψ if and only if there are integers

i1, i2, · · · , ik such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦i j−1 ψ(e+j ) ∈ Γi j+1 andψ(e+j+1) ∈ Γi j+1

for any integer j, 1 ≤ j ≤ k

Proof Consider the first semi-arc in the walkW, i.e.,e+1 . Each lifting ofe1 must be

(ua, ua◦ψ(e+1 )). Whence, there is a lifting ofe1 in Gψ if and only if there exists an integeri1

such that◦ = ◦i1 anda, a ◦i1 ψ(e+1 ) ∈ Γi1.

Now if we have proved there is a lifting of a sub-walkWl = e1e2 · · ·el in Gψ if and

only if there are integersi1, i2, · · · , i l, 1 ≤ l < k such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦i j−1 ψ(e+j ) ∈ Γi j+1, ψ(e+j+1) ∈ Γi j+1

for any integerj, 1 ≤ j ≤ l, we consider the semi-arce+l+1. By definition, there is a lifting

of e+l+1 in Gψ with initial vertexua◦i1ψ(e+1 )◦i2 ···◦i j−1ψ(e+l ) if and only if there exists an integeri l+1

such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦i j−1 ψ(e+l ) ∈ Γl+1 andψ(e+l+1) ∈ Γl+1.

Whence, by the induction principle, there exists a liftingWψ start atua in Gψ if and only

if there are integersi1, i2, · · · , ik such that

a ◦i1 ψ(e+1 ) ◦i2 · · · ◦i j−1 ψ(e+j ) ∈ Γi j+1, andψ(e+j+1) ∈ Γi j+1
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for any integerj, 1 ≤ j ≤ k. �

For two elementsg, h ∈ Γ̃, if there exist integersi1, i2, · · · , ik such thatg, h ∈
k⋂

j=1
Γi j but

for ∀ik+1 ∈ {1, 2, · · · , n} \ {i1, i2, · · · , ik}, g, h <
k+1⋂
j=1
Γi j , we callk = Π[g, h] the joint number

of g and h. Denote byO(g, h) = {◦i j ; 1 ≤ j ≤ k} and definẽΠ[g, h] =
∑
◦∈O(̃Γ)

Π[g, g ◦ h],

whereΠ[g, g◦h] = Π[g◦h, h] = 0 if g◦h does not exist iñΓ. According to Theorem 4.2.1,

we get an upper bound for the number of liftings inGψ for a walkW in (G, ψ) following.

Corollary 4.2.1 If those conditions in Theorem4.2.1 hold, the number of liftings of W

with initial vertex ua in Gψ is not excess

Π̃
[
a, ψ(e+1 )

] ×
k∏

i=1

∑

◦1∈O(a,ψ(e+1 ))

· · ·
∑

◦i∈O(a;◦ j ,ψ(e+j ),1≤ j≤i−1)

Π̃
[
a ◦1 ψ(e+1 ) ◦2 · · · ◦i ψ(e+i ), ψ(e+i+1)

]
,

where O(a; ◦ j, ψ(e+j ), 1 ≤ j ≤ i − 1) = O(a ◦1 ψ(e+1 ) ◦2 · · · ◦i−1 ψ(e+i−1), ψ(e+i )).

The natural projection of a multi-voltage graph is not regular in general. For finding

a regular covering of a graph, a typical class of multi-voltage graphs is the case ofΓi = Γ

for any integeri, 1 ≤ i ≤ n in these multi-groups̃Γ =
n⋃

i=1
Γi. In this case, we can find the

exact number of liftings inGψ for a walk in (G, ψ) following.

Theorem 4.2.2 Let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γ and O= {◦i; 1 ≤ i ≤ n}

and let W= e1e2 · · ·ek be a walk in a multi-voltage graph(G, ψ), ψ : X1
2
(G)→ Γ̃ of type I

with initial vertex u. Then there are nk liftings of W in Gψ with initial vertex ua for ∀a ∈ Γ̃.

Proof The existence of lifting ofW in Gψ is obvious by Theorem 4.2.1. Consider

the semi-arce+1 . SinceΓi = Γ for 1 ≤ i ≤ n, we know that there aren liftings of e1 in Gψ

with initial vertexua for anya ∈ Γ̃, each with a form (ua, ua◦ψ(e+1 )), ◦ ∈ O
(̃
Γ
)
.

Now if we have gottenns, 1 ≤ s≤ k−1 liftings inGψ for a sub-walkWs = e1e2 · · ·es.

Consider the semi-arce+s+1. By definition we know that there are alson liftings of es+1 in

Gψ with initial vertexua◦i1ψ(e+1 )◦i2 ···◦sψ(e+s ), where◦i ∈ O
(̃
Γ
)
, 1 ≤ i ≤ s. Whence, there are

ns+1 liftings in Gψ for a sub-walkWs = e1e2 · · ·es+1 in (G;ψ).

By the induction principle, we know the assertion is true. �

Particularly, if
(̃
Γ; O

)
is nothing but a group, i.e.,◦i = ◦ for integers 1≤ i ≤ n, we

get Theorem 4.1.1 again.
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Corollary 4.2.2 Let W be a walk in a voltage graph(G, ψ), ψ : X1
2
(G) → Γ with initial

vertex u. Then there is an unique lifting of W in Gψ with initial vertex ua for ∀a ∈ Γ.

If a lifting Wψ of a multi-voltage graph (G, ψ) is the same as the lifting of a voltage

graph (G, α), α : X1
2
(G)→ Γi, then this lifting is ahomogeneous lifting ofΓi. For lifting a

circuit in a multi-voltage graph, we get the following result.

Theorem 4.2.3 Let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γ and O= {◦i; 1 ≤ i ≤ n},

C = u1u2 · · ·umu1 a circuit in a multi-voltage graph(G, ψ) andψ : X1
2
(G) → Γ̃. Then

there are
|Γ|

o(ψ(C, ◦i))
homogenous liftings of length o(ψ(C, ◦i))m in Gψ of C for any integer

i, 1 ≤ i ≤ n, whereψ(C, ◦i) = ψ(u1, u2) ◦i ψ(u2, u3) ◦i · · · ◦i ψ(um−1, um) ◦i ψ(um, u1) and

there are
n∑

i=1

|Γ|
o(ψ(C, ◦i))

homogenous liftings of C in Gψ altogether.

Proof According to Theorem 4.2.2, there are liftings with initial vertex (u1)a of C in

Gψ for ∀a ∈ Γ̃. Whence, for any integeri, 1 ≤ i ≤ n, walks

Wa = (u1)a(u2)a◦iψ(u1,u2) · · · (um)a◦iψ(u1,u2)◦i ···◦iψ(um−1,um)(u1)a◦iψ(C,◦i ),

Wa◦iψ(C,◦i ) = (u1)a◦iψ(C,◦i )(u2)a◦iψ(C,◦i)◦iψ(u1,u2)

· · · (um)a◦iψ(C,◦i)◦iψ(u1,u2)◦i ···◦iψ(um−1,um)(u1)a◦iψ2(C,◦i),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Wa◦iψo(ψ(C,◦i ))−1(C,◦i ) = (u1)a◦iψo(ψ(C,◦i ))−1(C,◦i )(u2)a◦iψo(ψ(C,◦i ))−1(C,◦i )◦iψ(u1,u2)

· · · (um)a◦iψo(ψ(C,◦i ))−1(C,◦i )◦iψ(u1,u2)◦i ···◦iψ(um−1,um)(u1)a

are attached end-to-end to form a circuit of lengtho(ψ(C, ◦i))m. Notice that there are
|Γ|

o(ψ(C, ◦i))
left cosets of the cyclic group generated byψ(C, ◦i) in the group (Γ, ◦i) and

each of them is correspondent with a homogenous lifting ofC in Gψ. Therefore, we get
n∑

i=1

|Γ|
o(ψ(C, ◦i))

homogenous liftings ofC in Gψ. �

Corollary 4.2.3 Let C be a k-circuit in a voltage graph(G, ψ) such that the order of

ψ(C, ◦) is m in the voltage group(Γ; ◦). Then each component of the preimage p−1(C) is

a km-circuit, and there are
|Γ|
m

such components.
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The lifting Gζ of a multi-voltage graph (G, ζ) of type I has a natural decomposition

described in the following.

Theorem 4.2.4 Let (G, ζ), ζ : X1
2
(G) → Γ̃ =

n⋃
i=1
Γi, be a multi-voltage graph of type I.

Then

Gζ =

n⊕

i=1

Hi ,

where Hi is an induced subgraph〈Ei〉 of Gζ for an integer i, 1 ≤ i ≤ n with

Ei = {(ua, va◦ib)|a, b ∈ Γi and (u, v) ∈ E(G), ζ(u, v) = b}.

4.2.2 Subaction of Multi-Group. For a finite multi-group
(̃
Γ; O

)
with Γ̃ =

n⋃
i=1
Γi, O =

{◦i, 1 ≤ i ≤ n} and a graphG, if there exists a decompositionG =
n⊕

j=1
Hi and we can

associate each elementgi ∈ Γi a homeomorphismϕgi on the vertex setV(Hi) for any

integeri, 1 ≤ i ≤ n such that

(1) ϕgi◦ihi = ϕgi × ϕhi for all gi , hi ∈ Γi, where�× �is an operation between homeo-

morphisms;

(2) ϕgi is the identity homeomorphism if and only ifgi is the identity element of the

group (Γi ; ◦i),

then we say this association to be asubaction of multi-group̃Γ on graph G. If there exists

a subaction of̃Γ on G such thatϕgi (u) = u only if gi = 1Γi for any integeri, 1 ≤ i ≤ n,

gi ∈ Γi andu ∈ Vi, we call it to be afixed-free subaction.

A left subaction lAof Γ̃ onGψ is defined by

For any integer i, 1 ≤ i ≤ n, let Vi =
{
ua|u ∈ V(G), a ∈ Γ̃

}
and gi ∈ Γi. Define

lA(gi)(ua) = ugi◦ia if a ∈ Vi. Otherwise, gi(ua) = ua.

Then the following result holds.

Theorem 4.2.5 Let (G, ψ) be a multi-voltage graph withψ : X1
2
(G) → Γ̃ =

n⋃
i=1
Γi and

G =
n⊕

j=1
Hi with Hi = 〈Ei〉, 1 ≤ i ≤ n, where Ei = {(ua, va◦ib)|a, b ∈ Γi and (u, v) ∈

E(G), ζ(u, v) = b}. Then for any integer i, 1 ≤ i ≤ n,

(1) For ∀gi ∈ Γi , the left subaction lA(gi) is a fixed-free subaction of an automor-

phism of Hi;
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(2) Γi is an automorphism group of Hi.

Proof Notice thatlA(gi) is a one-to-one mapping onV(Hi) for any integeri, 1 ≤ i ≤
n, ∀gi ∈ Γi. By the definition of a lifting, an edge inHi has the form (ua, va◦ib) if a, b ∈ Γi.

Whence,

(lA(gi)(ua), lA(gi)(va◦ib)) = (ugi◦ia, vgi◦ia◦ib) ∈ E(Hi).

As a result,lA(gi) is an automorphism of the graphHi.

Notice thatlA : Γi → AutHi is an injection fromΓi to AutGψ. SincelA(gi) , lA(hi)

for ∀gi , hi ∈ Γi , gi , hi , 1 ≤ i ≤ n. Otherwise, iflA(gi) = lA(hi) for ∀a ∈ Γi, then

gi ◦i a = hi ◦i a. Whence,gi = hi, a contradiction. Therefore,Γi is an automorphism group

of Hi. Now for any integeri, 1 ≤ i ≤ n, gi ∈ Γi, it is implied by definition thatlA(gi) is a

fixed-free subaction onGψ. This completes the proof. �

Corollary 4.2.4 Let (G, α) be a voltage graph withα : X1
2
(G) → Γ. ThenΓ is an

automorphism group of Gα.

For a finite multi-group
(̃
Γ; O

)
with Γ̃ =

n⋃
i=1
Γi action on a graph̃G, the vertex orbit

orb(v) of a vertexv ∈ V(G̃) and the edge orbitorb(e) of an edgee ∈ E(G̃) are respectively

defined by

orb(v) = {g(v)|g ∈ Γ̃} and orb(e) = {g(e)|g ∈ Γ̃}.

Then thequotient graphG̃/Γ̃ of G̃ under the action of̃Γ is defined by

V(G̃/Γ̃) =
{

orb(v) | v ∈ V
(
G̃
) }
,

E(G̃/Γ̃) =
{

orb(e) | e∈ E
(
G̃
) }
,

I (orb(e)) = (orb(u), orb(v)) if there exists (u, v) ∈ E
(
G̃
)
.

For example, a quotient graph is shown in Fig.4.2.2, where,̃Γ = Z5.

Fig 4.2.2
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Then we get a necessary and sufficient condition for the lifting of a multi-voltage

graph following.

Theorem4.2.6 If the subactionA of a finite multi-group
(̃
Γ; O

)
with Γ̃ =

n⋃
i=1
Γi on a graph

G̃ =
n⊕

i=1
Hi is fixed-free, then there is a multi-voltage graph

(
G̃/Γ̃, ζ

)
, ζ : X1

2

(
G̃/Γ̃

)
→ Γ̃

of type I such that

G̃ ≃
(
G̃/Γ̃

)ζ
.

Proof First, we choose positive directions for edges ofG̃/Γ̃ andG̃ so that the quotient

map q̃Γ : G̃ → G̃/Γ̃ is direction-preserving and that the actionA of Γ̃ on G̃ preserves

directions. Next, for any integeri, 1 ≤ i ≤ n and∀v ∈ V
(
G̃/Γ̃

)
, label one vertex of the

orbit q−1
Γ̃

(v) in G̃ asv1Γi
and for every group elementgi ∈ Γi , gi , 1Γi , label the vertex

A(gi)(v1Γi
) asvgi . Now if the edgee of G̃/Γ̃ runs fromu to w, we assigns the labelegi

to the edge of the orbitq−1
Γi

(e) that originates at the vertexugi . SinceΓi acts freely onHi,

there are just|Γi | edges in the orbitq−1
Γi

(e) for each integeri, 1 ≤ i ≤ n, one originating at

each of the vertices in the vertex orbitq−1
Γi

(v). Thus the choice of an edge to be labeled

egi is unique for any integeri, 1 ≤ i ≤ n. Finally, if the terminal vertex of the edgee1Γi
is

whi , one assigns a voltagehi to the edgee in the quotient̃G/Γ̃, which enables us to get a

multi-voltage graph
(
G̃/Γ̃, ζ

)
. To show that this labeling of edges inq−1

Γi
(e) and the choice

of voltageshi , 1 ≤ i ≤ n for the edgee really yields an isomorphismϑ : G̃→
(
G̃/Γ̃

)ζ
, one

needs to show that for∀gi ∈ Γi , 1 ≤ i ≤ n that the edgeegi terminates at the vertexwgi◦ihi .

However, sinceegi = A(gi)(e1Γi
), the terminal vertex of the edgeegi must be the terminal

vertex of the edgeA(gi)(e1Γi
), which is

A(gi)(whi ) = A(gi)A(hi)(w1Γi
) = A(gi ◦i hi)(w1Γi

) = wgi◦ihi .

Under this labeling process, the isomorphismϑ : G̃→
(
G̃/Γ̃

)ζ
identifies orbits inG̃ with

fibers ofGζ. Moreover, it is defined precisely so that the action ofΓ̃ on G̃ is consistent

with the left subactionlA on the lifting graphGζ. �

Particularly, if
(̃
Γ; O

)
is a finite group, we get Theorem 4.1.5 as a corollary.

Corollary 4.2.5 Let (Γ; ◦) be a group acting freely on a graph̃G and let G be the resulting

quotient graph. Then there is a voltage assignmentα : G → Γ and a labeling of the

verticesG̃ by the elements of V(G)× Γ such thatG̃ = Gα and the given action of(Γ; ◦) on

G̃ is the natural action of(Γ; ◦) on Gα.
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§4.3 MULTI-VOLTAGE GRAPHS–TYPE II

4.3.1 Multi-Voltage Graph of Type II. The multi-voltage graphs of type I are globally

labeling edges by elements in finite multi-groups. Certainly, we can locally label edges in

a graph by elements in groups. Thus the multi-voltage graphsof type II, formally defined

in the following.

Definition 4.3.1 Let
(̃
Γ,O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γi, O = {◦i; 1 ≤ i ≤ n} and

let G be a graph with vertices partition V(G) =
n⋃

i=1
Vi. For any integers i, j, 1 ≤ i, j ≤ n,

if there is a mappingτ : X1
2

(〈
EG(Vi ,V j)

〉)
→ Γi

⋂
Γ j andς : Vi → Γi such thatτ(e−1) =

(τ(e+))−1 for ∀e+ ∈ X1
2
(G) and the vertex subset Vi is associated with the group(Γi , ◦i) for

any integer i, 1 ≤ i ≤ n, then(G, τ, ς) is called a multi-voltage graph of type II.

The lifting of a multi-voltage graph (G, τ, ς) of type II is defined in the following.

Definition 4.3.2 For a multi-voltage graph(G, τ, ς) of type II, the lifting graph G(τ,ς) =(
V

(
G(τ,ς)

)
, E

(
G(τ,ς)

)
; I

(
G(τ,ς)

))
of (G, τ, ς) is defined by

V
(
G(τ,ς)

)
=

n⋃

i=1

{Vi × Γi} ,

E
(
G(τ,ς)

)
=

{
(ua, va◦b)|e+ = (u, v) ∈ X1

2
(G), ψ(e+) = b, a ◦ b ∈ Γ̃

}
,

I
(
G(τ,ς)

)
=

{
(ua, va◦b)|I (e) = (ua, va◦b) i f e = (ua, va◦b) ∈ E(G(τ,ς))

}
.

-? ?
u v-0

1

1 1

u0

u1

v0

v1

v2

(a)--? ?0

1

1 1
u v

u0

u1

v0

v2

v1

(b)

Fig 4.3.1
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Two multi-voltage graphs of type II with their lifting are shown in (a) and (b) of

Fig.4.3.1, wherẽΓ = Z2
⋃

Z3, V1 = {u}, V2 = {v} andς : V1→ Z2, ς : V2→ Z3.

Theorem4.3.1 Let (G, τ, ς) be a multi-voltage graph of type II and let Wk = u1u2 · · ·uk be

a walk in G. Then there exists a lifting of W(τ,ς) with an initial vertex(u1)a, a ∈ ς−1(u1) in

G(τ,ς) if and only if a∈ ς−1(u1)
⋂
ς−1(u2) and for any integer s, 1 ≤ s< k, a◦i1 τ(u1u2) ◦i2

τ(u2u3) ◦i3 · · · ◦is−1 τ(us−2us−1) ∈ ς−1(us−1)
⋂
ς−1(us), where�◦i j�is an operation in the

groupς−1(u j+1) for any integer j, 1 ≤ j ≤ s.

Proof By the definition of the lifting of a multi-voltage graph of type II, there exists

a lifting of the edgeu1u2 in G(τ,ς) if and only if a ◦i1 τ(u1u2) ∈ ς−1(u2), where�◦i j�is

an operation in the groupς−1(u2). Sinceτ(u1u2) ∈ ς−1(u1)
⋂
ς−1(u2), we get thata ∈

ς−1(u1)
⋂
ς−1(u2). Similarly, there exists a lifting of the subwalkW2 = u1u2u3 in G(τ,ς) if

and only ifa ∈ ς−1(u1)
⋂
ς−1(u2) anda ◦i1 τ(u1u2) ∈ ς−1(u2)

⋂
ς−1(u3).

Now assume there exists a lifting of the subwalkWl = u1u2u3 · · ·ul in G(τ,ς) if and

only if a ◦i1 τ(u1u2) ◦i2 · · · ◦it−2 τ(ut−2ut−1) ∈ ς−1(ut−1)
⋂
ς−1(ut) for any integert, 1 ≤ t ≤ l,

where�◦i j�is an operation in the groupς−1(u j+1) for any integerj, 1 ≤ j ≤ l. We consider

the lifting of the subwalkWl+1 = u1u2u3 · · ·ul+1. Notice that if there exists a lifting of the

subwalkWl in G(τ,ς), then the terminal vertex ofWl in G(τ,ς) is (ul)a◦i1τ(u1u2)◦i2 ···◦il−1τ(ul−1ul ).

We only need to find a necessary and sufficient condition for existing a lifting ofulul+1

with an initial vertex (ul)a◦i1τ(u1u2)◦i2 ···◦il−1
τ(ul−1ul). By definition, there exists such a lifting

of the edgeulul+1 if and only if (a ◦i1 τ(u1u2) ◦i2 · · · ◦il−1)τ(ul−1ul)) ◦l τ(ulul+1) ∈ ς−1(ul+1).

Sinceτ(ulul+1) ∈ ς−1(ul+1) by the definition of multi-voltage graphs of type II, we know

thata ◦i1 τ(u1u2) ◦i2 · · · ◦il−1 τ(ul−1ul) ∈ ς−1(ul+1).

Continuing this process, we get the assertion by the induction principle. �

Corollary 4.3.1 Let G a graph with vertices partition V(G) =
n⋃

i=1
Vi and let(Γ; ◦) be a

finite group,Γi ≺ Γ for any integer i, 1 ≤ i ≤ n. If (G, τ, ς) is a multi-voltage graph with

τ : X1
2
(G) → Γ andς : Vi → Γi for any integer i, 1 ≤ i ≤ n, then for a walk W in G with

an initial vertex u, there exists a lifting W(τ,ς) in G(τ,ς) with the initial vertex ua, a ∈ ς−1(u)

if and only if a∈ ⋂
v∈V(W) ς

−1(v).

Similarly, if Γi = Γ andVi = V(G) for any integeri, 1 ≤ i ≤ n, the number of liftings

of a walk in a multi-voltage graph of type II can be determined.

Theorem 4.3.2 Let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γ, O = {◦i; 1 ≤ i ≤ n} and
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let W = e1e2 · · ·ek be a walk with an initial vertex u in a multi-voltage graph(G, τ, ς),

τ : X1
2
(G) →

n⋂
i=1
Γ andς : V(G) → Γ, of type II. Then there are nk liftings of W in G(τ,ς)

with an initial vertex ua for ∀a ∈ Γ̃.

Proof The proof is similar to that of Theorem 4.2.3. �

Theorem4.3.3 Let (̃Γ; O) be a finite multi-group with̃Γ =
n⋃

i=1
Γ, O= {◦i; 1 ≤ i ≤ n} and let

C = u1u2 · · ·umu1 be a circuit in a multi-voltage graph(G, τ, ς), whereτ : X1
2
(G) →

n⋂
i=1
Γ

andς : V(G) → Γ. Then there are
|Γ|

o(τ(C, ◦i))
liftings of length o(tau(C, ◦i))m in G(τ,ς) of

C for any integer i, 1 ≤ i ≤ n, whereτ(C, ◦i) = τ(u1, u2) ◦i τ(u2, u3) ◦i · · · ◦i τ(um−1, um) ◦i

τ(um, u1), and there are
n∑

i=1

|Γ|
o(τ(C, ◦i))

liftings of C in G(τ,ς) altogether.

Proof The proof is similar to that of Theorem 4.2.3. �

4.3.2 Subgraph Isomorphism. Let G1, G2 be graph andH a subgraph ofG1 andG2.

We introduce the conception ofH-isomorphism of graph following.

Definition 4.3.3 Let G1,G2 be two graphs and H a subgraph of G1 and G2. A one-to-

one mappingξ between G1 and G2 is called an H-isomorphism if for any subgraph J

isomorphic to H in G1, ξ(J) is also a subgraph isomorphic to H in G2.

If G1 = G2 = G, then an H-isomorphism between G1 and G2 is called an H-

automorphism of G. Certainly, all H-automorphisms form a group under the composition

operation, denoted byAutHG andAutHG = AutG if we take H= K2.

For example, letH = 〈E(x,NG(x))〉 for ∀x ∈ V(G). Then theH-automorphism group

of a complete bipartite graphK(n,m) is AutHK(n,m) = Sn[Sm] = AutK(n,m). ThereH-

automorphisms are calledstar-automorphisms.

Theorem4.3.4 Let G be a graph. If there is a decomposition G=
n⊕

i=1
Hi with Hi ≃ H for

1 ≤ i ≤ n and H=
m⊕
j=1

Jj with Jj ≃ J for 1 ≤ j ≤ m, then

(1) 〈ιi , ιi : H1→ Hi , an isomorphism, 1 ≤ i ≤ n〉 = Sn � AutHG, and particularly,

Sn � AutHK2n+1 if H = C, a hamiltonian circuit in K2n+1.
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(2) AutJG � AutHG, and particularly,AutG � AutHG for a simple graph G.

Proof (1) For any integeri, 1 ≤ i ≤ n, we prove there is a suchH-automorphism

ι on G that ιi : H1 → Hi. In fact, sinceHi ≃ H, 1 ≤ i ≤ n, there is an isomorphism

θ : H1 → Hi. We defineιi as follows:

ιi(e) =


θ(e), if e ∈ V(H1)

⋃
E(H1),

e, if e ∈ (V(G) \ V(H1))
⋃

(E(G) \ E(H1)).

Thenιi is a one-to-one mapping on the graphG and is also anH-isomorphism by defini-

tion. Whence,

〈
ιi , ιi : H1 → Hi , an isomorphism, 1 ≤ i ≤ n

〉 � AutHG.

Since〈ιi , 1 ≤ i ≤ n〉 ≃ 〈(1, i), 1 ≤ i ≤ n〉 = Sn, thereby we get thatSn � AutHG.

For a complete graphK2n+1, we know its a decompositionK2n+1 =
n⊕

i=1
Ci with

Ci = v0vivi+1vi−1vi−2 · · · vn+i−1vn+i+1vn+iv0

for any integeri, 1 ≤ i ≤ n by Theorem 2.4.2. Whence, we get that

Sn � AutHK2n+1

if we choose a hamiltonian circuitH in K2n+1.

(2) Chooseσ ∈ AutJG. By definition, for any subgraphA of G, if A ≃ J, then

σ(A) ≃ J. Notice thatH =
m⊕
j=1

Jj with Jj ≃ J for 1 ≤ j ≤ m. Therefore, for any subgraph

B, B ≃ H of G, σ(B) ≃
m⊕
j=1
σ(Jj) ≃ H. This fact implies thatσ ∈ AutHG.

Notice that for a simple graphG, we have a decompositionG =
ε(G)⊕
i=1

K2 and AutK2G =

AutG. Whence, AutG � AutHG. �

The equality in Theorem 4.3.4(2) does not always hold. For example, a one-to-one

mappingσ on the lifting graph of Fig.4.3.2(a): σ(u0) = u1, σ(u1) = u0, σ(v0) = v1,

σ(v1) = v2 andσ(v2) = v0 is not an automorphism, but it is anH-automorphism withH

being a starS1.2.

For automorphisms of the liftingG(τ,ς) of a multi-voltage graph (G, τ, ς) of type II,

we get a result following.
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Theorem 4.3.5 Let (G, τ, ς) be a multi-voltage graph of type II withτ : X1
2
(G) →

n⋂
i=1
Γi

andς : Vi → Γi. Then for any integers i, j, 1 ≤ i, j ≤ n,

(1) for ∀gi ∈ Γi, the left action lA(gi) on 〈Vi〉(τ,ς) is a fixed-free action of an automor-

phism of〈Vi〉(τ,ς);
(2) for ∀gi j ∈ Γi

⋂
Γ j, the left action lA(gi j ) on

〈
EG(Vi,V j)

〉(τ,ς)
is a star-automorphism

of
〈
EG(Vi,V j)

〉(τ,ς)
.

Proof The proof of (1) is similar to that of Theorem 4.2.4. We prove the asser-

tion (2). A star with a central vertexua, u ∈ Vi, a ∈ Γi
⋂
Γ j is the graphSstar =〈

{(ua, va◦ jb) if (u, v) ∈ EG(Vi,V j), τ(u, v) = b}
〉
. By definition, the left actionlA(gi j ) is a

one-to-one mapping on
〈
EG(Vi ,V j)

〉(τ,ς)
. Now for any elementgi j , gi j ∈ Γi

⋂
Γ j, the left

actionlA(gi j ) of gi j on a starSstar is

lA(gi j )(Sstar) =
〈{

(ugi j ◦ia, v(gi j ◦ia)◦ jb) if (u, v) ∈ EG(Vi ,V j), τ(u, v) = b
}〉
= Sstar.

Whence,lA(gi j ) is a star-automorphism of
〈
EG(Vi,V j)

〉(τ,ς)
. �

LetG̃ be a graph and let
(̃
Γ; O

)
be a finite multi-group with̃Γ =

n⋃
i=1
Γi andO = {◦i; 1 ≤

i ≤ n}. If there is a partition for the vertex setV
(
G̃
)
=

n⋃
i=1

Vi such that the action of̃Γ on

G̃ consists ofΓi action on〈Vi〉 andΓi
⋂
Γ j on

〈
EG(Vi , vj)

〉
for 1 ≤ i, j ≤ n, we call such

an action to be apartially-action. A partially-action is calledfixed-freeif Γi is fixed-free

on 〈Vi〉 and the action of each element inΓi
⋂
Γ j is a star-automorphism and fixed-free on〈

EG(Vi ,V j)
〉

for any integersi, j, 1 ≤ i, j ≤ n. These orbits of a partially-action are defined

to be

orbi(v) = {g(v)|g ∈ Γi , v ∈ Vi}

for any integeri, 1 ≤ i ≤ n and

orb(e) =
{
g(e)|e ∈ E(G̃), g ∈ Γ̃

}
.

A partially-quotient graphG̃/pΓ̃ is defined by

V
(
G̃/pΓ̃

)
=

n⋃

i=1

{ orbi(v) | v ∈ Vi} , E
(
G̃/pΓ̃

)
=

{
orb(e)|e ∈ E(G̃)

}

andI
(
G̃/pΓ̃

)
= {I (e) = (orbi(u), orb j(v)) if u ∈ Vi, v ∈ V j and (u, v) ∈ E

(
G̃
)
, 1 ≤ i, j ≤ n}.

For example, a partially-quotient graph is shown in Fig.4.3.2, whereV1 = {u0, u1, u2, u3},
V2 = {v0, v1, v2} andΓ1 = Z4, Γ2 = Z3.
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u0

u1

u2

u3

v0

v1

v2

u v

Fig 4.3.2

We get a necessary and sufficient condition for the lifting of a multi-voltage graph of

type II following.

Theorem 4.3.6 If the partially-actionPa of a finite multi-group
(̃
Γ; O

)
with Γ̃ =

n⋃
i=1
Γi

and O= {◦i; 1 ≤ i ≤ n} on a graphG̃ with V
(
G̃
)
=

n⋃
i=1

Vi is fixed-free, then there is a

multi-voltage graph
(
G̃/pΓ̃, τ, ς

)
, τ : X1

2
(G̃/Γ̃)→ Γ̃, ς : Vi → Γi of type II such that

G̃ ≃
(
G̃/pΓ̃

)(τ,ς)
.

Proof Similar to the proof of Theorem 4.2.6, we also choose positive directions on

these edges of̃G/p̃Γ andG̃ so that the partially-quotient mapp̃Γ : G̃→ G̃/pΓ̃ is direction-

preserving and the partially-action ofΓ̃ onG̃ preserves directions.

For any integeri, 1 ≤ i ≤ n and∀vi ∈ Vi, we can labelvi asvi
1Γi

and for every group

elementgi ∈ Γi , gi , 1Γi , label the vertexPa(gi)((vi)1Γi
) asvi

gi
. Now if the edgee of G̃/p̃Γ

runs fromu to w, we assign the labelegi to the edge of the orbitp−1(e) that originates at

the vertexui
gi

and terminates atwj
hj

.

SinceΓi acts freely on〈Vi〉, there are just|Γi | edges in the orbitp−1
Γi

(e) for each integer

i, 1 ≤ i ≤ n, one originating at each of the vertices in the vertex orbitp−1
Γi

(v). Thus for any

integeri, 1 ≤ i ≤ n, the choice of an edge inp−1(e) to be labeledegi is unique. Finally, if

the terminal vertex of the edgeegi is wj
hj

, one assigns voltageg−1
i ◦ j h j to the edgee in the

partially-quotient graph̃G/pΓ̃ if gi, h j ∈ Γi
⋂
Γ j for 1 ≤ i, j ≤ n.

Under this labeling process, the isomorphismϑ : G̃→
(
G̃/pΓ̃

)(τ,ς)
identifies orbits in

G̃ with fibers ofG(τ,ς). �

The multi-voltage graphs defined in Sections 4.2 and 4.3 enables us to enlarge the

application field of voltage graphs. For example, a completebipartite graphK(n,m) is a

lifting of a multi-voltage graph, but it is not a lifting of a voltage graph in general ifn , m.
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§4.4 MULTI-SPACES ON GRAPHS

4.4.1 Graph Model. A graph is called adirected graphif there is an orientation on its

every edge. A directed graph
−→
G is called anEuler graphif we can travel all edges of

−→
G

alone orientations on its edges with no repeat starting at any vertexu ∈ V(
−→
G) and come

back tou. For a directed graph
−→
G, we use the convention that the orientation on the edge

e is u→ v for ∀e = (u, v) ∈ E(
−→
G) and say thate is incident from uandincident to v. For

u ∈ V(
−→
G), theoutdegreeρ+−→

G
(u) of u is the number of edges in

−→
G incident fromu and the

indegreeρ−−→
G

(u) of u is the number of edges in
−→
G incident tou. Whence, we know that

ρ+−→
G

(u) + ρ−−→
G

(u) = ρ−→
G

(u).

It is well-known that a graph
−→
G is Eulerian if and only ifρ+−→

G
(u) = ρ−−→

G
(u) for ∀u ∈ V

(−→
G

)
,

seeing examples in [11] for details. For a multiple 2-edge (a, b), if two orientations on

edges are both toa or both tob, then we say it to be aparallel multiple2-edge. If one

orientation is toa and another is tob, then we say it to be anopposite multiple2-edge.

Now let (A; ◦) be an algebraic system with operation�◦�. We associate aweighted

graph G[A] for (A; ◦) defined as in the next definition.

Definition 4.4.1 Let (A; ◦) be an algebraic system. Define a weighted graph G[A] asso-

ciated with(A; ◦) by

V(G[A]) = A

and

E(G[A]) = {(a, c) with weight ◦ b | i f a ◦ b = c f or ∀a, b, c ∈ A}

as shown inFig.4.4.1.

a ◦ b = c -a c◦b

Fig.4.4.1

For example, the associated graphG[Z4] for commutative groupZ4 is shown in

Fig.4.4.2.
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4.4.2 Graph Model Property. The advantage of Definition 4.4.1 is that for any edge

with end-verticesa, c in G[A], if its weight is ◦b, then a◦b = c and vice versa. Further-

more, ifa◦b = c, then there is one and only one edge inG[A] with verticesa, c and weight

◦b. This property enables us to find some structure properties of G[A] for an algebraic

system (A; ◦).

P1. G[A] is connected if and only if there are no partition A= A1
⋃

A2 such that for

∀a1 ∈ A1, ∀a2 ∈ A2, there are no definition for a1 ◦ a2 in (A; ◦).

If G[A] is disconnected, we choose one componentC and letA1 = V(C). Define

A2 = V(G[A]) \ V(C). Then we get a partitionA = A1
⋃

A2 and for∀a1 ∈ A1, ∀a2 ∈ A2,

there are no definition fora1 ◦ a2 in (A; ◦), a contradiction and vice versa.

P2. If there is a unit1A in (A; ◦), then there exists a vertex1A in G[A] such that the

weight on the edge(1A, x) is ◦x if 1A ◦ x is defined in(A; ◦) and vice versa.

P3. For ∀a ∈ A, if a−1 exists, then there is an opposite multiple2-edge(1A, a) in

G[A] with weights◦a and◦a−1, respectively and vice versa.

P4. For ∀a, b ∈ A if a ◦ b = b ◦ a, then there are edges(a, x) and (b, x), x ∈ A in

(A; ◦) with weights w(a, x) = ◦b and w(b, x) = ◦a, respectively and vice versa.

P5. If the cancellation law holds in(A; ◦), i.e., for∀a, b, c ∈ A, if a◦ b = a ◦ c then

b = c, then there are no parallel multiple2-edges in G[A] and vice versa.
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The properties P2,P3,P4 and P5 are gotten by definition immediately. Each of these

cases is shown in Fig.4.4.3(1), (2), (3) and (4), respectively.

� �I I1A

◦a ◦b ? 6a b

1A

a

◦a ◦a−1

(1) (2)

� K
a b

◦b ◦a

(3)

6 6
a

◦b ◦c

(4)

Fig.4.4.3

Definition 4.4.2 An algebraic system(A; ◦) is called to be a one-way system if there exists

a mapping̟ : A→ A such that if a◦b ∈ A, then there exists a unique c∈ A, c◦̟(b) ∈ A.

̟ is called a one-way function on(A; ◦).

We have the following results for an algebraic system (A; ◦) with its associated

weighted graphG[A].

Theorem4.4.1 Let (A; ◦) be an algebraic system with a associated weighted graph G[A].

Then

(1) If there is a one-way function̟ on (A; ◦), then G[A] is an Euler graph, and vice

versa, if G[A] is an Euler graph, then there exist a one-way function̟ on (A; ◦).
(2) If (A; ◦) is a complete algebraic system, then the outdegree of every vertex in

G[A] is |A|; in addition, if the cancellation law holds in(A; ◦), then G[A] is a complete

multiple2-graph with a loop attaching at each of its vertices such thateach edge between

two vertices in G[A] is an opposite multiple2-edge, and vice versa.

Proof Let (A; ◦) be an algebraic system with a associated weighted graphG[A].

(1) Assume̟ is a one-way function̟ on (A; ◦). By definition there existsc ∈ A,

c◦̟(b) ∈ A for ∀a ∈ A, a◦b ∈ A. Thereby there is a one-to-one correspondence between

edges froma with edges toa. That is,ρ+G[A](a) = ρ−G[A](a) for ∀a ∈ V(G[A]). Therefore,

G[A] is an Euler graph.

Now if G[A] is an Euler graph, then there is a one-to-one correspondence between

edges inE− = {e−i ; 1 ≤ i ≤ k} from a vertexa with edgesE+ = {e+i ; 1 ≤ i ≤ k} to the vertex

a. For any integeri, 1 ≤ i ≤ k, define̟ : w(e−i ) → w(e+i ). Therefore,̟ is a well-defined

one-way function on (A; ◦).
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(2) If (A; ◦) is complete, then for∀a ∈ A and∀b ∈ A, a ◦ b ∈ A. Therefore,

ρ+−→
G

(a) = |A| for any vertexa ∈ V(G[A]).

If the cancellation law holds in (A; ◦), by P5 there are no parallel multiple 2-edges

in G[A]. Whence, each edge between two vertices is an opposite 2-edge and weights on

loops are◦1A.

By definition, if G[A] is a complete multiple 2-graph with a loop attaching at each

of its vertices such that each edge between two vertices inG[A] is an opposite multiple

2-edge, we know that (A; ◦) is a complete algebraic system with the cancellation law

holding by the definition ofG[A]. �

Corollary 4.4.1 LetΓ be a semigroup. Then G[Γ] is a complete multiple2-graph with a

loop attaching at each of its vertices such that each edge between two vertices in G[A] is

an opposite multiple2-edge.

Notice that in a groupΓ, ∀g ∈ Γ, if g2
, 1Γ, theng−1

, g. Whence, all elements

of order> 2 in Γ can be classified into pairs. This fact enables us to know the following

result.

Corollary 4.4.2 LetΓ be a group of even order. Then there are opposite multiple2-edges

in G[Γ] such that weights on its2 directed edges are the same.

4.4.3 Multi-Space on Graph. Let
(̃
Γ; O

)
be an algebraic multi-space. Its associated

weighted graph is defined in the following.
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Definition 4.4.3 Let Γ̃ =
n⋃

i=1
Γi be an algebraic multi-space with(Γi; ◦i) being an algebraic
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system for any integer i, 1 ≤ i ≤ n. Define a weighted graph G
(̃
Γ
)

associated with̃Γ by

G
(̃
Γ
)
=

n⋃

i=1

G[Γi],

where G[Γi ] is the associated weighted graph of(Γi; ◦i) for 1 ≤ i ≤ n.

For example, the weighted graph shown in Fig.4.4.4 is correspondent with a multi-

spacẽΓ = Γ1
⋃
Γ2

⋃
Γ3, where (Γ1;+) = (Z3,+), Γ2 = {e, a, b}, Γ3 = {1, 2, a, b} and these

operations�·�onΓ2 and�◦�onΓ3 are shown in tables 4.4.1 and 4.4.2.

· e a b

e e a b

a a b e

b b e a

table 4.4.1

◦ 1 2 a b

1 * a b *

2 b * * a

a * * * 1

b * * 2 *

table 4.4.2

Notice that the correspondence between the multi-spaceΓ̃ and the weighted graph

G
[̃
Γ
]

is one-to-one. We immediately get the following result.

Theorem 4.4.2 The mappingsπ : Γ̃→ G
[̃
Γ
]

andπ−1 : G
[̃
Γ
]
→ Γ̃ are all one-to-one.

According to Theorems 4.4.1 and 4.4.2, we get some consequences in the following.

Corollary 4.4.3 Let Γ̃ =
n⋃

i=1
Γi be a multi-space with an algebraic system(Γi; ◦i) for any

integer i, 1 ≤ i ≤ n. If for any integer i, 1 ≤ i ≤ n, G[Γi] is a complete multiple2-graph

with a loop attaching at each of its vertices such that each edge between two vertices in

G[Γi] is an opposite multiple2-edge, theñΓ is a complete multi-space.

Corollary 4.4.4 Let Γ̃ =
n⋃

i=1
Γi be a multi-group with an operation set O

(̃
Γ
)
= {◦i; 1 ≤ i ≤

n}. Then there is a partition G
[̃
Γ
]
=

n⋃
i=1

Gi such that each Gi being a complete multiple
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2-graph attaching with a loop at each of its vertices such thateach edge between two

vertices in V(Gi) is an opposite multiple2-edge for any integer i, 1 ≤ i ≤ n.

Corollary 4.4.5 Let F be a body. Then G[F] is a union of two graphs K2(F) and K2(F∗),

where K2(F) or K2(F∗) is a complete multiple2-graph with vertex set F or F∗ = F \ {0}
and with a loop attaching at each of its vertices such that each edge between two different

vertices is an opposite multiple2-edge.

4.4.4 Cayley Graph of Multi-Group. Similar to that of Cayley graphs of a finite

generated group, we can also defineCayley graphs of a finite generated multi-group,

where a multi-group̃Γ =
n⋃

i=1
Γi is said to befinite generatedif the groupΓi is finite

generated for any integeri, 1 ≤ i ≤ n, i.e., Γi =
〈
xi , yi, · · · , zsi

〉
. We denote bỹΓ =

〈
xi , yi, · · · , zsi ; 1 ≤ i ≤ n

〉
if Γ̃ is finite generated by{xi, yi , · · · , zsi ; 1 ≤ i ≤ n}.

Definition 4.4.4 Let Γ̃ =
〈
xi , yi, · · · , zsi ; 1 ≤ i ≤ n

〉
be a finite generated multi-group,̃S =

n⋃
i=1

Si, where1Γi < Si, S̃−1 =
{
a−1|a ∈ S̃

}
= S̃ and〈Si〉 = Γi for any integer i, 1 ≤ i ≤ n. A

Cayley graph Cay
(̃
Γ : S̃

)
is defined by

V
(
Cay

(̃
Γ : S̃

))
= Γ̃

and

E
(
Cay

(
Γ̃ : S̃

))
= {(g, h)| i f there exists an integer i, g−1 ◦i h ∈ Si, 1 ≤ i ≤ n}.

By Definition 4.4.4, we immediately get the following result for Cayley graphsof a

finite generated multi-group.

Theorem 4.4.3 For a Cayley graph Cay
(̃
Γ : S̃

)
with Γ̃ =

n⋃
i=1
Γi andS̃ =

n⋃
i=1

Si,

Cay
(̃
Γ : S̃

)
=

n⋃

i=1

Cay(Γi : Si).

It is well-known thatevery Cayley graph of order≥ 3 is 2-connected. But in general,

a Cayley graph of a multi-group is not connected. For the connectedness of Cayley graphs

of multi-groups, we get the following result.

Theorem 4.4.4 A Cayley graph Cay
(̃
Γ : S̃

)
with Γ̃ =

n⋃
i=1
Γi andS̃ =

n⋃
i=1

Si is connected if

and only if for any integer i, 1 ≤ i ≤ n, there exists an integer j, 1 ≤ j ≤ n and j, i such

thatΓi
⋂
Γ j , ∅.
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Proof According to Theorem 4.4.3, if there is an integeri, 1 ≤ i ≤ n such that

Γi
⋂
Γ j = ∅ for any integerj, 1 ≤ j ≤ n, j , i, then there are no edges with the form

(gi, h), gi ∈ Γi, h ∈ Γ̃ \ Γi. ThusCay
(̃
Γ : S̃

)
is not connected.

Notice thatCay
(̃
Γ : S̃

)
=

n⋃
i=1

Cay(Γi : Si). Not loss of generality, we assume that

g ∈ Γk andh ∈ Γl, where 1≤ k, l ≤ n for any two elementsg, h ∈ Γ̃. If k = l, then there

must exists a path connectingg andh in Cay
(̃
Γ : S̃

)
.

Now if k , l and for any integeri, 1 ≤ i ≤ n, there is an integerj, 1 ≤ j ≤ n and j , i

such thatΓi
⋂
Γ j , ∅, then we can find integersi1, i2, · · · , is, 1≤ i1, i2, · · · , is ≤ n such that

Γk

⋂
Γi1 , ∅,

Γi1

⋂
Γi2 , ∅,

· · · · · · · · · · · · · · · · · · ,

Γis

⋂
Γl , ∅.

Therefore, we can find a path connectingg andh in Cay
(̃
Γ : S̃

)
passing through these

vertices inCay(Γi1 : Si1), Cay(Γi2 : Si2), · · ·, Cay(Γis : Sis). Thus the Cayley graph

Cay
(̃
Γ : S̃

)
is connected. �

The following theorem is gotten by the definition of Cayley graph and Theorem

4.4.4.

Theorem 4.4.5 If Γ̃ =
n⋃

i=1
Γ with |Γ| ≥ 3, then the Cayley graph Cay

(̃
Γ : S̃

)

(1) is an |S̃|-regular graph;

(2) its edge connectivityκ
(
Cay

(̃
Γ : S̃

))
≥ 2n.

Proof The assertion (1) is gotten by the definition ofCay
(
Γ̃ : S̃

)
. For (2) since every

Cayley graph of order≥ 3 is 2-connected, for any two verticesg, h in Cay
(̃
Γ : S̃

)
, there

are at least 2n edge disjoint paths connectingg andh. Whence, the edge connectivity

κ
(
Cay

(
Γ̃ : S̃

))
≥ 2n. �

Applying multi-voltage graphs, we get a structure result for Cayley graphs of a finite

multi-group similar to that of Cayley graphs of a finite group.

Theorem 4.4.6 For a Cayley graph Cay
(
Γ̃ : S̃

)
of a finite multi-group̃Γ =

n⋃
i=1
Γi with

S̃ =
n⋃

i=1
Si, there is a multi-voltage bouquetς : B|S̃| → S̃ such that Cay

(
Γ̃ : S̃

)
≃

(
B|S̃|

)ς
.
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Proof Let S̃ =
{
si; 1 ≤ i ≤

∣∣∣S̃
∣∣∣
}

and E
(
B|S̃|

)
=

{
Li; 1 ≤ i ≤

∣∣∣S̃
∣∣∣
}
. Define a multi-

voltage graph on a bouquetB|S̃| by

ς : Li → si, 1 ≤ i ≤
∣∣∣S̃

∣∣∣ .

Then we know that there is an isomorphismτ between
(
B|S̃|

)ς
andCay

(̃
Γ : S̃

)
by defining

τ(Og) = g for ∀g ∈ Γ̃, whereV(B|S̃|) = {O}. �

Corollary 4.4.6 For a Cayley graph Cay(Γ : S) of a finite groupΓ, there exists a voltage

bouquetα : B|S| → S such that Cay(Γ : S) ≃ (B|S|)α.

§4.5 RESEARCH PROBLEMS

4.5.1 As an efficient way for finding regular covering spaces of a graph, voltage graphs

have been gotten more attentions in the past half-century bymathematicians. Unless

elementary results on voltage graphs discussed in this chapter, further works for regular

covering spaces of graphs can be found in [GrT1], particularly, for finding genus of graphs

with more symmetries on surfaces. However, few works can be found in publication for

irregular covering spaces of graphs. These multi-voltage graph of type I or type II with

multi-groups defined in Sections 4.2-4.3 are candidate for further research on irregular

covering spaces of graphs.

Problem 4.5.1 Applying multi-voltage graphs to get the genus of a graph with less sym-

metries.

Problem 4.5.2 Find new actions of a multi-group on graph, such as the left subaction

and its contribution to topological graph theory. What can we say for automorphisms of

the lifting of a multi-voltage graph?

There is a famous conjecture for Cayley graphs of a finite group in algebraic graph

theory, i.e.,every connected Cayley graph of order≥ 3 is hamiltonian. Similarly, we can

also present a conjecture for Cayley graphs of a multi-group.

Conjecture 4.5.1 Every Cayley graph of a finite multi-group̃Γ =
n⋃

i=1
Γi with order≥ 3 and

∣∣∣∣∣
n⋂

i=1
Γi

∣∣∣∣∣ ≥ 2 is hamiltonian.



130 Chap.4 Multi-Voltage Graphs

4.5.2 As pointed out in [Mao10], for applying combinatorics to other sciences, a good

idea is pullback measures on combinatorial objects, initially ignored by the classical

combinatorics and reconstructed or make a combinatorial generalization for the classi-

cal mathematics. Thus is the CC conjecture following.

Conjecture 4.5.1(CC Conjecture)The mathematical science can be reconstructed from

or made by combinatorialization.

Remark 4.5.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite combinatorial rulers and ax-

ioms to reconstruct or make generalization for classical mathematics.

(2) The classical mathematics is a particular case in the combinatorialization of

mathematics, i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and

find new theorems after then.

More discussions on CC conjecture can be found in references[Mao19] [Mao37]-

[Mao38].

4.5.3 The central idea in Section 4.4 is that a graph is equivalent to multi-spaces. Ap-

plying infinite graph theory (see [Tho1] for details), we canalso define infinite graphs for

infinite multi-spaces similar to that Definition 4.4.3.

Problem 4.5.3 Find the structural properties of infinite graphs of infinitemulti-spaces.



CHAPTER 5.

Multi-Embeddings of Graphs

A geometrical graphG is in fact the graph phase ofG. Besides to find combi-

natorial properties of graphs, a more important thing is to find the behaviors

of graphs in spaces, i.e., embedding a graph in space to get its geometrical

graph. In last century, many mathematicians concentrated their attention to

embedding graphs on surfaces. They have gotten many characteristics of sur-

faces by combinatorics. Such a way can be also applied to a general space for

finding combinatorial behaviors of spaces. Whence, we consider graphs in

spaces in this chapter. For this objective, we introduce topological spaces in

Section 5.1, multi-surface embeddings, particularly, multi-sphereembedding

of graphs with empty overlapping and including multi-embedding on sphere

are characterized in Section 5.2 and 2-cell embeddings of graphs on surface in

Section 5.3. A general discussion on multi-surface embeddings of graphs and

a classification on manifold graphs with enumeration can be found in Sec-

tion 5.4. Section 5.5 concentrates on the behavior of geometrical graphs, i.e.,

graph phases in spaces with transformations. All of these materials show how

to generalize a classical problem in mathematics by multi-spaces.
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§5.1 SURFACES

5.1.1 Topological Space.Let T be a set. Atopologyon a setT is a collectionC of

subsets ofT , calledopen setssatisfying properties following:

(T1) ∅ ∈ C andT ∈ C ;

(T2) if U1,U2 ∈ C , thenU1 ∩ U2 ∈ C ;

(T3) the union of any collection of open sets is open.

For example, letT = {a, b, c} andC = {∅, {b}, {a, b}, {b, c},T }. ThenC is a topology

onT . Usually, such a topology on a discrete set is called adiscrete topology, otherwise,

a continuous topology. A pair (T ,C ) consisting of a setT and a topologyC on T is

called atopological spaceand each element inT is called apointof T . Usually, we also

useT to indicate a topological space if its topology is clear in the context. For example,

the Euclidean spaceRn for an integern ≥ 1 is a topological space.

For a pointu in a topological spaceT , its anopen neighborhoodis an open setU

such thatu ∈ U in T and aneighborhoodin T is a set containing some of its open

neighborhoods. Similarly, for a subsetA of T , a setU is an open neighborhoodor

neighborhoodof A if U is open itself or a set containing some open neighborhoods of

that set inT . A basisin T is a collectionB of subsets ofT such thatT = ∪B∈BB and

B1, B2 ∈ B, x ∈ B1 ∩ B2 implies that∃B3 ∈ B with x ∈ B3 ⊂ B1 ∩ B2 hold.

Let T be a topological space andI = [0, 1] ⊂ R. An arc a in T is defined to be a

continuous mappinga : I → T . We calla(0), a(1) the initial point and end point ofa,

respectively. A topological spaceT is connectedif there are no open subspacesA andB

such thatS = A∪ B with A, B , ∅ and calledarcwise-connectedif every two pointsu, v

in T can be joined by an arca in T , i.e.,a(0) = u anda(1) = v. An arca : I → T is

a loop based atp if a(0) = a(1) = p ∈ T . A —it degenerated loopex : I → x ∈ S, i.e.,

mapping each element inI to a pointx, usually called apoint loop.

A topological spaceT is calledHausdorff if each two distinct points have disjoint

neighborhoods andfirst countableif for each p ∈ T there is a sequence{Un} of neigh-

borhoods ofp such that for any neighborhoodU of p, there is ann such thatUn ⊂ U. The

topology is calledsecond countableif it has a countable basis.

Let {xn} be a point sequence in a topological spaceT . If there is a pointx ∈ T such

that for every neighborhoodU of u, there is an integerN such thatn ≥ N impliesxn ∈ U,

then{un} is saidconvergesto u or u is a limit point of {un} in the topological spaceT .
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5.1.2 Continuous Mapping. For two topological spacesT1 andT2 and a pointu ∈ T1,

a mappingϕ : T1 → T2 is calledcontinuous at uif for every neighborhoodV of ϕ(u),

there is a neighborhoodU of u such thatϕ(U) ⊂ V. Furthermore, ifϕ is continuous at

each pointu in T1, thenϕ is called acontinuous mappingonT1.

For examples, the polynomial functionf : R → R determined byf (x) = anxn +

an−1xn−1 + · · · + a1x + a0 and the linear mappingL : Rn → Rn for an integern ≥ 1 are

continuous mapping. The following result presents properties of continuous mapping.

Theorem 5.1.1 LetR, S andT be topological spaces. Then

(1) A constant mapping c: R → S is continuous;

(2) The identity mapping Id: R → R is continuous;

(3) If f : R → S is continuous, then so is the restriction f|U of f to an open subset

U of R;

(4) If f : R → S and g: S → T are continuous at x∈ R and f(x) ∈ S , then so

is their composition mapping g f: R → T at x.

Proof The results of (1)-(3) is clear by definition. For (4), noticethat f andg are

respective continuous atx ∈ R and f (x) ∈ S . For any open neighborhoodW of point

g( f (x)) ∈ T , g−1(W) is opened neighborhood off (x) in S . Whence,f −1(g−1(W)) is an

opened neighborhood ofx in R by definition. Therefore,g( f ) is continuous atx. �

A refinement of Theorem 5.1.1(3) enables us to know the following criterion for

continuity of a mapping.

Theorem 5.1.2 Let R and S be topological spaces. Then a mapping f: R → S is

continuous if and only if each point ofR has a neighborhood on which f is continuous.

Proof By Theorem 5.1.1(3), we only need to prove the sufficiency of condition. Let

f : R → S be continuous in a neighborhood of each point ofR andU ⊂ S . We show

that f −1(U) is open. In fact, any pointx ∈ f −1(U) has a neighborhoodV(x) on which f

is continuous by assumption. The continuity off |V(x) implies that (f |V(x))−1(U) is open in

V(x). Whence it is also open inR. By definition, we are easily find that

( f |V(x))
−1(U) = {x ∈ R | f (x) ∈ U} = f −1(U)

⋂
V(x),

in f −1(U) and containsx. Notice thatf −1(U) is a union of all such open sets asx ranges

over f −1(U). Thus f −1(U) is open followed by this fact. �
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For constructing continuous mapping on a union of topological spacesX , the fol-

lowing result is a very useful tool, called theGluing Lemma.

Theorem 5.1.3 Assume that a topological spaceX is a finite union of closed subsets:

X =
n⋃

i=1
Xi. If for some topological spaceY , there are continuous maps fi : Xi → Y that

agree on overlaps, i.e., fi |Xi
⋂

X j = f j |Xi
⋂

X j for all i , j, then there exists a unique continuous

f : X → Y with f |Xi = fi for all i.

Proof Obviously, the mappingf defined by

f (x) = fi(x), x ∈ Xi

is the unique well defined mapping fromX to Y with restrictionsf |Xi = fi hold for all i.

So we only need to establish the continuity off onX . In fact, if U is an open set inY ,

then

f −1(U) = X
⋂

f −1(U) =


n⋃

i=1

Xi


⋂

f −1(U)

=

n⋃

i=1

(
Xi

⋂
f −1(U)

)
=

n⋃

i=1

(
Xi

⋂
f −1
i (U)

)
=

n⋃

i=1

f −1
i (U).

By assumption, eachfi is continuous. We know thatf −1
i (U) is open inXi. Whence,

f −1(U) is open inX . Thus f is continuous onX . �

Let X be a topological space. A collectionC ⊂P(X ) is called to be acoverof X

if ⋃

C∈C
C = X .

If each set inC is open, thenC is called anopened coverand if |C| is finite, it is called

a finite coverof X . A topological space iscompactif there exists a finite cover in its

any opened cover andlocally compactif it is Hausdorff with a compact neighborhood for

its each point. As a consequence of Theorem 5.1.3, we can apply the gluing lemma to

ascertain continuous mappings shown in the next.

Corollary 5.1.1 Let LetX and Y be topological spaces and{A1,A2, · · · ,An} be a fi-

nite opened cover of a topological spaceX . If a mapping f : X → Y is continuous

constrained on each Ai, 1 ≤ i ≤ n, then f is a continuous mapping.

5.1.3 Homeomorphic Space. Let S and T be two topological spaces. They are

homeomorphicif there is a 1− 1 continuous mappingϕ : S → T such that the inverse
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mapingϕ−1 : T → S is also continuous. Such a mappingϕ is called ahomeomorphic

or topologicalmapping. A few examples of homeomorphic spaces can be found in the

following.

Example5.1.1 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean spaceRn and an opened unitn-ball Bn = { (x1, x2, · · · , xn) | x2
1+ x2

2+

· · · + x2
n < 1 };

(2) A Euclidean planeRn+1 and a unit sphereSn = { (x1, x2, · · · , xn+1) | x2
1+ x2

2+ · · ·+
x2

n+1 = 1 } with one pointp = (0, 0, · · · , 0, 1) on it removed.

In fact, define a mappingf from Bn to Rn for (1) by

f (x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1−
√

x2
1 + x2

2 + · · · + x2
n

for ∀(x1, x2, · · · , xn) ∈ Bn. Then its inverse is

f −1(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1+
√

x2
1 + x2

2 + · · · + x2
n

for ∀(x1, x2, · · · , xn) ∈ Rn. Clearly, bothf and f −1 are continuous. SoBn is homeomorphic

to Rn. For (2), define a mappingf from Sn − p to Rn+1 by

f (x1, x2, · · · , xn+1) =
1

1− xn+1
(x1, x2, · · · , xn).

Its inversef −1 : Rn+1→ Sn − p is determined by

f −1(x1, x2, · · · , xn+1) = (t(x)x1, · · · , t(x)xn, 1− t(x)),

where

t(x) =
2

1+ x2
1 + x2

2 + · · · + x2
n+1

.

Notice that bothf and f −1 are continuous. ThusSn − p is homeomorphic toRn+1.

5.1.4 Surface. For an integern ≥ 1, ann-dimensional topological manifoldis a second

countable Hausdorff space such that each point has an open neighborhood homeomorphic

to an openn-dimensional ballBn = {(x1, x2, · · · , xn)|x2
1+x2

2+· · ·+x2
n < 1} in Rn. We assume

all manifolds is connected considered in this book. A 2-manifold is usually calledsurface

in literature. Several examples of surfaces are shown in thefollowing.
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Example5.1.1 These 2-manifolds shown in the Fig.5.1.1 are surfaces with boundary.

rectangle cylinderplane torus

Fig.5.1.1

Example5.1.2 These 2-manifolds shown in the Fig.5.1.2 are surfaces without boundary.

sphere torus

Fig.5.1.2

By definition, we can always distinguish the right-side and left-side when one object

moves along an arc on a surfaceS. Now let N be a unit normal vector of the surfaceS.

Consider the result of a normal vector moves along a loopL on surfaces in Fig.5.1.1 and

Fig.5.1.2. We find the direction ofN is unchanged as it come back at the original pointu.

For example, it moves on the sphere and torus shown in the Fig.5.1.3 following.

L

u u
6 6
sphere torus

O

Fig.5.1.3
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Such loopsL in Fig.5.1.3 are calledorientation-preserving. However, there are also loops

L in surfaces which are not orientation-preserving. In such case, we get the opposite

direction ofN as it come back at the original pointv. Such a loop is calledorientation-

reversing. For example, the process (1)-(3) for getting the famous Möbius strip shown in

Fig.5.1.4, in where the loopL is an orientation-reversing loop.

A

B

E

A’

B’

E’

(1)

A

B

E

A’

B’

E’

(2)
A

E

B
(3)

K
v

N

L

Fig.4.1.4

A surfaceS is defined to beorientableif every loop onS is orientation-preserving.

Otherwise,non-orientableif there at least one orientation-reversing loop onS. Whence,

the surfaces in Examples 5.1.1-5.1.2 are orientable and the Möbius strip are non-orientable.

It should be noted that the boundary of a Möbius strip is a closed arc formed byAB′ and

A′B. Gluing the boundary of a Möbius strip by a 2-dimensional ball B2, we get a non-

orientable surface without boundary, which is usually calledcrosscapin literature.

§5.2 GRAPHS IN SPACES

5.2.1 Graph Embedding. LetE1 andE2 be two topological spaces. An embedding ofE1

in E2 is a one-to-one continuous mappingf : E1 → E2. Certainly, the same problem can

be also considered forE2 being a metric space. By topological view, a graph is nothing

but a 1-complex, we consider the embedding problem for graphs in spaces. The same

problem had been considered by Grümbaum in [Gru1]-[Gru3] for graphs in spaces, and

references [GrT1], [Liu1]-[Liu4], [MoT1] and [Whi1] for graphs on surfaces.
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5.2.2 Graph in Manifold. Let G be a connected graph. For∀v ∈ V(G), aspace permu-

tation P(v) of v is a permutation onNG(v) = {u1, u2, · · · , uρG(v)} and all space permutation

of a vertexv is denoted byPs(v). A space permutation Ps(G) of a graph Gis defined to

be

Ps(G) = {P(v)|∀v ∈ V(G),P(v) ∈ Ps(v)}

and apermutation systemPs(G) of G to be all space permutation ofG. Then we know the

following characteristic for an embedded graph in ann-manifoldMn with n ≥ 3.

Theorem5.2.1 For an integer n≥ 3, every space permutation Ps(G) of a graph G defines

a unique embedding of G→ Mn. Conversely, every embedding of a graph G→ Mn

defines a space permutation of G.

Proof AssumeG is embedded in ann-manifold Mn. For ∀v ∈ V(G), define an

(n − 1)-ball Bn−1(v) to be x2
1 + x2

2 + · · · + x2
n = r2 with center atv and radiusr as small

as needed. Notice that all auto-homeomorphisms AutBn−1(v) of Bn−1(v) is a group under

the composition operation and two pointsA = (x1, x2, · · · , xn) andB = (y1, y2, · · · , yn) in

Bn−1(v) are said to be combinatorially equivalent if there exists an auto-homeomorphism

ς ∈ AutBn−1(v) such thatς(A) = B. Consider intersection points of edges inEG(v,NG(v))

with Bn−1(v). We get a permutationP(v) on these points, or equivalently onNG(v) by

(A, B, · · · ,C,D) being a cycle ofP(v) if and only if there existsς ∈ AutBn−1(v) such that

ςi(A) = B, · · ·, ς j(C) = D andςl(D) = A, wherei, · · · , j, l are integers. Thereby we get a

space permutationPs(G) of G.

Conversely, for a space permutationPs(G), we can embedG in Mn by embedding

each vertexv ∈ V(G) to a pointX of Mn and arranging vertices in one cycle ofPs(G) of

NG(v) as the same orbit of〈σ〉 action on points ofNG(v) for σ ∈ AutBn−1(X). Whence we

get an embedding ofG in the manifoldMn. �

Theorem 5.2.1 establishes a relation for an embedded graph in ann-dimensional

manifold with a permutation, which enables one combinatorially defining graphs embed-

ded inn-dimensional manifolds.

Corollary 5.2.1 For a graph G, the number of embeddings of G inMn, n ≥ 3 is

∏

v∈V(G)

ρG(v)!.

For applying graphs in spaces to theoretical physics, we consider an embedding of
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graph in an manifold with additional conditions, which enables us to find good behavior

of a graph in spaces. On the first, we consider the rectilinearembeddings of graphs in a

Euclid space.

Definition 5.2.1 For a given graph G and a Euclid spaceE, a rectilinear embedding of

G in E is a one-to-one continuous mappingπ : G→ E such that

(1) For ∀e ∈ E(G), π(e) is a segment of a straight line inE;

(2) For any two edges e1 = (u, v), e2 = (x, y) in E(G), (π(e1) \ {π(u), π(v)}) ⋂ (π(e2) \
{π(x), π(y)}) = ∅.

In R3, a rectilinear embedding ofK4 and a cubeQ3 are shown in Fig.5.2.1 following.

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 0)

(0, 0, 1) (0, 1, 1)

(1, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

Fig 5.2.1

In general, we know the following result for rectilinear embedding of graphsG in

Euclid spaceRn, n ≥ 3.

Theorem 5.2.2 For any simple graph G of order n, there is a rectilinear embedding of G

in Rn with n≥ 3.

Proof Notice that this assertion is true for any integern ≥ 3 if it is hold for n = 3.

In R3, choosen points (t1, t2
1, t

3
1), (t2, t

2
2, t

3
2), · · · , (tn, t2

n, t
3
n), wheret1, t2, · · · , tn aren different

real numbers. For integersi, j, k, l, 1 ≤ i, j, k, l ≤ n, if a straight line passing through ver-

tices (ti, t2
i , t

3
i ) and (t j, t2

j , t
3
j ) intersects with a straight line passing through vertices (tk, t2

k, t
3
k)

and (tl, t2
l , t

3
l ), then there must be

∣∣∣∣∣∣∣∣∣∣∣

tk − ti t j − ti tl − tk

t2
k − t2

i t2
j − t2

i t2
l − t2

k

t3
k − t3

i t3
j − t3

i t3
l − t3

k

∣∣∣∣∣∣∣∣∣∣∣
= 0,
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which implies that there exist integerss, f ∈ {k, l, i, j}, s , f such thatts = t f , a contra-

diction.

Now letV(G) = {v1, v2, · · · , vn}. We embed the graphG in R3 by a mappingπ : G→
R3 with π(vi) = (ti , t2

i , t
3
i ) for 1 ≤ i ≤ n and ifvivj ∈ E(G), defineπ(vivj) being the segment

between points (ti, t2
i , t

3
i ) and (t j , t2

j , t
3
j ) of a straight line passing through points (ti, t2

i , t
3
i )

and (t j , t2
j , t

3
j ). Thenπ is a rectilinear embedding of the graphG in R3. �

5.2.3 Multi-Surface Embedding. For a graphG and a surfaceS, an immersionι of

G on S is a one-to-one continuous mappingι : G → S such that for∀e ∈ E(G), if

e= (u, v), thenι(e) is a curve connectingι(u) andι(v) onS. The following two definitions

are generalization of embedding of graph on surface.

Definition 5.2.2 Let G be a graph and S a surface in a metric spaceE. A pseudo-

embedding of G on S is a one-to-one continuous mappingπ : G → E such that there

exists vertices V1 ⊂ V(G), π|〈V1〉 is an immersion on S with each component of S\ π(〈V1〉)
isomorphic to an open2-disk.

Definition 5.2.3 Let G be a graph with a vertex set partition V(G) =
k⋃

j=1
Vi, Vi

⋂
V j = ∅

for 1 ≤ i, j ≤ k and let S1,S2, · · · ,Sk be surfaces in a metric spaceE with k≥ 1. A multi-

embedding of G on S1,S2, · · · ,Sk is a one-to-one continuous mappingπ : G → E such

that for any integer i, 1 ≤ i ≤ k, π|〈Vi〉 is an immersion with each component of Si \ π(〈Vi〉)
isomorphic to an open2-disk.

Notice that ifπ(G)
⋂

(S1
⋃

S2 · · ·
⋃

Sk) = π(V(G)), then everyπ : G → R3 is a

multi-embedding ofG. We say it to be atrivial multi-embeddingof G on S1,S2, · · · ,Sk.

If k = 1, then every trivial multi-embedding is a trivial pseudo-embedding ofG onS1. The

main object of this section is to find nontrivial multi-embedding of G on S1,S2, · · · ,Sk

with k ≥ 1. The existence pseudo-embedding of a graphG is obvious by definition. We

concentrate our attention on characteristics of multi-embeddings of a graph.

For a graphG, let G1,G2, · · · ,Gk be all vertex-induced subgraphs ofG. For any

integersi, j, 1 ≤ i, j ≤ k, if V(Gi)
⋂

V(G j) = ∅, such a set consisting of subgraphs

G1,G2, · · · ,Gk are called ablock decompositionof G and denoted byG =
k⊎

i=1
Gi . The

planar block number np(G) of G is defined by

np(G) = min

k|G =
k⊎

i=1

Gi, for any integeri, 1 ≤ i ≤ k,Gi is planar

 .
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Then we get a result for the planar black number of a graphG in the following.

Theorem 5.2.3 A graph G has a nontrivial multi-embedding on s spheres P1,P2, · · · , Ps

with empty overlapping if and only if np(G) ≤ s≤ |G|.

Proof AssumeG has a nontrivial multi-embedding on spheresP1,P2, · · · ,Ps. Since

|V(G)
⋂

Pi | ≥ 1 for any integeri, 1 ≤ i ≤ s, we know that

|G| =
s∑

i=1

∣∣∣∣V(G)
⋂

Pi

∣∣∣∣ ≥ s.

By definition, if π : G→ R3 is a nontrivial multi-embedding ofG on P1,P2, · · · ,Ps,

then for any integeri, 1 ≤ i ≤ s, π−1(Pi) is a planar induced graph. Therefore,

G =
s⊎

i=1

π−1(Pi),

and we get thats≥ np(G).

Now if np(G) ≤ s≤ |G|, there is a block decompositionG =
s⊎

i=1
Gs of G such thatGi

is a planar graph for any integeri, 1 ≤ i ≤ s. Whence we can takesspheresP1,P2, · · · ,Ps

and define an embeddingπi : Gi → Pi of Gi on spherePi for any integeri, 1 ≤ i ≤ s.

Define an immersionπ : G→ R3 of G on R3 by

π(G) =


s⋃

i=1

π(Gi)


⋃{

(vi , vj)|vi ∈ V(Gi), vj ∈ V(G j), (vi , vj) ∈ E(G), 1 ≤ i, j ≤ s
}
.

Thenπ : G→ R3 is a multi-embedding ofG on spheresP1,P2, · · · ,Ps. �

For example, a multi-embedding ofK6 on two spheres is shown in Fig.5.2.2, where,

〈{x, y, z}〉 is on one sphereS1 and〈{u, v,w}〉 on anotherS2.

x

y

z

u

v

w

sphereS1 sphereS2

Fig 5.2.2
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For a complete or a complete bipartite graph, the numbernp(G) is determined in the

following result.

Theorem 5.2.4 For any integers n, m ≥ 1, the numbers np(Kn) and np(K(m, n)) are

respectively

np(Kn) =
⌈n
4

⌉
and np(K(m, n)) = 2,

if m ≥ 3, n ≥ 3, otherwise1, respectively.

Proof Notice that every vertex-induced subgraph of a complete graph Kn is also a

complete graph. By Theorem 2.1.16, we know thatK5 is non-planar. Thereby we get that

np(Kn) =
⌈n
4

⌉

by definition ofnp(Kn). Now for a complete bipartite graph K(m,n), any vertex-induced

subgraph by choosings and l vertices from its two partite vertex sets is still a complete

bipartite graph. According to Theorem 2.2.5, K(3, 3) is non-planar andK(2, k) is planar.

If m≤ 2 orn ≤ 2, we get thatnp(K(m, n)) = 1. Otherwise,K(m, n) is non-planar. Thereby

we know thatnp(K(m, n)) ≥ 2.

Let V(K(m, n)) = V1
⋃

V2, whereV1,V2 are its partite vertex sets. Ifm ≥ 3 and

n ≥ 3, we choose verticesu, v ∈ V1 and x, y ∈ V2. Then the vertex-induced sub-

graphs〈{u, v}⋃V2 \ {x, y}〉 and〈{x, y}⋃V2 \ {u, v}〉 in K(m, n) are planar graphs. Whence,

np(K(m, n)) = 2 by definition. �

The position of surfacesS1,S2, · · · ,Sk in a topological spaceE also influences the

existence of multi-embeddings of a graph. Among these cases, an interesting case is there

exists an arrangementSi1,Si2, · · · ,Sik for S1,S2, · · · ,Sk such that inE, Si j is a subspace of

Si j+1 for any integerj, 1 ≤ j ≤ k. In this case, the multi-embedding is called anincluding

multi-embeddingof G on surfacesS1,S2, · · · ,Sk.

Theorem 5.2.5 A graph G has a nontrivial including multi-embedding on spheres P1 ⊃
P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G=

s⊎
i=1

Gi of G such that for

any integer i, 1 < i < s,

(1) Gi is planar;

(2) for ∀v ∈ V(Gi), NG(x) ⊆
(

i+1⋃
j=i−1

V(G j)

)
.

Proof Notice that in the case of spheres, if the radius of a sphere istending to

infinite, an embedding of a graph on this sphere is tending to aplanar embedding. From



Sec.5.3 Graphs on Surfaces 143

this observation, we get the necessity of these conditions.

Now if there is a block decompositionG =
s⊎

i=1
Gi of G such thatGi is planar for any

integeri, 1 < i < s andNG(x) ⊆
(

i+1⋃
j=i−1

V(G j)

)
for ∀v ∈ V(Gi), we can so places spheres

P1,P2, · · · ,Ps in R3 that P1 ⊃ P2 ⊃ · · · ⊃ Ps. For any integeri, 1 ≤ i ≤ s, we define an

embeddingπi : Gi → Pi of Gi on spherePi.

SinceNG(x) ⊆
(

i+1⋃
j=i−1

V(G j)

)
for ∀v ∈ V(Gi), define an immersionπ : G → R3 of G

on R3 by

π(G) =


s⋃

i=1

π(Gi)


⋃{

(vi , vj)| j = i − 1, i, i + 1 f or 1 < i < s and(vi , vj) ∈ E(G)
}
.

Thenπ : G→ R3 is a multi-embedding ofG on spheresP1,P2, · · · ,Ps. �

Corollary 5.2.2 If a graph G has a nontrivial including multi-embedding on spheres

P1 ⊃ P2 ⊃ · · · ⊃ Ps, then the diameter D(G) ≥ s− 1.

§5.3 GRAPHS ON SURFACES

5.3.1 2-Cell Embedding. For a graphG = (V(G),E(G), I (G)) and a surfaceS, an

embedding ofG onS is the case ofk = 1 in Definition 5.2.3, which is also an embedding

of graph in a 2-manifold. It can be shown immediately that if there exists an embedding

of G on S, thenG is connected. Otherwise, we can get a component inS \ π(G) not

isomorphic to an open 2-disk. Thus all graphs considered in this subsection are connected.

Let G be a graph. Forv ∈ V(G), denote all of edges incident with the vertexv by

Ne
G(v) = {e1, e2, · · · , eρG(v)}. A permutationC(v) on e1, e2, · · · , eρG(v) is said to be apure

rotation of v. All such pure rotations incident with a vertexv is denoted by̺ (v). A pure

rotation systemof G is defined by

ρ(G) = {C(v)|C(v) ∈ ̺(v) for ∀v ∈ V(G)}

and all pure rotation systems ofG is denoted by̺ (G).

Notice that in the case of embedded graphs on surfaces, a 1-dimensional ball is just

a circle. By Theorem 5.2.1, we get a useful characteristic for embedding of graphs on

orientable surfaces, first found by Heffter in 1891 and then formulated by Edmonds in

1962. It can be restated as follows.
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Theorem5.3.1 Every pure rotation system for a graph G induces a unique embedding of

G into an orientable surface. Conversely, every embedding of a graph G into an orientable

surface induces a unique pure rotation system of G.

According to this theorem, we know that the number of all embeddings of a graphG

on orientable surfaces is
∏

v∈V(G)(ρG(v) − 1)!.

By topological view, an embedded vertex or face can be viewedas a disk, and an

embedded edge can be viewed as a 1-band which is defined as a topological spaceB

together with a homeomorphismh : I × I → B, where I = [0, 1], the unit interval.

Whence, an edge in an embedded graph has two sides. One side ish((0, x)), x ∈ I . Another

is h((1, x)), x ∈ I .

For an embedded graphG on a surface, the two sides of an edgee ∈ E(G) may lie in

two different facesf1 and f2, or in one facef without a twist ,or in one facef with a twist

such as those cases (a), or (b), or (c) shown in Fig.5.3.1.

f1 f2

f

ee

f

e

(a) (b) (c)

f f

Fig 5.3.1

Now we define a rotation systemρL(G) to be a pair (J , λ), whereJ is a pure rotation

system ofG, andλ : E(G) → Z2. The edge withλ(e) = 0 orλ(e) = 1 is calledtype0 or

type 1edge, respectively. Therotation system̺ L(G) of a graphG are defined by

̺L(G) = {(J , λ)|J ∈ ̺(G), λ : E(G)→ Z2}.

By Theorem 5.2.1 we know the following characteristic for embedding graphson locally

orientable surfaces.
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Theorem 5.3.2 Every rotation system on a graph G defines a unique locally orientable

embedding of G→ S . Conversely, every embedding of a graph G→ S defines a rotation

system for G.

Notice that in any embedding of a graphG, there exists a spanning treeT such that

every edge on this tree is type 0 (See also [GrT1] for details). Whence, the number of all

embeddings of a graphG on locally orientable surfaces is

2β(G)
∏

v∈V(G)

(ρG(v) − 1)!

and the number of all embedding ofG on non-orientable surfaces is

(2β(G) − 1)
∏

v∈V(G)

(ρ(v) − 1)!.

The following result is the famousEuler-Poincaréformula for embedding a graph

on a surface.

Theorem 5.3.3 If a graph G can be embedded into a surface S , then

ν(G) − ε(G) + φ(G) = χ(S),

whereν(G), ε(G) andφ(G) are the order, size and the number of faces of G on S , and

χ(S) is the Euler characteristic of S , i.e.,

χ(S) =


2− 2p, i f S is orientable,

2− q, i f S is non− orientable.

For a given graphG and a surfaceS, whetherG embeddable onS is uncertain. We

use the notationG→ S denoting thatG can be embeddable onS. Define theorientable

genus range GRO(G) and thenon-orientable genus range GRN(G) of a graphG by

GRO(G) =

{
2− χ(S)

2
| G→ S,S is an orientable sur f ace

}
,

GRN(G) = {2− χ(S)|G→ S,S is a non− orientable sur f ace} ,

respectively and the orientable or non-orientable genusγ(G), γ(G) by

γ(G) = min
{
p|p ∈ GRO(G)

}
, γM(G) = max

{
p|p ∈ GRO(G)

}
,

γ̃(G) = min
{
q|q ∈ GRN(G)

}
, γ̃M(G) = max

{
q|q ∈ GRO(G)

}
.
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Theorem 5.3.4 Let G be a connected graph. Then

GRO(G) = [γ(G), γM(G)].

Proof Notice that if we delete an edgee and its adjacent faces from an embedded

graphG on surfaceS, we get two holes at most, see Fig.25 also. This implies that|φ(G)−
φ(G− e)| ≤ 1.

Now assumeG has been embedded on a surface of genusγ(G) andV(G) = {u, v, · · · ,w}.
Consider those of edges adjacent withu. Not loss of generality, we assume the ro-

tation of G at vertexv is (e1, e2, · · · , eρG(u)). Construct an embedded graph sequence

G1,G2, · · · ,GρG(u)! by

̺(G1) = ̺(G);

̺(G2) = (̺(G) \ {̺(u)}) ⋃{(e2, e1, e3, · · · , eρG(u))};
· · · · · · · · · · · · · · · · · · · · · · · ·;
̺(GρG(u)−1) = (̺(G) \ {̺(u)}) ⋃{(e2, e3, · · · , eρG(u), e1)};
̺(GρG(u)) = (̺(G) \ {̺(u)}) ⋃{(e3, e2, · · · , eρG(u), e1)};
· · · · · · · · · · · · · · · · · · · · · · · ·;
̺(GρG(u)!) = (̺(G) \ {̺(u)}) ⋃{(eρG(u), · · · , e2, e1, )}.

For any integeri, 1 ≤ i ≤ ρG(u)!, since|φ(G)−φ(G−e)| ≤ 1 for∀e ∈ E(G), we know

that |φ(Gi+1) − φ(Gi)| ≤ 1. Whence,|χ(Gi+1) − χ(Gi)| ≤ 1.

Continuing the above process for every vertex inG we finally get an embedding of

G with the maximum genusγM(G). Since in this sequence of embeddings ofG, the genus

of two successive surfaces differs by at most one, thusGRO(G) = [γ(G), γM(G)]. �

The genus problem, i.e.,to determine the minimum orientable or non-orientable

genus of a graphis NP-complete (See [GrT1] for details). Ringel and Youngs got the

genus ofKn completely bycurrent graphs(a dual form of voltage graphs) as follows.

Theorem 5.3.5 For a complete graph Kn and a complete bipartite graph K(m, n) with

integers m, n ≥ 3,

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
andγ(K(m, n)) =

⌈
(m− 2)(n− 2)

4

⌉
.

Outline proofs forγ(Kn) in Theorem 2.3.10 can be found in [GrT1], [Liu1] and

[MoT1], and a complete proof is contained in [Rin1]. A proof for γ(K(m, n)) in Theorem

5.3.5 can be also found in [GrT1], [Liu1] and [MoT1].
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For the maximum genusγM(G) of a graph, the time needed for computation is

bounded by a polynomial function on the number ofν(G) ([GrT1]). In 1979, Xuong

got the following result.

Theorem 5.3.6 Let G be a connected graph with n vertices and q edges. Then

γM(G) =
1
2

(q− n+ 1)− 1
2

min
T

codd(G \ E(T)),

where the minimum is taken over all spanning trees T of G and codd(G\E(T)) denotes the

number of components of G\ E(T) with an odd number of edges.

In 1981, Nebeský derived another important formula for themaximum genus of a

graph. For a connected graphG and A ⊂ E(G), let c(A) be the number of connected

component ofG\A and letb(A) be the number of connected componentsX of G\A such

that |E(X)| ≡ |V(X)|(mod2). With these notations, his formula can be restated as in the

next theorem.

Theorem 5.3.7 Let G be a connected graph with n vertices and q edges. Then

γM(G) =
1
2

(q− n+ 2)− max
A⊆E(G)

{c(A) + b(A) − |A|}.

Corollary 5.3.1 The maximum genus of Kn and K(m, n) are given by

γM(Kn) =

⌊
(n− 1)(n− 2)

4

⌋
andγM(K(m, n)) =

⌊
(m− 1)(n− 1)

2

⌋
,

respectively.

Now we turn to non-orientable embedding of a graphG. For∀e ∈ E(G), we define

anedge-twisting surgery⊗(e) to be given the band ofe an extra twist such as that shown

in Fig.5.3.2.

e e
⊗

Fig 5.3.2
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Notice that for an embedded graphG on a surfaceS, e ∈ E(G), if two sides ofe are

in two different faces, then⊗(e) will make these faces into one and if two sides ofe are

in one face,⊗(e) will divide the one face into two. This property of⊗(e) enables us to get

the following result for the crosscap range of a graph.

Theorem 5.3.8 Let G be a connected graph. Then

GRN(G) = [γ̃(G), β(G)],

whereβ(G) = ε(G) − ν(G) + 1 is called the Betti number of G.

Proof It can be checked immediately thatγ̃(G) = γ̃M(G) = 0 for a treeG. If G is not

a tree, we have known there exists a spanning treeT such that every edge on this tree is

type 0 for any embedding ofG.

Let E(G) \ E(T) = {e1, e2, · · · , eβ(G)}. Adding the edgee1 to T, we get a two faces

embedding ofT + e1. Now make edge-twisting surgery one1. Then we get a one face

embedding ofT + e1 on a surface. If we have get a one face embedding ofT + (e1 + e2 +

· · ·+ ei), 1 ≤ i < β(G), adding the edgeei+1 to T + (e1 + e2 + · · · + ei) and make⊗(ei+1) on

the edgeei+1. We also get a one face embedding ofT + (e1 + e2 + · · · + ei+1) on a surface

again.

Continuing this process until all edges inE(G) \ E(T) have a twist, we finally get a

one face embedding ofT + (E(G) \ E(T)) = G on a surface. Since the number of twists

in each circuit of this embedding ofG is 1(mod2), this embedding is non-orientable with

only one face. By the Euler-Poincaré formula, we know its genusg̃(G)

g̃(G) = 2− (ν(G) − ε(G) + 1) = β(G).

For a minimum non-orientable embeddingEG of G, i.e., γ̃(EG) = γ̃(G), one can

selects an edgee that lies in two faces of the embeddingEG and makes⊗(e). Thus in at

most̃γM(G)−γ̃(G) steps, one has obtained all of embeddings ofG on every non-orientable

surfaceNs with s ∈ [γ̃(G), γ̃M(G)]. Therefore,

GRN(G) = [γ̃(G), β(G)] �

Corollary 5.3.2 Let G be a connected graph with p vertices and q edges. Then

γ̃M(G) = q− p+ 1.
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Theorem5.3.9 For a complete graphKn and a complete bipartite graphK(m, n), m, n ≥ 3,

γ̃(Kn) =

⌈
(n− 3)(n− 4)

6

⌉

with an exception valuẽγ(K7) = 3 and

γ̃(K(m, n)) =

⌈
(m− 2)(n− 2)

2

⌉
.

A complete proof of this theorem is contained in [Rin1], Outline proofs of Theorem

5.3.9 can be found in [Liu1].

5.3.2 Combinatorial Map. Geometrically, an embedded graph ofG on a surface is

called a combinatorial mapM and sayG underlying M. Tutte [Tut2] found an alge-

braic representation for an embedded graph on a locally orientable surface in 1973, which

transfers a geometrical partition of a surface to a permutation in algebra.

A combinatorial map M= (Xα,β,P) is defined to be a permutationP acting onXα,β
of a disjoint union of quadricellsKx of x ∈ X, whereX is a finite set andK = {1, α, β, αβ}
is Klein 4-group with conditions following hold:

(1) ∀x ∈ Xα,β, there does not exist an integerk such thatPkx = αx;

(2) αP = P−1α;

(3) The groupΨJ = 〈α, β,P〉 is transitive onXα,β.

Theverticesof a combinatorial map are defined to be pairs of conjugate orbits of P
action onXα,β, edgesto be orbits ofK onXα,β andfacesto be pairs of conjugate orbits of

Pαβ action onXα,β. For determining a map (Xα,β,P) is orientable or not, the following

condition is needed.

(4) If the groupΨI = 〈αβ,P〉 is transitive onXα,β, then M is non-orientable. Other-

wise, orientable.

For example, the graphD0.4.0 (a dipole with 4 multiple edges ) on Klein bottle shown

in Fig.5.3.3 can be algebraic represented by a combinatorial mapM = (Xα,β,P) with

Xα,β =
⋃

e∈{x,y,z,w}
{e, αe, βe, αβe},

P = (x, y, z,w)(αβx, αβy, βz, βw)(αx, αw, αz, αy)(βx, αβw, αβz, βy).

This map has 2 verticesv1 = {(x, y, z,w), (αx, αw, αz, αy)}, v2 = {(αβx, αβy, βz, βw), (βx,

αβw, αβz, βy)}, 4 edgese1 = {x, αx, βx, αβx}, e2 = {y, αy, βy, αβy}, e3 = {z, αz, βz, αβz},
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e4 = {w, αw, βw, αβw} and 2 facesf2 = {(x, αβy, z, βy, αx, αβw), (βx, αw, αβx, y, βz, αy)},
f2 = {(βw, αz), (w, αβz)}. Its Euler characteristic is

χ(M) = 2− 4+ 2 = 0

andΨI = 〈αβ,P〉 is transitive onXα,β. Thereby it is a map ofD0.4.0 on a Klein bottle with

2 faces accordant with its geometry.6 6�
-

1

1

2

2

3
3+ 6s1x y

z
w

Fig.5.3.3

The following result was gotten by Tutte in [Tut2], which establishes a relation for

embedded graphs with that of combinatorial maps.

Theorem5.3.10 For an embedded graph G on a locally orientable surface S , there exists

one combinatorial map M= (Xα,β,P) with an underlying graph G and for a combinato-

rial map M = (Xα,β,P), there is an embedded graph G underlying M on S .

Similar to the definition of a multi-voltage graph, we can define a multi-voltage

map and its lifting by applying a multi-group̃Γ =
n⋃

i=1
Γi with Γi = Γ j for any integers

i, j, 1 ≤ i, j ≤ n.

Definition 5.3.1 Let (̃Γ; O) be a finite multi-group with̃Γ =
n⋃

i=1
Γ, whereΓ = {g1, g2, · · · , gm}

and an operation set O(̃Γ) = {◦i |1 ≤ i ≤ n} and let M= (Xα,β,P) be a combinatorial map.

If there is a mappingψ : Xα,β → Γ̃ such that

(1) for ∀x ∈ Xα,β,∀σ ∈ K = {1, α, β, αβ}, ψ(αx) = ψ(x), ψ(βx) = ψ(αβx) = ψ(x)−1;

(2) for any face f= (x, y, · · · , z)(βz, · · · , βy, βx), ψ( f , i) = ψ(x) ◦i ψ(y) ◦i · · · ◦i ψ(z),

where◦i ∈ O(̃Γ), 1 ≤ i ≤ n and〈ψ( f , i)| f ∈ F(v)〉 = G for ∀v ∈ V(G), where F(v) denotes

all faces incident with v,

then the2-tuple(M, ψ) is called a multi-voltage map.

The lifting of a multi-voltage mapis defined by the next definition.
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Definition 5.3.2 For a multi-voltage map(M, ψ), the lifting map Mψ = (Xψ
αψ,βψ

,Pψ) is

defined by

Xψ
αψ,βψ
= {xg|x ∈ Xα,β, g ∈ Γ̃},

Pψ =
∏

g∈Γ̃

∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg),

where

αψ =
∏

x∈Xα,β,g∈Γ̃

(xg, αxg), βψ =

m∏

i=1

∏

x∈Xα,β

(xgi , (βx)gi◦iψ(x))

with a convention that(βx)gi◦iψ(x) = ygi for some quadricells y∈ Xα,β.

Notice that the liftingMψ is connected andΨψI =
〈
αψβψ,Pψ〉 is transitive onXψ

αψ,βψ
if

and only ifΨI = 〈αβ,P〉 is transitive onXα,β. We get a result in the following.

Theorem5.3.11 The Euler characteristicχ(Mψ) of the lifting map Mψ of a multi-voltage

map(M, Γ̃) is

χ(Mψ) = |Γ|
χ(M) +

n∑

i=1

∑

f∈F(M)

(
1

o(ψ( f , ◦i))
− 1

n

) ,

where F(M) and o(ψ( f , ◦i)) denote the set of faces in M and the order ofψ( f , ◦i) in (Γ; ◦i),

respectively.

Proof By definition the lifting mapMϑ has|Γ|ν(M) vertices,|Γ|ε(M) edges. Notice

that each lifting of the boundary walk of a face is a homogenous lifting by definition of

βψ. Similar to the proof of Theorem 2.2.3, we know thatMϑ has
n∑

i=1

∑
f∈F(M)

|Γ|
o(ψ( f ,◦i )) faces.

By the Eular-Poincaré formula we get that

χ(Mψ) = ν(Mψ) − ε(Mψ) + φ(Mψ)

= |Γ|ν(M) − |Γ|ε(M) +
n∑

i=1

∑

f∈F(M)

|Γ|
o(ψ( f , ◦i))

= |Γ|
χ(M) − φ(M) +

n∑

i=1

∑

f∈F(M)

1
o(ψ( f , ◦i))



= |G|
χ(M) +

n∑

i=1

∑

f∈F(M)

(
1

o(ψ( f , ◦i))
− 1

n

) . �

Recently, more and more papers concentrated on findingregular mapson surface,

which are related withdiscrete groups, discrete geometryandcrystal physics. For this
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objective, an important way is by the voltage assignment technique on maps. See refer-

ences [Mal1], [MNS1] and [NeS1]-[NeS1] for details. It is also an interesting problem

to apply multi-voltage maps for finding non-regular or othermaps with some constraint

conditions.

Motivated by the Four Color Conjecture, Tait conjectured thatevery simple 3-polytope

is hamiltonianin 1880. By Steinitz’s a famous result (See [Gru1] for details), this con-

jecture is equivalent to thatevery 3-connected cubic planar graph is hamiltonian. Tutte

disproved this conjecture by giving a 3-connected non-hamiltonian cubic planar graph

with 46 vertices in 1946 and proved thatevery4-connected planar graph is hamiltonian

[Tut1] in 1956. In [Gru3], Grünbaum conjectured thateach4-connected graph embed-

dable in the torus or in the projective plane is hamiltonian. This conjecture had been

solved for the projective plane case by Thomas and Yu [ThY1] in 1994. Notice that

the splitting operatorϑ constructed in the proof of Theorem 2.2.10 is a planar operator.

Applying Theorem 2.2.10 on surfaces we know thatfor every map M on a surface, Mϑ

is non-hamiltonian. In fact, we can further get an interesting result related with Tait’s

conjecture.

Theorem 5.3.12 There exist infinite3−connected non-hamiltonian cubic maps on each

locally orientable surface.

Proof Notice that there exist 3-connected triangulations on every locally orientable

surfaceS. Each dual of them is a 3-connected cubic map onS. Now we define a splitting

operatorσ as shown in Fig.5.3.4.

v

x1

x2 x3

x1

y1

u1v1

u2

v2 u3

v3

x2

y3

x3

y2

z0
z1

z2

z3

Fig.5.3.4

For a 3-connected cubic mapM, we prove thatMσ(v) is non-hamiltonian for∀v ∈
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V(M). According to Theorem 2.1.7, we only need to prove that there are noy1 − y2, or

y1 − y3, or y2 − y3 hamiltonian path in the nucleusN(σ(v)) of operatorσ.

Let H(zi) be a component ofN(σ(v))\{z0zi , yi−1ui+1, yi+1vi−1} which contains the ver-

tex zi , 1 ≤ i ≤ 3(all these indices mod 3). If there exists ay1 − y2 hamiltonian pathP in

N(σ(v)), we prove that there must be aui − vi hamiltonian path in the subgraphH(zi) for

an integeri, 1 ≤ i ≤ 3.

SinceP is a hamiltonian path inN(σ(v)), there must be thatv1y3u2 or u2y3v1 is a

subpath ofP. Now letE1 = {y1u3, z0z3, y2v3}, we know that|E(P)
⋂

E1| = 2. SinceP is a

y1 − y2 hamiltonian path in the graphN(σ(v)), we must havey1u3 < E(P) or y2v3 < E(P).

Otherwise, by|E(P)
⋂

S1| = 2 we get thatz0z3 < E(P). But in this case,P can not be a

y1 − y2 hamiltonian path inN(σ(v)), a contradiction.

Assumey2v3 < E(P). Theny2u1 ∈ E(P). Let E2 = {u1y2, z1z0, v1y3}. We also know

that |E(P)
⋂

E2| = 2 by the assumption thatP is a hamiltonian path inN(σ(v)). Hence

z0z1 < E(P) and thev1 − u1 subpath inP is a v1 − u1 hamiltonian path in the subgraph

H(z1).

Similarly, if y1u3 < E(P), theny1v2 ∈ E(P). Let E3 = {y1v2, z0z2, y3u2}. We can also

get that|E(P)
⋂

E3| = 2 and av2 − u2 hamiltonian path in the subgraphH(z2).

Now if there is av1−u1 hamiltonian path in the subgraphH(z1), then the graphH(z1)+

u1v1 must be hamiltonian. According to the Grinberg’s criterionfor planar hamiltonian

graphs, we know that

φ′3 − φ”3 + 2(φ′4 − φ”4) + 3(φ′5 − φ”5) + 6(φ′8 − φ”8) = 0, (5− 1)

whereφ′i or φ” i is the number ofi-gons in the interior or exterior of a chosen hamiltonian

circuit C passing throughu1v1 in the graphH(z1) + u1v1. Since it is obvious that

φ′3 = φ”8 = 1, φ”3 = φ
′
8 = 0,

we get that

2(φ′4 − φ”4) + 3(φ′5 − φ”5) = 5, (5− 2)

by (5-1). Becauseφ′4+φ”4 = 2, soφ′4−φ”4 = 0, 2 or −2. Now the valency ofz1 in H(z1) is

2, so the 4-gon containing the vertexz1 must be in the interior ofC, that isφ′4− φ”4 , −2.

If φ′4−φ”4 = 0 orφ′4−φ”4 = 2, we get 3(φ′5−φ”5) = 5 or 3(φ′5−φ”5) = 1, a contradiction.

Notice thatH(z1) ≃ H(z2) ≃ H(z3). If there exists av2−u2 hamiltonian path inH(z2),

a contradiction can be also gotten. So there does not exist ay1−y2 hamiltonian path in the
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graphN(σ(v)). Similarly , there are noy1 − y3 or y2 − y3 hamiltonian paths in the graph

N(σ(v)). Whence,Mσ(v) is non-hamiltonian.

Now let n be an integer,n ≥ 1. We get that

M1 = (M)σ(u), u ∈ V(M);

M2 = (M1)
N(σ(v))(v), v ∈ V(M1);

· · · · · · · · · · · · · · · · · · · · · · · · · · · ;

Mn = (Mn−1)
N(σ(v))(w), w ∈ V(Mn−1);

· · · · · · · · · · · · · · · · · · · · · · · · · · · .

All of these maps are 3-connected non-hamiltonian cubic maps on the surfaceS. This

completes the proof. �

Corollary 5.3.3 There is not a locally orientable surface on which every 3-connected

cubic map is hamiltonian.

§5.4 MULTI-EMBEDDINGS OF GRAPHS

5.4.1 Multi-Surface Genus Range.Let S1,S2, · · · ,Sk bek locally orientable surfaces

andG a connected graph. Define numbers

γ(G; S1,S2, · · · ,Sk) = min


k∑

i=1

γ(Gi)

∣∣∣∣∣∣∣
G =

k⊎

i=1

Gi,Gi → Si, 1 ≤ i ≤ k

 ,

γM(G; S1,S2, · · · ,Sk) = max


k∑

i=1

γ(Gi)

∣∣∣∣∣∣∣
G =

k⊎

i=1

Gi ,Gi → Si , 1 ≤ i ≤ k



and themulti-genus range GR(G; S1,S2, · · · ,Sk) by

GR(G; S1,S2, · · · ,Sk) =


k∑

i=1

g(Gi)

∣∣∣∣∣∣∣
G =

k⊎

i=1

Gi,Gi → Si, 1 ≤ i ≤ k

 ,

whereGi is embeddable on a surface of genusg(Gi). Then we get the following result.

Theorem 5.4.1 Let G be a connected graph and let S1,S2, · · · ,Sk be locally orientable

surfaces with empty overlapping. Then

GR(G; S1,S2, · · · ,Sk) = [γ(G; S1,S2, · · · ,Sk), γM(G; S1,S2, · · · ,Sk)].
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Proof Let G =
k⊎

i=1
Gi,Gi → Si , 1 ≤ i ≤ k. We prove that there are no gap in

the multi-genus range fromγ(G1) + γ(G2) + · · · + γ(Gk) to γM(G1) + γM(G2) + · · · +
γM(Gk). According to Theorems 2.3.8 and 2.3.12, we know that the genus rangeGRO(Gi)

or GRN(G) is [γ(Gi), γM(Gi)] or
[̃
γ(Gi), γ̃M(Gi)

]
for any integeri, 1 ≤ i ≤ k. Whence,

there exists a multi-embedding ofG on k locally orientable surfacesP1,P2, · · · ,Pk with

g(P1) = γ(G1), g(P2) = γ(G2),· · ·, g(Pk) = γ(Gk). Consider the graphG1, thenG2, and

thenG3, · · · to get multi-embedding ofG on k locally orientable surfaces step by step.

We get a multi-embedding ofG on k surfaces with genus sum at least being an unbroken

interval [γ(G1) + γ(G2) + · · · + γ(Gk), γM(G1) + γM(G2) + · · · + γM(Gk)] of integers.

By definitions ofγ(G; S1,S2, · · · ,Sk) andγM(G; S1,S2, · · · ,Sk), we assume thatG =
k⊎

i=1
G′i ,G

′
i → Si , 1 ≤ i ≤ k andG =

k⊎
i=1

G′′i ,G
′′
i → Si, 1 ≤ i ≤ k attain the extremal

valuesγ(G; S1,S2, · · · ,Sk) andγM(G; S1,S2, · · · ,Sk), respectively. Then we know that

the multi-embedding ofG on k surfaces with genus sum is at least an unbroken intervals[
k∑

i=1
γ(G′i ),

k∑
i=1
γM(G′i )

]
and

[
k∑

i=1
γ(G′′i ),

k∑
i=1
γM(G′′i )

]
of integers.

Since

k∑

i=1

g(Si) ∈


k∑

i=1

γ(G′i ),
k∑

i=1

γM(G′i )


⋂

k∑

i=1

γ(G′′i ),
k∑

i=1

γM(G′′i )

 ,

we get that

GR(G; S1,S2, · · · ,Sk) = [γ(G; S1,S2, · · · ,Sk), γM(G; S1,S2, · · · ,Sk)].

This completes the proof. �

Furthermore, we get the following result for multi-surfaceembeddings of complete

graphs.

Theorem5.4.2 Let P1,P2, · · · ,Pk and Q1,Q2, · · · ,Qk be respective k orientable and non-

orientable surfaces of genus≥ 1. A complete graph Kn is multi-surface embeddable in

P1,P2, · · · ,Pk with empty overlapping if and only if

k∑

i=1


3+

√
16g(Pi) + 1

2


≤ n ≤

k∑

i=1


7+

√
48g(Pi) + 1

2



and is multi-surface embeddable in Q1,Q2, · · · ,Qk with empty overlapping if and only if

k∑

i=1

⌈
1+

√
2g(Qi)

⌉
≤ n ≤

k∑

i=1


7+

√
24g(Qi) + 1

2

 .
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Proof According to Theorems 5.3.4-5.3.9, we know that the genusg(P) of an ori-

entable surfaceP on which a complete graphKn is embeddable satisfies
⌈
(n− 3)(n− 4)

12

⌉
≤ g(P) ≤

⌊
(n− 1)(n− 2)

4

⌋
,

i.e.,
(n− 3)(n− 4)

12
≤ g(P) ≤ (n− 1)(n− 2)

4
.

If g(P) ≥ 1, we get that

3+

√
16g(P) + 1

2


≤ n ≤


7+

√
48g(P) + 1

2

 .

Similarly, if Kn is embeddable on a non-orientable surfaceQ, then
⌈
(n− 3)(n− 4)

6

⌉
≤ g(Q) ≤

⌊
(n− 1)2

2

⌋
,

i.e.,
⌈
1+

√
2g(Q)

⌉
≤ n ≤


7+

√
24g(Q) + 1

2

 .

Now if Kn is multi-surface embeddable inP1,P2, · · · ,Pk with empty overlapping,

then there must exists a partitionn = n1 + n2 + · · · + nk, ni ≥ 1, 1 ≤ i ≤ k. Since each

vertex-induced subgraph of a complete graph is still a complete graph, we know that for

any integeri, 1 ≤ i ≤ k,

3+

√
16g(Pi) + 1

2


≤ ni ≤


7+

√
48g(Pi) + 1

2

 .

Whence, we know that

k∑

i=1


3+

√
16g(Pi) + 1

2


≤ n ≤

k∑

i=1


7+

√
48g(Pi) + 1

2

 . (5− 3)

On the other hand, if the inequality (5-3) holds, we can find positive integersn1, n2,

· · · , nk with n = n1 + n2 + · · · + nk and

3+

√
16g(Pi) + 1

2


≤ ni ≤


7+

√
48g(Pi) + 1

2

 .

for any integeri, 1 ≤ i ≤ k. This enables us to establish a partitionKn =
k⊎

i=1
Kni for Kn

and embed eachKni on Pi for 1 ≤ i ≤ k. Therefore, we get a multi-embedding ofKn in

P1,P2, · · · ,Pk with empty overlapping.
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Similarly, if Kn is multi-surface embeddable inQ1,Q2, · · ·Qk with empty overlap-

ping, there must exists a partitionn = m1 +m2 + · · · +mk, mi ≥ 1, 1 ≤ i ≤ k and

⌈
1+

√
2g(Qi)

⌉
≤ mi ≤


7+

√
24g(Qi) + 1

2

 .

for any integeri, 1 ≤ i ≤ k. Whence, we get that

k∑

i=1

⌈
1+

√
2g(Qi)

⌉
≤ n ≤

k∑

i=1


7+

√
24g(Qi) + 1

2

 . (5− 4)

Now if the inequality (5-4) holds, we can also find positive integersm1,m2, · · · ,mk

with n = m1 +m2 + · · · +mk and

⌈
1+

√
2g(Qi)

⌉
≤ mi ≤


7+

√
24g(Qi) + 1

2

 .

for any integeri, 1 ≤ i ≤ k. Similar to those of orientable cases, we get a multi-surfaces

embedding ofKn in Q1,Q2, · · · ,Qk with empty overlapping. �

Corollary 5.4.1 A complete graph Kn is multi-surface embeddable in k, k ≥ 1 orientable

surfaces of genus p, p ≥ 1 with empty overlapping if and only if


3+

√
16p+ 1

2


≤ n

k
≤


7+

√
48p+ 1

2



and is multi-surface embeddable in l, l ≥ 1 non-orientable surfaces of genus q, q ≥ 1 with

empty overlapping if and only if

⌈
1+

√
2q

⌉
≤ n

k
≤


7+

√
24q+ 1

2

 .

Corollary 5.4.2 A complete graph Kn is multi-surface embeddable in s, s ≥ 1 tori with

empty overlapping if and only if

4s≤ n ≤ 7s

and is multi-surface embeddable in t, t ≥ 1 projective planes with empty overlapping if

and only if

3t ≤ n ≤ 6t.

Similarly, the following result holds for complete bipartite graphsK(n, n), n ≥ 1.
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Theorem 5.4.3 Let P1,P2, · · · ,Pk and Q1,Q2, · · · ,Qk be respective k orientable and k

non-orientable surfaces of genus≥ 1. A complete bipartite graph K(n, n) is multi-surface

embeddable in P1,P2, · · · ,Pk with empty overlapping if and only if

k∑

i=1

⌈
1+

√
2g(Pi)

⌉
≤ n ≤

k∑

i=1

⌊
2+ 2

√
g(Pi)

⌋

and is multi-surface embeddable in Q1,Q2, · · · ,Qk with empty overlapping if and only if

k∑

i=1

⌈
1+

√
g(Qi)

⌉
≤ n ≤

k∑

i=1

⌊
2+

√
2g(Qi)

⌋
.

Proof Similar to the proof of Theorem 5.4.2, we get the result. �

5.4.2 Classification of Manifold Graph. By Theorem 5.2.1, we can give a combina-

torial definition for a graph embedded in ann-manifold, i.e., amanifold graphsimilar to

that the Tutte’s definition for combinatorial maps.

Definition 5.4.1 For any integer n, n ≥ 2, an n-dimensional manifold graphnG is a pair
nG = (EΓ,L) in where a permutationL acting onEΓ of a disjoint unionΓx = {σx|σ ∈ Γ}
for ∀x ∈ E, where E is a finite set andΓ = {µ, o|µ2 = on = 1, µo = oµ} is a commutative

group of order2n with the following conditions hold:

(1) ∀x ∈ EK, there does not exist an integer k such thatLkx = oi x for ∀i, 1 ≤ i ≤
n− 1;

(2) µL = L−1µ;

(3) The groupΨJ = 〈µ, o,L〉 is transitive onEΓ.

According to conditions (1) and (2), avertex v of an n-dimensional manifold graph

is defined to be ann-tuple

{(oi x1, o
i x2, · · · , oi xsl (v))(o

iy1, o
iy2, · · · , oiys2(v)) · · · (oiz1, o

iz2, · · · , oizsl(v)(v)); 1 ≤ i ≤ n}

of permutations ofL action onEΓ, edges to be these orbits ofΓ action onEΓ. The

numbers1(v) + s2(v) + · · · + sl(v)(v) is called thevalency of v, denoted byρs1,s2,···,sl(v)

G (v).

The condition (iii ) is used to ensure that ann-dimensional manifold graph is connected.

Comparing definitions of a map with that ofn-dimensional manifold graph, the following

result holds.
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Theorem 5.4.4 For any integer n, n ≥ 2, every n-dimensional manifold graphnG =
(EΓ,L) is correspondent to a unique map M= (Eα,β,P) in which each vertex v innG is

converted to l(v) vertices v1, v2, · · · , vl(v) of M. Conversely, a map M= (Eα,β,P) is also

correspondent to an n-dimensional manifold graphnG = (EΓ,L) in which l(v) vertices

u1, u2, · · · , ul(v) of M are converted to one vertex u ofnG.

Two n-dimensional manifold graphsnG1 = (E1
Γ1
,L1) andnG2 = (E2

Γ2
,L2) are said to

be isomorphicif there exists a one-to-one mappingκ : E1
Γ1
→ E2

Γ2
such thatκµ = µκ, κo =

oκ andκL1 = L2κ. If E1
Γ1
= E2

Γ2
= EΓ andL1 = L2 = L, an isomorphism betweennG1 and

nG2 is called an automorphism ofnG = (EΓ,L). It is immediately that all automorphisms

of nG form a group under the composition operation. We denote thisgroup by AutnG.

It is clear that for two isomorphicn-dimensional manifold graphsnG1 andnG2, their

underlying graphsG1 andG2 are isomorphic. For an embeddingnG = (EΓ,L) in an

n-dimensional manifold and∀ζ ∈ Aut 1
2
G, an induced action ofζ on EΓ is defined by

ζ(gx) = gζ(x) for ∀x ∈ EΓ and∀g ∈ Γ. Then the following result holds.

Theorem 5.4.5 AutnG � Aut 1
2
G × 〈µ〉.

Proof First we prove that twon-dimensional manifold graphsnG1 = (E1
Γ1
,L1)

andnG2 = (E2
Γ2
,L2) are isomorphic if and only if there is an elementζ ∈ Aut 1

2
Γ such

thatLζ1 = L2 orL−1
2 .

If there is an elementζ ∈ Aut 1
2
Γ such thatLζ1 = L2, then then-dimensional manifold

graphnG1 is isomorphic tonG2 by definition. If Lζ1 = L−1
2 , thenLζµ1 = L2. The n-

dimensional manifold graphnG1 is also isomorphic tonG2.

By the definition of isomorphismξ betweenn-dimensional manifold graphsnG1 and
nG2, we know that

µξ(x) = ξµ(x), oξ(x) = ξo(x) andLξ1(x) = L2(x)

for ∀x ∈ EΓ. By definition these conditions

oξ(x) = ξo(x) andLξ1(x) = L2(x)

are just the condition of an automorphismξ orαξ onX1
2
(Γ). Whence, the assertion is true.

Now letE1
Γ1
= E2

Γ2
= EΓ andL1 = L2 = L. We know that

AutnG � Aut 1
2
G× 〈µ〉 . �
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Similarly, the action of an automorphism of manifold graph onEΓ is fixed-free shown

in the following.

Theorem 5.4.6 Let nG = (EΓ,L) be an n-dimensional manifold graph. Then(AutnG)x is

trivial for ∀x ∈ EΓ.

Proof For ∀g ∈ (AutnG)x, we prove thatg(y) = y for ∀y ∈ EΓ. In fact, since the

groupΨJ = 〈µ, o,L〉 is transitive onEΓ, there exists an elementτ ∈ ΨJ such thaty = τ(x).

By definition we know that every element inΨJ is commutative with automorphisms of
nG. Whence, we get that

g(y) = g(τ(x)) = τ(g(x)) = τ(x) = y,

i.e., (AutnG)x is trivial. �

Corollary 5.4.3 Let M = (Xα,β,P) be a map. Then for∀x ∈ Xα,β, (AutM)x is trivial.

For ann-dimensional manifold graphnG = (EΓ,L), an x ∈ EΓ is said aroot of nG.

If we have chosen a rootr on ann-dimensional manifold graphnG, thennG is called a

rooted n-dimensional manifold graph, denoted bynGr . Two rootedn-dimensional mani-

fold graphsnGr1 andnGr2 are said to beisomorphicif there is an isomorphismς between

them such thatς(r1) = r2. Applying Theorem 5.4.6 and Corollary 5.2.1, we get an enu-

meration result forn-dimensional manifold graphs underlying a graphG following.

Theorem 5.4.7 For any integer n, n ≥ 3, the number rSn (G) of rooted n-dimensional

manifold graphs underlying a graph G is

rS
n (G) =

nε(G)
∏

v∈V(G)
ρG(v)!

|Aut1
2
G| .

Proof Denote the set of all non-isomorphicn-dimensional manifold graphs under-

lying a graphG by GS(G). For ann-dimensional graphnG = (EΓ,L) ∈ GS(G), denote

the number of non-isomorphic rootedn-dimensional manifold graphs underlyingnG by

r(nG). By a result in permutation groups theory, for∀x ∈ EΓ we know that

|AutnG| = |(AutnG)x||xAutnG|.

According to Theorem 2.3.23, |(AutnG)x| = 1. Whence,|xAutnG| = |AutnG|. However there

are |EΓ| = 2nε(G) roots innG by definition. Therefore, the number of non-isomorphic
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rootedn-dimensional manifold graphs underlying ann-dimensional graphnG is

r(nG) =
|EΓ|
|AutnG| =

2nε(G)
|AutnG| .

Whence, the number of non-isomorphic rootedn-dimensional manifold graphs underly-

ing a graphG is

rS
n (G) =

∑

nG∈GS(G)

2nε(G)
|AutnG| .

According to Theorem 5.4.5, AutnG � Aut 1
2
G × 〈µ〉. Whenceτ ∈ AutnG for nG ∈ GS(G)

if and only if τ ∈ (Aut 1
2
G × 〈µ〉)nG. Therefore, we know that AutnG = (Aut 1

2
G × 〈µ〉)nG.

Because of|Aut 1
2
G× 〈µ〉 | = |(Aut 1

2
G× 〈µ〉)nG||nG

Aut 1
2

G×〈µ〉|, we get that

|nGAut 1
2

G×〈µ〉| =
2|Aut 1

2
G|

|AutnG| .

Therefore,

rS
n (G) =

∑

nG∈GS(G)

2nε(G)
|AutnG|

=
2nε(G)

|Aut 1
2
G× 〈µ〉 |

∑

nG∈GS(G)

|Aut 1
2
G× 〈µ〉 |
|AutnG|

=
2nε(G)

|Aut 1
2
G× 〈µ〉 |

∑

nG∈GS(G)

|nGAut 1
2

G×〈µ〉|

=

nε(G)
∏

v∈V(G)
ρG(v)!

|Aut 1
2
G|

by applying Corollary 5.2.1. �

Notice the fact that an embedded graph in 2-dimensional manifold is just a map

and Definition 5.4.1 turn to Tutte’s definition for combinatorial map. We can also get

an enumeration result for rooted maps on surfaces underlying a graphG by applying

Theorems 5.3.2 and 5.4.6 following.

Theorem5.4.8([MaL4]) The number rL(Γ) of rooted maps on locally orientable surfaces

underlying a connected graph G is

rL(G) =

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut1
2
G| ,
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whereβ(G) = ε(G) − ν(G) + 1 is the Betti number of G.

Similarly, for a graphG =
l⊕

i=1
Gi and a multi-manifoldM̃ =

l⋃
i=1

M li , choosel com-

mutative groupsΓ1, Γ2, · · · , Γl, whereΓi =
〈
µi , oi |µ2

i = ohi = 1
〉

for any integeri, 1 ≤ i ≤ l.

Consider permutations acting on
l⋃

i=1
EΓi , where for any integeri, 1 ≤ i ≤ l, EΓi is a disjoint

unionΓi x = {σi x|σi ∈ Γ} for ∀x ∈ E(Gi). Similar to Definition 5.4.1, we can also get a

multi-embedding ofG in M̃ =
l⋃

i=1
Mhi .

§5.5 GRAPH PHASE SPACES

5.5.1 Graph Phase. For convenience, we first introduce some notations used in this

section in the following.

M̃ – A multi-manifoldM̃ =
n⋃

i=1
Mni , where eachMni is anni-manifold,ni ≥ 2.

u ∈ M̃ – A pointu of M̃ .

G – A graphG embedded iñM .

C(M̃ ) – The set of differentiable mappingsω : M̃ → M̃ at each pointu in M̃ .

Now we define the phase of graph in a multi-space following.

Definition 5.5.1 Let G be a graph embedded in a multi-manifold̃M . A phase ofG in

M̃ is a triple (G;ω,Λ) with an operation◦ on C(M̃), whereω : V(G) → C(M̃ ) and

Λ : E(G) → C(M̃ ) such thatΛ(u, v) =
ω(u) ◦ ω(v)
‖ u− v ‖ for ∀(u, v) ∈ E(G), where‖ u ‖

denotes the norm ofu.

For examples, the complete graphK4 embedded inR3 has a phase as shown in

Fig.5.5.1, whereg ∈ C(R3) andh ∈ C(R3).

u

vw
o

g(u)

g(v)g(w)

g(o)

h(u,w) h(u, v)

h(v,w)

h(u, o)

h(o,w)
h(o, v)

Fig.5.5.1
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Similar to the adjacent matrix of graph, we can also define matrixes on graph phases.

Definition 5.5.2 Let (G;ω,Λ) be a phase and A[G] = [ai j ]p×p the adjacent matrix of

a graph G with V(G) = {v1, v2, · · · , vp}. Define matrixes V[G] = [Vi j ]p×p andΛ[G] =

[Λi j ]p×p by

Vi j =
ω(vi)
‖ vi − vj ‖

i f ai j , 0; otherwise,Vi j = 0

and

Λi j =
ω(vi) ◦ ω(vj)

‖ vi − vj ‖2
i f ai j , 0; otherwise,Λi j = 0,

where�◦�is an operation on C(M̃).

For example, for the phase ofK4 in Fig.5.5.1, if choiceg(u) = (x1, x2, x3), g(v) =

(y1, y2, y3), g(w) = (z1, z2, z3), g(o) = (t1, t2, t3) and◦ = ×, the multiplication of vectors in

R3, then we get that

V(G) =



0 g(u)
ρ(u,v)

g(u)
ρ(u,w)

g(u)
ρ(u,o)

g(v)
ρ(v,u) 0 g(v)

ρ(v,w)
g(v)
ρ(v,t)

g(w)
ρ(w,u)

g(w)
ρ(w,v) 0 g(w)

ρ(w,o)
g(o)
ρ(o,u)

g(o)
ρ(o,v)

g(o)
ρ(o,w) 0


,

where,

ρ(u, v) = ρ(v, u) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

ρ(u,w) = ρ(w, u) =
√

(x1 − z1)2 + (x2 − z2)2 + (x3 − z3)2,

ρ(u, o) = ρ(o, u) =
√

(x1 − t1)2 + (x2 − t2)2 + (x3 − t3)2,

ρ(v,w) = ρ(w, v) =
√

(y1 − z1)2 + (y2 − z2)2 + (y3 − z3)2,

ρ(v, o) = ρ(o, v) =
√

(y1 − t1)2 + (y2 − t2)2 + (y3 − t3)2,

ρ(w, o) = ρ(o,w) =
√

(z1 − t1)2 + (z2 − t2)2 + (z3 − t3)2

and

Λ(G) =



0 g(u)×g(v)
ρ2(u,v)

g(u)×g(w)
ρ2(u,w)

g(u)×g(o)
ρ2(u,o)

g(v)×g(u)
ρ2(v,u) 0 g(v)×g(w)

ρ2(v,w)
g(v×g(o)
ρ2(v,o)

g(w)×g(u)
ρ2(w,u)

g(w)×g(v)
ρ2(w,v) 0 g(w)×g(o)

ρ2(w,o)
g(o)×g(u)
ρ2(o,u)

g(o)×g(v)
ρ2(o,v)

g(o)×g(w)
ρ2(o,w) 0


,
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where,

g(u) × g(v) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1),

g(u) × g(w) = (x2z3 − x3z2, x3z1 − x1z3, x1z2 − x2z1),

g(u) × g(o) = (x2t3 − x3t2, x3t1 − x1t3, x1t2 − x2t1),

g(v) × g(u) = (y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1),

g(v) × g(w) = (y2z3 − y3z2, y3z1 − y1z3, y1z2 − y2z1),

g(v) × g(o) = (y2t3 − y3t2, y3t1 − y1t3, y1t2 − y2t1),

g(w) × g(u) = (z2x3 − z3x2, z3x1 − z1x3, z1x2 − z2x1),

g(w) × g(v) = (z2y3 − z3y2, z3y1 − z1y3, z1y2 − z2y1),

g(w) × g(o) = (z2t3 − z3t2, z3t1 − z1t3, z1t2 − z2t1),

g(o) × g(u) = (t2x3 − t3x2, t3x1 − t1x3, t1x2 − t2x1),

g(o) × g(v) = (t2y3 − t3y2, t3y1 − t1y3, t1y2 − t2y1),

g(o) × g(w) = (t2z3 − t3z2, t3z1 − t1z3, t1z2 − t2z1).

For two given matrixesA = [ai j ]p×p andB = [bi j ]p×p, thestar product�∗�on an

operation�◦�is defined byA∗B = [ai j ◦bi j ]p×p. We get the following result for matrixes

V[G] andΛ[G].

Theorem 5.5.1 V[G] ∗ Vt[G] = Λ[G].

Proof Calculation shows that each (i, j) entry inV[G] ∗ Vt[G] is

ω(vi)
‖ vi − vj ‖

◦
ω(vj)

‖ vj − vi ‖
=
ω(vi) ◦ ω(vj)

‖ vi − vj ‖2
= Λi j ,

where 1≤ i, j ≤ p. Therefore, we get that

V[G] ∗ Vt[G] = Λ[G]. �

An operation on graph phases calledadditionis defined in the following.

Definition 5.5.3 For two phase spaces(G1;ω1,Λ1), (G2;ω2,Λ2) of graphs G1,G2 in M̃

and two operations�•�and�◦�on C(M̃), their addition is defined by

(G1;ω1,Λ1)
⊕

(G2;ω2,Λ2) = (G1

⊕
G2;ω1 • ω2,Λ1 •Λ2),

whereω1 • ω2 : V(G1
⋃G2)→ C(M̃) satisfying
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ω1 • ω2(u) =



ω1(u) • ω2(u), i f u ∈ V(G1)
⋂

V(G2),

ω1(u), i f u ∈ V(G1) \ V(G2),

ω2(u), i f u ∈ V(G2) \ V(G1).

and

Λ1 • Λ2(u, v) =
ω1 • ω2(u) ◦ ω1 • ω2(v)

‖ u− v ‖2
for (u, v) ∈ E(G1)

⋃
E(G2).

The following result is immediately gotten by Definition 5.5.3.

Theorem 5.5.2 For two given operations�•�and�◦�on C(M̃), all graph phases iñM

form a linear space on the field Z2 with a phase
⊕

for any graph phases(G1;ω1,Λ1) and

(G2;ω2,Λ2) in M̃.

5.5.2 Graph Phase Transformation. The transformation of graph phase is defined in

the following.

Definition 5.5.4 Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be graph phases of graphs G1 and

G2 in a multi-spaceM̃ with operations�◦1, ◦2�, respectively. If there exists a smooth

mappingτ ∈ C(M̃) such that

τ : (G1;ω1,Λ1)→ (G2;ω2,Λ2),

i.e., for∀u ∈ V(G1), ∀(u, v) ∈ E(G1), τ(G1) = G2, τ(ω1(u)) = ω2(τ(u)) andτ(Λ1(u, v)) =

Λ2(τ(u, v)), then we say(G1;ω1,Λ1) and(G2;ω2,Λ2) are transformable andτ a transform

mapping.

For examples, a projectionp transforming an embedding ofK4 in R3 on the plane

R2 is shown in Fig.5.5.2

p

Fig.5.5.2
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Theorem 5.5.3 Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be transformable graph phases with

transform mappingτ. If τ is one-to-one onG1 andG2, thenG1 is isomorphic toG2.

Proof By definitions, if τ is one-to-one onG1 andG2, thenτ is an isomorphism

betweenG1 andG2. �

A useful case in transformable graph phases is that one can find parameterst1, t2, · · · , tq,
q ≥ 1 such that each vertex of a graph phase is a smooth mapping oft1, t2, · · · , tq, i.e., for

∀u ∈ M̃, we consider it asu(t1, t2, · · · , tq). In this case, we introduce two conceptions on

graph phases.

Definition 5.5.5 For a graph phase(G;ω,Λ), define its capacity Ca(G;ω,Λ) and entropy

En(G;ω,Λ) by

Ca(G;ω,Λ) =
∑

u∈V(G)

ω(u)

and

En(G;ω,Λ) = log


∏

u∈V(G)

‖ ω(u) ‖
 .

Then we know the following result.

Theorem5.5.4 For a graph phase(G;ω,Λ), its capacity Ca(G;ω,Λ) and entropy En(G;ω,Λ)

satisfy the following differential equations

dCa(G;ω,Λ) =
∂Ca(G;ω,Λ)

∂ui
dui and dEn(G;ω,Λ) =

∂En(G;ω,Λ)
∂ui

dui,

where we use the Einstein summation convention, i.e., a sum is over i if it is appearing

both in upper and lower indices.

Proof Not loss of generality, we assumeu = (u1, u2, · · · , up) for ∀u ∈ M̃. According

to the invariance of differential form, we know that

dω =
∂ω

∂ui
dui.

By the definition of the capacityCa(G;ω,Λ) and entropyEn(G;ω,Λ) of a graph phase,

we get that

dCa(G;ω,Λ) =
∑

u∈V(G)

d(ω(u)) =
∑

u∈V(G)

∂ω(u)
∂ui

dui

=

∂(
∑

u∈V(G)
ω(u))

∂ui
dui =

∂Ca(G;ω,Λ)
∂ui

dui.
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Similarly, we also obtain that

dEn(G;ω,Λ) =
∑

u∈V(G)

d(log ‖ ω(u) ‖) =
∑

u∈V(G)

∂ log |ω(u)|
∂ui

dui

=

∂(
∑

u∈V(G)
log ‖ ω(u) ‖)

∂ui
dui =

∂En(G;ω,Λ)
∂ui

dui.

This completes the proof. �

For the 3-dimensional Euclid space, we get some formulae forgraph phases (G;ω,Λ)

by choiceu = (x1, x2, x3) andv = (y1, y2, y3),

ω(u) = (x1, x2, x3) for ∀u ∈ V(G),

Λ(u, v) =
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
for ∀(u, v) ∈ E(G),

Ca(G;ω,Λ) =


∑

u∈V(G)

x1(u),
∑

u∈V(G)

x2(u),
∑

u∈V(G)

x3(u)



and

En(G;ω,Λ) =
∑

u∈V(G)

log(x2
1(u) + x2

2(u) + x2
3(u).

§5.6 RESEARCH PROBLEMS

5.6.1 Besides to embed a graph intok different surfacesS1,S2, · · · ,Sk for an integerk ≥
1, such as those of discussed in this chapter, we can also consider a graphG embedded in

a multi-surface. A multi-surfacẽS is introduced for characterizing hierarchical structures

of topological space. Besides this structure, its base lineLB is common and the same as

that of standard surfaceOp or Nq. Since all genus of surface in a multi-surfaceS̃ is the

same, we define the genusg(S̃) of S̃ to be the genus of its surface. Define its orientable

or non-orientable genus̃γO
m(G), γ̃N

m(G) on multi-surfacẽS consisting ofm surfacesS by

γ̃O
m(G) = min

{
g(S̃) |G is 2− cell embeddable on orinetable multisurfaceS̃

}
,

γ̃N
m(G) = min

{
g(S̃) |G is 2− cell embeddable on orinetable multisurfaceS̃

}
.

Then we are easily knowing that̃γO
1 (G) = γ(G) and γ̃N

1 (G) = γ̃(G) by definition. The

problems for embedded graphs following are particularly interesting for researchers.
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Problem 5.6.1 Let n,m ≥ 1 be integers. DeterminẽγO
m(G) and γ̃N

m(G) for a connected

graph G, particularly, the complete graph Kn and the complete bipartite graph Kn,m.

Problem 5.6.2 Let G be a connected graph. Characterize the embedding behavior of G

on multi-surfacẽS , particularly, those embeddings whose every facial walk is a circuit,

i.e, a strong embedding of G oñS .

The enumeration of non-isomorphic objects is an important problem in combina-

torics, particular for maps on surface. See [Liu2] and [Liu4] for details. Similar problems

for multi-surface are as follows.

Problem 5.6.3 Let S̃ be a multi-surface. Enumerate embeddings or maps onS̃ by pa-

rameters, such as those of order, size, valency of rooted vertex or rooted face,· · ·.

Problem 5.6.4 Enumerate embeddings on multi-surfaces for a connected graph G.

For a connected graphG, its orientable, non-orientable genus polynomialgm[G](x),

g̃m[G](x) is defined to be

gm[G](x) =
∑

i≥0

gO
mi(G)xi and g̃m[G](x) =

∑

i≥0

gN
mi(G)xi ,

wheregO
mi(G), gN

mi(G) are the numbers ofG on orientable or non-orientable multi-surface

S̃ consisting ofm surfaces of genusi.

Problem5.6.5 Let m≥ 1be an integer. Determine gm[G](x) andg̃m[G](x) for a connected

graph G, particularly, for the complete or complete bipartite graph, the cube, the ladder,

the bouquet,· · ·.

5.6.2 A graphical propertyP(G) is called to besubgraph hereditaryif for any subgraph

H ⊆ G, H possesP(G) wheneverG posses the propertyP(G). For example, the properties:

G is completeandthe vertex coloring numberχ(G) ≤ k both are subgraph hereditary. The

hereditary property of a graph can be generalized by the following way.

Finding the behavior of a graph in space is an interesting, also important objective

for application. There are many open problems on this objective connecting with classical

mathematics. LetG andH be two graphs in a spacẽM. If there is a smooth mappingς in

C(M̃) such thatς(G) = H, then we sayG andH areequivalent inM̃. Many conceptions

in graph theory can be included in this definition, such asgraph homomorphism, graph

equivalent, · · ·, etc.
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Problem 5.6.6 Applying different smooth mappings in a space such as smooth mappings

in R3 or R4 to classify graphs and to find their invariants.

Problem 5.6.7 Find which parameters already known in graph theory for a graph is

invariant or to find the smooth mapping in a space on which thisparameter is invariant.

Problem 5.6.8 Find which parameters for a graph can be used to a graph in a space.

Determine combinatorial properties of a graph in a space.

Consider a graph in a Euclid space of dimension 3. All of its edges are seen as a

structural member, such as steel bars or rods and its vertices are hinged points. Then we

raise the following problem.

Problem 5.6.9 Applying structural mechanics to classify what kind of graph structures

are stable or unstable. Whether can we discover structural mechanics of dimension≥ 4

by this idea?

We have known the orbit of a point under an action of a group, for example, a torus

is an orbit ofZ × Z action on a point inR3. Similarly, we can also define anorbit of a

graph in a spaceunder an action on this space.

LetG be a graph in a multi-spacẽM andΠ a family of actions oñM. Define an orbit

Or(G) by

Or(G) = {π(G)| ∀π ∈ Π}.

Problem 5.6.10 Given an actionπ, continuous or discontinuous on a spacẽM, for ex-

ampleR3 and a graphG in M̃, find the orbit ofG under the action ofπ. When can we get

a closed geometrical object by this action?

Problem 5.6.11 Given a familyA of actions, continuous or discontinuous on a space

M̃ and a graphG in M̃, find the orbit ofG under these actions inA. Find the orbit of a

vertex or an edge ofG under the action ofG, and when are they closed?

5.6.3 There is an alternative way for defining transformable graphphases, i.e., by homo-

topy groups in a topological space stated as follows:

Let (G1;ω1,Λ1) and (G2;ω2,Λ2) be two graph phases. If there is a continuous map-

ping H : C
(
M̃

)
× I → C

(
M̃

)
× I , I = [0, 1] such thatH

(
C

(
M̃

)
, 0

)
= (G1;ω1,Λ1)

andH
(
C

(
M̃

)
, 1

)
= (G2;ω2,Λ2), then (G1;ω1,Λ1) and (G2;ω2,Λ2) are said twotrans-

formable graph phases.
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Similar to topology, we can also introduce product on homotopy equivalence classes

and prove that all homotopy equivalence classes form a group. This group is called a

fundamental groupand denote it byπ(G;ω,Λ). In topology there is a famous theorem,

called theSeifert and Van Kampen theoremfor characterizing fundamental groupsπ1(A)

of topological spacesA restated as follows (See [Sti1] for details).

SupposeE is a space which can be expressed as the union of path-connected open

setsA, B such thatA⋂B is path-connected andπ1(A) andπ1(B) have respective pre-

sentations

〈a1, · · · , am; r1, · · · , rn〉 , 〈b1, · · · , bm; s1, · · · , sn〉 ,

whileπ1(A
⋂B) is finitely generated. Thenπ1(E) has a presentation

〈a1, · · · , am, b1, · · · , bm; r1, · · · , rn, s1, · · · , sn, u1 = v1, · · · , ut = vt〉 ,

where ui, vi , i = 1, · · · , t are expressions for the generators ofπ1(A
⋂B) in terms of the

generators ofπ1(A) andπ1(B) respectively.

Similarly, there is a problem for the fundamental groupπ(G;ω,Λ) of a graph phase

(G;ω,Λ) following.

Problem 5.6.12 Find results similar to that of Seifert and Van Kampen theorem for the

fundamental group of a graph phase and characterize it.

5.6.4 In Euclid spaceRn, ann-ball of radius ris determined by

Bn(r) = {(x1, x2, · · · , xn)|x2
1 + x2

2 + · · · + x2
n ≤ r}.

Now we choosem n-ballsBn
1(r1), Bn

2(r2), · · · , Bn
m(rm), where for any integersi, j, 1 ≤ i, j ≤

m, Bn
i (r i)

⋂
Bn

j (r j) = or not andr i = r j or not. Ann-multi-ball is a union

B̃ =
m⋃

k=1

Bn
k(rk).

Then ann-multi-manifoldis a Hausdorff space with each point in this space has a neigh-

borhood homeomorphic to ann-multi-ball.

Problem 5.6.13 For an integer n, n ≥ 2, classifies n-multi-manifolds. Especially, classi-

fies2-multi-manifolds.



CHAPTER 6.

Map Geometry

A Smarandache geometry is nothing but a Smarandcahe multi-space consist-

ing of just two geometrical spacesA1 andA2, associated with an axiomL such

thatL holds inA1 but not holds inA2, or only hold not in bothA1 andA2 but in

distinct ways, a miniature of multi-space introduced by Smarandache in 1969.

The points in such a geometry can be classified into three classes, i.e., elliptic,

Euclidean and hyperbolic types. For the case only with finitepoints of elliptic

and hyperbolic types, such a geometry can be characterized by combinatorial

map. Thus is the geometry on Smarandache manifolds of dimension 2, i.e.,

map geometry. We introduce Smarandache geometry includingparadoxist ge-

ometry, non-geometry, counter-projective geometry, anti-geometry and Iseri’s

s-manifolds in Section 6.1. These map geometry with or without boundary are

discussed and paradoxist geometry, non-geometry, counter-projective geom-

etry and anti-geometry are constructed on such map geometryin Sections 6.2

and 6.3. The curvature of ans-line is defined in Section 6.4, where a condition

for a map on map geometry (M, µ) being Smarandachely is found. Section 6.5

presents the enumeration result for non-equivalent map geometries underly-

ing a simple graphΓ. All of these decision consist the fundamental of the

following chapters.
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§6.1 SMARANDACHE GEOMETRY

6.1.1 Geometrical Introspection. As we known, mathematics is a powerful tool of

sciences for its unity and neatness, without any shade of mankind. On the other hand,

it is also a kind of aesthetics deep down in one’s mind. There is a famous proverb says

that only the beautiful things can be handed down to today, which is also true for the

mathematics.

Here, the termsunity andneatnessare relative and local, maybe also have various

conditions. For obtaining a good result, many unimportant matters are abandoned in

the research process. Whether are those matters still unimportant in another time? It is

not true. That is why we need to think a queer question:what are lost in the classical

mathematics?

For example, a compact surface is topological equivalent toa polygon with even

number of edges by identifying each pairs of edges along its agiven direction ([Mas1] or

[Sti1]). If label each pair of edges by a lettere, e ∈ E, a surfaceS is also identified to

a cyclic permutation such that each edgee, e ∈ E just appears two times inS, one ise

and another ise−1 (orientable) ore (non-orientable). Leta, b, c, · · · denote letters inE and

A, B,C, · · · the sections of successive letters in a linear order on a surfaceS (or a string of

letters onS). Then, an orientable surface can be represented by

S = (· · · ,A, a, B, a−1,C, · · ·),

where�a ∈ E andA, B,C denote strings of letter. Three elementary transformations are

defined as follows:

(O1) (A, a, a−1, B)⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c, B, c−1);

(ii ) (A, a, b, B, a, b)⇔ (A, c, B, c);

(O3) (i) (A, a, B,C, a−1,D)⇔ (B, a,A,D, a−1,C);

(ii ) (A, a, B,C, a,D)⇔ (B, a,A,C−1, a,D−1).

If a surfaceS0 can be obtained by these elementary transformationsO1-O3 from a surface

S, it is said thatS is elementary equivalentwith S0, denoted byS ∼El S0.

We have known the following formulae from [Liu1]:

(1) (A, a, B, b,C, a−1,D, b−1,E) ∼El (A,D,C, B,E, a, b, a−1, b−1);
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(2) (A, c, B, c) ∼El (A, B−1,C, c, c);

(3) (A, c, c, a, b, a−1, b−1) ∼El (A, c, c, a, a, b, b).

Then we can get the classification theorem of compact surfaces as follows [Mas1]:

Any compact surface is homeomorphic to one of the following standard surfaces:

(P0) The sphere: aa−1;

(Pn) The connected sum of n, n ≥ 1, tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna
−1
n b−1

n ;

(Qn) The connected sum of n, n ≥ 1, projective planes:

a1a1a2a2 · · ·anan.

As we have discussed in Chapter 2, a combinatorial map is justa kind of decompo-

sition of a surface. Notice that all the standard surfaces are one face map underlying an

one vertex graph, i.e., a bouquetBn with n ≥ 1. By a combinatorial view,a combinatorial

map is nothing but a surface. This assertion is needed clarifying. For example, let us see

the left graphΠ4 in Fig.3.1.1, which is a tetrahedron.

1

2 3
4

1

2 34

Fig.6.1.1

Whether can we sayΠ4 is a sphere? Certainly NOT. Since any pointu on a sphere

has a neighborhoodN(u) homeomorphic to an open disc, thereby all angles incident

with the point 1 must be 120◦ degree on a sphere. But inΠ4, those are only 60◦ de-

gree. For making them same in a topological sense, i.e., homeomorphism, we must

blow up theΠ4 and make it become a sphere. This physical processing is shown in the

Fig.3.1. Whence, for getting the classification theorem of compactsurfaces, we lose the

angle,area, volume,distance,curvature,· · ·, etc. which are also lost in combinatorial maps.



174 Chap.6 Map Geometry

By geometrical view, theKlein Erlanger Programsays thatany geometry is nothing

but find invariants under a transformation group of this geometry. This is essentially the

group action idea and widely used in mathematics today. Surveying topics appearing in

publications for combinatorial maps, we know the followingproblems are applications of

Klein Erlanger Program:

(1) to determine isomorphism maps or rooted maps;

(2) to determine equivalent embeddings of a graph;

(3) to determine an embedding whether exists or not;

(4) to enumerate maps or rooted maps on a surface;

(5) to enumerate embeddings of a graph on a surface;

(6) · · ·, etc.

All the problems are extensively investigated by researches in the last century and

papers related those problems are still frequently appearing in journals today. Then,

what are their importance to classical mathematics?

and

what are their contributions to sciences?

Today, we have found that combinatorial maps can contributean underlying frame

for applying mathematics to sciences, i.e., through by map geometries or by graphs in

spaces.

6.1.2 Smarandache Geometry.TheSmarandache geometrywas proposed by Smaran-

dache [Sma1] in 1969, which is a generalization of classicalgeometries, i.e., theseEuclid,

Lobachevshy-Bolyai-GaussandRiemann geometriesmay be united altogether in a same

space, by some Smarandache geometries. Such geometry can beeither partially Euclidean

and partially Non-Euclidean, or Non-Euclidean. Smarandache geometries are also con-

nected with theRelativity Theorybecause they include Riemann geometry in a subspace

and with theParallel Universesbecause they combine separate spaces into one space too.

For a detail illustration, we need to consider classical geometry first.

As we known, the axiom system ofEuclid geometryconsists of 5 axioms following:

(A1) There is a straight line between any two points.

(A2) A finite straight line can produce a infinite straight line continuously.

(A3) Any point and a distance can describe a circle.
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(A4) All right angles are equal to one another.

(A5) If a straight line falling on two straight lines make the interior angles on the

same side less than two right angles, then the two straight lines, if produced indefinitely,

meet on that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:

(A5’) given a line and a point exterior this line, there is one line parallel to this line.

TheLobachevshy-Bolyai-Gauss geometry, also calledhyperbolic geometry, is a ge-

ometry with axioms (A1)− (A4) and the following axiom (L5):

(L5) there are infinitely many lines parallel to a given line passing through an exte-

rior point.

and theRiemann geometry, also calledelliptic geometry, is a geometry with axioms (A1)−
(A4) and the following axiom (R5):

there is no parallel to a given line passing through an exterior point.

By a thought of anti-mathematics:not in a nihilistic way, but in a positive one, i.e.,

banish the old concepts by some new ones: their opposites, Smarandache [Sma1] in-

troduced theparadoxist geometry, non-geometry, counter-projective geometryandanti-

geometryby contradicts respectively to axioms (A1)− (A5) in Euclid geometry following.

Paradoxist Geometry. In this geometry, its axioms consist of (A1)− (A4) and one

of the following as the axiom (P5):

(1) There are at least a straight line and a point exterior to it inthis space for which

any line that passes through the point intersect the initialline.

(2) There are at least a straight line and a point exterior to it inthis space for which

only one line passes through the point and does not intersectthe initial line.

(3) There are at least a straight line and a point exterior to it inthis space for which

only a finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do not intersect

the initial line.

(4) There are at least a straight line and a point exterior to it inthis space for which

an infinite number of lines pass through the point (but not allof them) and do not intersect

the initial line.

(5) There are at least a straight line and a point exterior to it inthis space for which

any line that passes through the point and does not intersectthe initial line.
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Non-Geometry. The non-geometry is a geometry by denial some axioms of (A1)−
(A5), such as:

(A1−) It is not always possible to draw a line from an arbitrary point to another

arbitrary point.

(A2−) It is not always possible to extend by continuity a finite lineto an infinite line.

(A3−) It is not always possible to draw a circle from an arbitrary point and of an

arbitrary interval.

(A4−) Not all the right angles are congruent.

(A5−) If a line, cutting two other lines, forms the interior anglesof the same side of

it strictly less than two right angle, then not always the twolines extended towards infinite

cut each other in the side where the angles are strictly less than two right angle.

Counter-Projective Geometry. Denoted byP the point set,L the line set andR

a relation included inP × L. A counter-projective geometry is a geometry with these

counter-axioms (C1) − (C3):

(C1) there exist: either at least two lines, or no line, that contains two given distinct

points.

(C2) let p1, p2, p3 be three non-collinear points, and q1, q2 two distinct points. Sup-

pose that{p1.q1, p3} and{p2, q2, p3} are collinear triples. Then the line containing p1, p2

and the line containing q1, q2 do not intersect.

(C3) every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms of

Euclidean geometry. As shown in [KuA1], there are at least 221− 1 such anti-geometries.

In general, a Smarandache geometry is defined as follows.

Definition 6.1.1 An axiom is said to be Smarandachely denied if the axiom behaves in

at least two different ways within the same space, i.e., validated and invalided, or only

invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely de-

nied axiom (1969).

In the Smarandache geometry, points, lines, planes, spaces, triangles,· · ·, etc are

calleds-points,s-lines,s-planes,s-spaces,s-triangles,· · ·, respectively in order to distin-

guish them from classical geometries.
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An example of Smarandache geometry in the classical geometrical sense is shown

in the following.

Example 6.1.1 Let us consider a Euclidean planeR2 and three non-collinear pointsA, B

andC. Defines-points as all usual Euclidean points onR2 ands-lines any Euclidean line

that passes through one and only one of pointsA, B andC. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist

one line passing through them is now replaced by:one s-lineandno s-line. Notice that

through any two distincts-points D,E collinear with one ofA, B andC, there is one

s-line passing through them and through any two distincts-pointsF,G lying on AB or

non-collinear with one ofA, B andC, there is nos-line passing through them such as

those shown in Fig.9.1.1(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is

only one parallel passing through it is now replaced by two statements:one paralleland

no parallel. Let L be ans-line passes throughC and is parallel in the Euclidean sense to

AB. Notice that through anys-point not lying onAB there is ones-line parallel toL and

through any others-point lying onAB there is nos-lines parallel toL such as those shown

in Fig.9.1.1(b).

L

l1

l2

D

BA

C

E

(b)(a)

D C E

A BF G

l1

Fig.6.1.1

6.1.3 Smarandache Manifold. A Smarandache manifoldis ann-dimensional mani-

fold that support a Smarandache geometry. Forn = 2, a nice model for Smarandache

geometries calleds-manifoldswas found by Iseri in [Ise1]-[Ise2] defined as follows:

An s-manifold is any collectionC(T, n) of these equilateral triangular disks Ti , 1 ≤
i ≤ n satisfying the following conditions:
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(i) each edge e is the identification of at most two edges ei, ej in two distinct trian-

gular disks Ti ,T j, 1 ≤ i, j ≤ n and i, j;

(ii ) each vertex v is the identification of one vertex in each of five, six or seven distinct

triangular disks.

The vertices are classified by the number of the disks around them. A vertex around

five, six or seven triangular disks is called anelliptic vertex, a Euclidean vertexor a

hyperbolic vertex, respectively.

In the plane, an elliptic vertexO, a Euclidean vertexP and a hyperbolic vertexQ and

an s-line L1, L2 or L3 passes through pointsO,P or Q are shown in Fig.6.1.2(a), (b), (c),

respectively.

A A

O* j
L1

P
**

L2

(a)

*
6
Q

Q

B

B

L3

(c)(b)

Fig.6.1.2

Smarandache paradoxist geometries and non-geometries canbe realized bys-manifolds,

but other Smarandache geometries can be only partly realized by this kind of manifolds.

Readers are inferred to Iseri’s book [Ise1] for those geometries.

An s-manifold is called closed if each edge is shared exactly by two triangular disks.

An elementary classification for closeds-manifolds by planar triangulation were intro-

duced in [Mao10]. They are classified into 7 classes. Each of those classes is defined in

the following.

Classical Type:

(1) ∆1 = {5− regular planar triangular maps} (elliptic);

(2) ∆2 = {6− regular planar triangular maps}(euclidean);

(3) ∆3 = {7− regular planar triangular maps}(hyperbolic).

Smarandache Type:

(4) ∆4 = {planar triangular maps with vertex valency 5 and 6} (euclid-elliptic);



Sec.6.2 Map Geometry without Boundary 179

(5) ∆5 = {planar triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {planar triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {planar triangular maps with vertex valency 5, 6 and 7} (mixed).

It is proved in [Mao10] that|∆1| = 2, |∆5| ≥ 2 and|∆i |, i = 2, 3, 4, 6, 7 are infinite

(See also [Mao37] for details). Iseri proposed a question in[Ise1]: Do the other closed

2-manifolds correspond to s-manifolds with only hyperbolicvertices? Since there are

infinite Hurwitz maps, i.e.,|∆3| is infinite, the answer is affirmative.

§6.2 MAP GEOMETRY WITHOUT BOUNDARY

6.2.1 Map Geometry Without Boundary. A combinatorial mapM can be also used

for a model of constructing Smarandache geometry. By a geometrical view, this model

is a generalizations of Isier’s model for Smarandache geometry. For a given map on a

locally orientable surface, map geometries without boundary are defined in the following

definition.

Definition 6.2.1 For a combinatorial map M with each vertex valency≥ 3, associates

a real numberµ(u), 0 < µ(u) <
4π

ρM(u)
, to each vertex u, u ∈ V(M). Call (M, µ) a

map geometry without boundary,µ(u) an angle factor of the vertex u and orientablle or

non-orientable if M is orientable or not.

A vertexu ∈ V(M) with ρM(u)µ(u) < 2π, = 2π or> 2π can be realized in a Euclidean

spaceR3, such as those shown in Fig.6.2.1, respectively.

u

u

u

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π

Fig.6.2.1

As we have pointed out in Section 6.1, this kind of realization is not a surface, but
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it is homeomorphic to a locally orientable surface by a view of topological equivalence.

Similar tos-manifolds, we also classify points in a map geometry (M, µ) without boundary

into elliptic points, Euclidean pointsandhyperbolic points, defined in the next definition.

Definition 6.2.2 A point u in a map geometry(M, µ) is said to be elliptic, Euclidean or

hyperbolic ifρM(u)µ(u) < 2π, ρM(u)µ(u) = 2π or ρM(u)µ(u) > 2π.

Then we get the following results.

Theorem 6.2.1 Let M be a map withρM(v) ≥ 3 for ∀v ∈ V(M). Then for∀u ∈ V(M),

there is a map geometry(M, µ) without boundary such that u is elliptic, Euclidean or

hyperbolic.

Proof SinceρM(u) ≥ 3, we can choose an angle factorµ(u) such thatµ(u)ρM(u) < 2π,

µ(u)ρM(u) = 2π or µ(u)ρM(u) > 2π. Notice that

0 <
2π

ρM(u)
<

4π
ρM(u)

.

Thereby we can always chooseµ(u) satisfying that 0< µ(u) <
4π

ρM(u)
. �

Theorem 6.2.2 Let M be a map of order≥ 3 and ρM(v) ≥ 3 for ∀v ∈ V(M),. Then

there exists a map geometry(M, µ) without boundary in which elliptic, Euclidean and

hyperbolic points appear simultaneously.

Proof According to Theorem 6.2.1, we can always choose an angle factorµ such

that a vertexu, u ∈ V(M) to be elliptic, or Euclidean, or hyperbolic. Since|V(M)| ≥ 3, we

can even choose the angle factorµ such that any two different verticesv,w ∈ V(M)\{u} to
be elliptic, or Euclidean, or hyperbolic as we wish. Then themap geometry (M, µ) makes

the assertion hold. �

A geodesicin a manifold is a curve as straight as possible. Applying conceptions

such as angles and straight lines in a Euclid geometry, we define s-lines ands-points in a

map geometry in the next definition.

Definition 6.2.3 Let (M, µ) be a map geometry without boundary and let S(M) be the

locally orientable surface represented by a plane polygon on which M is embedded. A

point P on S(M) is called an s-point. A line L on S(M) is called an s-line if it is straight

in each face of M and each angle on L has measure
ρM(v)µ(v)

2
when it passes through a

vertex v on M.
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Two examples fors-lines on the torus are shown in the Fig.6.2.2(a) and (b), where

M = M(B2), µ(u) =
π

2
for the vertexu in (a) and

µ(u) =
135− arctan(2)

360
π

for the vertexu in (b), i.e.,u is Euclidean in (a) but elliptic in (b). Notice that in (b), the

s-line L2 is self-intersected.* �
-
-

6 6
L1

1

1

2
2

3

3

u

(a)

-
-

6 6
u> � 77 �L2

1

1

2
2

3

3

4

4

(b)

Fig.6.2.2

If an s-line passes through an elliptic point or a hyperbolic pointu, it must has an

angle
µ(u)ρM(u)

2
with the entering line, not 180◦ which are explained in Fig.6.2.3.

- 1
u

α

L1

(a)

- qL2
u

α

(b)

α =
µ(u)ρM(u)

2
< π α =

µ(u)ρM(u)
2

> π

Fig.6.2.3

6.2.2 Paradoxist Map Geometry. In the Euclid geometry, a right angle is an angle with

measure
π

2
, half of a straight angle and parallel lines are straight lines never intersecting.

They are very important research objects. Many theorems characterize properties of them

in classical Euclid geometry. Similarly, in a map geometry,we can also define a straight

angle, a right angle and parallels-lines by Definition 6.2.2. Now astraight angleis an
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angle with measureπ for points not being vertices ofM and
ρM(u)µ(u)

2
for ∀u ∈ V(M).

A right angle is an angle with a half measure of a straight angle. Twos-lines are said

parallel if they are never intersecting. The following result asserts that there exists map

paradoxist geometry without boundary.

Theorem6.2.3 Let M be a map on a locally orientable surface with|M| ≥ 3 andρM(u) ≥
3 for ∀u ∈ V(M). Then there exists an angle factorµ : V(M) → [0, 4π) such that(M, µ)

is a Smarandache geometry by denial the axiom (E5) with axioms (E5),(L5) and (R5).

Proof By the assumptionρM(u) ≥ 3, we can always choose an angle factorµ such

thatµ(u)ρM(u) < 2π, µ(v)ρM(u) = 2π or µ(w)ρM(u) > 2π for three verticesu, v,w ∈ V(M),

i.e., there elliptic, or Euclidean, or hyperbolic points exist in (M, µ) simultaneously. The

proof is divided into three cases.

Case1. M is a planar map.

ChooseL being a line under the mapM, not intersection with it,u ∈ (M, µ). Then ifu

is Euclidean, there is one and only one line passing throughu not intersecting withL, and

if u is elliptic, there are infinite many lines passing throughu not intersecting withL, but

if u is hyperbolic, then each line passing throughu will intersect withL. See for example,

Fig.6.2.4 in where the planar graph is a complete graphK4 on a sphere and points 1, 2 are

elliptic, 3 is Euclidean but the point 4 is hyperbolic. Then all lines in the fieldA do not

intersect withL, but each line passing through the point 4 will intersect with the lineL.

Therefore, (M, µ) is a Smarandache geometry by denial the axiom (E5) with these axioms

(E5), (L5) and (R5).

*
-

L
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- 3

z
Fig.6.2.4
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Case2. M is an orientable map.

According to the classifying theorem of surfaces, We only need to prove this asser-

tion on a torus. In this case, lines on a torus has the following property (see [NiS1] for

details):

if the slopeς of a line L is a rational number, then L is a closed line on the torus.

Otherwise, L is infinite, and moreover L passes arbitrarily close to every point on the

torus.

Whence, ifL1 is a line on a torus with an irrational slope not passing through an elliptic

or a hyperbolic point, then for any pointu exterior toL1, if u is a Euclidean point, then

there is only one line passing throughu not intersecting withL1, and if u is elliptic or

hyperbolic, anys-line passing throughu will intersect withL1.

Now let L2 be a line on the torus with a rational slope not passing through an elliptic

or a hyperbolic point, such as the the lineL2 shown in Fig.6.2.5, in wherev is a Euclidean

point. If u is a Euclidean point, then each lineL passing throughu with rational slope in

the areaA will not intersect withL2, but each line passing throughu with irrational slope

in the areaA will intersect withL2. -
-

6 6
3 31 *

1

1

2 2
v

u
L2

L

A

Fig.6.2.5

Therefore, (M, µ) is a Smarandache geometry by denial the axiom (E5) with axioms

(E5), (L5) and (R5) in the orientable case.

Case3. M is a non-orientable map.

Similar to Case 2, we only need to prove this result for the projective plane. A line

in a projective plane is shown in Fig.6.2.6(a), (b) or (c), in where case (a) is a line passing

through a Euclidean point, (b) passing through an elliptic point and (c) passing through a
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hyperbolic point.
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Let L be a line passing through the center of the circle. Then ifu is a Euclidean point,

there is only one line passing throughu such as the case (a) in Fig.6.2.7. If v is an elliptic

point then there is ans-line passing through it and intersecting withL such as the case (b)

in Fig.6.2.7. We assume the point 1 is a point such that there exists a linepassing through

1 and 0, then any line in the shade of Fig.6.2.7(b) passing throughv will intersect withL.- --L0 0
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Fig.6.2.7

If w is a Euclidean point and there is a line passing through it notintersecting withL

such as the case (c) in Fig.6.2.7, then any line in the shade of Fig.6.2.7(c) passing through

w will not intersect withL. Since the position of the vertices of a mapM on a projective

plane can be choose as our wish, we know (M, µ) is a Smarandache geometry by denial

the axiom (E5) with axioms (E5),(L5) and (R5).

Combining discussions of Cases 1, 2 and 3, the proof is complete. �

6.2.3 Map Non-Geometry. Similar to those of Iseri’ss-manifolds, there are non-

geometry, anti-geometry and counter-projective geometry, · · · in map geometry without

boundary.

Theorem 6.2.4 There exists a non-geometry in map geometries without boundary.
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Proof We prove there are map geometries without boundary satisfying axioms (A−1 )−
(A−5 ). Let (M, µ) be such a map geometry with elliptic or hyperbolic points.

(1) Assumeu is a Euclidean point andv is an elliptic or hyperbolic point on (M, µ).

Let L be ans-line passing through pointsu andv in a Euclid plane. Choose a pointw in L

after but nearly enough tov when we travel onL from u to v. Then there does not exist a

line from u to w in the map geometry (M, µ) sincev is an elliptic or hyperbolic point. So

the axiom (A−1 ) is true in (M, µ).

(2) In a map geometry (M, µ), an s-line maybe closed such as we have illustrated

in the proof of Theorem 6.2.3. Choose any two pointsA, B on a closeds-line L in a map

geometry. Then thes-line betweenA andB can not continuously extend to indefinite in

(M, µ). Whence the axiom (A−2 ) is true in (M, µ).

(3) An m-circle in a map geometry is defined to be a set of continuous points in

which all points have a given distance to a given point. LetC be am-circle in a Euclid

plane. Choose an elliptic or a hyperbolic pointA on C which enables us to get a map

geometry (M, µ). ThenC has a gap inA by definition of an elliptic or hyperbolic point.

So the axiom (A−3 ) is true in a map geometry without boundary.

(4) By the definition of a right angle, we know that a right angle on an elliptic point

can not equal to a right angle on a hyperbolic point. So the axiom (A−4 ) is held in a map

geometry with elliptic or hyperbolic points.

(5) The axiom (A−5 ) is true by Theorem 6.2.3.

Combining these discussions of (i)-(v), we know that there are non-geometries in

map geometries. This completes the proof. �

6.2.4 Map Anti-Geometry. The Hilbert’s axiom systemfor a Euclid plane geometry

consists five group axioms stated in the following, where we denote each group by a

capitalRomannumeral.

I. Incidence

I − 1. For every two points A and B, there exists a line L that contains each of the

points A and B.

I − 2. For every two points A and B, there exists no more than one linethat contains

each of the points A and B.

I − 3. There are at least two points on a line. There are at least three points not on

a line.
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II. Betweenness

II − 1. If a point B lies between points A and C, then the points A, B and C are

distinct points of a line, and B also lies between C and A.

II − 2. For two points A and C, there always exists at least one point Bon the line

AC such that C lies between A and B.

II − 3. Of any three points on a line, there exists no more than one that lies between

the other two.

II − 4. Let A, B and C be three points that do not lie on a line, and let L be a line

which does not meet any of the points A, B and C. If the line L passes through a point of

the segment AB, it also passes through a point of the segment AC, or through a point of

the segment BC.

III. Congruence

III − 1. If A1 and B1 are two points on a line L1, and A2 is a point on a line L2 then

it is always possible to find a point B2 on a given side of the line L2 through A2 such that

the segment A1B1 is congruent to the segment A2B2.

III − 2. If a segment A1B1 and a segment A2B2 are congruent to the segment AB,

then the segment A1B1 is also congruent to the segment A2B2.

III − 3. On the line L, let AB and BC be two segments which except for B have no

point in common. Furthermore, on the same or on another line L1, let A1B1 and B1C1 be

two segments, which except for B1 also have no point in common. In that case, if AB is

congruent to A1B1 and BC is congruent to B1C1, then AC is congruent to A1C1.

III − 4. Every angle can be copied on a given side of a given ray in a uniquely

determined way.

III − 5 If for two triangles ABC and A1B1C1, AB is congruent to A1B1, AC is

congruent to A1C1 and ∠BAC is congruent to∠B1A1C1, then∠ABC is congruent to

∠A1B1C1.

IV. Parallels

IV − 1. There is at most one line passes through a point P exterior a line L that is

parallel to L.

V. Continuity

V − 1(Archimedes)Let AB and CD be two line segments with|AB| ≥ |CD|. Then
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there is an integer m such that

m|CD| ≤ |AB| ≤ (m+ 1)|CD|.

V − 2(Cantor) LetA1B1,A2B2, · · · ,AnBn, · · · be a segment sequence on a lineL. If

A1B1 ⊇ A2B2 ⊇ · · · ⊇ AnBn ⊇ · · · ,

then there exists a common point X on each line segment AnBn for any integer n, n ≥ 1.

Smarandache defined an anti-geometry by denial some axioms in Hilbert axiom sys-

tem for Euclid geometry. Similar to the discussion in the reference [Ise1], We obtain the

following result for anti-geometry in map geometry withoutboundary.

Theorem6.2.5 Unless axioms I−3, II −3, III −2, V−1 and V−2, an anti-geometry can

be gotten from map geometry without boundary by denial otheraxioms in Hilbert axiom

system.

Proof The axiomI − 1 has been denied in the proof of Theorem 6.2.4. Since there

maybe exists more than one line passing through two pointsA andB in a map geometry

with elliptic or hyperbolic pointsu such as those shown in Fig.6.2.8. So the axiomII − 2

can be Smarandachely denied.

u
A

B

Fig.6.2.8

Notice that ans-line maybe has self-intersection points in a map geometry without

boundary. So the axiomII − 1 can be denied. By the proof of Theorem 6.2.4, we know

that for two pointsA andB, an s-line passing throughA andB may not exist. Whence,

the axiomII − 2 can be denied. For the axiomII − 4, see Fig.6.2.9, in wherev is a

non-Euclidean point such thatρM(v)µ(v) ≥ 2(π + ∠ACB) in a map geometry.
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� ~
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Fig.6.2.9

So II − 4 can be also denied. Notice that ans-line maybe has self-intersection points.

There are maybe more than ones-lines passing through two given pointsA, B. Therefore,

the axiomsIII − 1 andIII − 3 are deniable. For denial the axiomIII − 4, since an elliptic

point u can be measured at most by a number
ρM(u)µ(u)

2
< π, i.e., there is a limitation

for an elliptic pointu. Whence, an angle with measure bigger than
ρM(u)µ(u)

2
can not be

copied on an elliptic point on a given ray.

Because there are maybe more than ones-lines passing through two given pointsA

and B in a map geometry without boundary, the axiomIII − 5 can be Smarandachely

denied in general such as those shown in Fig.6.2.10(a) and (b) whereu is an elliptic point.

uA

B

C A1 C1

B1

(a) (b)

Fig.6.2.10

For the parallel axiomIV − 1, it has been denied by the proofs of Theorems 6.2.3

and 6.2.4.

Notice that axiomsI − 3, II − 3 III − 2, V − 1 andV − 2 can not be denied in a map

geometry without boundary. This completes the proof. �

6.2.5 Counter-Projective Map Geometry. For counter-projective geometry, we know

a result following.
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Theorem6.2.6 Unless the axiom(C3), a counter-projective geometry can be gotten from

map geometry without boundary by denial axioms(C1) and(C2).

Proof Notice that axioms (C1) and (C2) have been denied in the proof of Theorem

6.2.5. Since a map is embedded on a locally orientable surface, every s-line in a map

geometry without boundary may contains infinite points. Therefore the axiom (C3) can

not be Smarandachely denied. �

§6.3 MAP GEOMETRY WITH BOUNDARY

6.3.1 Map Geometry With Boundary. A Poincaré’s modelfor a hyperbolic geometry

is an upper half-plane in which lines are upper half-circleswith center on thex-axis or

upper straight lines perpendicular to thex-axis such as those shown in Fig.6.3.1.

-
L1 L2

L3

L4 L5

L6

Fig.6.3.1

L1

L2

L3

Fig.6.3.2

If we think that all infinite points are the same, then a Poincaré’s model for a hyperbolic

geometry is turned to aKlein modelfor a hyperbolic geometry which uses a boundary

circle and lines are straight line segment in this circle, such as those shown in Fig.6.3.2.
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By a combinatorial map view, a Klein’s model is nothing but a one face map geometry.

This fact hints one to introduce map geometries with boundary defined in the following

definition.

Definition 6.3.1 For a map geometry(M, µ) without boundary and faces f1, f2, · · · , fl

∈ F(M), 1 ≤ l ≤ φ(M) − 1, if S(M) \ { f1, f2, · · · , fl} is connected, then call(M, µ)−l =

(S(M) \ { f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl and orientable or

not if (M, µ) is orientable or not, where S(M) denotes the locally orientable surface on

which M is embedded. -
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Theses-points ands-lines in a map geometry (M, µ)−l are defined as same as Def-

inition 3.2.3 by adding ans-line terminated at the boundary of this map geometry. Two

m−-lines on the torus and projective plane are shown in these Fig.6.3.4 and Fig.6.3.5,

where the shade field denotes the boundary.

6.3.2 Smarandachely Map Geometry With Boundary. Indeed, there exists Smaran-

dache geometry in map geometry with boundary convinced by results following.

Theorem 6.3.1 For a map M on a locally orientable surface with order≥ 3, vertex

valency≥ 3 and a face f ∈ F(M), there is an angle factorµ such that(M, µ)−1 is a

Smarandache geometry by denial the axiom (A5) with these axioms (A5),(L5) and (R5).

Proof Similar to the proof of Theorem 6.2.3, we consider a mapM being a planar
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map, an orientable map on a torus or a non-orientable map on a projective plane, respec-

tively. We can get the assertion. In fact, by applying the property thats-lines in a map

geometry with boundary are terminated at the boundary, we can get an more simpler proof

for this theorem. �

A B

(a)

A B

(b)

u

(c)

v u 1L

L1
P

(d) (e)

Fig.6.3.6

Notice that a one face map geometry (M, µ)−1 with boundary is just a Klein’s model

for hyperbolic geometry if we choose all points being Euclidean. Similar to that of map

geometry without boundary, we can also get non-geometry, anti-geometry and counter-

projective geometry from that of map geometry with boundaryfollowing.

Theorem 6.3.2 There are non-geometries in map geometries with boundary.

Proof The proof is similar to the proof of Theorem 6.2.4 for map geometries without

boundary. Each of axioms (A−1)− (A−5 ) is hold, for example, cases (a)− (e) in Fig.6.3.6, in

where there are no ans-line from pointsA to B in (a), the lineABcan not be continuously

extended to indefinite in (b), the circle has gap in (c), a right angle at a Euclidean point

v is not equal to a right angle at an elliptic pointu in (d) and there are infinites-lines

passing through a pointP not intersecting with thes-line L in (e). Whence, there are
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non-geometries in map geometries with boundary. �

Theorem6.3.3 Unless axioms I−3, II −3 III −2, V−1 and V−2 in the Hilbert’s axiom

system for a Euclid geometry, an anti-geometry can be gottenfrom map geometries with

boundary by denial other axioms in this axiom system.

Theorem6.3.4 Unless the axiom(C3), a counter-projective geometry can be gotten from

map geometries with boundary by denial axioms(C1) and(C2).

Proof The proofs of Theorems 6.3.3 and 6.3.4 are similar to the proofs of Theorems

6.2.5 and 6.2.6. The reader can easily completes the proof. �

§6.4 CURVATURE EQUATIONS ON MAP GEOMETRY

6.4.1 Curvature on s-Line. Let (M, µ) be a map geometry with or without boundary.

All points of elliptic or hyperbolic types in (M, µ) are callednon-Euclidean points. Now

let L be an s-line on (M, µ) with non-Euclisedn pointsA1,A2, · · · ,An for an integern ≥ 0.

Its curvature R(L) is defined by

R(L) =
n∑

i=1

(π − µ(Ai)).

An s-lineL is calledEuclideanor non-Euclideanif R(L) = ±2π or, ±2π. Then following

result characterizes s-lines on (M, µ).

Theorem6.4.1 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let L be a closed s-line without self-intersections on (M, µ) with vertices

A1, A2, · · · ,An. From the Euclid geometry on plane, we know that the angle sumof an

n-polygon is (n− 2)π. Whence, the curvatureR(L) of s-lineL is±2π by definition, i.e.,L

is Euclidean.

Now if an s-lineL is Euclidean, thenR(L) = ±2π by definition. Thus there exist

non-Euclidean pointsB1, B2, · · · , Bn such that

n∑

i=1

(π − µ(Bi)) = ±2π.

Whence,L is nothing but ann-polygon with verticesB1, B2, · · · , Bn on R2. Therefore,L

is closed without self-intersection. �
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Furthermore, we find conditions for an s-line to be that of regular polygon onR2

following.

Corollary 6.4.1 An s-line without self-intersection passing through non-Euclidean points

A1,A2, · · · ,An is a regular polygon if and only if all points A1,A2, · · · ,An are elliptic with

µ(Ai) =

(
1− 2

n

)
π

or all A1,A2, · · · ,An are hyperbolic with

µ(Ai) =

(
1+

2
n

)
π

for integers1 ≤ i ≤ n.

Proof If an s-lineL without self-intersection passing through non-Euclideanpoints

A1,A2, · · · ,An is a regular polygon, then all pointsA1,A2, · · · ,An must be elliptic (hyper-

bolic) and calculation easily shows that

µ(Ai) =

(
1− 2

n

)
π or µ(Ai) =

(
1+

2
n

)
π

for integers 1≤ i ≤ n by Theorem 9.3.5. On the other hand, ifL is an s-line passing

through elliptic (hyperbolic) pointsA1,A2, · · · ,An with

µ(Ai) =

(
1− 2

n

)
π or µ(Ai) =

(
1+

2
n

)
π

for integers 1≤ i ≤ n, then it is closed by Theorem 9.3.5. Clearly,L is a regular polygon

with verticesA1,A2, · · · ,An. �

6.4.2 Curvature Equation on Map Geometry. A map M = (Xα,β,P) is called

Smarandachelyif all of its vertices are elliptic (hyperbolic). Notice that these pendent ver-

tices is not important because it can be always Euclidean or non-Euclidean. We concen-

trate our attention to non-separated maps. Such maps alwaysexist circuit-decompositions.

The following result characterizes Smarandachely maps.

Theorem 6.4.2 A non-separated planar map M is Smarandachely if and only if there

exist a directed circuit-decomposition

E1
2
(M) =

s⊕

i=1

E
(−→
C i

)
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of M such that one of the linear systems of equations

∑

v∈V(
−→
C i )

(π − xv) = 2π, 1 ≤ i ≤ s

or ∑

v∈V(
−→
C i )

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, where E1
2
(M) denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertexv ∈ V(M) is non-Euclidean, i.e.,

µ(v) , π. Whence, there exists a directed circuit-decomposition

E1
2
(M) =

s⊕

i=1

E
(−→
C i

)

of semi-arcs inM such that each of them is an s-line in (R2, µ). Applying Theorem 9.3.5,

we know that ∑

v∈V
(−→
C i

)
(π − µ(v)) = 2π or

∑

v∈V
(−→
C i

)
(π − µ(v)) = −2π

for each circuitCi , 1 ≤ i ≤ s. Thus one of the linear systems of equations

∑

v∈V
(−→
C i

)
(π − xv) = 2π, 1 ≤ i ≤ s or

∑

v∈V
(−→
C i

)
(π − xv) = −2π, 1 ≤ i ≤ s

is solvable.

Conversely, if one of the linear systems of equations

∑

v∈V
(−→
C i

)
(π − xv) = 2π, 1 ≤ i ≤ s or

∑

v∈V
(−→
C i

)
(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, define a mappingµ : R2→ [0, 4π) by

µ(x) =


xv if x = v ∈ V(M),

π if x < v(M).

ThenM is a Smarandachely map on
(
R2, µ

)
. This completes the proof. �

In Fig.6.4.1, we present an example of a Smarandachely planar maps withµ defined

by numbers on vertices.
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Let ω0 ∈ (0, π). An s-lineL is callednon-Euclidean of typeω0 if R(L) = ±2π ± ω0.

Similar to Theorem 6.4.1, we can get the following result.

Theorem 6.4.2 A non-separated map M is Smarandachely if and only if there exist a

directed circuit-decomposition E1
2
(M) =

s⊕
i=1

E
(−→
C i

)
of M into s-lines of typeω0, ω0 ∈

(0, π) for integers1 ≤ i ≤ s such that the linear systems of equations
∑

v∈V
(−→
C i

)
(π − xv) = 2π − ω0, 1 ≤ i ≤ s;

or
∑

v∈V
(−→
C i

)
(π − xv) = −2π − ω0, 1 ≤ i ≤ s;

or
∑

v∈V
(−→
C i

)
(π − xv) = 2π + ω0, 1 ≤ i ≤ s;

or
∑

v∈V
(−→
C i

)
(π − xv) = −2π + ω0, 1 ≤ i ≤ s

is solvable.

§6.5 THE ENUMERATION OF MAP GEOMETRIES

6.5.1 Isomorphic Map Geometry. For classifying map geometries, the following defi-

nition on isomorphic map geometries is needed.
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Definition 6.5.1 Two map geometries(M1, µ1) and (M2, µ2) or (M1, µ1)−l and (M2, µ2)−l

are said to be equivalent each other if there is a bijectionθ : M1 → M2 such that for

∀u ∈ V(M), θ(u) is euclidean, elliptic or hyperbolic if and only if u is euclidean, elliptic

or hyperbolic.

6.5.2 Enumerating Map Geometries. A relation for the numbers of non-equivalent

map geometries with that of unrooted maps is established in the following.

Theorem 6.5.1 LetM be a set of non-isomorphic maps of order n and with m faces.

Then the number of map geometries without boundary is3n|M| and the number of map

geometries with one face being its boundary is3nm|M|.

Proof By the definition of equivalent map geometries, for a given map M ∈ M, there

are 3n map geometries without boundary and 3nmmap geometries with one face being its

boundary by Theorem 6.3.1. Whence, we get 3n|M| map geometries without boundary

and 3nm|M|map geometries with one face being its boundary fromM. �

We get an enumeration result for non-equivalent map geometries without boundary

following.

Theorem6.5.2 The numbers nO(Γ, g) and nN(Γ, g) of non-equivalent orientable and non-

orientable map geometries without boundary underlying a simple graphΓ by denial the

axiom (A5) by (A5), (L5) or (R5) are

nO(Γ, g) =

3|Γ|
∏

v∈V(Γ)
(ρ(v) − 1)!

2|AutΓ| ,

and

nN(Γ, g) =

(2β(Γ) − 1)3|Γ|
∏

v∈V(Γ)
(ρ(v) − 1)!

2|AutΓ| ,

whereβ(Γ) = ε(Γ) − ν(Γ) + 1 is the Betti number of the graphΓ.

Proof Denote the set of non-isomorphic maps underlying the graphΓ on locally

orientable surfaces byM(Γ) and the set of embeddings of the graphΓ on locally orientable

surfaces byE(Γ). For a mapM,M ∈ M(Γ), there are
3|M|

|AutM| different map geometries

without boundary by choice the angle factorµ on a vertexu such thatu is Euclidean,

elliptic or hyperbolic. From permutation groups, we know that

|AutΓ × 〈α〉 | = |(AutΓ)M ||MAutΓ×〈α〉| = |AutM||MAutΓ×〈α〉|.
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Therefore, we get that

nO(Γ, g) =
∑

M∈M(Γ)

3|M|

|AutM|

=
3|Γ|

|AutΓ × 〈α〉 |
∑

M∈M(Γ)

|AutΓ × 〈α〉 |
|AutM|

=
3|Γ|

|AutΓ × 〈α〉 |
∑

M∈M(Γ)

|MAutΓ×〈α〉|

=
3|Γ|

|AutΓ × 〈α〉 | |E
O(Γ)|

=

3|Γ|
∏

v∈V(Γ)
(ρ(v) − 1)!

2|AutΓ| .

Similarly, we can also get that

nN(Γ, g) =
3|Γ|

|AutΓ × 〈α〉 | |E
N(Γ)|

=

(2β(Γ) − 1)3|Γ|
∏

v∈V(Γ)
(ρ(v) − 1)!

2|AutΓ| .

This completes the proof. �

By classifying map geometries with boundary, we get a resultin the following.

Theorem 6.5.3 The numbers nO(Γ,−g), nN(Γ,−g) of non-equivalent orientable, non-

orientable map geometries with one face being its boundary underlying a simple graphΓ

by denial the axiom (A5) by (A5), (L5) or (R5) are respectively

nO(Γ,−g) =
3|Γ|

2|AutΓ|

(β(Γ) + 1)
∏

v∈V(Γ)

(ρ(v) − 1)! − 2d(g[Γ](x))
dx

|x=1



and

nN(Γ,−g) =

(
2β(Γ) − 1

)
3|Γ|

2|AutΓ|

(β(Γ) + 1)
∏

v∈V(Γ)

(ρ(v) − 1)! − 2d(g[Γ](x))
dx

|x=1

 ,

where g[Γ](x) is the genus polynomial of the graphΓ, i.e., g[Γ](x) =
γm(Γ)∑
k=γ(Γ)

gk[Γ]xk with

gk[Γ] being the number of embeddings ofΓ on the orientable surface of genus k.

Proof Notice thatν(M)− ε(M)+ φ(M) = 2− 2g(M) for an orientable mapM by the

Euler-Poincar´e formula. Similar to the proof of Theorem 3.4.2 with the same meaning for
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M(Γ), we know that

nO(Γ,−g) =
∑

M∈M(Γ)

φ(M)3|M|

|AutM|

=
∑

M∈M(Γ)

(2+ ε(Γ) − ν(Γ) − 2g(M))3|M|

|AutM|

=
∑

M∈M(Γ)

(2+ ε(Γ) − ν(Γ))3|M|
|AutM| −

∑

M∈M(Γ)

2g(M)3|M|

|AutM|

=
(2+ ε(Γ) − ν(Γ))3|M|
|AutΓ × 〈α〉 |

∑

M∈M(Γ)

|AutΓ × 〈α〉 |
|AutM|

− 2× 3|Γ|

|AutΓ × 〈α〉 |
∑

M∈M(Γ)

g(M)|AutΓ × 〈α〉 |
|AutM|

=
(β(Γ) + 1)3|M|

|AutΓ × 〈α〉 |
∑

M∈M
(Γ)|MAutΓ×〈α〉|

− 3|Γ|

|AutΓ|
∑

M∈M(Γ)

g(M)|MAutΓ×〈α〉|

=
(β(Γ) + 1)3|Γ|

2|AutΓ|
∏

v∈V(Γ)

(ρ(v) − 1)! − 3|Γ|

|AutΓ|

γm(Γ)∑

k=γ(Γ)

kgk[Γ]

=
3|Γ|

2|AutΓ|

(β(Γ) + 1)
∏

v∈V(Γ)

(ρ(v) − 1)! − 2d(g[Γ](x))
dx

|x=1

 .

by Theorem 6.5.1.

Notice thatnL(Γ,−g) = nO(Γ,−g) + nN(Γ,−g) and the number of re-embeddings an

orientable mapM on surfaces is 2β(M) (See also [Mao10] or [Mao34] for details). We

know that

nL(Γ,−g) =
∑

M∈M(Γ)

2β(M) × 3|M|φ(M)
|AutM|

= 2β(M)nO(Γ,−g).

Whence, we get that

nN(Γ,−g) = (2β(M) − 1)nO(Γ,−g)

=

(
2β(M) − 1

)
3|Γ|

2|AutΓ|

(β(Γ) + 1)
∏

v∈V(Γ)

(ρ(v) − 1)! − 2d(g[Γ](x))
dx

|x=1

 .

This completes the proof. �
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§6.6 RESEARCH PROBLEMS

6.6.1 A complete Hilbert axiom system for a Euclid geometry contains axiomsI − i, 1 ≤
i ≤ 8; II − j, 1 ≤ j ≤ 4; III − k, 1 ≤ k ≤ 5; IV − 1 andV − l, 1 ≤ l ≤ 2, which can be also

applied to the geometry of space. UnlessI − i, 4 ≤ i ≤ 8, other axioms are presented in

Section 6.2. Each of axiomsI − i, 4 ≤ i ≤ 8 is described in the following.

I − 4 For three non-collinear points A, B and C, there is one and only one plane

passing through them.

I − 5 Each plane has at least one point.

I − 6 If two points A and B of a line L are in a plane
∑

, then every point of L is in

the plane
∑

.

I − 7 If two planes
∑

1 and
∑

2 have a common point A, then they have another

common point B.

I − 8 There are at least four points not in one plane.

By the Hilbert’s axiom system, the following result for parallel planes can be ob-

tained.

(T) Passing through a given point A exterior to a given plane
∑

there is one and

only one plane parallel to
∑

.

This result seems like the Euclid’s fifth axiom. Similar to the Smarandache’s notion,

we present problems by denial this result for geometry of space following.

Problem 6.6.1 Construct a geometry of space by denial the parallel theoremof planes

with

(T−1 ) there are at least a plane
∑

and a point A exterior to the plane
∑

such that no

parallel plane to
∑

passing through the point A.

(T−2 ) there are at least a plane
∑

and a point A exterior to the plane
∑

such that

there are finite parallel planes to
∑

passing through the point A.

(T−3 ) there are at least a plane
∑

and a point A exterior to the plane
∑

such that

there are infinite parallel planes to
∑

passing through the point A.

Problem 6.6.2 Similar to that of Iseri’s idea, define points of elliptic, Euclidean, or hyper-

bolic type inR3 and apply these Plato polyhedrons to construct Smarandachegeometry

of spaceR3.
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Problem 6.6.3 Similar to that of map geometry and apply graphs inR3 to construct

Smarandache geometry of spaceR3.

Problem 6.6.4 For an integer n, n ≥ 4, define Smarandache geometry inRn by denial

some axioms for an Euclid geometry inRn and construct them.

6.6.2 The terminology ofmap geometrywas first appeared in [Mao9], which enables one

to find non-homogenous spaces from already known homogenousspaces and is also a

typical example for application combinatorial maps to metric geometries. Among them

there are many problems not solved yet until today. Here we would like to describe some

of them.

Problem 6.6.5 For a given graph G, determine non-equivalent map geometries underly-

ing a graph G, particularly, underlying graphs Kn or K(m, n), m, n ≥ 4 and enumerate

them.

Problem 6.6.6 For a given locally orientable surface S , determine non-equivalent map

geometries on S , such as a sphere, a torus or a projective plane, · · · and enumerate them.

Problem 6.6.7 Find characteristics for equivalent map geometries or establish new ways

for classifying map geometries.

Problem 6.6.8 Whether can we rebuilt an intrinsic geometry on surfaces, such as a

sphere, a torus or a projective plane,· · ·, etc. by map geometry?



CHAPTER 7.

Planar Map Geometry

As we seen, a map geometry (M, µ) is nothing but a mapM associate vertices

with an angle factorµ. This means that there are finite non-Euclidean points

in map geometry (M, µ). However, a map is a graph on surface, i.e., a geomet-

rical graph. We can also generalize the angle factor to edges, i.e., associate

points in edges of map with an angle function and then find the behavior of

points, straight lines, polygons and circles,· · ·, i.e., fundamental elements in

Euclid geometry on plane. In this case, the situation is morecomplex since

a point maybe an elliptic, Euclidean or hyperbolic and a polygon maybe an

s-line, · · ·, etc.. We introduce such map geometry on plane, discuss points

with a classification of edges in Section 7.1, lines with curvature in Section

7.2. The polygons, including the number of sides, internal angle sum, area

and circles on planar map geometry are discussed in Sections7.3 and 7.4. For

finding the behavior ofs-lines, we introduce line bundles, motivated by the

Euclid�s fifth postulate and determine their behavior on planar map geometry

in Section 7.5. All of these materials will be used for establishing relations of

an integral curve with a differential equation system in a pseudo-plane geom-

etry and continuous phenomena with that of discrete phenomena in following

chapters.
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§7.1 POINTS IN PLANAR MAP GEOMETRY

7.1.1 Angle Function on Edge.The points in a map geometry are classified into three

classes:elliptic, Euclideanand hyperbolic. There are only finite non-Euclidean points

considered in Chapter 6 because we had only defined an elliptic, Euclidean or a hyperbolic

point on vertices of mapM. In planar map geometry, we can present an even more deli-

cate consideration for Euclidean or non-Euclidean points and find infinite non-Euclidean

points in a plane.

Let (M, µ) be a planar map geometry on plane
∑

. Choose verticesu, v ∈ V(M).

A mapping is called anangle function between u and vif there is a smooth monotone

mapping f :
∑ → ∑

such thatf (u) =
ρM(u)µ(u)

2
and f (v) =

ρM(v)µ(v)
2

. Not loss of

generality, we can assume that there is an angle function on each edge in a planar map

geometry. Then we know a result following.

Theorem 7.1.1 A planar map geometry(M, µ) has infinite non-Euclidean points if and

only if there is an edge e= (u, v) ∈ E(M) such thatρM(u)µ(u) , ρM(v)µ(v), or ρM(u)µ(u)

is a constant but, 2π for ∀u ∈ V(M), or a loop(u, u) ∈ E(M) attaching a non-Euclidean

point u.

Proof If there is an edgee= (u, v) ∈ E(M) such thatρM(u)µ(u) , ρM(v)µ(v), then at

least one of verticesu andv in (M, µ) is non-Euclidean. Not loss of generality, we assume

the vertexu is non-Euclidean.

If u andv are elliptic oru is elliptic butv is Euclidean, then by the definition of angle

functions, the edge (u, v) is correspondent with an angle functionf :
∑ → ∑

such that

f (u) =
ρM(u)µ(u)

2
and f (v) =

ρM(v)µ(v)
2

, each points is non-Euclidean in (u, v) \ {v}. If u

is elliptic butv is hyperbolic, i.e.,ρM(u)µ(u) < 2π andρM(v)µ(v) > 2π, since f is smooth

and monotone on (u, v), there is one and only one pointx∗ in (u, v) such thatf (x∗) = π.

Thereby there are infinite non-Euclidean points on (u, v).

Similar discussion can be gotten for the cases thatu andv are both hyperbolic, oru

is hyperbolic butv is Euclidean, oru is hyperbolic butv is elliptic.

If ρM(u)µ(u) is a constant but, 2π for ∀u ∈ V(M), then each point on an edges is a

non-Euclidean point. Consequently, there are infinite non-Euclidean points in (M, µ).

Now if there is a loop (u, u) ∈ E(M) andu is non-Euclidean, then by definition, each

pointv on the loop (u, u) satisfying thatf (v) > or < π according toρM(u)µ(u) > π or < π.

Therefore there are also infinite non-Euclidean points on the loop (u, u).
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On the other hand, if there are no an edgee = (u, v) ∈ E(M) such thatρM(u)µ(u) ,

ρM(v)µ(v), i.e., ρM(u)µ(u) = ρM(v)µ(v) for ∀(u, v) ∈ E(M), or there are no verticesu ∈
V(M) such thatρM(u)µ(u) is a constant but, 2π for ∀, or there are no loops (u, u) ∈
E(M) with a non-Euclidean pointu, then all angle functions on these edges ofM are an

constantπ. Therefore there are no non-Euclidean points in the map geometry (M, µ). This

completes the proof. �

Characterizing Euclidean points in planar map geometry (M, µ), we get the following

result.

Theorem 7.1.2 Let (M, µ) be a planar map geometry on plane
∑

. Then

(1) Every point in
∑ \E(M) is a Euclidean point;

(2) There are infinite Euclidean points on M if and only if there exists an edge

(u, v) ∈ E(M) (u = v or u, v) such that u and v are both Euclidean.

Proof By the definition of angle functions, we know that every pointis Euclidean if

it is not onM. So the assertion (1) is true.

According to the proof of Theorem 7.1.1, there are only finite Euclidean points unless

there is an edge (u, v) ∈ E(M) with ρM(u)µ(u) = ρM(v)µ(v) = 2π. In this case, there are

infinite Euclidean points on the edge (u, v). Thereby the assertion (2) is also holds. �

7.1.2 Edge Classification.According to Theorems 7.1.1 and 7.1.2, we classify edges in

a planar map geometry (M, µ) into six classes.

C1
E (Euclidean-elliptic edges): edges(u, v) ∈ E(M) with ρM(u)µ(u) = 2π but

ρM(v)µ(v) < 2π.

C2
E (Euclidean-Euclidean edges): edges(u, v) ∈ E(M) with ρM(u)µ(u) = 2π and

ρM(v)µ(v) = 2π.

C3
E (Euclidean-hyperbolic edges): edges(u, v) ∈ E(M) with ρM(u)µ(u) = 2π but

ρM(v)µ(v) > 2π.

C4
E (elliptic-elliptic edges): edges(u, v) ∈ E(M) withρM(u)µ(u) < 2π andρM(v)µ(v) <

2π.

C5
E (elliptic-hyperbolic edges): edges(u, v) ∈ E(M) with ρM(u)µ(u) < 2π but

ρM(v)µ(v) > 2π.

C6
E (hyperbolic-hyperbolic edges): edges(u, v) ∈ E(M) with ρM(u)µ(u) > 2π and

ρM(v)µ(v) > 2π.
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In Fig.7.1.1(a)−( f ), theses-lines passing through an edge in one of classes ofC1
E-C6

E

are shown, whereu is elliptic andv is Euclidean in (a), u andv are both Euclidean in (b),

u is Euclidean butv is hyperbolic in (c), u andv are both elliptic in (d),u is elliptic butv

is hyperbolic in (e) andu andv are both hyperbolic in (f ), respectively.- 1-
3- -: --- -z-

1
-

1
-

z
z

-
1

-
v

-z

L1

L2

L3

u u u

v v
-L1

L2

L3

L1

L2

L3

(a) (b) (c)---
---

--- qzu u u

v v v

L1

L2

L3

L1

L2

L3

L1

L2

L3

(d) (e) (f)

Fig.7.1.1

Denote byVel(M),Veu(M) andVhy(M) the respective sets of elliptic, Euclidean and

hyperbolic points inV(M) in a planar map geometry (M, µ). Then we get a result as in

the following.

Theorem 7.1.3 Let (M, µ) be a planar map geometry. Then

∑

u∈Vel(M)

ρM(u) +
∑

v∈Veu(M)

ρM(v) +
∑

w∈Vhy(M)

ρM(w) = 2
6∑

i=1

|Ci
E|

and

|Vel(M)| + |Veu(M)| + |Vhy(M)| + φ(M) =
6∑

i=1

|Ci
E| + 2.

whereφ(M) denotes the number of faces of a map M.
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Proof Notice that

|V(M)| = |Vel(M)| + |Veu(M)| + |Vhy(M)| and|E(M)| =
6∑

i=1

|Ci
E|

for a planar map geometry (M, µ). By two well-known results

∑

v∈V(M)

ρM(v) = 2|E(M)| and |V(M)| − |E(M)| + φ(M) = 2

for a planar mapM, we know that

∑

u∈Vel(M)

ρM(u) +
∑

v∈Veu(M)

ρM(v) +
∑

w∈Vhy(M)

ρM(w) = 2
6∑

i=1

|Ci
E|

and

|Vel(M)| + |Veu(M)| + |Vhy(M)| + φ(M) =
6∑

i=1

|Ci
E| + 2. �

§7.2 LINES IN PLANAR MAP GEOMETRY

The situation ofs-lines in a planar map geometry (M, µ) is more complex. Here ans-line

maybe open or closed, with or without self-intersections ina plane. We discuss all of

theses-lines and their behaviors in this section, .

7.2.1 Lines in Planar Map Geometry. As we have seen in Chapter 6,s-lines in a planar

map geometry (M, µ) can be classified into three classes.

C1
L (opened lines without self-intersections): s-lines in(M, µ) have an infinite num-

ber of continuous s-points without self-intersections andendpoints and may be extended

indefinitely in both directions.

C2
L (opened lines with self-intersections): s-lines in(M, µ) have an infinite number

of continuous s-points and self-intersections but withoutendpoints and may be extended

indefinitely in both directions.

C3
L(closed lines): s-lines in(M, µ) have an infinite number of continuous s-points

and will come back to the initial point as we travel along any one of these s-lines starting

at an initial point.
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By this classification, a straight line in a Euclid plane is nothing but an openeds-line

without non-Euclidean points. Certainly,s-lines in a planar map geometry (M, µ) maybe

contain non-Euclidean points. In Fig.7.2.1, theses-lines shown in (a), (b) and (c) are

openeds-line without self-intersections, openeds-line with a self-intersection and closed

s-line with A, B,C,D andE non-Euclidean points, respectively.-�� - -�
(a) (b) (c)

A

B

C

D

A

B
C

D

E
A

B

CD

E

Fig.7.2.1

Notice that a closeds-line in a planar map geometry maybe also has self-intersections.

A closeds-line is said to besimply closedif it has no self-intersections, such as thes-line

in Fig.7.2.1(c). For simply closeds-lines, we know the following result.

Theorem 7.2.1 Let (M, µ) be a planar map geometry. An s-line L in(M, µ) passing

through n non-Euclidean points x1, x2, · · · , xn is simply closed if and only if

n∑

i=1

f (xi) = (n− 2)π,

where f(xi) denotes the angle function value at an s-point xi, 1 ≤ i ≤ n.

Proof By results in Euclid geometry of plane, we know that the anglesum of an

n-polygon is (n− 2)π. In a planar map geometry (M, µ), a simply closeds-line L passing

throughn non-Euclidean pointsx1, x2, · · · , xn is nothing but ann-polygon with vertices

x1, x2, · · · , xn. Whence, we get that

n∑

i=1

f (xi) = (n− 2)π.

Now if a simplys-line L passing throughn non-Euclidean pointsx1, x2, · · · , xn with

n∑

i=1

f (xi) = (n− 2)π
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held, thenL is nothing but ann-polygon with verticesx1, x2, · · · , xn. Therefore,L is simply

closed. �

By applying Theorem 7.2.1, we can also find conditions for an openeds-line with or

without self-intersections.

Theorem 7.2.2 Let (M, µ) be a planar map geometry. An s-line L in(M, µ) passing

through n non-Euclidean points x1, x2, · · · , xn is opened without self-intersections if and

only if s-line segments xi xi+1, 1 ≤ i ≤ n− 1 are not intersect two by two and

n∑

i=1

f (xi) ≥ (n− 1)π.

Proof By the Euclid’s fifth postulate for a plane geometry, two straight lines will

meet on the side on which the angles less than two right anglesif we extend them to

indefinitely. Now for ans-line L in a planar map geometry (M, µ), if it is opened without

self-intersections, then for any integeri, 1 ≤ i ≤ n − 1, s-line segmentsxi xi+1 will not

intersect two by two and thes-line L will also not intersect before it entersx1 or leavesxn.j
*

-
�

L
x1

x2 x3

xn−2xn−1

xn

1 2

3 4

Fig.7.2.2

Now look at Fig.7.2.2, in where line segmentx1xn is an added auxiliarys-line seg-

ment. We know that

∠1+ ∠2 = f (x1) and∠3+ ∠4 = f (xn).

According to Theorem 7.2.1 and the Euclid’s fifth postulate, we know that

∠2+ ∠4+
n−1∑

i=2

f (xi) = (n− 2)π
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and

∠1+ ∠3 ≥ π

Therefore, we get that

n∑

i=1

f (xi) = (n− 2)π + ∠1+ ∠3 ≥ (n− 1)π. �

For openeds-lines with self-intersections, we know a result in the following.

Theorem 7.2.3 Let (M, µ) be a planar map geometry. Ans-line L in (M, µ) passing

throughn non-Euclidean pointsx1, x2, · · · , xn is opened only withl self-intersections if

and only if there exist integersi j andsi j , 1 ≤ j ≤ l with 1 ≤ i j, si, j ≤ n andi j , i t if t , j

such that

(si j − 2)π <

si j∑

h=1

f (xi j+h) < (si j − 1)π.

Proof If an s-line L passing throughs-pointsxt+1, xt+2, · · · , xt+st only has one self-

intersection point, let us look at Fig.7.2.3 in wherext+1xt+st is an added auxiliarys-line

segment.

3 }
L

xt+1 xt+2

xt+st−1xt+st

1 2

3 4

Fig.7.2.3

We know that

∠1+ ∠2 = f (xt+1) and∠3+ ∠4 = f (xt+st ).

Similar to the proof of Theorem 7.2.2, by Theorem 7.2.1 and the Euclid’s fifth pos-

tulate, we know that

∠2+ ∠4+
st−1∑

j=2

f (xt+ j) = (st − 2)π

and

∠1+ ∠3 < π.
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Whence, we get that

(st − 2)π <

st∑

j=1

f (xt+ j) < (st − 1)π.

Therefore, ifL is opened only withl self-intersection points, we can find integersi j

and si j , 1 ≤ j ≤ l with 1 ≤ i j , si, j ≤ n and i j , i t if t , j such thatL passing through

xi j+1, xi j+2, · · · , xi j+sj only has one self-intersection point. By the previous discussion, we

know that

(si j − 2)π <

si j∑

h=1

f (xi j+h) < (si j − 1)π.

This completes the proof. �

7.2.2 Curve Curvature. Notice that alls-lines considered in this section are consisted

of line segments or rays in Euclid plane geometry. If the length of each line segment tends

to zero, then we get a curve at the limitation in the usually sense. Whence, ans-line in a

planar map geometry can be also seen as a discretion of plane curve.

Generally, the curvature at a point of a curveC is a measure of how quickly the

tangent vector changes direction with respect to the lengthof arc, such as those of the

Gauss curvature, the Riemann curvature,· · ·, etc.. In Fig.7.2.4 we present a smooth curve

and the changing of tangent vectors.� wU Æ � w
v1

v2

v3

v4

v5

v6

θ
φ

ϕ

Fig.7.2.4

To measure the changing of vectorv1 to v2, a simpler way is by the changing of

the angle between vectorsv1 andv2. If a curveC = f (s) is smooth, then the changing

rate of the angle between two tangent vector with respect to the length of arc, i.e.,
d f
ds

is

continuous. For example, as we known in the differential geometry, the Gauss curvature

at every point of a circlex2 + y2 = r2 of radiusr is
1
r

. Whence, the changing of the angle
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from vectorsv1 to v2 is
B∫

A

1
r
ds=

1
r
|ÂB| = 1

r
rθ = θ.

By results in Euclid plane geometry, we know thatθ is also the angle between vectors

v1 andv2. As we illustrated in Subsection 7.2.1, ans-line in a planar map geometry is

consisted by line segments or rays. Therefore, the changingrate of the angle between

two tangent vector with respect to the length of arc is not continuous. Similar to the

definition of the set curvature in the reference [AlZ1], we present a discrete definition for

the curvature ofs-lines in this case following.

Definition 7.2.1 Let L be an s-line in a planar map geometry(M, µ) with the set W of

non-Euclidean points. The curvatureω(L) of L is defined by

ω(L) =
∫

W

(π −̟(p)),

where̟(p) = f (p) if p is on an edge(u, v) in map M embedded on plane
∑

with an angle

function f :
∑→ ∑

.

In differential geometry, theGauss mappingand theGauss curvatureon surfaces are

defined as follows:

LetS ⊂ R3 be a surface with an orientationN. The mapping N: S → S2 takes its

value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientationN. The map N: S → S2, thus defined, is called a Gauss mapping

and the determinant of K(p) = dNp a Gauss curvature.

We know that for a pointp ∈ S such that the Gaussian curvatureK(p) , 0 and a

connected neighborhoodV of p with K does not change sign,

K(p) = lim
A→0

N(A)
A

,

whereA is the area of a regionB ⊂ V andN(A) is the area of the image ofB by the Gauss

mappingN : S → S2.

The well-knownGauss-Bonnet theoremfor a compact surface says that
∫ ∫

S
Kdσ = 2πχ(S),
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for any orientable compact surfaceS.

For a simply closeds-line, we also have a result similar to the Gauss-Bonnet theorem,

which can be also seen as a discrete Gauss-Bonnet theorem on aplane.

Theorem 7.2.4 Let L be a simply closed s-line passing through n non-Euclidean points

x1, x2, · · · , xn in a planar map geometry(M, µ). Thenω(L) = 2π.

Proof According to Theorem 7.2.1, we know that

n∑

i=1

f (xi) = (n− 2)π,

where f (xi) denotes the angle function value at ans-point xi , 1 ≤ i ≤ n. Whence, by

Definition 7.2.1 we know that

ω(L) =
∫

{xi ;1≤i≤n}

(π − f (xi)) =
n∑

i=1

(π − f (xi))

= πn−
n∑

i=1

f (xi) = πn− (n− 2)π = 2π. �

Similarly, we also get the sum of curvatures on the planar mapM in (M, µ) following.

Theorem 7.2.5 Let (M, µ) be a planar map geometry. Then the sumω(M) of curvatures

on edges in a map M isω(M) = 2πs(M), where s(M) denotes the sum of length of edges

in M.

Proof Notice that the sumω(u, v) of curvatures on an edge (u, v) of M is

ω(u, v) =

u∫

v

(π − f (s))ds= π|(̂u, v)| −
u∫

v

f (s)ds.

SinceM is a planar map, each of its edges appears just two times with an opposite

direction. Whence, we get that

ω(M) =
∑

(u,v)∈E(M)

ω(u, v) +
∑

(v,u)∈E(M)

ω(v, u)

= π
∑

(u,v)∈E(M)

(
|(̂u, v)| + |(̂v, u)|

)
−



u∫

v

f (s)ds+

v∫

u

f (s)ds

 = 2πs(M) �

Notice that ifs(M) = 1, Theorem 7.2.5 turns to the Gauss-Bonnet theorem for sphere.
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§7.3 POLYGONS IN PLANAR MAP GEOMETRY

7.3.1 Polygon in Planar Map Geometry. In the Euclid plane geometry, we have en-

countered triangles, quadrilaterals,· · ·, and generally,n-polygons, i.e., these graphs on a

plane withn straight line segments not on the same line connected with one after another.

There are no 1 and 2-polygons in a Euclid plane geometry sinceevery point is Euclidean.

The definition ofn-polygons in planar map geometry (M, µ) is similar to that of Euclid

plane geometry.

Definition 7.3.1 An n-polygon in a planar map geometry(M, µ) is defined to be a graph

in (M, µ) with n s-line segments two by two without self-intersections and connected with

one after another.

Although their definition is similar, the situation is more complex in a planar map

geometry (M, µ). We have found a necessary and sufficient condition for 1-polygon in

Theorem 7.2.1, i.e., 1-polygons maybe exist in a planar map geometry. In general, we can

find n-polygons in a planar map geometry for any integern, n ≥ 1.

Examples of polygon in a planar map geometry (M, µ) are shown in Fig.7.3.1, in

where (a) is a 1-polygon withu, v,w andt being non-Euclidean points, (b) is a 2-polygon

with verticesA, B and non-Euclidean pointsu, v, (c) is a triangle with verticesA, B,C and

a non-Euclidean pointu and (d) is a quadrilateral with verticesA, B,C andD.

? - 6�
A

su �
(a) (b) (c) (d)

v

B

u

A

BC

A B

C Dw t

u

v

Fig.7.3.1

Theorem 7.3.1 There exists a1-polygon in a planar map geometry(M, µ) if and only if

there are non-Euclidean points u1, u2, · · · , ul with l ≥ 3 such that

l∑

i=1

f (ui) = (l − 2)π,

where f(ui) denotes the angle function value at the point ui, 1 ≤ i ≤ l.
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Proof According to Theorem 7.2.1, ans-line passing throughl non-Euclidean points

u1, u2, · · · , ul is simply closed if and only if

l∑

i=1

f (ui) = (l − 2)π,

i.e., 1-polygon exists in (M, µ) if and only if there are non-Euclidean pointsu1, u2, · · · , ul

with the above formula hold.

Whence, we only need to provel ≥ 3. Since there are no 1-polygons or 2-polygons

in a Euclid plane geometry, we must havel ≥ 3 by the Hilbert’s axiomI − 2. In fact, for

l = 3 we can really find a planar map geometry (M, µ) with a 1-polygon passing through

three non-Euclidean pointsu, v andw. Look at Fig.7.3.2,

u

v w

Fig.7.3.2

in where the angle function values aref (u) = f (v) = f (w) = 2
3π at u, v andw. �

Similarly, for 2-polygons we know the following result.

Theorem 7.3.2 There are2-polygons in a planar map geometry(M, µ) only if there are

at least one non-Euclidean point in(M, µ).

Proof In fact, if there is a non-Euclidean pointu in (M, µ), then each straight line

enteru will turn an angleθ = π− f (u)
2

or
f (u)
2
− π from the initial straight line dependent

on thatu is elliptic or hyperbolic. Therefore, we can get a 2-polygonin (M, µ) by choice

a straight lineAB passing through Euclidean points in (M, µ), such as the graph shown in

Fig.7.3.3.

-* �
θ

uA

B

Fig.7.3.3
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This completes the proof. �

For the existence ofn-polygons withn ≥ 3, we have a general result as in the fol-

lowing.

Theorem 7.3.3 For any integer n, n ≥ 3, there are n-polygons in a planar map geometry

(M, µ).

Proof Since in Euclid plane geometry, there aren-polygons for any integern, n ≥ 3.

Therefore, there are alson-polygons in a planar map geometry (M, µ) for any integer

n, n ≥ 3. �

7.3.2 Internal Angle Sum. For the sum of the internal angles in ann-polygon, we have

the following result.

Theorem7.3.4 Let
∏

be an n-polygon in a map geometry with its edges passing through

non-Euclidean points x1, x2, · · · , xl. Then the sum of internal angles in
∏

is

(n+ l − 2)π −
l∑

i=1

f (xi),

where f(xi) denotes the value of the angle function f at the point xi , 1 ≤ i ≤ l.

Proof Denote byU,V the sets of elliptic points and hyperbolic points inx1, x2, · · · , xl

and|U | = p, |V| = q, respectively. If ans-line segment passes through an elliptic pointu,

add an auxiliary line segmentAB in the plane as shown in Fig.7.3.4(1).

1 2

a

b
3 4

A B

u BA

v

(1) (2)

Fig.7.3.4

Then we get that

∠a= ∠1+ ∠2 = π − f (u).

If an s-line passes through a hyperbolic pointv, also add an auxiliary line segment
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AB in the plane as that shown in Fig.7.3.4(2). Then we get that

angleb = angle3+ angle4= f (v) − π.

Since the sum of internal angles of ann-polygon in a plane is (n − 2)π whenever it is a

convex or concave polygon, we know that the sum of the internal angles in
∏

is

(n− 2)π +
∑

x∈U
(π − f (x)) −

∑

y∈V
( f (y) − π)

= (n+ p+ q− 2)π −
l∑

i=1

f (xi)

= (n+ l − 2)π −
l∑

i=1

f (xi).

This completes the proof. �

A triangle is calledEuclidean, ellipticor hyperbolicif its edges only pass through

one kind of Euclidean, elliptic or hyperbolic points. As a consequence of Theorem 7.3.4,

we get the sum of the internal angles of a triangle in a map geometry which is consistent

with these already known results.

Corollary 7.3.1 Let△ be a triangle in a planar map geometry(M, µ). Then

(1) the sum of its internal angles is equal toπ if △ is Euclidean;

(2) the sum of its internal angles is less thanπ if △ is elliptic;

(3) the sum of its internal angles is more thanπ if △ is hyperbolic.

Proof Notice that the sum of internal angles of a triangle is

π +

l∑

i=1

(π − f (xi))

if it passes through non-Euclidean pointsx1, x2, · · · , xl. By definition, if thesexi , 1 ≤ i ≤ l

are one kind of Euclidean, elliptic, or hyperbolic, then we have thatf (xi) = π, or f (xi) < π,

or f (xi) > π for any integeri, 1 ≤ i ≤ l. Whence, the sum of internal angles of a Euclidean,

elliptic or hyperbolic triangle is equal to, or lees than, ormore thanπ. �

7.3.3 Polygon Area. As it is well-known, calculation for the areaA(△) of a triangle△
with two sidesa, b and the value of their include angleθ or three sidesa, b andc in a

Euclid plane is simple. Formulae for its area are

A(△) =
1
2

absinθ or A(△) =
√

s(s− a)(s− b)(s− c),
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wheres=
1
2

(a+b+c). But in a planar map geometry, calculation for the area of a triangle

is complex since each of its edge maybe contains non-Euclidean points. Where, we only

present a programming for calculation the area of a trianglein a planar map geometry.

STEP 1. Divide a triangle into triangles in a Euclid plane such that no edges

contain non-Euclidean points unless their endpoints;

STEP 2. Calculate the area of each triangle;

STEP 3. Sum up all of areas of these triangles to get the area of the given triangle

in a planar map geometry.

The simplest cases for triangle is the cases with only one non-Euclidean point such

as those shown in Fig.7.3.5(1) and (2) with an elliptic pointu or with a hyperbolic point

v.

u

v
a

b

c
d

a b

c d
A

B

C

A B

C

(1) (2)

Fig.7.3.5

Add an auxiliary line segmentAB in Fig.7.3.5. Then by formulae in the plane trigonom-

etry, we know that

A(△ABC) =
√

s1(s1 − a)(s1 − b)(s1 − t) +
√

s2(s2 − c)(s2 − d)(s2 − t)

for case (1) and

A(△ABC) =
√

s1(s1 − a)(s1 − b)(s1 − t) −
√

s2(s2 − c)(s2 − d)(s2 − t)

for case (2) in Fig.7.3.5, where

t =

√
c2 + d2 − 2cdcos

f (x)
2

with x = u or v and

s1 =
1
2

(a+ b+ t), s2 =
1
2

(c+ d+ t).
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Generally, let△ABC be a triangle with its edgeAB passing throughp elliptic or p

hyperbolic pointsx1, x2, · · · , xp simultaneously, as those shown in Fig.7.3.6(1) and (2).

x1

x2

xp

x1
x2

xp

A

B
C

A B

C

(1) (2)

Fig.7.3.6

Where|AC| = a, |BC| = b and|Ax1| = c1, |x1x2| = c2, · · · , |xp−1xp| = cp and|xpB| = cp+1.

Adding auxiliary line segmentsAx2,Ax3, · · · ,Axp,AB in Fig.7.3.6, then we can find its

area by the programming STEP 1 to STEP 3. By formulae in the plane trigonometry, we

get that

|Ax2| =
√

c2
1 + c2

2 − 2c1c2 cos
f (x1)

2
,

∠Ax2x1 = cos−1 c2
1 − c2

2 − |Ax1|2

2c2|Ax2|
,

∠Ax2x3 =
f (x2)

2
− ∠Ax2x1 or 2π − f (x2)

2
− ∠Ax2x1,

|Ax3| =
√
|Ax2|2 + c2

3 − 2|Ax2|c3 cos(
f (x2)

2
− ∠Ax2x3),

∠Ax3x2 = cos−1 |Ax2|2 − c2
3 − |Ax3|2

2c3|Ax3|
,

∠Ax2x3 =
f (x3)

2
− ∠Ax3x2 or 2π − f (x3)

2
− ∠Ax3x2,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

and generally, we get that

|AB| =
√
|Axp|2 + c2

p+1 − 2|Axp|cp+1 cos∠AxpB.

Then the area of the triangle△ABC is

A(△ABC) =
√

sp(sp − a)(sp − b)(sp − |AB|)

+

p∑

i=1

√
si(si − |Axi |)(si − ci+1)(si − |Axi+1|)
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for case (1) and

A(△ABC) =
√

sp(sp − a)(sp − b)(sp − |AB|)

−
p∑

i=1

√
si(si − |Axi |)(si − ci+1)(si − |Axi+1|)

for case (2) in Fig.7.3.6, where

si =
1
2

(|Axi | + ci+1 + |Axi+1|)

for any integeri, 1 ≤ i ≤ p− 1 and

sp =
1
2

(a+ b+ |AB|).

Certainly, this programming can be also applied to calculate the area of ann-polygon in

planar map geometry in general.

§7.4 CIRCLES IN PLANAR MAP GEOMETRY

The length of ans-line segment in planar map geometry is defined in the following.

Definition 7.4.1 The length|AB| of an s-line segment AB consisted by k straight line

segments AC1,C1C2, C2C3, · · ·,Ck−1B in planar map geometry(M, µ) is defined by

|AB| = |AC1| + |C1C2| + |C2C3| + · · · + |Ck−1B|.

As that shown in Chapter 6, there are not always exist a circlewith any center and

a given radius in planar map geometry in the usual sense of Euclid’s definition. Since

we have introduced angle function on planar map geometry, wecan likewise the Euclid’s

definition to define ans-circle in planar map geometry.

Definition 7.4.2 A closed curve C without self-intersection in planar map geometry

(M, µ) is called an s-circle if there exists an s-point O in(M, µ) and a real number r

such that|OP| = r for each s-point P on C.

Two Examples fors-circles in a planar map geometry (M, µ) are shown in Fig.7.4.1(1)

and (2). Thes-circle in Fig.7.4.1(1) is a circle in the Euclid’s sense, but (2) is not. Notice

that in Fig.7.4.1(2), s-pointsu andv are elliptic and the length|OQ| = |Ou| + |uQ| = r for
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an s-point Q on thes-circle C, which seems likely an ellipse but it is not. Thes-circle

C in Fig.7.4.1(2) also implied thats-circles are more complex than those in Euclid plane

geometry.

- -O P O P

Q

U

V

u

v

w

(1) (2)

Fig.7.4.1

We know a necessary and sufficient condition for the existence of ans-circle in planar

map geometry following.

Theorem 7.4.1 Let (M, µ) be a planar map geometry on a plane
∑

and O an s-point on

(M, µ). For a real number r, there is an s-circle of radius r with center O if and only if O

is in the non-outer face or in the outer face of M but for anyǫ, r > ǫ > 0, the initial and

final intersection points of a circle of radiusǫ with M in a Euclid plane
∑

are Euclidean

points.

Proof If there is a solitary non-Euclidean pointA with |OA| < r, then by those

materials in Chapter 3, there are nos-circles in (M, µ) of radiusr with centerO.

� r
O ~Mu

Fig.7.4.2

If O is in the outer face ofM but there exists a numberǫ, r > ǫ > 0 such that one of

the initial and final intersection points of a circle of radiusǫ with M on
∑

is non-Euclidean
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point, then points with distancer to O in (M, µ) at least has a gap in a circle with a Euclid

sense. See Fig.7.4.2 for details, in whereu is a non-Euclidean point and the shade field

denotes the mapM. Therefore there are nos-circles in (M, µ) of radiusr with centerO.

Now if O in the outer face ofM but for anyǫ, r > ǫ > 0, the initial and final

intersection points of a circle of radiusǫ with M on
∑

are Euclidean points orO is in a

non-outer face ofM, then by the definition of angle functions, we know that all points

with distancer to O is a closed smooth curve on
∑

, for example, see Fig.7.4.3(1) and (2).

�
M

r

u

v

-�r 1� rr

CC

(1) (2)

Fig.7.4.3

Whence it is ans-circle. �

We construct a polar axisOX with centerO in planar map geometry as that in Euclid

geometry. Then eachs-point A has a coordinate (ρ, θ), whereρ is the length of thes-line

segmentOAandθ is the angle betweenOX and the straight line segment ofOAcontaining

the pointA. We get an equation for ans-circle of radiusr which has the same form as that

in the analytic geometry of plane.

Theorem 7.4.2 In a planar geometry(M, µ) with a polar axis OX of center O, the equa-

tion of each s-circle of radius r with center O is

ρ = r.

Proof By the definition ofs-circleC of radiusr, everys-point onC has a distancer

to its centerO. Whence, its equation isρ = r in a planar map geometry with a polar axis

OX of centerO. �
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§7.5 LINE BUNDLES IN PLANAR MAP GEOMETRY

7.5.1 Line Bundle. Among thoses-line bundles the most important is parallel bundles

defined in the next definition, motivated by the Euclid’s fifthpostulate.

Definition 7.5.1 A familyL of infinite s-lines not intersecting each other in planar ge-

ometry(M, µ) is called a parallel bundle.

In Fig.7.5.1, we present all cases of parallel bundles passing through an edge in

planar geometries, where, (a) is the case with the same type pointsu, v andρM(u)µ(u) =

ρM(v)µ(v) = 2π, (b) and (c) are the same type cases withρM(u)µ(u) > ρM(v)µ(v) or

ρM(u)µ(u) = ρM(v)µ(v) > 2π or < 2π and (d) is the case with an elliptic pointu but a

hyperbolic pointv.

u

v

L1

L2

L3

x6? u

v

L1

L2

L3

u

v

L1

L2

L3

u

v

L1

L2

L3

(a) (b) (c) (d)

Fig.7.5.1

Here, we assume the angle at the intersection point is in clockwise, that is, a line passing

through an elliptic point will bend up and passing through a hyperbolic point will bend

down, such as those cases (b),(c) in the Fig.7.5.1. Generally, we define asign function

sign( f ) of an angle function fas follows.

Definition 7.5.2 For a vector
−→
O on the Euclid plane called an orientation, a sign function

sign( f ) of an angle function f at an s-point u is defined by

sign( f )(u) =



1, if u is elliptic,

0, if u is euclidean,

−1, if u is hyperbolic.

We classify parallel bundles in planar map geometry along anorientation
−→
O in this

section.
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7.5.2 Necessary and Sufficient Condition for Parallel Bundle. We investigate the

behaviors of parallel bundles in planar map geometry (M, µ). Denote byf (x) the angle

function value at an intersections-point of ans-line L with an edge (u, v) of M and a

distancex to u on (u, v) as shown in Fig.7.5.1(a). Then

Theorem7.5.1 A familyL of parallel s-lines passing through an edge(u, v) is a parallel

bundle if and only if
d f
dx

∣∣∣∣∣
+

≥ 0.

Proof If L is a parallel bundle, then any twos-lines L1, L2 will not intersect after

them passing through the edgeuv. Therefore, ifθ1, θ2 are the angles ofL1, L2 at the

intersections-points of L1, L2 with (u, v) and L2 is far from u than L1, then we know

θ2 ≥ θ1. Thereby we know thatf (x+ ∆x) − f (x) ≥ 0 for any point with distancex from u

and∆x > 0. Therefore, we get that

d f
dx

∣∣∣∣∣
+

= lim
∆x→+0

f (x+ ∆x) − f (x)
∆x

≥ 0.

As that shown in the Fig.7.5.1.

Now if
d f
dx

∣∣∣∣∣
+

≥ 0, then f (y) ≥ f (x) if y ≥ x. SinceL is a family of parallels-lines

before meetinguv, any twos-lines inL will not intersect each other after them passing

through (u, v). Therefore,L is a parallel bundle. �

A general condition for a family of parallels-lines passing through a cut of a planar

map being a parallel bundle is the following.

Theorem 7.5.2 Let (M, µ) be a planar map geometry, C= {(u1, v1), (u2, v2), · · · , (ul , vl)}
a cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l≥ 1

and the angle functions on them are f1, f2, · · · , fl (also seeing Fig.7.5.2), respectively.

L1

L2

L3

u1 u2 uk

v1 v2 vk

Fig.7.5.2



Sec.7.5 Line Bundles in Planar Map Geometry 223

Then a familyL of parallel s-lines passing through C is a parallel bundle ifand only if

for any x, x ≥ 0,

sign( f1)(x) f ′1+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + sign( f3)(x) f ′3+(x) ≥ 0,

· · · · · · · · · · · · ,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( fl)(x) f ′l+(x) ≥ 0.

Proof According to Theorem 7.5.1, we know thats-lines will not intersect after them

passing through (u1, v1) and (u2, v2) if and only if for ∀∆x > 0 andx ≥ 0,

sign( f2)(x) f2(x+ ∆x) + sign( f1)(x) f ′1+(x)∆x ≥ sign( f2)(x) f2(x),

seeing Fig.7.5.3 for an explanation.

u1 u2

v1 v2

L1

L2

f1(x)
f2(x)

∆x f1(x+ δx) f2(x+ ∆x)

f ′1(x)∆x

Fig.7.5.3

That is,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) ≥ 0.

Similarly, s-lines will not intersect after them passing through (u1, v1), (u2, v2) and

(u3, v3) if and only if for ∀∆x > 0 andx ≥ 0,

sign( f3)(x) f3(x+ ∆x) + sign( f2)(x) f ′2+(x)∆x

+sign( f1)(x) f ′1+(x)∆x ≥ sign( f3)(x) f3(x).

Namely,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + sign( f3)(x) f ′3+(x) ≥ 0.
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Generally, thes-lines will not intersect after them passing through (u1, v1), (u2, v2), · · · ,
(ul−1, vl−1) and (ul, vl) if and only if for ∀∆x > 0 andx ≥ 0,

sign( fl)(x) fl(x+ ∆x) + sign( fl−1)(x) f ′l−1+(x)∆x+

· · · + sign( f1)(x) f ′1+(x)∆x ≥ sign( fl)(x) fl(x).

Whence, we get that

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( fl)(x) f ′l+(x) ≥ 0.

Therefore, a familyL of parallels-lines passing throughC is a parallel bundle if and only

if for any x, x ≥ 0, we have that

sign( f1)(x) f ′1+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + sign( f1)(x) f ′3+(x) ≥ 0,

· · · · · · · · · · · · ,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( f1)(x) f ′l+(x) ≥ 0.

This completes the proof. �

Corollary 7.5.1 Let (M, µ) be a planar map geometry, C= {(u1, v1), (u2, v2), · · · , (ul , vl)}
a cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l≥ 1

and the angle functions on them are f1, f2, · · · , fl, respectively. Then a familyL of parallel

lines passing through C is still parallel lines after them leaving C if and only if for any

x, x ≥ 0,

sign( f1)(x) f ′1+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + sign( f1)(x) f ′3+(x) ≥ 0,

· · · · · · · · · · · · ,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( f1)(x) f ′l−1+(x) ≥ 0.

and

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( f1)(x) f ′l+(x) = 0.
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Proof According to Theorem 7.5.2, we know the condition is a necessary and suffi-

cient condition forL being a parallel bundle. Now since lines inL are parallel lines after

them leavingC if and only if for anyx ≥ 0 and∆x ≥ 0, there must be that

sign( fl) fl(x+ ∆x) + sign( fl−1) f ′l−1+(x)∆x+ · · · + sign( f1) f ′1+(x)∆x = sign( fl) fl(x).

Therefore, we get that

sign( f1)(x) f ′1+(x)+sign( f2)(x) f ′2+(x)+· · ·+sign( f1)(x) f ′l+(x) = 0. �

There is a natural question on parallel bundles in planar mapgeometry. That iswhen

do some parallel s-lines parallel the initial parallel lines after them passing through a cut

C in a planar map geometry?The answer is the next result.

Theorem 7.5.3 Let (M, µ) be a planar map geometry, C= {(u1, v1), (u2, v2), · · · , (ul , vl)}
a cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l≥ 1

and the angle functions on them are f1, f2, · · · , fl, respectively. Then the parallel s-lines

parallel the initial parallel lines after them passing through C if and only if for∀x ≥ 0,

sign( f1)(x) f ′1+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) ≥ 0,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + sign( f1)(x) f ′3+(x) ≥ 0,

· · · · · · · · · · · · ,

sign( f1)(x) f ′1+(x) + sign( f2)(x) f ′2+(x) + · · · + sign( f1)(x) f ′l−1+(x) ≥ 0.

and

sign( f1) f1(x) + sign( f2) f2(x) + · · · + sign( f1)(x) fl(x) = lπ.

Proof According to Theorem 7.5.2 and Corollary 7.5.1, we know that these parallel

s-lines satisfying conditions of this theorem is a parallel bundle.

We calculate the angleα(i, x) of an s-line L passing through an edgeuivi , 1 ≤ i ≤ l

with the line before it meetingC at the intersection ofL with the edge (ui , vi), wherex is

the distance of the intersection point tou1 on (u1, v1), see also Fig.4.18. By definition, we

know the angleα(1, x) = sign( f1) f (x) andα(2, x) = sign( f2) f2(x) − (π − sign( f1) f1(x)) =

sign( f1) f1(x) + sign( f2) f2(x) − π.
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Now if α(i, x) = sign( f1) f1(x) + sign( f2) f2(x) + · · · + sign( fi) fi(x) − (i − 1)π, then

we know thatα(i + 1, x) = sign( fi+1) fi+1(x) − (π − α(i, x)) = sign( fi+1) fi+1(x) + α(i, x) − π
similar to the casei = 2. Thereby we get that

α(i + 1, x) = sign( f1) f1(x) + sign( f2) f2(x) + · · · + sign( fi+1) fi+1(x) − iπ.

Notice that ans-line L parallel the initial parallel line after it passing throughC if and

only if α(l, x) = π, i.e.,

sign( f1) f1(x) + sign( f2) f2(x) + · · · + sign( fl) fl(x) = lπ.

This completes the proof. �

7.5.3 Linear Conditions for Parallel Bundle. For the simplicity, we can assume even

that the functionf (x) is linear and denoted it byfl(x). We calculatefl(x) in the first.

Theorem 7.5.4 The angle function fl(x) of an s-line L passing through an edge(u, v) at

a point with distance x to u is

fl(x) =

(
1− x

d(u, v)

)
ρ(u)µ(v)

2
+

x
d(u, v)

ρ(v)µ(v)
2

,

where, d(u, v) is the length of the edge(u, v).

Proof Since fl(x) is linear, we know thatfl(x) satisfies the following equation.

fl(x) − ρ(u)µ(u)
2

ρ(v)µ(v)
2

− ρ(u)µ(u)
2

=
x

d(u, v)
,

Calculation shows that

fl(x) =

(
1− x

d(u, v)

)
ρ(u)µ(v)

2
+

x
d(u, v)

ρ(v)µ(v)
2

. �

Corollary 7.5.2 Under the linear assumption, a familyL of parallel s-lines passing

through an edge(u, v) is a parallel bundle if and only if

ρ(u)
ρ(v)

≤ µ(v)
µ(u)

.

Proof According to Theorem 7.5.1, a family of parallels-lines passing through an

edge (u, v) is a parallel bundle if and only iff ′(x) ≥ 0 for ∀x, x ≥ 0, i.e.,

ρ(v)µ(v)
2d(u, v)

− ρ(u)µ(u)
2d(u, v)

≥ 0.
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Therefore, a familyL of parallels-lines passing through an edge (u, v) is a parallel bundle

if and only if

ρ(v)µ(v) ≥ ρ(u)µ(u).

Whence,

ρ(u)
ρ(v)

≤ µ(v)
µ(u)

. �

For a family of parallels-lines passing through a cut, we get the following result.

Theorem 7.5.5 Let (M, µ) be a planar map geometry, C= {(u1, v1), (u2, v2), · · · , (ul , vl)}
a cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l≥ 1.

Then under the linear assumption, a family L of parallel s-lines passing through C is a

parallel bundle if and only if the angle factorµ satisfies the following linear inequality

system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1),

ρ(v1)µ(v1)
d(u1, v1)

+
ρ(v2)µ(v2)
d(u2, v2)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

,

· · · · · · · · · · · · ,

ρ(v1)µ(v1)
d(u1, v1)

+
ρ(v2)µ(v2)
d(u2, v2)

+ · · · + ρ(vl)µ(vl)
d(ul, vl)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

+ · · · + ρ(ul)µ(ul)
d(ul, vl)

.

Proof Under the linear assumption, for any integeri, i ≥ 1 we know that

f ′i+(x) =
ρ(vi)µ(vi) − ρ(ui)µ(ui)

2d(ui, vi)

by Theorem 7.5.4. Thereby, according to Theorem 7.5.2, we get that a familyL of parallel

s-lines passing throughC is a parallel bundle if and only if the angle factorµ satisfies the

following linear inequality system

ρ(v1)µ(v1) ≥ ρ(u1)µ(u1),

ρ(v1)µ(v1)
d(u1, v1)

+
ρ(v2)µ(v2)
d(u2, v2)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

,

· · · · · · · · · · · · ,
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ρ(v1)µ(v1)
d(u1, v1)

+
ρ(v2)µ(v2)
d(u2, v2)

+ · · · + ρ(vl)µ(vl)
d(ul, vl)

≥ ρ(u1)µ(u1)
d(u1, v1)

+
ρ(u2)µ(u2)
d(u2, v2)

+ · · · + ρ(ul)µ(ul)
d(ul, vl)

.

This completes the proof. �

For planar maps underlying a regular graph, we have an interesting consequence for

parallel bundles in the following.

Corollary 7.5.3 Let(M, µ) be a planar map geometry with M underlying a regular graph,

C = {(u1, v1), (u2, v2), · · · , (ul, vl)} a cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl)

from the left to the right, l≥ 1. Then under the linear assumption, a family L of parallel

lines passing through C is a parallel bundle if and only if theangle factorµ satisfies the

following linear inequality system.

µ(v1) ≥ µ(u1),

µ(v1)
d(u1, v1)

+
µ(v2)

d(u2, v2)
≥ µ(u1)

d(u1, v1)
+

µ(u2)
d(u2, v2)

,

· · · · · · · · · · · · ,
µ(v1)

d(u1, v1)
+

µ(v2)
d(u2, v2)

+ · · · + µ(vl)
d(ul, vl)

≥ µ(u1)
d(u1, v1)

+
µ(u2)

d(u2, v2)
+ · · · + µ(ul)

d(ul, vl)
and particularly, if assume that all the lengths of edges in Care the same, then

µ(v1) ≥ µ(u1)

µ(v1) + µ(v2) ≥ µ(u1) + µ(u2)

· · · · · · · · · · · · · · ·

µ(v1) + µ(v2) + · · · + µ(vl) ≥ µ(u1) + µ(u2) + · · · + µ(ul).

Certainly, by choice different angle factors we can also get combinatorial conditions

for the existence of parallel bundles under the linear assumption.

Theorem7.5.6 Let (M, µ) be a planar map geometry, C= {(u1, v1), (u2, v2), · · · , (ul , vl)} a
cut of the map M with order(u1, v1), (u2, v2), · · · , (ul, vl) from the left to the right, l≥ 1. If

ρ(ui)
ρ(vi)

≤ µ(vi)
µ(ui)

for any integer i, i ≥ 1, then a family L of parallel s-lines passing through C is a parallel

bundle under the linear assumption.
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Proof Under the linear assumption we know that

f ′i+(x) =
ρ(vi)µ(vi) − ρ(ui)µ(ui)

2d(ui, vi)

for any integeri, i ≥ 1 by Theorem 7.5.4. Therebyf ′i+(x) ≥ 0 for i = 1, 2, · · · , l. We get

that

f ′1(x) ≥ 0

f ′1+(x) + f ′2+(x) ≥ 0

f ′1+(x) + f ′2+(x) + f ′3+(x) ≥ 0

· · · · · · · · · · · ·

f ′1+(x) + f ′2+(x) + · · · + f ′l+(x) ≥ 0.

By Theorem 7.5.2 we know that a familyL of parallels-lines passing throughC is still a

parallel bundle. �

§7.6 EXAMPLES OF PLANAR MAP GEOMETRY

By choice different planar maps and angle factors on their vertices, we canget various

planar map geometries. In this section, we present some concrete examples for planar

map geometry.

Example7.6.1 A complete planar map K4.

We take a complete mapK4 embedded on the plane
∑

with verticesu, v,w andt and

angle factors

µ(u) =
π

2
, µ(v) = µ(w) = π andµ(t) =

2π
3
,

such as shown in Fig.7.6.1 where each number on the side of a vertex denotesρM(x)µ(x)

for x = u, v,w andt. Assume the linear assumption is holds in this planar map geometry

(M, µ). Then we get a classifications fors-points in (M, µ) as follows.

Vel = {points in (uA\ {A})
⋃

(uB \ {B})
⋃

(ut \ {t})},

whereA andB are Euclidean points on (u,w) and (u, v), respectively.

Veu = {A, B, t}
⋃

(P \ E(K4))
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and

Vhy = {points in (wA\ {A})
⋃

(wt \ {t})
⋃

wv
⋃

(tv \ {t})
⋃

(vB \ {B})}.

u 1.5π

v 3πw 3π

t
2π

Fig.7.6.1

We assume that the linear assumption holds in this planar mapgeometry (M, µ). Then we

get a classifications fors-points in (M, µ) as follows.

Vel = {points in (uA\ {A})
⋃

(uB \ {B})
⋃

(ut \ {t})},

whereA andB are Euclidean points on (u,w) and (u, v), respectively.

Veu = {A, B, t}
⋃

(P \ E(K4))

Vhy = {points in (wA\ {A})
⋃

(wt \ {t})
⋃

wv
⋃

(tv \ {t})
⋃

(vB \ {B})}.

Edges inK4 are classified into (u, t) ∈ C1
E, (t,w), (t, v) ∈ C3

E, (u,w), (u, v) ∈ C5
E and

(w, u) ∈ C6
E. Variouss-lines in this planar map geometry are shown in Fig.7.6.2 following.

u 1.5π

v 3πw 3π

t
2π

--- : :
? �?

L1

L2

L3 L4

Fig.7.6.2
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There are no 1-polygons in this planar map geometry. One 2-polygon and various

triangles are shown in Fig.7.6.3.

u

vw

t
A B

O

P

Q

M N

KC D

E

F

G

H
I

J

Fig.7.6.3

Example7.6.2 A wheel planar map W1.4.

We take a wheelW1.4 embedded on a plane
∑

with verticesO andu, v,w, t and angle

factors

µ(O) =
π

2
, andµ(u) = µ(v) = µ(w) = µ(t) =

4π
3
,

such as shown in Fig.7.6.4.

O

u 4π v 4π

w 4πt 4π

2π

Fig.7.6.4

There are no elliptic points in this planar map geometries. Euclidean and hyperbolic

pointsVeu,Vhy are as follows.

Veu = P
⋃
\(E(W1.4) \ {O})
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and

Vhy = E(W1.4) \ {O}.

Edges are classified into (O, u), (O, v), (O,w), (O, t) ∈ C3
E and (u, v), (v,w), (w, t), (t, u) ∈

C6
E. Variouss-lines and one 1-polygon are shown in Fig.7.6.5 where eachs-line will turn

to its opposite direction after it meetingW1.4 such as thoses-lines L1, L2 andL4, L5 in

Fig.7.6.5.

O

u 4π v 4π

w 4πt 4π

2π
6�? --� �-* Y� j

L1 L2

L3
L4

Fig.7.6.5

Example7.6.3 A parallel bundle in a planar map geometry.

We choose a planar ladder and define its angle factor as shown in Fig.7.6.6 where

each number on the side of a vertexu denotes the numberρM(u)µ(u). Then we find a

parallel bundle{Li ; 1 ≤ i ≤ 6} as those shown in Fig.7.6.6.

4π 4π

2π

2π

2π

2π

4π 4π

- -- -
-- :1
-- qz

L1

L2

L3

L4

L5

L6

Fig.7.6.6
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§7.7 RESEARCH PROBLEMS

7.7.1. As a generalization of Euclid geometry of plane by Smarandache’s notion, the pla-

nar map geometry was introduced in [Mao8] and discussed in [Mao8]-[Mao11], [Mao17].

Similarly, a generalization can be also done for Euclid geometry of spaceR3. Some open

problems on this generalization are listed following.

Problem 7.7.1 Establish Smarandache geometry by embedded graphs in spaceR3 and

classify their fundamental elements, such as those of points, lines, polyhedrons,· · ·, etc..

Problem 7.7.2 Determine various surfaces and convex polyhedrons in Smarandache

geometry of spaceR3, such as those of sphere, surface of cylinder, circular cone, torus,

double torus, projective plane, Klein bottle and tetrahedron, pentahedron, hexahedron,

· · ·, etc..

Problem 7.7.3 Define the conception of volume in Smarandache geometry on space

R3 and find formulae for volumes of convex polyhedrons, such as those of tetrahedron,

pentahedron or hexahedron,· · ·, etc..

Problem 7.7.4 Apply s-lines in Smarandache geometry of spaceR3 to knots and find new

characteristics.

7.7.2 As pointed out in last chapter, we can also establish map geometry on locally

orientable surfaces and find its fundamental elements of points, lines, polyhedrons,· · ·,
etc., particularly, on sphere, torus, double torus, projective plane, Klein bottle,· · ·, i.e.,

to establish an intrinsic geometry on surface. For this objective, open problems for such

surfaces with small genus should be considered first.

Problem 7.7.5 Establish an intrinsic geometry by map geometry on sphere ortorus and

find its fundamental elements.

Problem 7.7.6 Establish an intrinsic geometry on projective or Klein bottle and find its

fundamental elements.

Problem 7.7.7 Define various measures of map geometry on a locally orientable surface

S and apply them to characterize the surface S .

Problem 7.7.8 Define the conception of curvature for map geometry(M, µ) on locally

orientable surfaces and calculate the sumω(M) of curvatures on all edges in M.
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We have a conjecture following, which generalizes the Gauss-Bonnet theorem.

Conjecture 7.7.1 ω(M) = 2πχ(M)s(M), where s(M) denotes the sum of length of edges

in M.

7.7.3 It should be noted that nearly all branches of physics apply Euclid spaceR3 to a

spacetime for its concise and homogeneity unless Einstein’s relativity theory. This has

their own reason, also due to one’s observation because the moving of particle is more

likely that in Euclid spaceR3. However, as shown in relativity theory, this realization is

incorrect in general for the real world is hybridization andnot homogenous. That is why

a physical theory onR3 can only find unilateral behavior of particles.

Problem 7.7.9 Establish a suitable spacetime by spaceR3 in Smarandache geometry

with time axis t and find the global behaviors of particles.

Problem 7.7.10 Establish a unified theory of mechanics, thermodynamics, optics, elec-

tricity, · · ·, etc. by that of Smarandachely spacetime such that each of these theory is its a

case.



CHAPTER 8.

Pseudo-Euclidean Geometry

The essential idea in planar map geometry is associating each point in a planar

map with an angle factor, which turns flatness of a plane to tortuous. When

the order of a planar map tends to infinite and its diameter of each face tends

to zero (such planar maps naturally exist, for example, planar triangulations),

we get a tortuous plane at the limiting point, i.e., a plane equipped with a vec-

tor and straight lines maybe not exist. Such a considerationcan be applied to

Euclidean spaces and manifolds. We discuss them in this chapter. Sections

8.1-8.3 concentrate on pseudo-planes with curve equations, integral curves

and stability of differential equations. The pseudo-Euclidean geometry onRn

for n ≥ 3 is introduced in Section 8.4, in where conditions for a curve existed

in such a pseudo-Euclidean space and the representation forangle function

by rotation matrix are found. Particularly, the finitely pseudo-Euclidean ge-

ometry is characterized by graphs embedded inRn. The Section 8.5 can be

viewed as an elementary introduction to smooth pseudo-manifold, i.e., differ-

ential pseudo-manifolds. Further consideration on this topics will establish

the application of pseudo-manifolds to physics (see [Mao33] or [Mao38] for

details).
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§8.1 PSEUDO-PLANES

8.1.1 Pseudo-Plane.In the classical analytic geometry on plane, each point is correspon-

dent with a Descartes coordinate (x, y), wherex andy are real numbers which ensures the

flatness of a plane. Motivated by the ideas in Chapters 6-7, wefind a new kind of plane,

calledpseudo-plane, which distort the flatness of a plane and can be applied to sciences.

Definition 8.1.1 Let
∑

be a Euclid plane. For∀u ∈ ∑
, if there is a continuous mapping

ω : u→ ω(u) whereω(u) ∈ Rn for an integer n, n ≥ 1 such that for any chosen number

ǫ > 0, there exists a numberδ > 0 and a point v∈ ∑
, ‖u−v‖ < δ such that‖ω(u)−ω(v)‖ <

ǫ, then
∑

is called a pseudo-plane, denoted by(
∑
, ω), where‖u − v‖ denotes the norm

between points u and v in
∑

.

An explanation for Definition 8.1.1 is shown in Fig.8.1.1, in wheren = 1 andω(u)

is an angle function∀u ∈ ∑
.

-
6 � �u

O
-

6
O

u� �ω(u)
2

ω

Fig.8.1.1

We can also explainω(u), u ∈ ∑
to be the coordinatez in u = (x, y, z) ∈ R3 by taking

alson = 1. Thereby a pseudo-plane can be viewed as a projection of a Euclid spaceRn+2

on a Euclid plane. This fact implies that some characteristic of the geometry on space

may reflected by a pseudo-plane.

We only discuss the case ofn = 1 and explainω(u), u ∈ ∑
being a periodic function

in this chapter, i.e., for any integerk, 4kπ + ω(u) ≡ ω(u)(mod4π). Not loss of generality,

we assume that 0< ω(u) ≤ 4π for ∀u ∈ ∑
. Similar to map geometry, points in a pseudo-

plane are classified into three classes, i.e.,elliptic points Vel, Euclidean points Veu and

hyperbolic points Vhy, defined respectively by

Vel =
{
u ∈

∑
|ω(u) < 2π

}
,
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Veu =
{
v ∈

∑
|ω(v) = 2π

}

and

Vhy =
{
w ∈

∑
|ω(w) > 2π

}
.

Then we get the following result.

Theorem 8.1.1 There is a straight line segment AB in a pseudo-plane(
∑
, ω) if and only

if for ∀u ∈ AB,ω(u) = 2π, i.e., every point on AB is Euclidean.

Proof Sinceω(u) is an angle function for∀u ∈ ∑
, we know thatAB is a straight line

segment if and only if for∀u ∈ AB,
ω(u)

2
= π. Thusω(u) = 2π andu is Euclidean. �

Theorem 8.1.1 implies that there maybe no straight line segments in a pseudo-plane.

Corollary 8.1.1 If there are only finite Euclidean points in a pseudo-plane(
∑
, ω), then

there are no straight line segments in(
∑
, ω).

Corollary 8.1.2 There are not always exist a straight line between two given points u and

v in a pseudo-plane(
∑
, ω).

By the intermediate value theorem in calculus, we get the following result for points

in pseudo-planes.

Theorem 8.1.2 In a pseudo-plane(
∑
, ω), if Vel , ∅ and Vhy , ∅, then Veu , ∅.

Proof By these assumptions, we can choose pointsu ∈ Vel andv ∈ Vhy. Consider

points on line segmentuv in a Euclid plane
∑

. Sinceω(u) < 2π andω(v) > 2π, there

exists at least a pointw,w ∈ uv such thatω(w) = 2π, i.e., w ∈ Veu by the intermediate

value theorem in calculus. Whence,Veu , ∅. �

Corollary 8.1.3 In a pseudo-plane(
∑
, ω), if Veu = ∅, then every point of(

∑
, ω) is elliptic

or every point of
∑

is hyperbolic.

According to Corollary 8.1.3, we classify pseudo-planes into four classes following.

C1
P(Euclidean): pseudo-planes whose each point is Euclidean.

C2
P(elliptic) : pseudo-planes whose each point is elliptic.

C3
P(hyperbolic): pseudo-planes whose each point is hyperbolic.

C4
P(Smarandachely): pseudo-planes in which there are Euclidean, elliptic and hy-

perbolic points simultaneously.
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8.1.2 Curve Equation. We define thesign functionsign(v) on point in a pseudo-plane

(
∑
, ω) by

sign(v) =



1, if v is elliptic,

0, if v is euclidean,

−1, if v is hyperbolic.

Then we get a criteria following for the existence of an algebraic curveC in pseudo-plane

(
∑
, ω).

Theorem 8.1.3 There is an algebraic curve F(x, y) = 0 passing through(x0, y0) in

a domain D of pseudo-plane(
∑
, ω) with Descartes coordinate system if and only if

F(x0, y0) = 0 and for∀(x, y) ∈ D,

(
π − ω(x, y)

2

) 1+
(
dy
dx

)2 = sign(x, y).

Proof By the definition of pseudo-planes in the case of thatω being an angle func-

tion and the geometrical meaning of differential value, such as those shown in Fig.8.1.2

following,

∆x� - ∆y
6?(x, y)

(x+ ∆x, y+ ∆y)

1
2

θ

Fig.8.1.2

whereθ = π − ∠2 + ∠1, lim
△x→0

θ = ω(x, y) and (x, y) is an elliptic point, we know that an

algebraic curveF(x, y) = 0 exists in a domainD of (
∑
, ω) if and only if

(
π − ω(x, y)

2

)
= sign(x, y)

d(arctan(dy
dx)

dx
,

for ∀(x, y) ∈ D, i.e., (
π − ω(x, y)

2

)
=

sign(x, y)

1+ (
dy
dx

)2
.
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Therefore,
(
π − ω(x, y)

2

) 1+
(
dy
dx

)2 = sign(x, y). �

A plane curveC is calledelliptic or hyperbolicif sign(x, y) = 1 or−1 for each point

(x, y) on C. We get a conclusion for the existence of elliptic or hyperbolic curves in a

pseudo-plane by Theorem 8.1.3 following.

Corollary 8.1.4 An elliptic curve F(x, y) = 0 exists in pseudo-plane(
∑
, ω) with the

Descartes coordinate system passing through(x0, y0) if and only if there is a domain

D ⊂ ∑
such that F(x0, y0) = 0 and for∀(x, y) ∈ D,

(
π − ω(x, y)

2

) 1+
(
dy
dx

)2 = 1.

Similarly, there exists a hyperbolic curve H(x, y) = 0 in a pseudo-plane(
∑
, ω) with

the Descartes coordinate system passing through(x0, y0) if and only if there is a domain

U ⊂ ∑
such that for H(x0, y0) = 0 and∀(x, y) ∈ U,

(
π − ω(x, y)

2

) 1+
(
dy
dx

)2 = −1.

Construct a polar axis (ρ, θ) in pseudo-plane (
∑
, ω). We get a result following.

Theorem 8.1.4 There is an algebraic curve f(ρ, θ) = 0 passing through(ρ0, θ0) in a

domain F of pseudo-plane(
∑
, ω) with polar coordinate system if and only if f(ρ0, θ0) = 0

and for∀(ρ, θ) ∈ F,

π − ω(ρ, θ)
2
= sign(ρ, θ)

dθ
dρ
.

Proof Similar to that proof of Theorem 8.1.3, we know that lim
△x→0

θ = ω(x, y) and

θ = π−∠2+∠1 if (ρ, θ) is elliptic, orθ = π−∠1+∠2 if (ρ, θ) is hyperbolic in Fig.8.1.2.

Consequently, we get that

π − ω(ρ, θ)
2
= sign(ρ, θ)

dθ
dρ
. �

Corollary 8.1.5 An elliptic curve F(ρ, θ) = 0 exists in pseudo-plane(
∑
, ω) with polar

coordinate system passing through(ρ0, θ0) if and only if there is a domain F⊂ ∑
such

that F(ρ0, θ0) = 0 and for∀(ρ, θ) ∈ F,

π − ω(ρ, θ)
2
=

dθ
dρ
,
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and there exists a hyperbolic curve h(x, y) = 0 in pseudo-plane(
∑
, ω) with polar coor-

dinate system passing through(ρ0, θ0) if and only if there is a domain U⊂ ∑
such that

h(ρ0, θ0) = 0 and for∀(ρ, θ) ∈ U,

π − ω(ρ, θ)
2
= −dθ

dρ
.

8.1.3 Planar Presented R3. We discuss a presentation for points inR3 by the Euclid

planeR2 with characteristics.

Definition 8.1.2 For a point P = (x, y, z) ∈ R3 with center O, letϑ be the angle of

vector
−−→
OP with the plane XOY. Define an angle functionω : (x, y) → 2(π − ϑ), i.e., the

presentation of point(x, y, z) in R3 is a point(x, y) with ω(x, y) = 2(π − ∠(
−−→
OP,XOY)) in

pseudo-plane(
∑
, ω).

An explanation for Definition 8.1.1 is shown in Fig.8.1.3, whereθ is an angle be-

tween the vector
−−→
OP and planeXOY.

-6
= 6

6 -
X

Y

O

X

Y

Z

ω

P (x, y, z)

(x, y, 0)
O

θ � � (x, y)
θ

Fig.8.1.3

Theorem 8.1.5 Let (
∑
, ω) be a pseudo-plane and P= (x, y, z) a point inR3. Then the

point (x, y) is elliptic, Euclidean or hyperbolic if and only if z> 0, z= 0 or z< 0.

Proof By Definition 8.1.2, we know thatω(x, y) > 2π, = 2π or < 2π if and only if

θ > 0,= 0 or< 0 by−π2 ≤ θ ≤
π
2, which are equivalent to thatz> 0,= 0 or< 0. �

The following result brings light for the shape of points inR3 to that of points with

a constant angle function value in pseudo-plane (
∑
, ω).

Theorem 8.1.6 For a constantη, 0 < η ≤ 4π, all points(x, y, z) with ω(x, y) = η in R3

consist an infinite circular cone with vertex O and an angleπ − η
2

between its generatrix

and the plane XOY.
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Proof Notice thatω(x1, y1) = ω(x2, y2) for two pointsA, B in R3 with A = (x1, y1, z1)

andB = (x2, y2, z2) if and only if

∠(
−−→
OA,XOY) = ∠(

−−→
OB,XOY) = π − η

2
,

thus pointsA andB are on a circular cone with vertexO and an angleπ − η

2 between
−−→
OA

or
−−→
OB and the planeXOY. Sincez → +∞, we get an infinite circular cone inR3 with

vertexO and an angleπ − η
2

between its generatrix and the planeXOY. �

§8.2 INTEGRAL CURVES

8.2.1 Integral Curve. An integral curvein Euclid plane is defined by the definition

following.

Definition 8.2.1 If the solution of a differential equation

dy
dx
= f (x, y)

with an initial condition y(x0) = y0 exists, then all points(x, y) consisted by their solutions

of this initial problem on Euclid plane
∑

is called an integral curve.

In the theory of ordinary differential equation, a well-known result for the unique

solution of an ordinary differential equation is stated in the following.

Theorem 8.2.1 If the following conditions hold:

(1) f (x, y) is continuous in a field F:

F : x0 − a ≤ x ≤ x0 + a, y0 − b ≤ y ≤ y0 + b.

(2) There exist a constantς such that for∀(x, y), (x, y) ∈ F,

| f (x, y) − f (x, y)| ≤ ς|y− y|,

then there is an unique solution y= ϕ(x), ϕ(x0) = y0 for the differential equation

dy
dx
= f (x, y)

with an initial condition y(x0) = y0 in the interval[x0−h0, x0+h0], where h0 = min

(
a,

b
M

)

with M = max
(x,y)∈R

| f (x, y)|.
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A complete proof of Theorem 8.2.1 can be found in textbook on ordinary differen-

tial equations, such as the reference [Arn1]. It should be noted that conditions in Theo-

rem 6.2.1 are complex and can not be applied conveniently. As we have shown in Sec-

tion 8.1.1, a pseudo-plane (
∑
, ω) is related with differential equations in Euclid plane

∑
. Whence, by a geometrical view, to find an integral curve in pseudo-plane (

∑
, ω) is

equivalent to solve an initial problem for an ordinary differential equation. Thereby we

concentrate on to find integral curves in pseudo-plane in this section.

According to Theorem 8.1.3, we get the following result.

Theorem 8.2.2 A curve C,

C =

{
(x, y(x))|dy

dx
= f (x, y), y(x0) = y0

}

exists in pseudo-plane(
∑
, ω) if and only if there is an interval I= [x0 − h, x0 + h] and an

angle functionω :
∑→ R such that

ω(x, y(x)) = 2

(
π − sign(x, y(x))

1+ f 2(x, y)

)

for ∀x ∈ I with

ω(x0, y(x0)) = 2

(
π − sign(x, y(x))

1+ f 2(x0, y(x0))

)
.

Proof According to Theorem 8.1.3, a curve passing through the point (x0, y(x0)) in

pseudo-plane (
∑
, ω) if and only if y(x0) = y0 and for∀x ∈ I ,

(
π − ω(x, y(x))

2

) 1+
(
dy
dx

)2 = sign(x, y(x)).

Solvingω(x, y(x)) from this equation, we get that

ω(x, y(x)) = 2

π −
sign(x, y(x))

1+
(

dy
dx

)2

 = 2

(
π − sign(x, y(x))

1+ f 2(x, y)

)
. �

Now we consider curves with an constant angle function at each of its point follow-

ing.

Theorem 8.2.3 Let (
∑
, ω) be a pseudo-plane andθ a constant with0 < θ ≤ 4π.

(1) A curve C passing through a point(x0, y0) with ω(x, y) = η for ∀(x, y) ∈ C is

closed without self-intersections on(
∑
, ω) if and only if there exists a real number s such

that

sη = 2(s− 2)π.
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(2) A curve C passing through a point(x0, y0) with ω(x, y) = θ for ∀(x, y) ∈ C is a

circle on(
∑
, ω) if and only if

η = 2π − 2
r
,

where r =
√

x2
0 + y2

0, i.e., C is a projection of a section circle passing through apoint

(x0, y0) on the plane XOY.

Proof Similar to Theorem 7.3.1, we know that a curveC passing through a point

(x0, y0) in pseudo-plane (
∑
, ω) is closed if and only if

s∫

0

(
π − ω(s)

2

)
ds= 2π.

Now by assumptionω(x, y) = η is constant for∀(x, y) ∈ C, we get that

s∫

0

(
π − ω(s)

2

)
ds= s

(
π − η

2

)
.

Whence,

s(π − η
2

) = 2π, i.e., sη = 2(s− 2)π.

Now if C is a circle passing through point (x0, y0) with ω(x, y) = θ for ∀(x, y) ∈ C,

then by the Euclid plane geometry we know thats= 2πr, wherer =
√

x2
0 + y2

0. Therefore,

there must be that

η = 2π − 2
r
.

This completes the proof. �

8.2.2 Spiral Curve. Two spiral curves without self-intersections are shown in Fig.8.2.1,

in where (a) is an input but (b) an output curve.U� �~
(a) (b)

Fig.8.2.1



244 Chap.8 Pseudo-Euclidean Geometry

The curve in Fig.8.2.1(a) is called anelliptic in-spiral and that in Fig.8.2.1(b) anelliptic

out-spiral, correspondent to the right hand rule. In a polar coordinatesystem (ρ, θ), a

spiral curve has equation

ρ = ceθt,

wherec, t are real numbers andc > 0. If t < 0, then the curve is an in-spiral as the curve

in Fig.8.2.1(a). If t > 0, then the curve is an out-spiral as shown in Fig.8.2.1(b).

For the caset = 0, we get a circleρ = c (or x2 + y2 = c2 in the Descartes coordinate

system).

Now in a pseudo-plane, we can easily find conditions for in-spiral or out-spiral

curves. That is the following theorem.

Theorem 8.2.4 Let (
∑
, ω) be a pseudo-plane and letη, ζ be constants. Then an elliptic

in-spiral curve C withω(x, y) = η for ∀(x, y) ∈ C exists in(
∑
, ω) if and only if there exist

numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

siη < 2(si − 2i)π

for any integer i, i ≥ 1 and an elliptic out-spiral curve C withω(x, y) = ζ for ∀(x, y) ∈ C

exists in(
∑
, ω) if and only if there exist numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1

such that

siζ > 2(si − 2i)π

for any integer i, i ≥ 1.

Proof Let L be ans-line like an elliptic in-spiral shown in Fig.8.2.2, in wherex1,

x2,· · ·, xn are non-Euclidean points andx1x6 is an auxiliary line segment.

�-
�

- �-
x1

x2

x3x4

x5

x6

xn

Fig.8.2.2
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Then we know that
6∑

i=1

(π − f (x1)) < 2π,

12∑

i=1

(π − f (x1)) < 4π,

· · · · · · · · · · · · · · · · · · .

Similarly, from any initial pointO to a pointP far s to O onC, the sum of lost angles

at P is
s∫

0

(
π − η

2

)
ds=

(
π − η

2

)
s.

Whence, the curveC is an elliptic in-spiral if and only if there exist numberss1 > s2 >

· · · > sl > · · ·, si > 0 for ≥ 1 such that

(
π − η

2

)
s1 < 2π,

(
π − η

2

)
s2 < 4π,

(
π − η

2

)
s3 < 6π,

· · · · · · · · · · · · · · · · · · ,
(
π − η

2

)
sl < 2lπ.

Therefore,

siη < 2(si − 2i)π

for any integeri, i ≥ 1.

Similarly, consider ans-line like an elliptic out-spiral withx1, x2,· · ·, xn non-Euclidean

points. We can also find thatC is an elliptic out-spiral if and only if there exist numbers

s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

(
π − ζ

2

)
s1 > 2π,

(
π − ζ

2

)
s2 > 4π,

(
π − ζ

2

)
s3 > 6π,

· · · · · · · · · · · · · · · · · · ,
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(
π − ζ

2

)
sl > 2lπ.

Consequently,

siη < 2(si − 2i)π.

for any integeri, i ≥ 1. �

Similar to elliptic in or out-spirals, we can also define ahyperbolic in-spiralor hy-

perbolic out-spiralcorrespondent to the left hand rule, which are mirrors of curves in

Fig.8.2.1. We get the following result for a hyperbolic in or out-spiral in pseudo-plane.

Theorem8.2.5 Let (
∑
, ω) be a pseudo-plane and letη, ζ be constants. Then a hyperbolic

in-spiral curve C withω(x, y) = η for ∀(x, y) ∈ C exists in(
∑
, ω) if and only if there exist

numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1 such that

siη > 2(si − 2i)π

for any integer i, i ≥ 1 and a hyperbolic out-spiral curve C withω(x, y) = ζ for ∀(x, y) ∈ C

exists in(
∑
, ω) if and only if there exist numbers s1 > s2 > · · · > sl > · · ·, si > 0 for i ≥ 1

such that

siζ < 2(si − 2i)π

for any integer i, i ≥ 1.

Proof The proof is similar to that of the proof of Theorem 8.2.4. �

§8.3 STABILITY OF DIFFERENTIAL EQUATIONS

8.3.1 Singular Point. For an ordinary differential equation system

dx
dt
= P(x, y),

dy
dt
= Q(x, y), (8− 1)

wheret is a time parameter, the Euclid planeXOYwith the Descartes coordinate system

is called its aphase planeand the orbit (x(t), y(t)) of its a solutionx = x(t), y = y(t) is

called anorbit curve. If there exists a point (x0, y0) on XOYsuch that

P(x0, y0) = Q(x0, y0) = 0,
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then there is an obit curve which is only a point (x0, y0) on XOY. The point (x0, y0) is

called asingular point of(A∗). Singular points of an ordinary differential equation are

classified into four classes:knot, saddle, focalandcentral points. Each of these classes

are introduced in the following.

Class 1: Knot. A knot Oof a differential equation is shown in Fig.8.3.1 where (a)

denotes thatO is stable but (b) is unstable.

-6?
x x

y y

6- �^ 	N 
� KMÆ -66?� -℄ �M Æ� UN

(a) (b)

Fig.8.3.1

A critical knot Oof a differential equation is shown in Fig.8.3.2 where (a) denotes

thatO is stable but (b) is unstable.

-6 -6
x

O
x

yy

O
- ?6 	�R I 6� ?-�	I R

(a) (b)

Fig.8.3.2

A degenerate knot Oof a differential equation is shown in Fig.8.3.3, where (a) de-

notes thatO is stable but (b) is unstable.
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Fig.8.3.3

Class 2: Saddle Point. A saddle point Oof a differential equation is shown in

Fig.8.3.4.

-6
O

- �6?�6 6I6?? ?? x

y

Fig.8.3.4

Class 3: Focal Point. A focal point Oof a differential equation is shown in

Fig.8.3.5, where (a) denotes thatO is stable but (b) is unstable.

-6
O� � x

y

(a)

-6
O�* x

y

(b)

Fig.8.3.5
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Class 4: Central Point. A central point Oof a differential equation is shown in

Fig.8.3.6, which is just the center of a circle.

-6
x

y

O

Fig.8.3.6

8.3.2 Singular Points in Pseudo-Plane. In a pseudo-plane (
∑
, ω), not all kinds of

singular points exist. We get a result for singular points ina pseudo-plane as in the

following.

Theorem 8.3.1 There are no saddle points and stable knots in a pseudo-planeplane

(
∑
, ω).

Proof On a saddle point or a stable knotO, there are two rays toO, seeing Fig.8.3.1(a)

and Fig.8.3.5 for details. Notice that if this kind of orbit curves in Fig.8.3.1(a) or Fig.8.3.5

appears, then there must be that

ω(O) = 4π.

Now by Theorem 8.1.1, every pointu on those two rays should be Euclidean, i.e.,ω(u) =

2π, unless the pointO. But thenω is not continuous at the pointO, which contradicts

Definition 8.1.1. �

If an ordinary differential equation system (8− 1) has a closed orbit curveC but all

other orbit curves are not closed in a neighborhood ofC nearly enough toC and those

orbits curve tend toC whent → +∞ or t → −∞, thenC is called alimiting ring of (8−1)

andstableor unstableif t → +∞ or t → −∞.

Theorem 8.3.2 For two constantsρ0, θ0, ρ0 > 0 and θ0 , 0, there is a pseudo-plane

(
∑
, ω) with

ω(ρ, θ) = 2

(
π − ρ0

θ0ρ

)
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or

ω(ρ, θ) = 2

(
π +

ρ0

θ0ρ

)

such that

ρ = ρ0

is a limiting ring in (
∑
, ω).

Proof Notice that for two given constantsρ0, θ0, ρ0 > 0 andθ0 , 0, the equation

ρ(t) = ρ0e
θ0θ(t)

has a stable or unstable limiting ring

ρ = ρ0

if θ(t)→ 0 whent → +∞ or t → −∞. Whence, we know that

θ(t) =
1
θ0

ln
ρ0

ρ(t)
.

Therefore,
dθ
dρ
=

ρ0

θ0ρ(t)
.

According to Theorem 8.1.4, we get that

ω(ρ, θ) = 2

(
π − sign(ρ, θ)

dθ
dρ

)
,

for any point (ρ, θ) ∈ ∑
, i.e.,

ω(ρ, θ) = 2

(
π − ρ0

θ0ρ

)
or ω(ρ, θ) = 2

(
π +

ρ0

θ0ρ

)
. �

§8.4 PSEUDO-EUCLIDEAN GEOMETRY

8.4.1 Pseudo-Euclidean Geometry.Let Rn = {(x1, x2, · · · , xn)} be a Euclidean space

of dimensionaln with a normal basisǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0), · · ·, ǫn =

(0, 0, · · · , 1), x ∈ Rn and
−→
V x, x

−→
V two vectors with end or initial point atx, respectively. A

pseudo-Euclidean space(Rn, µ) is such a Euclidean spaceRn associated with a mapping

µ :
−→
V x → x

−→
V for x ∈ Rn, such as those shown in Fig.8.4.1,
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- - - >
x x

−→
V x x

−→
V

−→
V x

x
−→
V

(a) (b)

Fig.8.4.1

where
−→
V x andx

−→
V are in the same orientation in case (a), but not in case (b). Such points in

case (a) are calledEuclideanand in case (b) non-Euclidean. A pseudo-Euclidean (Rn, µ)

is finite if it only has finite non-Euclidean points, otherwise,infinite.

A straight lineL passing through a point (x0
1, x

0
2, · · · , x0

n) with an orientation
−→
O =

(X1,X2, · · · ,Xn) is defined to be a point set (x1, x2, · · · , xn) determined by an equation

system 

x1 = x0
1 + tX1

x2 = x0
2 + tX2

· · · · · · · · · · · ·
xn = x0

n + tXn

for ∀t ∈ R in analytic geometry onRn, or equivalently, by the equation system

x1 − x0
1

X1
=

x2 − x0
2

X2
= · · · = xn − x0

n

Xn
.

Therefore, we can also determine its equation system for a straight lineL in a pseudo-

Euclidean space (Rn, µ). By definition, a straight lineL passing through a Euclidean point

x0
= (x0

1, x
0
2, · · · , x0

n) ∈ Rn with an orientation
−→
O = (X1,X2, · · · ,Xn) in (Rn, µ) is a point set

(x1, x2, · · · , xn) determined by an equation system


x1 = x0
1 + t(X1 + µ1(x

0))

x2 = x0
2 + t(X2 + µ2(x

0))

· · · · · · · · · · · ·
xn = x0

n + t(Xn + µn(x
0))

for ∀t ∈ R, or equivalently,

x1 − x0
1

X1 + µ1(x
0)
=

x2 − x0
2

X2 + µ2(x
0)
= · · · = xn − x0

n

Xn + µn(x
0)
,

whereµ|−→
O

(x0) = (µ1(x
0), µ2(x

0), · · · , µn(x
0)). Notice that this equation system dependent

onµ|−→
O

, it maybe not a linear equation system.
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Similarly, let
−→
O be an orientation. A pointu ∈ Rn is said to beEuclideanon orien-

tation
−→
O if µ|−→

O
(u) = 0. Otherwise, letµ|−→

O
(u) = (µ1(u), µ2(u), · · · , µn(u)). The pointu is

elliptic or hyperbolicdetermined by the following inductive programming.

STEP 1. Ifµ1(u) < 0, thenu is elliptic; otherwise, hyperbolic ifµ1(u) > 0;

STEP 2. Ifµ1(u) = µ2(u) = · · · = µi(u = 0, butµi+1(u < 0 thenu is elliptic; otherwise,

hyperbolic ifµi+1(u) > 0 for an integeri, 0 ≤ i ≤ n− 1.

Denote these elliptic, Euclidean and hyperbolic point setsby

−→
Veu =

{
u ∈ Rn | u an Euclidean point

}
,

−→
Vel =

{
v ∈ Rn | v an elliptic point

}
.

−→
Vhy =

{
v ∈ Rn | w a hyperbolic point

}
.

Then we get a partition

Rn =
−→
Veu

⋃−→
Vel

⋃−→
Vhy

on points inRn with
−→
Veu∩−→Vel = ∅, −→Veu∩−→Vhy = ∅ and

−→
Vel∩−→Vhy = ∅. Points in

−→
Vel∩−→Vhy

are callednon-Euclidean points.

Now we introduce a linear order≺ on O by the dictionary arrangement in the fol-

lowing.

For (x1, x2, · · · , xn) and (x′1, x
′
2, · · · , x′n) ∈ O , if x1 = x′1, x2 = x′2, · · · , xl = x′l and

xl+1 < x′l+1 for any integer l, 0 ≤ l ≤ n− 1, then define(x1, x2, · · · , xn) ≺ (x′1, x
′
2, · · · , x′n).

By this definition, we know that

µ|−→
O

(u) ≺ µ|−→
O

(v) ≺ µ|−→
O

(w)

for ∀u ∈ −→Vel, v ∈ −→Veu, w ∈ −→Vhy and a given orientation
−→
O. This fact enables us to find an

interesting result following.

Theorem 8.4.1 For any orientation
−→
O ∈ O in a pseudo-Euclidean space

(
Rn, µ|−→

O

)
, if

−→
Vel , ∅ and

−→
Vhy , ∅, then

−→
Veu , ∅.

Proof By assumption,
−→
Vel , ∅ and

−→
Vhy , ∅, we can choose pointsu ∈ −→Vel andw ∈

−→
Vhy. Notice thatµ|−→

O
: Rn→ O is a continuous and (O ,≺) a linear ordered set. Applying

thegeneralized intermediate value theoremon continuous mappings in topology, i.e.,
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Let f : X → Y be a continuous mapping with X a connected space and Y a linear

ordered set in the order topology. If a, b ∈ X and y∈ Y lies between f(a) and f(b), then

there exists x∈ X such that f(x) = y.

we know that there is a pointv ∈ Rn such that

µ|−→
O

(v) = 0,

i.e.,v is a Euclidean point by definition. �

Corollary 8.4.1 For any orientation
−→
O ∈ O in a pseudo-Euclidean space

(
Rn, µ|−→

O

)
, if

−→
Veu = ∅, then either points in

(
Rn, µ|−→

O

)
is elliptic or hyperbolic.

A pseudo-Euclidean space
(
Rn, µ|−→

O

)
is a Smarandache geometry sometimes.

Theorem 8.4.2 A pseudo-Euclidean space
(
Rn, µ|−→

O

)
is a Smarandache geometry if

−→
Veu,

−→
Vel , ∅, or

−→
Veu,
−→
Vhy , ∅, or

−→
Vel,
−→
Vhy , ∅ for an orientation

−→
O in

(
Rn, µ|−→

O

)
.

Proof Notice thatµ|−→
O

(u) = 0 is an axiom inRn, but a Smarandachely denied axiom

if
−→
Veu,
−→
Vel , ∅, or

−→
Veu,
−→
Vhy , ∅, or

−→
Vel,
−→
Vhy , ∅ for an orientation

−→
O in

(
Rn, µ|−→

O

)
for

µ|−→
O

(u) = 0 or, 0 in the former two cases andµ|−→
O

(u) ≺ 0 or ≻ 0 both hold in the last

one. Whence, we know that
(
Rn, µ|−→

O

)
is a Smarandache geometry by definition. �

Notice that there infinite points are on a straight line segment in Rn. Whence, a

necessary for the existence of a straight line is there existinfinite Euclidean points in(
Rn, µ|−→

O

)
. Furthermore, we get conditions for a curveC existing in

(
Rn, µ|−→

O

)
following.

Theorem 8.4.2 A curve C= ( f1(t), f2(t), · · · , fn(t)) exists in a pseudo-Euclidean space(
Rn, µ|−→

O

)
for an orientation

−→
O if and only if

d f1(t)
dt

∣∣∣∣∣
u
=

√
(

1
µ1(u)

)2 − 1,

d f2(t)
dt

∣∣∣∣∣
u
=

√
(

1
µ2(u)

)2 − 1,

· · · · · · · · · · · · ,

d fn(t)
dt

∣∣∣∣∣
u
=

√
(

1
µn(u)

)2 − 1.
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for ∀u ∈ C, whereµ|−→
O
= (µ1, µ2, · · · , µn).

Proof Let the angle betweenµ|−→
O

andǫ i beθi, 1≤ θi ≤ n.

-
66

+6
7.......................................................................................... .......

......
......

..

..............
............

O

X

A

ǫ1

ǫ2

ǫ3

µ1

µ2

µ3
θ3

θ1 θ2

Fig.8.4.2

Then we know that

cosθi = µi , 1 ≤ i ≤ n.

By geometrical implication of differential at a pointu ∈ Rn, seeing also Fig.8.4.2,

we know that
d fi(t)

dt

∣∣∣∣∣
u
= tgθi =

√
(

1
µi(u)

)2 − 1

no for 1 ≤ i ≤ n. Therefore, if a curveC = ( f1(t), f2(t), · · · , fn(t)) exists in a pseudo-

Euclidean space (Rn, µ|−→
O

) for an orientation
−→
O, then

d fi(t)
dt

∣∣∣∣∣
u
=

√
(

1
µ2(u)

)2 − 1, 1 ≤ i ≤ n

for ∀u ∈ C. On the other hand, if

d fi(t)
dt

∣∣∣∣∣
v
=

√
(

1
µ2(v)

)2 − 1, 1 ≤ i ≤ n

hold for pointsv for ∀t ∈ R, then all pointsv, t ∈ R consist of a curveC in
(
Rn, µ|−→

O

)
for

the orientation
−→
O. �

Corollary 8.4.2 A straight line L exists in
(
Rn, µ|−→

O

)
if and only ifµ|−→

O
(u) = 0 for ∀u ∈ L

and∀−→O ∈ O .
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8.4.2 Rotation Matrix. Notice that a vector
−→
V can be uniquely determined by the ba-

sis of Rn. For x ∈ Rn, there are infinite orthogonal frames at pointx. Denoted byOx

the set of all normal bases at pointx. Then apseudo-Euclidean space(R, µ) is noth-

ing but a Euclidean spaceRn associated with a linear mappingµ : {ǫ1, ǫ2, · · · , ǫn} →
{ǫ′1, ǫ′2, · · · , ǫ′n} ∈ Ox such thatµ(ǫ1) = ǫ

′
1, µ(ǫ2) = ǫ

′
2, · · ·, µ(ǫn) = ǫ

′
n at point x ∈ Rn.

Thus if
−→
V x = c1ǫ1 + c2ǫ2 + · · · + cnǫn, thenµ

(
x
−→
V
)
= c1µ(ǫ1) + c2µ(ǫ2) + · · · + cnµ(ǫn) =

c1ǫ
′
1 + c2ǫ

′
2 + · · · + cnǫ

′
n.

Without loss of generality, assume that

µ(ǫ1) = x11ǫ1 + x12ǫ2 + · · · + x1nǫn,

µ(ǫ2) = x21ǫ1 + x22ǫ2 + · · · + x2nǫn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

µ(ǫn) = xn1ǫ1 + xn2ǫ2 + · · · + xnnǫn.

Then we find that

µ
(

x
−→
V
)
= (c1, c2, · · · , cn)(µ(ǫ1), µ(ǫ2), · · · , µ(ǫn))

t

= (c1, c2, · · · , cn)



x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn


(ǫ1, ǫ2, · · · , ǫn)

t.

Denoted by

[
x
]
=



x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn


=



〈µ(ǫ1), ǫ1〉 〈µ(ǫ1), ǫ2〉 · · · 〈µ(ǫ1), ǫn〉
〈µ(ǫ2), ǫ1〉 〈µ(ǫ2), ǫ2〉 · · · 〈µ(ǫ2), ǫn〉
· · · · · · · · · · · ·

〈µ(ǫn), ǫ1〉 〈µ(ǫn), ǫ2〉 · · · 〈µ(ǫn), ǫn〉


,

called therotation matrixof x in (Rn, µ). Thenµ :
−→
V x → x

−→
V is determined byµ(x) =

[
x
]

for x ∈ Rn. Furthermore, such an rotation matrix
[
x
]

is orthogonal for pointsx ∈ Rn by

definition, i.e.,
[
x
] [

x
]t
= In×n. Particularly, ifx is Euclidean, then such an orientation ma-

trix is nothing butµ(x) = In×n. Summing up all these discussions, we know the following

result.

Theorem 8.4.3 If (Rn, µ) is a pseudo-Euclidean space, thenµ(x) =
[
x
]

is an n× n

orthogonal matrix for∀ x ∈ Rn.
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8.4.3 Finitely Pseudo-Euclidean Geometry.Let n ≥ 2 be an integer. We can character-

ize finitely pseudo-Euclidean geometry by that of embedded graph inRn. As we known,

an embedded graphG on Rn is a 1− 1 mappingτ : G→ Rn such that for∀e, e′ ∈ E(G),

τ(e) has no self-intersection andτ(e), τ(e′) maybe only intersect at their end points. Such

an embedded graphG in Rn is denoted byGRn.

Likewise that the case of (R2, µ), thecurvature R(L) of an s-lineL passing through

non-Euclidean pointsx1, x2, · · · , xm ∈ Rn for m ≥ 0 in (Rn, µ) to be a matrix determined

by

R(L) =
m∏

i=1

µ(xi)

andEuclideanif R(L) = In×n, otherwise,non-Euclidean. obviously, a point in a Euclidean

spaceRn is indeed Euclidean by this definition. Furthermore, we immediately get the

following result for Euclidean s-lines in (Rn, µ).

Theorem8.4.4 Let(Rn, µ) be a pseudo-Euclidean space and L an s-line in(Rn, µ) passing

through non-Euclidean pointsx1, x2, · · · , xm ∈ Rn. Then L is closed if and only if L is

Euclidean.

Proof If L is a closed s-line, thenL is consisted of vectors
−−−→
x1x2,

−−−→
x2x3, · · ·,

−−−→
xnx1. By

definition, −−−−→
xi+1xi∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
=

−−−−→
xi−1xi∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
µ(xi)

for integers 1≤ i ≤ m, wherei + 1 ≡ (modm). Consequently,

−−−→
x1x2 =

−−−→
x1x2

m∏

i=1

µ(xi).

Thus
m∏

i=1

µ(xi) = In×n, i.e.,L is Euclidean.

Conversely, letL be Euclidean, i.e.,
m∏

i=1

µ(xi) = In×n. By definition, we know that

−−−−→
xi+1xi∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
=

−−−−→
xi−1xi∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
µ(xi), i.e.,

−−−−→
xi+1xi =

∣∣∣∣
−−−−→
xi+1xi

∣∣∣∣
∣∣∣∣
−−−−→
xi−1xi

∣∣∣∣
−−−−→
xi−1xi µ(xi)

for integers 1≤ i ≤ m, wherei + 1 ≡ (modm). Whence, if
m∏

i=1

µ(xi) = In×n, then there
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must be
−−−→
x1x2 =

−−−→
x1x2

m∏

i=1

µ(xi).

ThusL consisted of vectors
−−−→
x1x2,

−−−→
x2x3, · · ·,

−−−→
xnx1 is a closed s-line in (Rn, µ). �

Similarly, an embedded graphGRn is calledSmarandachelyif there exists a pseudo-

Euclidean space (Rn, µ) with a mappingµ : x ∈ Rn → [
x
]

such that all of its vertices

are non-Euclidean points in (Rn, µ). It should be noted that these vertices of valency

1 is not important for Smarandachely embedded graphs. We geta result on embedded

2-connected graphs similar to that of Theorem 6.4.2 following.

Theorem 8.4.5 An embedded2-connected graph GRn is Smarandachely if and only if

there is a mappingµ : x ∈ Rn→ [
x
]

and a directed circuit-decomposition

E1
2
=

s⊕

i=1

E
(−→
C i

)

such that these matrix equations
∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s

are solvable.

Proof By definition, if GRn is Smarandachely, then there exists a mappingµ : x ∈
Rn→ [

x
]
onRn such that all vertices ofGRn are non-Euclidean in (Rn, µ). Notice there are

only two orientations on an edge inE(GRn). Traveling onGRn beginning from any edge

with one orientation, we get a closed s-line
−→
C, i.e., a directed circuit. After we traveled

all edges inGRn with the possible orientations, we get a directed circuit-decomposition

E1
2
=

s⊕

i=1

E
(−→
C i

)

with an s-line
−→
C i for integers 1≤ i ≤ s. Applying Theorem 9.4.6, we get

∏

x∈V(
−→
C i )

µ(x) = In×n 1 ≤ i ≤ s.

Thus these equations ∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s
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have solutionsXx = µ(x) for x ∈ V
(−→
C i

)
.

Conversely, if these is a directed circuit-decomposition

E1
2
=

s⊕

i=1

E
(−→
C i

)

such that these matrix equations

∏

x∈V(
−→
C i )

Xx = In×n 1 ≤ i ≤ s

are solvable, letXx = Ax be such a solution forx ∈ V
(−→
C i

)
, 1 ≤ i ≤ s. Define a mapping

µ : x ∈ Rn→ [
x
]

onRn by

µ(x) =


Ax if x ∈ V(GRn),

In×n if x < V(GRn).

Thus we get a Smarandachely embedded graphGRn in the pseudo-Euclidean space (Rn, µ)

by Theorem 8.4.4. �

8.4.4 Metric Pseudo-Geometry. We can further generalize Definition 8.1.1 and get

Smarandache geometry on metric spaces following.

Definition 8.4.1 Let U and W be two metric spaces with metricρ, W ⊆ U. For ∀u ∈ U, if

there is a continuous mappingω : u→ ω(u), whereω(u) ∈ Rn for an integer n, n ≥ 1 such

that for any numberǫ > 0, there exists a numberδ > 0 and a point v∈ W, ρ(u− v) < δ

such thatρ(ω(u) − ω(v)) < ǫ, then U is called a metric pseudo-space if U= W or a

bounded metric pseudo-space if there is a number N> 0 such that∀w ∈ W, ρ(w) ≤ N,

denoted by(U, ω) or (U−, ω), respectively.

By choice different metric spacesU andW in this definition, we can get various

metric pseudo-spaces. Particularly, forn = 1, we can also explainω(u) being an angle

function with 0< ω(u) ≤ 4π, i.e.,

ω(u) =


ω(u)(mod4π), if u ∈W,

2π, if u ∈ U \W.

The following result convinces us that there are Smarandache geometries in metric

pseudo-spaces.
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Theorem8.4.5For any integer n≥ 1, there are infinite Smarandache geometries in metric

pseudo-spaces or bounded metric pseudo-spaces M.

Proof Let∆ andΛ be subset ofRn or Cn with ∆
⋂
Λ = ∅, W a bounded subspace of

M and letW1,W2 ⊂ W with W1
⋂

W2 = ∅. SinceM is a metric space andW1
⋂

W2 = ∅,
∆

⋂
Λ = ∅, we can always define a continuous mappingω : u→ ω(u) onW such that

ω(w1) ∈ ∆ for w1 ∈W1; ω(w2) ∈ Λ for w2 ∈W2.

Therefore, the statementω(u) ∈ ∆ for any point u∈ M is Smarandachely denied by the

definition ofω, i.e., ω(w1) ∈ ∆ for w1 ∈ W1, ω(w2) ∈ Λ for w2 ∈ W2 andω(w) for

w ∈ M \ (W1
⋃

W2) orω(u) for u ∈ (M \W) can be defined as we wish sinceW1
⋂

W2 = ∅
andW \ (W1

⋃
W2) , ∅, M \W , ∅. By definition, we get a Smarandache geometry

(M, ω) with or without boundary. �

§8.5 SMOOTH PSEUDO-MANIFOLDS

8.5.1 Differential Manifold. A differential n-manifold(Mn,A) is ann-manifold Mn,

whereMn =
⋃
i∈I

Ui endowed with aCr-differential structureA = {(Uα, ϕα)|α ∈ I } on Mn

for an integerr with following conditions hold.

(1) {Uα;α ∈ I } is an open covering ofMn;

(2) For∀α, β ∈ I , atlases (Uα, ϕα) and (Uβ, ϕβ) areequivalent, i.e.,Uα

⋂
Uβ = ∅ or

Uα

⋂
Uβ , ∅ but theoverlap maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ

)→ ϕβ(Uβ) and ϕβϕ
−1
α : ϕβ(Uα

⋂
Uβ

)→ ϕα(Uα) are Cr ;

(3) A is maximal, i.e., if (U, ϕ) is an atlas ofMn equivalent with one atlas inA, then

(U, ϕ) ∈ A.

An n-manifold is called to besmoothif it is endowed with aC∞-differential structure.

It has been known that the base of a tangent spaceTpMn of differentialn-manifold (Mn,A)

consisting of
∂

∂xi
, 1 ≤ i ≤ n for ∀p ∈ (Mn,A).

8.5.2 Pseudo-Manifold. An n-dimensional pseudo-manifold(Mn,Aµ) is a Hausdorff

space such that each pointsp has an open neighborhoodUp homomorphic to a pseudo-

Euclidean space
(
Rn, µ|−→

O

)
, whereA = {(Up, ϕ

µ
p)|p ∈ Mn} is its atlas with a homomor-

phismϕ
µ
p : Up→

(
Rn, µ|−→

O

)
and a chart (Up, ϕ

µ
p).
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Theorem 8.5.1 For a point p∈ (Mn,Aµ) with a local chart(Up, ϕ
µ
p), ϕ

µ
p = ϕp if and only

if µ|−→
O

(p) = 0.

Proof For∀p ∈ (Mn,Aµ), if ϕµp(p) = ϕp(p), thenµ(ϕp(p)) = ϕp(p). By the definition

of pseudo-Euclidean space (Rn, µ|−→
O

), this can only happens whileµ(p) = 0. �

A point p ∈ (Mn,Aµ) is elliptic, Euclideanor hyperbolicif µ(ϕp(p)) ∈ (Rn, µ|−→
O

) is

elliptic, Euclideanor hyperbolic, respectively. These elliptic and hyperbolic points also

callednon-Euclidean points. We get a consequence by Theorem 8.5.1.

Corollary 8.5.1 Let (Mn,Aµ) be a pseudo-manifold. Thenϕµp = ϕp if and only if every

point in Mn is Euclidean.

Theorem 8.5.2 Let (Mn,Aµ) be an n-dimensional pseudo-manifold, p∈ Mn. If there are

Euclidean and non-Euclidean points simultaneously or two elliptic or hyperbolic points

on an orientation
−→
O in (Up, ϕp), then(Mn,Aµ) is a paradoxist n-manifold.

Proof Notice that two linesL1, L2 are saidlocally parallelin a neighborhood (Up, ϕ
µ
p)

of a pointp ∈ (Mn,Aµ) if ϕµp(L1) andϕµp(L2) are parallel in
(
Rn, µ|−→

O

)
. If these conditions

hold for (Mn,Aµ), the axiom thatthere is exactly one line passing through a point locally

parallel a given lineis Smarandachely denied since it behaves in at least two different

ways, i.e.,one parallel, none parallel, or one parallel, infinite parallels, or none parallel,

infinite parallels, which are verified in the following.

If there are Euclidean and non-Euclidean points in (Up, ϕ
µ
p) simultaneously, not loss

of generality, letu be Euclidean butv non-Euclidean,ϕµp(v) = (µ1, µ2, · · · , µn) with µ1 < 0.

-j 1
L

L1

u

(a)

-- ~
L

L2
v

(b)

Fig.8.5.1

Let L be a line parallel the axisǫ1 in
(
Rn, µ|−→

O

)
. Then there is only one lineLu locally

parallel to (ϕµp)−1(L) passing through the pointu since there is only one lineϕµp(Lu) parallel

to L in
(
Rn, µ|−→

O

)
. However, ifµ1 > 0, then there are infinite many lines passing through

u locally parallel toϕ−1
p (L) in (Up, ϕp) because there are infinite many lines parallelL in
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(
Rn, µ|−→

O

)
, such as those shown in Fig.8.5.1(a), in where each line passing through the

pointu = ϕµp(u) from the shade field is parallel toL. But if µ1 > 0, then there are no lines

locally parallel to (ϕµp)−1(L) in (Up, ϕ
µ
p) since there are no lines passing through the point

v = ϕµp(v) parallel toL in
(
Rn, µ|−→

O

)
, such as those shown in Fig.8.5.1(b).

If there are two elliptic pointsu, v along a direction
−→
O, consider the plane

∑
de-

termined byϕωp(u), ϕωp(v) with
−→
O in

(
Rn, ω|−→

O

)
. Let L be a line intersecting with the

line ϕωp(u)ϕωp(v) in
∑

. Then there are infinite lines passing throughu locally parallel

to (ϕωp)−1(L) but none line passing throughv locally parallel toϕ−1
p (L) in (Up, ϕp) because

there are infinite many lines or none lines passing throughu = ϕωp(u) or v = ϕωp(v) parallel

to L in
(
Rn, ω|−→

O

)
, such as those shown in Fig.8.5.2.

--z :
L

L1

L2

u

v

Fig.8.5.2

For the case of hyperbolic points, we can similarly get the conclusion. Since there

exists a Smarandachely denied axiom to the fifth Euclid’s axiom in (Mn,Aω), it is indeed

a paradoxist manifold. �

If M = Rn, we get consequences for pseudo-Euclidean spaces
(
Rn, ω|−→

O

)
following.

Corollary 8.5.2 For an integer n≥ 2, if there are Euclidean and non-Euclidean points

simultaneously or two elliptic or hyperbolic points in an orientation
−→
O in

(
Rn, ω|−→

O

)
, then

(
Rn, ω|−→

O

)
is a paradoxist n-manifold.

Corollary 8.5.3 If there are pointsp, q ∈
(
R3, ω|−→

O

)
such thatω|−→

O
(p) , (0, 0, 0) but

ω|−→
O

(q) = (0, 0, 0) or p, q are simultaneously elliptic or hyperbolic in an orientation
−→
O in

(
R3, ω|−→

O

)
, then

(
R3, ω|−→

O

)
is a paradoxist n-manifold.

8.5.3 Differential Pseudo-Manifold. For an integerr ≥ 1, aCr -differential pseudo-

manifold (Mn,Aω) is a pseudo-manifold (Mn,Aω) endowed with aCr-differentiable struc-

tureA andω|−→
O

for an orientation
−→
O. A C∞-differential pseudo-manifold (Mn,Aω) is also
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said to be asmooth pseudo-manifold. For such pseudo-manifolds, we know their differ-

entiable conditions following.

Theorem 8.5.3 A pseudo-Manifold(Mn,Aω) is a Cr-differential pseudo-manifold with

an orientation
−→
O for an integer r≥ 1 if conditions following hold.

(1) There is a Cr-differential structureA = {(Uα, ϕα)|α ∈ I } on Mn;

(2) ω|−→
O

is Cr ;

(3) There are Euclidean and non-Euclidean points simultaneously or two elliptic or

hyperbolic points on the orientation
−→
O in (Up, ϕp) for a point p∈ Mn.

Proof The condition (1) implies that (Mn,A) is a Cr-differentialn-manifold and

conditions (2) and (3) ensure (Mn,Aω) is a differential pseudo-manifold by definitions

and Theorem 8.5.2. �

§8.6 RESEARCH PROBLEMS

Definition 8.4.1 is a general way for introducing pseudo-geometry on metricspaces. How-

ever, even for Euclidean plane
∑

, there are many problems not solved yet. We list some

of them on Euclidean spacesRm andm-manifolds form≥ 2 following.

8.6.1 Let C be a closed curve in Euclid plane
∑

without self-intersection. Then the curve

C divides
∑

into two domains. One of them is finite, denoted byD f in. We callC the

boundary ofD f in. Now let U =
∑

andW = D f in in Definition 8.4.1 with n = 1. For

example, chooseC be a 6-polygon such as those shown in Fig.8.6.1.

- �- �-U
L1

L2

L3

L4

Fig.8.6.1
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Then we get a geometry (
∑−, ω) partially Euclidean, and partially non-Euclidean. Then

there are open problems following.

Problem 8.6.1 Find conditions for parallel bundles on(
∑−, ω).

Problem 8.6.2 Find conditions for existing an algebraic curve F(x, y) = 0 on (
∑−, ω).

Problem 8.6.3 Find conditions for existing an integer curve C on(
∑−, ω).

8.6.2 For any integerm,m ≥ 3 and a pointu ∈ Rm. ChooseU = W = Rm in Definition

8.4.1 for n = 1 andω(u) an angle function. Then we get a pseudo-space geometry (Rm, ω).

Problem 8.6.4 Find conditions for existing an algebraic surface F(x1, x2, · · · , xm) = 0 in

(Rm, ω), particularly, for an algebraic surface F(x1, x2, x3) = 0 existing in(R3, ω).

Problem 8.6.5 Find conditions for existing an integer surface in(Rm, ω).

If we takeU = Rm andW a bounded convex point set ofRm in Definition 8.4.1. Then

we get a bounded pseudo-space (Rm−, ω), which is also partially Euclidean, and partially

non-Euclidean. A natural problem on (Rm−, ω) is the following.

Problem 8.6.6 For a bounded pseudo-space(Rm−, ω), solve Problems8.6.4 and8.6.5.

8.6.3 For a locally orientable surfaceS and∀u ∈ S, chooseU = W = S in Definition

8.4.1 for n = 1 andω(u) an angle function. Then we get a pseudo-surface geometry

(S, ω).

Problem 8.6.7 Characterize curves on a surface S by choice angle functionω. Whether

can we classify automorphisms on S by applying pseudo-surface geometry(S, ω)?

Notice that Thurston [Thu1] had classified automorphisms ofsurfaceS, χ(S) ≤ 0

into three classes:reducible, periodicor pseudo-Anosov. If we takeU = S andW a

bounded simply connected domain onS in Definition 8.4.1, we get a bounded pseudo-

surface (S−, ω).

Problem 8.6.8 For a bounded pseudo-surface(S−, ω), solve Problem8.6.7.

8.6.4 A Minkowski normon manifoldMm is a functionF : Mm→ [0,+∞) such that

(1) F is smooth onMm \ {0};
(2) F is 1-homogeneous, i.e.,F(λu) = λF(u) for u ∈ Mm andλ > 0;
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(3) for ∀y ∈ Mm \ {0}, the symmetric bilinear formgy : Mm× Mm→ R with

gy(u, v) =
1
2
∂2F2(y+ su+ tv)

∂s∂t

∣∣∣∣∣∣
t=s=0

is positive definite and aFinsler manifoldis such a manifoldMm associated with a func-

tion F : T Mm→ [0,+∞) that

(1) F is smooth onT Mm \ {0} = ⋃{TxMm \ {0} : x ∈ Mm};
(2) F |TxMm → [0,+∞) is a Minkowski norm for∀x ∈ Mm.

As a special case of pseudo-manifold geometry, equip a pseudo-manifold (Mm, ω)

with a Minkowski norm and chooseω(x) = F(x) for x ∈ Mm, then (Mm, ω) is aFinsler

manifold, particularly, ifω(x) = gx(y, y) = F2(x, y), then (Mm, ω) is aRiemann manifold.

Thereby, we conclude thatthe Smarandache manifolds, particularly, pseudo-manifolds

include Finsler manifolds as a subset. Open problems on pseudo-manifold geometry are

listed in the following.

Problem 8.6.9 Characterize the pseudo-manifold geometry(Mm, ω) without boundary

and apply it to classical mathematics and mechanics.

Similarly, if we takeU = Mm andW a bounded submanifold ofMm in Definition

8.4.1, we get a bounded pseudo-manifold (Mm−, ω).

Problem 8.6.10 Characterize the pseudo-manifold geometry(Mm−, ω) with boundary

and apply it to classical mathematics and mechanics, particularly, to hamiltonian me-

chanics.



CHAPTER 9.

Spacial Combinatorics

Are all things in the WORLD out of order or in order? Different notion an-

swers this question differently. There is well-known Chinese ancient book,

namelyTAO TEH KINGwritten byLAO ZI claims thatthe Tao gives birth to

One; One gives birth to Two; Two gives birth to Three; Three gives birth to

all thingsandall things that we can acknowledge is determined by our eyes,

or ears, or nose, or tongue, or body or passions, i.e., these six organs, which

implies that all things in the WORLD is in order with patterns. Thus human

beings can understand the WORLD by finding such patterns. This notion

enables us to consider multi-spaces underlying combinatorial structures, i.e.,

spacial combinatoricsand find their behaviors to imitate the WORLD. For

this objective, we introduce the inherited combinatorial structures of Smaran-

dache multi-spaces, such as those of multi-sets, multi-groups, multi-rings

and vector multi-spaces in Section 9.1 and discuss combinatorial Euclidean

spaces and combinatorial manifolds with characteristics in Sections 9.2 and

9.3. Section 9.4 concentrates on the combination of topological with thoseof

algebraic structures, i.e., topological groups, a kind of multi-spaces known in

classical mathematics and topological multi-groups. For multi-metric spaces

underlying graphs, we get interesting results, particularly, a generalization of

Banach’s fixed point theorem in Section 9.5. All of these are an application of

the combinatorial principle to Smarandace multi-spaces, i.e., Conjecture 4.5.1

(CC Conjecture) for advancing the 21st mathematical sciences presented by

the author in 2005.
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§9.1 COMBINATORIAL SPACES

9.1.1 Inherited Graph in Multi-Space. Let
(
Σ̃; R̃

)
be a Smarandache multi-space con-

sisting ofm spaces (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) for an integern ≥ 2, different two by

two with

Σ̃ =

m⋃

i=1

Σi, and R̃ =
m⋃

i=1

Ri.

Its underlying graph is an edge-labeled graph defined following.

Definition 9.1.1 Let
(
Σ̃; R̃

)
be a Smarandache multi-space withΣ̃ =

m⋃
i=1
Σi andR̃ =

m⋃
i=1
Ri.

Its underlying graph G
[
Σ̃, R̃

]
is defined by

V
(
G

[̃
Σ, R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
G

[
Σ̃, R̃

])
= { (Σi ,Σ j) | Σi

⋂
Σ j , ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi ,Σ j) ∈ E
(
G

[
S̃, R̃

])
→ lE(Σi,Σ j) = ̟

(
Σi

⋂
Σ j

)
,

where̟ is a characteristic onΣi
⋂
Σ j such thatΣi

⋂
Σ j is isomorphic toΣk

⋂
Σl if and

only if̟(Σi
⋂
Σ j) = ̟ (Σk

⋂
Σl) for integers1 ≤ i, j, k, l ≤ m.

For understanding this inherited graphG
[
Σ̃, R̃

]
of multi-space

(
Σ̃; R̃

)
, we consider a

simple case, i.e., all spaces (Σi;Ri) is nothing but a finite setSi for integers 1≤ i ≤ m.

Such a multi-spacẽS is called amulti-set. Choose the characteristic̟ on Si
⋂

S j to

be the setSi
⋂

S j. Then we get an edge-labeled graphG
[
S̃
]
. For example, letS1 =

{a, b, c}, S2 = {c, d, e}, S3 = {a, c, e} andS4 = {d, e, f }. Then the multi-set̃S =
4⋃

i=1
Si =

{a, b, c, d, e, f }with its edge-labeled graphG
[
S̃
]

shown in Fig.9.1.1.

S1 S2

S3 S4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.9.1.1
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Theorem 9.1.1 Let S̃ be a multi-set with̃S =
m⋃

i=1
Si and ij ∈ {1, 2, · · · ,m} for integers

1 ≤ s≤ m. Then,
∣∣∣S̃

∣∣∣ ≥ |
s⋃

j=1

Si j | +m− s− 1.

Particularly,
∣∣∣S̃

∣∣∣ ≥ |Si | +m− 1 for any integer i, 1 ≤ i ≤ m.

Proof Notice that setsSi, 1 ≤ i ≤ m are different two by two. thus|Si − S j | ≥ 1 for

integers 1≤ i, j ≤ m. Whence,

∣∣∣S̃
∣∣∣ ≥

∣∣∣∣∣∣∣

s⋃

j=1

Si j

∣∣∣∣∣∣∣
+m− s− 1.

Particularly, lets= 1. We get that|S̃| ≥ |Si | +m− 1 for any integeri, 1 ≤ i ≤ m. �

Let S̃ =
m⋃

i=1
Si be ann-set. It is easily to know that there are


n

m

2n−m sets

S1,S2, · · · ,Sm, different two by two such that their union is the multi-setS̃. Whence,

there are
∑

2≤m≤n


n

m

2n−m

msuch setsS1,S2, · · · ,Sm consisting the multi-set̃S. By Definition 9.1.1, we can classify

Smarandache multi-spaces combinatorially by introducingthe following conception.

Definition 9.1.2 Two Smarandache multi-spaces
(
Σ̃1; R̃1

)
and

(
Σ̃2; R̃2

)
are combinatori-

ally equivalent if there is a bijectionϕ : G
[̃
Σ1; R̃1

]
→ G

[̃
Σ2; R̃2

]
such that

(1) ϕ is an isomorphism of graph;

(2) If ϕ : Σ1 ∈ V
(
G

[̃
Σ1; R̃1

])
→ Σ2 ∈ G

[̃
Σ2; R̃2

]
, thenϕ is a bijection onΣ1,Σ2 with

ϕ(R1) = R2 andϕ(lE(Σi ,Σ j)) = lE(ϕ(Σi,Σ j)) for ∀(Σ1,Σ2) ∈ E
(
G

[̃
Σ1; R̃1

])
.

Similarly, we convince this definition by multi-sets. For such multi-spaces, there is

a simple result on combinatorially equivalence following.

Theorem 9.1.2 Let S̃1, S̃2 be multi-sets with̃S1 =
m⋃

i=1
S1

i and S̃2 =
m⋃

i=1
S2

i . ThenS̃1 is

combinatorially equivalent tõS2 if and only if there is a bijectionσ : S̃1→ S̃2 such that

σ(S1
i ) ∈ V

(
G

[
S̃2

])
andσ(S1

1

⋂
S1

2) = σ(S1
1)

⋂
σ(S1

2), whereσ(S1
i ) = { σ(e) | e ∈ S1

i } for

any integer i, 1 ≤ i ≤ m.
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Proof If the multi-set S̃1 is combinatorially equivalent to that of̃S2, then there

are must be a bijectionσ : S̃1 → S̃2 such thatσ(S1
i ) ∈ V

(
G

[
S̃2

])
andσ(S1

1

⋂
S1

2) =

σ(S1
1)

⋂
σ(S1

2) by Definition 9.1.2.

Conversely, ifσ(S1
i ) ∈ V

(
G

[
S̃2

])
andσ(S1

1

⋂
S1

2) = σ(S1
1)

⋂
σ(S1

2), we are easily

knowing thatσ : V
(
G

[
S̃1

])
→ V

(
G

[
S̃2

])
is a bijection and (S1

i ,S
1
j ) ∈ E

(
G

[
S̃1

])
if and

only if (σ(S1
i ), σ(S1

j )) ∈ E
(
G

[
S̃2

])
becauseσ(S1

1

⋂
S1

2) = σ(S1
1)

⋂
σ(S1

2). Thusσ is an

isomorphism from graphsG
[
S̃1

]
to G

[
S̃2

]
by definition. Now ifσ : S1

i ∈ V
(
G

[
S̃1

])
→

S2
j ∈ V

(
G

[
S̃2

])
, it is clear thatσ is a bijection onS1

i , S2
j becauseσ is a bijection from̃S1

to S̃2. Applyingσ(S1
1

⋂
S1

2) = σ(S1
1)

⋂
σ(S1

2), we are easily finding thatσ(lE(S1
i ,S

1
j )) =

lE(σ(S1
i ,S

2
j )) by lE(S1

i ,S
1
j ) = S1

i

⋂
S1

j for ∀(S1
i ,S

1
j ) ∈ E

(
G

[
S̃1

])
. So the multi-set̃S1 is

combinatorially equivalent to that of̃S2. �

If S̃1 = S̃2 = S̃, such a combinatorial equivalence is nothing but a permutation onS̃.

This fact enables one to get the following conclusion.

Corollary 9.1.1 Let S̃ =
m⋃

i=1
Si be a multi-set with|S̃| = n, |Si | = ni, 1 ≤ i ≤ m. Then

there are n! −
m∏

i=1

ni multi-sets combinatorially equivalent tõS with elements iñS .

Proof Applying Theorem 9.1.2, all multi-sets combinatorially equivalent̃S should

be S̟̃, where̟ is a permutation on elements iñS. The number of such permutations is

n!. It should be noted that̃S̟ = S̃ if ̟ = ̟1̟2 · · ·̟m, where each̟ i is a permutation

onSi, 1 ≤ i ≤ m. Thus there aren! −
m∏

i=1

ni multi-sets combinatorially equivalent tõS. �

A multi-setS̃ =
m⋃

i=1
Si is exactif Si =

m⋃
j=1, j,i

(S j
⋂

Si). For example, letS1 = {a, d, e},

S2 = {a, b, e}, S3 = {b, c, f } andS4 = {c, d, f }. Then the multi-set̃S = S1
⋃

S2
⋃

S3
⋃

S4

is exact with an inherited graph shown in Fig.9.1.2.

S1 S2

S3S4

{a}

{b}

{c}

{e}
{d}

{ f }

Fig.9.1.2
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Then the following result is clear by the definition of exact multi-set.

Theorem 9.1.3 An exact multi-set̃S uniquely determine an edge-labeled graph G
[
S̃
]
,

and conversely, an edge-labeled graph GlE also determines an exact multi-setS̃ uniquely.

Proof By Definition 9.1.1, a multi-spacẽS determines an edge-labeled graphGlE

uniquely. Similarly, letGlE be an edge-labeled graph. Then we are easily get an exact

multi-set

S̃ =
⋃

v∈V(GlE )

Sv with Sv =
⋃

e∈N
GlE (v)

̟(e). �

9.1.2 Algebraic Exact Multi-System. Let
(
Ã; Õ

)
be an algebraic multi-system with

Ã =
n⋃

i=1
Ai andÕ = {◦i, 1 ≤ i ≤ n}, i.e., each (Ai; ◦i) is an algebraic system for integers

1 ≤ i ≤ n. By Definition 9.1.1, we get an edge-labeled graphG
[
Ã; Õ

]
with edge labeling

lE determined by

lE(A◦i ,A◦ j ) = (A◦i
⋂

A◦ j ; {◦i, ◦ j})

for any (A◦i ,A◦ j ) ∈ E
(
G

[
G̃; Õ

])
, such as those shown in Fig.9.1.3, whereA◦l = (Al ; ◦l)

for integers 1≤ l ≤ n.

A◦i A◦ j

(A◦i
⋂

A◦ j ; {◦i, ◦ j})

Fig.9.1.3

For determining combinatorially equivalent algebraic multi-systems, the following

result is useful.

Theorem 9.1.4 Let
(
Ã1; Õ1

)
,
(
Ã2; Õ2

)
be algebraic multi-systems with̃A1 =

m⋃
i=1

A1
i , Õ1 =

{◦1
i , 1 ≤ i ≤ n} and Ã2 =

m⋃
i=1

A2
i , Õ2 = {◦2

i , 1 ≤ i ≤ n}. Then
(
Ã1; Õ1

)
is combinatorially

equivalent to
(
Ã2; Õ2

)
if and only if there is a bijectionσ : Ã1 → Ã2 such thatσ(A1

i ) ∈
V(G[Ã2]) andσ(A1

1

⋂
A1

2) = σ(A1
1)

⋂
σ(A1

2), whereσ(A1
i ) = { σ(h) | h ∈ A1

i } for any

integer i, 1 ≤ i ≤ m.

Proof The proof is similar to that of Theorem 9.1.2. �

Now let (A; ◦) be an algebraic system. If there are subsystems (Ai; ◦) ≤ (A; ◦) for

integers 1≤ i ≤ l such that
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(1) for ∀g ∈ A, there are uniquelyai ∈ Ai such thatg = a1 ◦ a2 ◦ · · · ◦ al;

(2) a ◦ b = b ◦ a for a ∈ Ai andb ∈ A j, where 1≤ i, j ≤ s, i , j,

then we say that (A; ◦) is a direct product of (Ai; ◦), denoted byA =
l⊙

i=1
Ai.

Let
(
Ã; Õ

)
be an algebraic multi-system with̃A =

n⋃
i=1

Ai andÕ = {◦i, 1 ≤ i ≤ n}.
Such an algebraic multi-system is said to befavorableif for any integeri, 1 ≤ i ≤ n,

(Ai ⋂ A j; ◦i) is itself an algebraic system or empty set∅ for integers 1≤ j ≤ n. Similarly,

such an algebraic multi-system isexactif for ∀A◦ ∈ V
(
G

[
Ã; Õ

])
,

A◦ =
⊙

A•∈NG[Ã;Õ] (A◦)

(
A◦

⋂
A•

)
.

An algebraic multi-system
(
Ã; Õ

)
with Ã =

n⋃
i=1

Ai andÕ = {◦i, 1 ≤ i ≤ n} is said to be

in-associativeif

(a ◦i b) ◦i c = a ◦i (b ◦i c) and (a ◦ j b) ◦ j c = a ◦ j (b ◦ j c)

hold for elementsa, b, c ∈ Ai ⋂ A j for integers 1≤ i, j ≤ n providing they exist.

9.1.3 Multi-Group Underlying Graph. For favorable multi-groups, we know the fol-

lowing result.

Theorem 9.1.5 A favorable multi-group is an in-associative system.

Proof Let
(
G̃; Õ

)
be a multi-group with̃G =

n⋃
i=1

Gi andÕ = {◦i, 1 ≤ i ≤ n}. Clearly,

Gi ⋂G j ⊂ Gi andGi ⋂G j ⊂ G j for integers 1≤ i, j ≤ n. Whence, the associative

laws hold for elements in (Gi ⋂G j; ◦i) and (Gi ⋂G j; ◦ j). Thus (Gi ⋂G j; {◦i, ◦ j}) is an

in-associative system for integers 1≤ i, j ≤ n by definition. �

Particularly, if◦i = ◦, i.e., (Gi; ◦) is a subgroup of a group for integers 1≤ i ≤ n in

Theorem 9.1.5, we get the following conclusion.

Corollary 9.1.2 Let (Gi; ◦) be subgroups of a group(G ; ◦) for integers1 ≤ i ≤ n. Then a

multi-group(G̃; {◦}) with G̃ =
n⋃

i=1
Gi is favorable if and only if(Gi ⋂G j; {◦}) is a subgroup

of group(G ; ◦) for any integers1 ≤ i, j ≤ n, i.e., G
[
G̃; {◦}

]
≃ Kn.

Proof Applying Corollary 1.2.1 with Gi ⋂G j ⊇ {1G̃} for any integers 1≤ i, j ≤ n,

we know this conclusion. �
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Applying Theorem 9.1.4, we have the following conclusion on combinatorially equiv-

alent multi-groups.

Theorem 9.1.6 Let
(
G̃1; Õ1

)
,
(
G̃2; Õ2

)
be multi-groups with̃G1 =

n⋃
i=1

G1
i , Õ1 = {◦1

i , 1 ≤

i ≤ n} andG̃2 =
n⋃

i=1
G2

i , Õ2 = {◦2
i , 1 ≤ i ≤ n}. Then

(
G̃1; Õ1

)
is combinatorially equivalent

to
(
G̃2; Õ2

)
if and only if there is a bijectionφ : G̃1→ G̃2 such thatφ(G1

i ) ∈ V
(
G

[
G̃2; Õ2

])

is an isomorphism andφ(G1
1

⋂
G1

2) = φ(G1
1)

⋂
φ(G1

2) for any integer i, 1 ≤ i ≤ n.

By Theorem 9.1.3, we have known that an edge-labeled graphGlE uniquely deter-

mines an exact multi-set̃S. The following result shows when such a multi-system is a

multi-group.

Theorem 9.1.7 Let (G̃; Õ) be a favorable exact multi-system determined by an edge-

labeled graph GlE with G̃ =
⋃

u∈V(GlE )

Gu, where Gu =
⊙

v∈N
GlE (u)

lE(u, v) andÕ = {◦i, 1 ≤ i ≤

n}. Then it is a multi-group if and only if for∀u ∈ V(GlE), there is an operation◦u in

lE(u, v) for all v ∈ NGlE (u) such that for∀a ∈ lE(u, v1), b ∈ lE(u, v2), there is a◦u b−1 ∈
lE(u, v3), where v1, v2, v3 ∈ NGlE (u).

Proof Clearly, if (G̃; Õ) is a multi-group, then for∀u ∈ V(GlE), there is an operation

◦u ∈ Gu for all v ∈ NGlE (u) such that for∀a ∈ lE(u, v1), b ∈ lE(u, v2), there isa ◦u b−1 ∈
lE(u, v3), wherev1, v2, v3 ∈ NGlE (u).

Conversely, letu ∈ V(GlE). We prove that the pair (Gu; ◦u) with Gu =
⊙

v∈N
GlE (u)

lE(u, v)

is a group. In fact,

(1) There exists anh ∈ Gu and 1Gu = h ◦ h−1 ∈ Gu;

(2) If a, b ∈ Gu, thena−1 = 1Gu ◦u a−1 ∈ Gu. Thusa ◦u (b−1)−1 = a ◦u b ∈ Gu;

(3) Notice that

g ◦u h =
∏

v∈N
GlE (u)

gv ◦u hv,

whereg =
∏

v∈N
GlE (u)

gv ∈ Gu, h =
∏

v∈N
GlE (u)

hv ∈ Gu because ofGu =
⊙

v∈N
GlE (u)

lE(u, v). We

know that the associative lawa◦u (b◦u c) = (a◦u b)◦u c for a, b, c ∈ Gu holds by Theorem

9.1.4. Thus (Gu; ◦u) is a group for∀u ∈ V(GlE).

Consequently, (̃G; Õ) is a multi-group, �

Let Õ = {◦} in Theorem 9.1.7. We get the following conclusions.
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Corollary 9.1.3 Let
(
G̃; {◦}

)
be an exact multi-system determined by an edge-labeled

graph GlE with subgroups lE(u, v) of group(G ; ◦) for (u, v) ∈ E(GlE) such that lE(u, v1)
⋂

lE(u, v2) = {1G } for ∀(u, v1), (u, v2) ∈ E(GlE). Then
(
G̃; {◦}

)
is a multi-group.

Particularly, let (G ; ◦) be Abelian. Then we get an interesting result following by

applying the fundamental theorem of finite Abelian group.

Corollary 9.1.4 Let
(
G̃; {◦}

)
be an exact multi-system determined by an edge-labeled

graph GlE with cyclic p-groups lE(u, v) of a finite Abelian group(G ; ◦) for (u, v) ∈ E(GlE)

such that lE(u, v1)
⋂

lE(u, v2) = {1G } for ∀(u, v1), (u, v2) ∈ E(GlE). Then
(
G̃; {◦}

)
is a finite

Abelian multi-group, i.e., each(Gu, ◦) is a finite Abelian group for u∈ V(GlE).

9.1.4 Multi-Ring Underlying Graph. A multi-system
(
Ã; O1

⋃
O2

)
with Ã =

n⋃
i=1

Ai,

O1 = {·i; 1 ≤ i ≤ n} andO2 = {+i; 1 ≤ i ≤ n} is in-distributedif for any integeri, 1 ≤ i ≤ n,

a ·i (b+i c) = a ·i b+i a ·i c hold for∀a, b, c ∈ Ai ⋂ A j providing they exist, usually denoted

by
(
Ã; O1 ֒→ O2

)
. For favorable multi-rings, we know the following result.

Theorem 9.1.8 A favorable multi-ring is an in-associative and in-distributed multi-

system.

Proof Let
(
R̃; O1 ֒→ O2

)
be a favorable multi-ring with̃R =

n⋃
i=1

Ri, O1 = {·i; 1 ≤
i ≤ n} andO2 = {+i; 1 ≤ i ≤ n}. Notice thatRi

⋂
Rj ⊂ Ri, Ri

⋂
Rj ⊂ Rj and (Ri; ·i,+i),

(Rj; · j,+ j) are rings for integers 1≤ i, j ≤ n. Whence, ifRi
⋂

Rj , ∅ for integers 1≤
i, j ≤ n, let a, b, c ∈ Ri

⋂
Rj. Then we get that

(a ·i b) ·i c = a ·i (b ·i c), (a · j b) · j c = a · j (b · j c)

(a+i b) +i c = a+i (b+i c), (a+ j b) + j c = a+ j (b+ j c)

and

a ·i (b+i c) = a ·i b+i a ·i c, a · j (b+ j c) = a · j b+ j a · j c.

Thus
(
R̃; O1 ֒→ O2

)
is in-associative and in-distributed. �

Particularly, if ·i = · and+i = + for integers 1≤ i ≤ n in Theorem 9.1.8, we get a

conclusion following for characterizing favorable multi-rings.

Corollary 9.1.5 Let (Ri; ·,+) be subrings of ring a(R; ·,+) for integers1 ≤ i ≤ n. Then

a multi-ring (R̃; {·} ֒→ {+}) with R̃ =
n⋃

i=1
Ri is favorable if and only if(Ri ⋂Rj; ·,+) is a

subring of ring(R; ·,+) for any integers1 ≤ i, j ≤ n, i.e., G
[
R̃; {·} ֒→ {+}

]
≃ Kn.
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Proof Applying Theorems 1.3.2 and 9.1.8 with Ri ⋂ Rj ⊇ {0+} for any integers 1≤
i, j ≤ n, we are easily knowing that

(
R̃; {·} ֒→ {+}

)
is favorable if and only if (Ri ⋂ Rj; ·,+)

is a subring of ring (R; ·,+) for any integers 1≤ i, j ≤ n andG
[
R̃; {·} ֒→ {+}

]
≃ Kn. �

Similarly, we know the following result for combinatorially equivalent multi-rings

by Theorem 9.1.6.

Theorem 9.1.9 Let
(
R̃1; O1

1 ֒→ O1
2

)
,
(
R̃2; O2

1 ֒→ O2
2

)
be multi-rings withR̃1 =

n⋃
i=1

R1
i ,

Õ1 = {·1i , 1 ≤ i ≤ n} andR̃2 =
n⋃

i=1
G2

i , Õ2 = {·2i , 1 ≤ i ≤ n}. Then
(
R̃1; O1

1 ֒→ O1
2

)
is combi-

natorially equivalent to
(
R̃2; O2

1 ֒→ O2
2

)
if and only if there is a bijectionϕ : R̃1→ R̃2 such

thatϕ(R1
i ) ∈ V

(
G

[
R̃2; O2

1 ֒→ O2
2

])
is an isomorphism andϕ(R1

1

⋂
R1

2) = ϕ(R1
1)

⋂
φ(R1

2) for

any integer i, 1 ≤ i ≤ n.

Let (R1, ·,+), (R2, ·,+), ·, (Rl, ·,+) be l rings. Then we get a direct sum

R= R1

⊕
R2

⊕
· · ·

⊕
Rl

by the definition of direct product of additive groups (Ri;+), 1 ≤ i ≤ l. Define

(a1, a2, · · · , al) · (b1, b2, · · · , bl) = (a1 · b1, a2 · b2, · · · , al · bl)

for (a1, a2, · · · , al), (b1, b2, · · · , bl) ∈ R. Then it is easily to verify that (R; ·,+) is also a

ring. Such a ring is called the direct sum of rings (R1, ·,+), (R2, ·,+), ·, (Rl, ·,+), denoted

by R=
l⊕

i=1
Ri.

A multi-ring
(
R̃; O1 ֒→ O2

)
with R̃ =

n⋃
i=1

Ri, O1 = {·i; 1 ≤ i ≤ n} andO2 = {+i; 1 ≤

i ≤ n} is said to beexactif it is favorable andRi =
n⊕

j=1
(Ri

⋂
Rj) for any integeri 1 ≤ i ≤

n. ThusRi =
⊕

(Ri ,Rj )∈E(G[R̃;O1֒→O2])

̟(Ri ,Rj) in its inherited graphGlE
[
R̃; O1 ֒→ O2

]
. The

following result is an immediately consequence of Theorem 9.1.7.

Theorem 9.1.10 Let
(
R̃; O1 ֒→ O2

)
be a favorable exact multi-system determined by an

edge-labeled graph GlE with R̃ =
⋃

u∈V(GlE )

Ru, where Ru =
⊕

v∈N
GlE (u)

lE(u, v), O1 = {·i , 1 ≤

i ≤ n} and O2 = {+i, 1 ≤ i ≤ n}. Then it is a multi-ring if and only if for∀u ∈ V(GlE),

there are two operations+u, ·u in lE(u, v) for all v ∈ NGlE (u) such that for∀a ∈ lE(u, v1),

b ∈ lE(u, v2), there is a−u b ∈ lE(u, v3) and a·u b ∈ lE(u, v4), where v1, v2, v3, v4 ∈ NGlE (u).
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Particularly, if·i = · and+i = + for integers 1≤ i ≤ n in Theorem 9.1.10, we get the

following consequence.

Corollary 9.1.6 Let
(
R̃; {·} ֒→ {+}

)
be an exact multi-system determined by an edge-

labeled graph GlE with subrings lE(u, v) of a ring (R; ·,+) for (u, v) ∈ E(GlE) such that

lE(u, v1)
⋂

lE(u, v2) = {0+} for ∀(u, v1), (u, v2) ∈ E(GlE). Then
(
R̃; {·} ֒→ {+}

)
is a multi-

ring.

Let pi, 1 ≤ i ≤ s be different prime numbers. Then each (piZ; ·,+) is a subring

of the integer ring (Z; ·,+) such that (piZ)
⋂

(p jZ) = {0}. Thus such subrings satisfy the

conditions of Corollary 9.1.6, which enables one to get an edge-labeled graph with its

correspondent exact multi-ring. For example, such an edge-labeled graph is shown in

Fig.9.1.4 for n = 6.

R1 R2

R3R4

p1Z

p2Z

p3Z

p4Z

p5Z

p6Z

Fig.9.1.4

9.1.5 Vector Multi-Space Underlying Graph. According to Theorem 1.4.6, two vector

spacesV1 and V2 over a fieldF are isomorphic if and only if dimV1 = dimV2. This

fact enables one to characterize a vector space by its basis.Let
(
Ṽ; F̃

)
be vector multi-

space. Choose the edge labelinglE : (Vu,Vv) → B(Vu
⋂

Vv) for ∀(Vu,Vv) ∈ E
(
G

[
Ṽ
])

in Definition 9.1.1, whereB(Vu
⋂

Vv) denotes the basis of vector spaceVu
⋂

Vv, such as

those shown in Fig.9.1.5.

Vu Vv

B(Vu
⋂

Vv)

Fig.9.1.5

Let A ⊂ B. An inclusion mappingι : A→ B is such a 1−1 mapping thatι(a) = a for

∀a ∈ B if a ∈ A. The next result combinatorially characterizes vector multi-subspaces.
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Theorem 9.1.11 Let
(
Ṽ1; F̃1

)
and

(
Ṽ2; F̃2

)
be vector multi-spaces with̃V1 =

n⋃
i=1

V1
i and

F̃1 =
n⋃

i=1
F1

i , andṼ2 =
n⋃

i=1
V2

i and F̃1 =
n⋃

i=1
F2

i . Then
(
Ṽ1; F̃1

)
is a vector multi-subspace

of
(
Ṽ2; F̃2

)
if and only if there is an inclusionι : Ṽ1 → Ṽ2 such thatι

(
G

[
Ṽ1; F̃1

])
≺

G
[
Ṽ2; F̃2

]
.

Proof If
(
Ṽ1; F̃1

)
is a vector multi-subspace of

(
Ṽ2; F̃2

)
, by definition there are must

beV1
i ⊂ V2

i j
andF1

i ⊂ F2
i j

for integers 1≤ i ≤ n, wherei j ∈ {1, 2, · · · , n}. Then there is an

inclusion mappingι : Ṽ1 → Ṽ2 determined byι(V1
i ) = V1

i ⊂ V2
i j

such thatι
(
G

[
Ṽ1; F̃1

])
≺

G
[
Ṽ2; F̃2

]
.

Conversely, if there is an inclusionι : Ṽ1 → Ṽ2 such thatι
(
G

[
Ṽ1; F̃1

])
≺ G

[
Ṽ2; F̃2

]
,

then there must beι(V1
i ) ⊂ V2

ji
andι(F1

i ) ⊂ F2
ji

for some integersj i ∈ {1, 2, · · · , n}. Thus

Ṽ1 =
n⋃

i=1
V1

i =
n⋃

i=1
ι(V1

i ) ⊂
n⋃

j=1
V2

i j
= Ṽ2 and F̃1 =

n⋃
i=1

F1
i =

n⋃
i=1
ι(F1

i ) ⊂
n⋃

j=1
F2

i j
= F̃2, i.e.,

(
Ṽ1; F̃1

)
is a vector multi-subspace of

(
Ṽ2; F̃2

)
. �

Let V be a vector space and letV1,V2 ⊂ V be two vector subspaces. For∀a ∈ V, if

there are vectorsb ∈ V1 andc ∈ V2 such thata = b+ c is uniquely, thenV is said adirect

sumof V1 andV2, denoted byV = V1

⊕
V2. It is easily to show that ifV1

⋂
V2 = 0, then

V = V1

⊕
V2.

A vector multi-space (̃V; F̃) with Ṽ =
n⋃

i=1
Vi andF̃ =

n⋃
i=1

Fi is said to beexactif

Vi =
⊕

j,i

(Vi

⋂
V j)

holds for integers 1≤ i ≤ n. We get a necessary and sufficient condition for exact vector

multi-spaces following.

Theorem 9.1.12 Let
(
Ṽ; F̃

)
be a vector multi-space with̃V =

n⋃
i=1

Vi andF̃ =
n⋃

i=1
Fi. Then

it is exact if and only if

B(V) =
⋃

(V,V′)∈E(G[Ṽ;F̃])

B
(
V

⋂
V′

)
and B

(
V

⋂
V′

)⋂
B

(
V

⋂
V′′

)
= ∅

for V′,V′′ ∈ NG[Ṽ;F̃](V).

Proof If
(
Ṽ; F̃

)
is exact, i.e.,Vi =

⊕
j,i

(Vi
⋂

V j), then it is clear that

B(V) =
⋃

(V,V′)∈E(G[Ṽ;F̃])
B

(
V

⋂
V′

)
and B

(
V

⋂
V′

)⋂
B

(
V

⋂
V′′

)
= ∅
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by the fact that (V,V′) ∈ E
(
G

[
Ṽ; F̃

])
if and only if V

⋂
V′ , ∅ for ∀V′,V′′ ∈ NG[Ṽ;F̃](V)

by definition.

Conversely, if

B(V) =
⋃

(V,V′)∈E(G[Ṽ;F̃])

B
(
V

⋂
V′

)
and B

(
V

⋂
V′

)⋂
B

(
V

⋂
V′′

)
= ∅

for V′,V′′ ∈ NG[Ṽ;F̃](V), notice also that (V,V′) ∈ E
(
G

[
Ṽ; F̃

])
if and only if V

⋂
V′ , ∅,

we know that

Vi =
⊕

j,i

(
Vi

⋂
V j

)

for integers 1≤ i ≤ n by Theorem 1.4.4. This completes the proof. �

§9.2 COMBINATORIAL EUCLIDEAN SPACES

9.2.1 Euclidean Space.A Euclidean spaceon a real vector spaceE over a fieldF is a

mapping

〈·, ·〉 : E × E→ R with (e1, e2)→ 〈e1, e2〉 for∀e1, e2 ∈ E

such that fore, e1, e2 ∈ E, α ∈ F

(E1) 〈e, e1 + e2〉 = 〈e, e1〉 + 〈e, e2〉;
(E2) 〈e, αe1〉 = α 〈e, e1〉;
(E3) 〈e1, e2〉 = 〈e2, e1〉;
(E4) 〈e, e〉 ≥ 0 and〈e, e〉 = 0 if and only ife= 0.

In a Euclidean spaceE, the number
√
〈e, e〉 is called itsnorm, and denoted by‖e‖. It

can be shown that

(1)
〈
0, e

〉
=

〈
e, 0

〉
= 0 for ∀e ∈ E;

(2)

〈
n∑

i=1
xie

1
i ,

m∑
j=1

yie
2
j

〉
=

n∑
i=1

m∑
i=1

xiyj

〈
e1

i , e
2
j

〉
, for es

i ∈ E, where 1≤ i ≤ max{m, n} and

s= 1 or 2.

In fact, let e1 = e2 = 0 in (E1). Then
〈
e, 0

〉
= 0. Applying (E3), we get that〈

0, e
〉
= 0. This is the formula in (1). For the equality (2), applying conditions (E1)-(E2),

we know that
〈 n∑

i=1

xie
1
i ,

m∑

j=1

yie
2
j

〉
=

m∑

j=1

〈 n∑

i=1

xie
1
i , yie

2
j

〉
=

m∑

j=1

yi

〈 n∑

i=1

xie
1
i , e

2
j

〉
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=

m∑

j=1

yi

〈
e2

j ,

n∑

i=1

xie
1
i

〉
=

n∑

i=1

m∑

j=1

xiyi

〈
e2

j , e
1
i

〉

=

n∑

i=1

m∑

j=1

xiyi

〈
e1

i , e
2
j

〉
.

Theorem 9.2.1 Let E be a Euclidean space. Then for∀e1, e2 ∈ E,

(1) | 〈e1, e2〉 | ≤ ‖e1‖‖e2‖;
(2) ‖e1 + e2‖ ≤ ‖e1‖ + ‖e2‖.

Proof Notice that the inequality (1) is hold ife1 or e2 = 0. Assumee1 , 0. Let

x =
〈e1, e2〉
〈e1, e1〉

. Since

〈e2 − xe1, e2 − xe1〉 = 〈e2, e2〉 − 2 〈e1, e2〉 x+ 〈e1, e1〉 x2 ≥ 0.

Replacingx by 〈e1, e2〉
〈e1, e1〉 in it, then

〈e1, e1〉 〈e2, e2〉 − 〈e1, e2〉2 ≥ 0.

Whence, we get that

| 〈e1, e2〉 | ≤ ‖e1‖‖e2‖.

For the inequality (2), applying inequality (1), we know that

‖ 〈e1, e2〉 ‖2 = 〈e1 + e2, e1 + e2〉

= 〈e1, e1〉 + 2 〈e1, e2〉 + 〈e2, e2〉

= 〈e1, e1〉 + 2| 〈e1, e2〉 | + 〈e2, e2〉

≤ 〈e1, e1〉 + 2‖ 〈e1, e1〉 ‖‖ 〈e2, e1〉 ‖ + 〈e2, e2〉

= (‖e1‖ + ‖e2‖)2.

Thus

‖e1 + e2‖ ≤ ‖e1‖ + ‖e2‖. �

Let E be a Euclidean space,a, b ∈ E, a , 0, b , 0. Theanglebetweena andb is

defined by

cosθ =

〈
a, b

〉

‖a‖‖b‖
.
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Notice that by Theorem 9.2.1(1), the inequality

−1 ≤

〈
a, b

〉

‖a‖‖b‖
≤ −1

always holds. Thus the angle betweena andb is well-defined. Letx, y ∈ E. Call x andy to

beorthogonalif 〈x, y〉 = 0. For a basise1, e2, · · · , em of E if e1, e2, · · · , em are orthogonal

two by two, such a basis is called anorthogonal basis. Furthermore, if‖ei‖ = 1 for

integers 1≤ i ≤ m, an orthogonal basise1, e2, · · · , em is called anormal basis.

Theorem 9.2.2 Any n-dimensional Euclidean spaceE has an orthogonal basis.

Proof Leta1, a2, · · · , an be a basis ofE. We construct an orthogonal basisb1, b2, · · · , bn

of this space. Notice that
〈
b1, b1

〉
, 0. Chooseb1 = a1 and let

b2 = a2 −

〈
a2, b1

〉
〈
b1, b1

〉b1.

Thenb2 is a linear combination ofa1 anda2 and

〈
b2, b1

〉
=

〈
a2, b1

〉
−

〈
a2, b1

〉
〈
b1, b1

〉
〈
b1, b1

〉
= 0,

i.e.,b2 is orthogonal withb1.

If we have constructedb1, b2, · · · , bk for an integer 1≤ k ≤ n−1, and each of them is a

linear combination ofa1, a2, · · · , ai, 1≤ i ≤ k. Notice
〈
b1, b1

〉
,
〈
b2, b2

〉
, · · · ,

〈
bk−1, bk−1

〉
,

0. Let

bk = ak −

〈
ak, b1

〉
〈
b1, b1

〉b1 −

〈
ak, b2

〉
〈
b2, b2

〉b2 − · · · −

〈
ak, bk−1

〉
〈
bk−1, bk−1

〉bk−1.

Thenbk is a linear combination ofa1, a2, · · · , ak−1 and

〈
bk, bi

〉
=

〈
ak, bi

〉
−

〈
ak, b1

〉
〈
b1, b1

〉
〈
b1, bi

〉
− · · · −

〈
ak, bk−1

〉
〈
bk−1, bk−1

〉
〈
bk−1, bi

〉

=
〈
ak, bi

〉
−

〈
ak, bi

〉
〈
bi , bi

〉
〈
bi , bi

〉
= 0

for i = 1, 2, · · · , k− 1. Apply the induction principle, this proof is completes. �

Corollary 9.2.1 Any n-dimensional Euclidean spaceE has a normal basis.
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Proof According to Theorem 9.2.2, anyn-dimensional Euclidean spaceE has an

orthogonal basisa1, a2, · · · , am. Now let e1 =
a1

‖a1‖
, e2 =

a2

‖a2‖
, · · ·, em =

am

‖am‖
. Then we

find that
〈
ei, ej

〉
=

〈
ai, a j

〉

‖ai‖‖a j‖
= 0 and ‖ei‖ = ‖

ai

‖ai‖
‖ = ‖ai‖
‖ai‖
= 1

for integers 1≤ i, j ≤ m by definition. Thuse1, e2, · · · , em is a normal basis. �

9.2.2 Combinatorial Euclidean Space. Let Rn be a Euclidean space with normal

basisB(Rn) = {ǫ1, ǫ2, · · · , ǫn}, whereǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, 0 · · · , 0), · · ·, ǫn =

(0, · · · , 0, 1), namely, it hasn orthogonal orientations. Generally, we think any Euclidean

spaceRn is a subspace of Euclidean spaceRn∞ with a finite but sufficiently large dimen-

sionn∞, then two Euclidean spacesRnu andRnv have a non-empty intersection if and only

if they have common orientations.

A combinatorial Euclidean spaceis a geometrical multi-space (R̃;R) with R̃ =
m⋃

i=1
Rni underlying an edge-labeled graphGlE with edge labeling

lE : (Rni ,Rnj )→ B
(
Rni

⋂
Rnj

)

for ∀(Rni ,Rnj ) ∈ E(GlE), whereR consists of Euclidean axioms, usually abbreviated toR̃.

For example, a combinatorial Euclidean space (R̃;R) is shown by edge-labeled graphGlE

in Fig.9.2.1,

R3 R3

R3 R3

{ǫ1} {ǫ1}

{ǫ2}

{ǫ2}

Fig.9.2.1

We are easily to know thatB(R̃) = {ǫ1, ǫ2, ǫ3, ǫ4, ǫ5, ǫ6}, i.e., dim̃R = 6. Generally, we can

determine the dimension of a combinatorial Euclidean spaceby its underlying structure

GlE following.



280 Chap.9 Spacial Combinatorics

Theorem9.2.3 Let R̃ be a combinatorial Euclidean space consisting ofRn1, Rn2, · · ·, Rnm

with an underlying structure GlE . Then

dimR̃ =
∑

〈vi∈V(GlE )|1≤i≤s〉∈CLs(GlE )

(−1)s+1dim
(
Rnv1

⋂
Rnv2

⋂
· · ·

⋂
Rnvs

)
,

where nvi denotes the dimensional number of the Euclidean space in vi ∈ V(GlE) and

CLs(GlE) consists of all complete subgraphs of order s in GlE.

Proof By definition,Rnu ∩ Rnv , ∅ only if there is an edge (Rnu,Rnv) in GlE, which

can be generalized to a more general situation, i.e.,Rnv1 ∩ Rnv2 ∩ · · · ∩ Rnvl , ∅ only if

〈v1, v2, · · · , vl〉GiE ≃ Kl . In fact, if Rnv1 ∩ Rnv2 ∩ · · · ∩ Rnvl , ∅, thenRnvi ∩ Rnvj , ∅, which

implies that (Rnvi ,Rnvj ) ∈ E(GlE) for any integersi, j, 1 ≤ i, j ≤ l. Thus〈v1, v2, · · · , vl〉GlE

is a complete subgraph of orderl in graphGlE .

Notice that the number of different orthogonal elements is dim̃R = dim


⋃

v∈V(GlE )

Rnv

.

Applying the inclusion-exclusion principle, we get that

dimR̃ = dim


⋃

v∈V(GlE )

Rnv



=
∑

{v1,···,vs}⊂V(GlE )

(−1)s+1dim
(
Rnv1

⋂
Rnv2

⋂
· · ·

⋂
Rnvs

)

=
∑

〈vi∈V(GlE )|1≤i≤s〉∈CLs(GlE )

(−1)s+1dim
(
Rnv1

⋂
Rnv2

⋂
· · ·

⋂
Rnvs

)
. �

Notice that dim(Rnv1 ∩ Rnv2 ) , 0 only if (Rnv1 ,Rnv2) ∈ E(GlE). We get an applicable

formula for dim̃R on K3-free graphsGlE, i.e., there are no subgraphs ofGlE isomorphic to

K3 by Theorem 9.2.3 following.

Corollary 9.2.2 Let R̃ be a combinatorial Euclidean space underlying a K3-free edge-

labeled graph GlE . Then

dimR̃ =
∑

v∈V(GlE )

nv −
∑

(u,v)∈E(GlE )

dim
(
Rnu

⋂
Rnv

)
.

Particularly, if G = v1v2 · · · vm a circuit for an integer m≥ 4, then

dimR̃ =
m∑

i=1

nvi −
m∑

i=1

dim
(
Rnvi

⋂
Rnvi+1

)
,
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where each index is modulo m.

9.2.3 Decomposition Space into Combinatorial One. A combinatorial fan-space

R̃(n1, · · · , nm) is a combinatorial Euclidean spacẽR consists ofRn1, Rn2, · · ·, Rnm such

that for any integersi, j, 1 ≤ i , j ≤ m,

Rni

⋂
Rnj =

m⋂

k=1

Rnk.

The dimensional number of̃R(n1, · · · , nm) is

dimR̃ (n1, · · · , nm) = m̂+
m∑

i=1

(
ni − m̂

)
,

determined immediately by definition, wherêm= dim

(
m⋂

k=1
Rnk

)
.

For visualizing the WORLD,weather is there a combinatorial Euclidean space, par-

ticularly, a combinatorial fan-spacẽR consisting of Euclidean spacesRn1, Rn2, · · ·, Rnm

for a Euclidean spaceRn such thatdimRn1∪Rn2 ∪ · · ·∪Rnm = n? We know the following

decomposition result of Euclidean spaces.

Theorem 9.2.4 Let Rn be a Euclidean space, n1, n2, · · · , nm integers witĥm < ni < n for

1 ≤ i ≤ m and the equation

m̂+
m∑

i=1

(
ni − m̂

)
= n

holds for an integer̂m, 1 ≤ m̂ ≤ n. Then there is a combinatorial fan-spacẽR(n1, n2,

· · · , nm) such that

Rn ≃ R̃(n1, n2, · · · , nm).

Proof Not loss of generality, we assume the normal basis ofRn is ǫ1 = (1, 0, · · · , 0),

ǫ2 = (0, 1, 0 · · · , 0), · · ·, ǫn = (0, · · · , 0, 1). Since

n− m̂=
m∑

i=1

(
ni − m̂

)
,

choose

R1 =
〈
ǫ1, ǫ2, · · · , ǫm̂, ǫm̂+1, · · · , ǫn1

〉
;

R2 =
〈
ǫ1, ǫ2, · · · , ǫm̂, ǫn1+1, ǫn1+2, · · · , ǫn2

〉
;

R3 =
〈
ǫ1, ǫ2, · · · , ǫm̂, ǫn2+1, ǫn2+2, · · · , ǫn3

〉
;
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· · · · · · · · · · · · · · · · · · · · · · · · · · · ;
Rm =

〈
ǫ1, ǫ2, · · · , ǫm̂, ǫnm−1+1, ǫnm−1+2, · · · , ǫnm

〉
.

Calculation shows that dimRi = ni and dim(
m⋂

i=1
Ri) = m̂. WhenceR̃(n1, n2, · · · , nm) is a

combinatorial fan-space. Thus

Rn ≃ R̃(n1, n2, · · · , nm). �

Corollary 9.2.3 For a Euclidean spaceRn, there is a combinatorial Euclidean fan-space

R̃(n1, n2, · · · , nm) underlying a complete graph Km with m̂< ni < n for integers1 ≤ i ≤ m,

m̂+
m∑

i=1

(
ni − m̂

)
= n such thatRn ≃ R̃(n1, n2, · · · , nm).

§9.3 COMBINATORIAL MANIFOLDS

9.3.1 Combinatorial Manifold. For a given integer sequencen1, n2, · · · , nm,m≥ 1 with

0 < n1 < n2 < · · · < nm, a combinatorial manifoldM̃ is a Hausdorff space such that for

any pointp ∈ M̃, there is a local chart (Up, ϕp) of p, i.e., an open neighborhoodUp of

p in M̃ and a homoeomorphismϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)), a combinatorial

fan-space with

{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}

and ⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm},

denoted byM̃(n1, n2, · · · , nm) or M̃ on the context, and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas onM̃(n1, n2, · · · , nm). The maximum value ofs(p) and the dimension̂s(p) =

dim

(
s(p)⋂
i=1

Rni (p)

)
are called thedimensionand theintersectional dimensionof M̃(n1, · · · , nm)

at the pointp, respectively.

A combinatorial manifoldM̃ is finite if it is just combined by finite manifolds with

an underlying combinatorial structureG without one manifold contained in the union of

others. Certainly, a finitely combinatorial manifold is indeed a combinatorial manifold.
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Two examples of such combinatorial manifolds with different dimensions inR3 are

shown in Fig.9.3.1, in where, (a) represents a combination of a 3-manifold with two tori,

and (b) three tori.

B3T2 T2 T2T2 T2

(a) (b)

Fig.9.3.1

By definition, combinatorial manifolds are nothing but a generalization of mani-

folds by combinatorial speculation. However, a locally compactn-manifold Mn without

boundary is itself a combinatorial Euclidean spaceR̃(n) of Euclidean spacesRn with an

underlying structureGlE shown in the next result.

Theorem 9.3.1 A locally compact n-manifold Mn is a combinatorial manifoldM̃G(n)

homeomorphic to a Euclidean spacẽR(n, λ ∈ Λ) with countable graphs GlE inherent in

Mn, denoted by G[Mn].

Proof Let Mn be a locally compactn-manifold with an atlas

A [Mn] = { (Uλ; ϕλ) | λ ∈ Λ},

whereΛ is a countable set. Then eachUλ, λ ∈ Λ is itself ann-manifold by definition.

Define an underlying combinatorial structureGlE by

V(GlE) = {Uλ|λ ∈ Λ},

E(GlE) = { (Uλ,Uι)i , 1 ≤ i ≤ κλι + 1| Uλ

⋂
Uι , ∅, λ, ι ∈ Λ}

whereκλι is the number of non-homotopic loops formed betweenUλ andUι. Then we get

a combinatorial manifoldMn underlying a countable graphGlE .

Define a combinatorial Euclidean spaceR̃(n, λ ∈ Λ) of Euclidean spacesRn by

V(GlE) = {ϕλ(Uλ)|λ ∈ Λ},

E(GlE) = { (ϕλ(Uλ), ϕι(Uι))i , 1 ≤ i ≤ κ′
λι
+ 1| ϕλ(Uλ)

⋂
ϕι(Uι) , ∅, λ, ι ∈ Λ},
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whereκ′λι is the number of non-homotopic loops in formed betweenϕλ(Uλ) andϕι(Uι).

Notice thatϕλ(Uλ)
⋂
ϕι(Uι) , ∅ if and only if Uλ

⋂
Uι , ∅ andκλι = κ′λι for λ, ι ∈ Λ.

Now we prove thatMn is homeomorphic tõR(n, λ ∈ Λ). By assumption,Mn is

locally compact. Whence, there exists a partition of unitycλ : Uλ → Rn, λ ∈ Λ on the

atlasA [Mn]. Let Aλ = supp(ϕλ). Define functionshλ : Mn → Rn andH : Mn → EG′(n)

by

hλ(x) =


cλ(x)ϕλ(x) if x ∈ Uλ,

0 = (0, · · · , 0) if x ∈ Uλ − Aλ.

and

H =
∑

λ∈Λ
ϕλcλ, and J =

∑

λ∈Λ
c−1
λ ϕ

−1
λ .

Thenhλ, H andJ all are continuous by the continuity ofϕλ andcλ for ∀λ ∈ Λ on Mn.

Notice thatc−1
λ ϕ

−1
λ ϕλcλ =the unity function onMn. We get thatJ = H−1, i.e., H is a

homeomorphism fromMn to EG′(n, λ ∈ Λ). �

9.3.2 Combinatorial d-Connected Manifold. For two pointsp, q in a finitely combi-

natorial manifoldM̃(n1, n2, · · · , nm), if there is a sequenceB1, B2, · · · , Bs of d-dimensional

open balls with two conditions following hold:

(1) Bi ⊂ M̃(n1, n2, · · · , nm) for any integeri, 1 ≤ i ≤ sandp ∈ B1, q ∈ Bs;

(2) The dimensional number dim(Bi
⋂

Bi+1) ≥ d for ∀i, 1 ≤ i ≤ s− 1,

then pointsp, q are calledd-dimensional connected iñM(n1, n2, · · · , nm) and the sequence

B1, B2, · · · , Be a d-dimensional path connectingp andq, denoted byPd(p, q). If each pair

p, q of points in M̃(n1, n2, · · · , nm) is d-dimensional connected, theñM(n1, n2, · · · , nm) is

calledd-pathwise connected and say its connectivity≥ d.

Not loss of generality, we consider only finitely combinatorial manifolds with a

connectivity≥ 1 in this book. LetM̃(n1, n2, · · · , nm) be a finitely combinatorial manifold

andd ≥ 1 an integer. We construct a vertex-edge labeled graphGd[M̃(n1, n2, · · · , nm)] by

V(Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where,

V1 = {ni −manifoldsMni in M̃(n1, n2, · · · , nm)|1 ≤ i ≤ m} and

V2 = {isolated intersection pointsOMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤
i, j ≤ m}. Labelni for eachni-manifold inV1 and 0 for each vertex inV2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,
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where E1 = {(Mni ,Mnj ) labeled with dim(Mni
⋂

Mnj ) | dim(Mni
⋂

Mnj ) ≥ d, 1 ≤ i, j ≤ m}
and E2 = {(OMni ,Mnj ,Mni ), (OMni ,Mnj ,Mnj ) labeled with 0| Mni tangent Mnj at the point

OMni ,Mnj for 1 ≤ i, j ≤ m}.
For example, these correspondent labeled graphs gotten from finitely combinatorial

manifolds in Fig.9.3.1 are shown in Fig.9.3.2, in whered = 2 for (a) and (b). Notice if

dim(Mni ∩Mnj ) ≤ d−1, then there are no such edges (Mni ,Mnj ) in Gd[M̃(n1, n2, · · · , nm)].

2 3 2
2 2

(a)

2 2 2
2 2

(b)

Fig.9.3.2

Theorem 9.3.2 Let Gd[M̃(n1, n2, · · · , nm)] be a labeled graph of a finitely combinatorial

manifoldM̃(n1, n2, · · · , nm). Then

(1) Gd[M̃(n1, n2, · · · , nm)] is connected only if d≤ n1.

(2) there exists an integer d, d ≤ n1 such that Gd[M̃(n1, n2, · · · , nm)] is connected.

Proof By definition, there is an edge (Mni ,Mnj ) in Gd[M̃(n1, n2, · · · , nm)] for 1 ≤
i, j ≤ m if and only if there is ad-dimensional pathPd(p, q) connecting two pointsp ∈ Mni

andq ∈ Mnj . Notice that

(Pd(p, q) \ Mni ) ⊆ Mnj and (Pd(p, q) \ Mnj ) ⊆ Mni .

Whence,

d ≤ min{ni, n j}. (9− 3− 1)

Now if Gd[M̃(n1, n2, · · · , nm)] is connected, then there is ad-pathP(Mni ,Mnj ) con-

necting verticesMni andMnj for ∀Mni ,Mnj ∈ V(Gd[M̃(n1, n2, · · · , nm)]). Not loss of gen-

erality, assume

P(Mni ,Mnj ) = Mni Ms1 Ms2 · · ·Mst−1Mnj .

Then we get that

d ≤ min{ni, s1, s2, · · · , st−1, n j} (9− 3− 2)

by (9− 3− 1). However, by definition we know that
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}. (9− 3− 3)
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Therefore, we get that

d ≤ min


⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)}

 = min{n1, n2, · · · , nm} = n1

by combining (9− 3 − 2) with (9− 3 − 3). Notice that points labeled with 0 and 1 are

always connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is always

pathwise 1-connected by definition. Accordingly,G1[M̃(n1, n2, · · · , nm)] is connected.

Thereby, there at least one integer, for instanced = 1 enablingGd
[
M̃(n1, n2, · · · , nm)

]

to be connected. This completes the proof. �

According to Theorem 9.3.2, we get immediately two conclusions following.

Corollary 9.3.1 For a given finitely combinatorial manifold̃M, all connected graphs

Gd
[
M̃

]
are isomorphic if d≤ n1, denoted by GL

[
M̃

]
.

Corollary 9.3.2 If there are k1-manifolds intersect at one point p in a finitely combina-

torial manifoldM̃, then there is an induced subgraph Kk+1 in GL
[
M̃

]
.

Now we define an edge setEd
(
M̃

)
in GL

[
M̃

]
by

Ed
(
M̃

)
= E

(
Gd

[
M̃

])
\ E

(
Gd+1

[
M̃

])
.

Then we get a graphical recursion equation for graphs of a finitely combinatorial manifold

M̃ as a by-product.

Theorem9.3.3 Let M̃ be a finitely combinatorial manifold. Then for any integer d, d ≥ 1,

there is a recursion equation Gd+1
[
M̃

]
= Gd

[
M̃

]
− Ed

(
M̃

)
for labeled graphs of̃M.

Proof It can be obtained immediately by definition. �

Now letH(n1, · · · , nm) denotes all finitely combinatorial manifolds̃M(n1, · · · , nm)

andG[0, nm] all vertex-edge labeled graphsGL with θL : V(GL) ∪ E(GL) → {0, 1, · · · , nm}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 inG is a union of complete

graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edgee= (u, v) ∈ E(G), τ2(e) ≤ min{τ1(u), τ1(v)}.

Then we know a relation between setsH(n1, n2, · · · , nm) andG([0, nm], [0, nm]) fol-

lowing.
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Theorem 9.3.4 Let 1 ≤ n1 < n2 < · · · < nm,m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold̃M ∈ H(n1, · · · , nm) defines a vertex-edge labeled

graph G([0, nm]) ∈ G[0, nm]. Conversely, every vertex-edge labeled graph G([0, nm]) ∈
G[0, nm] defines a finitely combinatorial manifold̃M ∈ H(n1, · · · , nm) with a1−1 mapping

θ : G([0, nm]) → M̃ such thatθ(u) is aθ(u)-manifold inM̃, τ1(u) = dimθ(u) andτ2(v,w) =

dim(θ(v)
⋂
θ(w)) for ∀u ∈ V(G([0, nm])) and∀(v,w) ∈ E(G([0, nm])).

Proof By definition, for∀M̃ ∈ H(n1, · · · , nm) there is a vertex-edge labeled graph

G([0, nm]) ∈ G([0, nm]) and a 1− 1 mappingθ : M̃ → G([0, nm]) such thatθ(u) is a

θ(u)-manifold in M̃. For completing the proof, we need to construct a finitely combi-

natorial manifoldM̃ ∈ H(n1, · · · , nm) for ∀G([0, nm]) ∈ G[0, nm] with τ1(u) = dimθ(u)

andτ2(v,w) = dim(θ(v)
⋂
θ(w)) for ∀u ∈ V(G([0, nm])) and∀(v,w) ∈ E(G([0, nm])). The

construction is carried out by programming following.

STEP 1. Choose|G([0, nm])| − |V0| manifolds correspondent to each vertexu with a di-

mensionalni if τ1(u) = ni, whereV0 = {u|u ∈ V(G([0, nm])) andτ1(u) = 0}. Denoted by

V≥1 all these vertices inG([0, nm]) with label≥ 1.

STEP 2. For ∀u1 ∈ V≥1 with τ1(u1) = ni1, if its neighborhood setNG([0,nm])(u1)
⋂

V≥1 =

{v1
1, v

2
1, · · · , v

s(u1)
1 } with τ1(v1

1) = n11, τ1(v2
1) = n12, · · ·, τ1(v

s(u1)
1 ) = n1s(u1), then let the

manifold correspondent to the vertexu1 with an intersection dimensionτ2(u1vi
1) with

manifold correspondent to the vertexvi
1 for 1 ≤ i ≤ s(u1) and define a vertex set∆1 = {u1}.

STEP 3. If the vertex set∆l = {u1, u2, · · · , ul} ⊆ V≥1 has been defined andV≥1 \∆l , ∅, let

ul+1 ∈ V≥1 \ ∆l with a labelnil+1. Assume

(NG([0,nm])(ul+1)
⋂

V≥1) \ ∆l = {v1
l+1, v

2
l+1, · · · , v

s(ul+1)
l+1 }

with τ1(v1
l+1) = nl+1,1, τ1(v2

l+1) = nl+1,2, · · ·,τ1(v
s(ul+1)
l+1 ) = nl+1,s(ul+1). Then let the man-

ifold correspondent to the vertexul+1 with an intersection dimensionτ2(ul+1vi
l+1) with

the manifold correspondent to the vertexvi
l+1, 1 ≤ i ≤ s(ul+1) and define a vertex set

∆l+1 = ∆l
⋃{ul+1}.

STEP 4. Repeat steps 2 and 3 until a vertex set∆t = V≥1 has been constructed. This

construction is ended if there are no verticesw ∈ V(G) with τ1(w) = 0, i.e.,V≥1 = V(G).

Otherwise, go to the next step.

STEP 5. For ∀w ∈ V(G([0, nm])) \ V≥1, assumeNG([0,nm])(w) = {w1,w2, · · · ,we}. Let all

these manifolds correspondent to verticesw1,w2, · · · ,we intersects at one point simulta-
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neously and define a vertex set∆∗t+1 = ∆t
⋃{w}.

STEP 6. Repeat STEP 5 for vertices inV(G([0, nm])) \ V≥1. This construction is finally

ended until a vertex set∆∗t+h = V(G[n1, n2, · · · , nm]) has been constructed.

A finitely combinatorial manifoldM̃ correspondent toG([0, nm]) is gotten when∆∗t+h

has been constructed. By this construction, it is easily verified that M̃ ∈ H(n1, · · · , nm)

with τ1(u) = dimθ(u) andτ2(v,w) = dim(θ(v)
⋂
θ(w)) for ∀u ∈ V(G([0, nm])) and∀(v,w) ∈

E(G([0, nm])). This completes the proof. �

9.3.3 Euler-Poincaŕe Characteristic. the Euler-Poincaré characteristic of aCW-complex

M is defined to be the integer

χ(M) =
∞∑

i=0

(−1)iαi

with αi the number ofi-dimensional cells inM. We calculate the Euler-Poincaré charac-

teristic of finitely combinatorial manifolds in this subsection. For this objective, define a

clique sequence{Cl(i)}i≥1 in the graphGL
[
M̃

]
by the following programming.

STEP 1. Let Cl
(
GL

[
M̃

])
= l0. Construct

Cl(l0) =
{
K l0

1 ,K
l0
2 , · · · ,K

i0
p |K l0

i ≻ GL[M̃] andK l0
i ∩ K l0

j = ∅,

or a vertex∈ V
(
GL

[
M̃

])
for i , j, 1 ≤ i, j ≤ p

}
.

STEP 2. Let G1 =
⋃

K l∈Cl(l)
K l andCl

(
GL

[
M̃

]
\G1

)
= l1. Construct

Cl(l1) =
{
K l1

1 ,K
l1
2 , · · · ,K

i1
q |K l1

i ≻ GL[M̃] andK l1
i ∩ K l1

j = ∅

or a vertex∈ V
(
GL

[
M̃

])
for i , j, 1 ≤ i, j ≤ q

}
.

STEP 3. Assume we have constructedCl(lk−1) for an integerk ≥ 1. LetGk =
⋃

K lk−1∈Cl(l)
K lk−1

andCl
(
GL

[
M̃

]
\ (G1 ∪ · · · ∪Gk)

)
= lk. We construct

Cl(lk) =
{
K lk

1 ,K
lk
2 , · · · ,K

lk
r |K lk

i ≻ GL[M̃] andK lk
i ∩ K lk

j = ∅,

or a vertex∈ V
(
GL

[
M̃

])
for i , j, 1 ≤ i, j ≤ r

}
.

STEP 4. Continue STEP 3 until we find an integert such that there are no edges in

GL
[
M̃

]
\

t⋃
i=1

Gi.

By this clique sequence{Cl(i)}i≥1, we can calculate the Euler-Poincaré characteristic

of finitely combinatorial manifolds.
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Theorem 9.3.5 Let M̃ be a finitely combinatorial manifold. Then

χ
(
M̃

)
=

∑

Kk∈Cl(k),k≥2

∑

Mi j ∈V(Kk),1≤ j≤s≤k

(−1)s+1χ
(
Mi1

⋂
· · ·

⋂
Mis

)

Proof Denoted the numbers of all thesei-dimensional cells in a combinatorial mani-

fold M̃ or in a manifoldM by α̃i andαi(M). If GL
[
M̃

]
is nothing but a complete graphKk

with V
(
GL

[
M̃

])
= {M1,M2, · · · ,Mk}, k ≥ 2, by applying the inclusion-exclusion principe

and the definition of Euler-Poincaré characteristic we getthat

χ
(
M̃

)
=

∞∑

i=0

(−1)iα̃i

=

∞∑

i=0

(−1)i
∑

Mi j ∈V(Kk),1≤ j≤s≤k

(−1)s+1αi

(
Mi1

⋂
· · ·

⋂
Mis

)

=
∑

Mi j ∈V(Kk),1≤ j≤s≤k

(−1)s+1
∞∑

i=0

(−1)iαi

(
Mi1

⋂
· · ·

⋂
Mis

)

=
∑

Mi j ∈V(Kk),1≤ j≤s≤k

(−1)s+1χ
(
Mi1

⋂
· · ·

⋂
Mis

)

for instance,χ
(
M̃

)
= χ(M1) + χ(M2) − χ(M1 ∩ M2) if GL

[
M̃

]
= K2 andV

(
GL

[
M̃

])
=

{M1,M2}. By the definition of clique sequence ofGL
[
M̃

]
, we finally obtain that

χ
(
M̃

)
=

∑

Kk∈Cl(k),k≥2

∑

Mi j ∈V(Kk),1≤ j≤s≤k

(−1)i+1χ
(
Mi1

⋂
· · ·

⋂
Mis

)
. �

Particularly, ifGL
[
M̃

]
is one of some special graphs, we can get interesting conse-

quences by Theorem 9.3.5.

Corollary 9.3.3 Let M̃ be a finitely combinatorial manifold. If GL
[
M̃

]
is K3-free, then

χ
(
M̃

)
=

∑

M∈V(GL[M̃])

χ2(M) −
∑

(M1,M2)∈E(GL[M̃])

χ
(
M1

⋂
M2

)
.

Particularly, if dim(M1
⋂

M2) is a constant for any(M1,M2) ∈ E
(
GL

[
M̃

])
, then

χ
(
M̃

)
=

∑

M∈V(GL[M̃])

χ2(M) − χ
(
M1

⋂
M2

) ∣∣∣∣E
(
GL

[
M̃

])∣∣∣∣ .
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Proof Notice thatGL[M̃] is K3-free, we get that

χ
(
M̃

)
=

∑

(M1,M2)∈E(GL[M̃])

(
χ(M1) + χ(M2) − χ

(
M1

⋂
M2

))

=
∑

(M1,M2)∈E(GL[M̃])

(χ(M1) + χ(M2)) −
∑

(M1,M2)∈E(GL[M̃])

χ
(
M1

⋂
M2

)

=
∑

M∈V(GL[M̃])

χ2(M) −
∑

(M1,M2)∈E(GL[M̃])

χ
(
M1

⋂
M2

)
.

�

Since the Euler-Poincaré characteristic of a manifoldM is 0 if dimM ≡ 1(mod2), we

get the following consequence.

Corollary 9.3.4 Let M̃ be a finitely combinatorial manifold with odd dimension number

for any intersection of k manifolds with k≥ 2. Then

χ
(
M̃

)
=

∑

M∈V(GL[M̃])

χ(M).

§9.4 TOPOLOGICAL SPACES COMBINING WITH MULTI-GROUPS

9.4.1 Topological Group. A topological group is a combination of topological space

with that of group formally defined following.

Definition 9.4.1 A topological group(G; ◦) is a Hausdorff topological space G together

with a group structure on(G; ◦) satisfying conditions following:

(1) The group multiplication◦ : (a, b)→ a ◦ b of G×G→ G is continuous;

(2) The group inversion g→ g−1 of G→ G is continuous.

Notice that these conditions (1) and (2) can be restated following by the definition of

continuous mapping.

(1′) Let a, b ∈ G. Then for any neighborhood W of a◦ b, there are neighborhoods

U, V of a and b such that UV⊂W, where UV= {x ◦ y|x ∈ U, y ∈ V};
(2′) For a ∈ G and any neighborhood V of a−1, there is a neighborhood U of a such

that U ⊂ V.
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It is easily verified that conditions (1) and (2) can be replaced by a condition (3)

following:

(3′) Let a, b ∈ G. Then for any neighborhood W of a◦ b−1, there are neighborhoods

U, V of a and b such that UV−1 ⊂W.

A few examples of topological group are listed in the following.

(1) (Rn;+) and (Cn;+), the additive groups ofn-tuple of real or complex numbers

are topological group.

(2) The multiplicative group (S; ·) of the complex numbers withS = { z | |z| = 1} is

a topological group with structureS1.

(3) Let (C∗; ·) be the multiplicative group of non-zero complex numbers. The topo-

logical structure of (C∗; ·) is R2 − {(0, 0)}, an open submanifold of complex planeR2.

Whence, it is a topological group.

(4) Let Gl(n,R) be the set ofn× n non-singular matricesMn, which is a Euclidean

space ofRn − (0, 0, · · · , 0︸      ︷︷      ︸
n

). Notice that the determinant function det :Mn → R is contin-

uous because it is nothing but a polynomial in the coefficients ofMn. Thus (Gl(n,R); det)

is a topological group.

Some elementary properties of a topological group (G; ◦) are listed following.

(P1) Let ai ∈ G for integers 1≤ i ≤ n andaǫ11 ◦ aǫ12 ◦ · · · ◦ aǫnn = b, whereǫi is

an integer. By condition (1′), for a V(b) neighborhood ofb, there exist neighborhoods

U1,U2, · · · ,Un of a1, a2, · · · , an such thatUǫ1
1 ◦Uǫ1

2 ◦ · · · ◦ Uǫn
n ⊂ V(b).

(P2) Let a ∈ G be a chosen element andf (x) = x ◦ a, f ′(x) = a ◦ x andφ(x) = x−1

for ∀x ∈ G. It is clear thatf , f ′ andφ are bijection onG. They are also continuous. In

fact, letb′ = x′ · a for x′ ∈ G andV a neighborhood ofb′. By condition (1′), there are

neighborhoodsU, W of x′ anda such thatUW ⊂ V. Notice thata ∈W. ThusUa ⊂ V. By

definition, we know thatf is continuous. Similarly, we know thatf ′ andφ are continuous.

Whence,f , f ′ andφ are homeomorphism onG.

(P3) Let E, F ⊂ be open and closed subsets, respectively. Then for∀a ∈ G, by

property (P2),Ea, aE,E−1 are open, andFa, aF, F−1 are closed also.

(P4) A topological spaceS is homogenousif there is a homeomorphismT : S→ S

for ∀p, q ∈ S such thatT(p) = q. Let a = p−1 ◦ q in (P2). We know immediately that the

topological group (G; ◦) is homogenous.
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9.4.2 Topological Subgroup. Let (G; ◦) be a topological group andH ⊂ G with condi-

tions following hold:

(1) (H, ◦) is a subgroup of (G; ◦);
(2) H is closed.

Such a subgroup (H; ◦) is called atopological subgroupof (G; ◦).

Theorem9.4.1 Let (G; ◦) be a topological group and let(H; ◦) be an algebraic subgroup

of (G; ◦). Then(H; ◦) is a topological subgroup of(G; ◦) with an induced topology, i.e.,

S is open if and only if S= H
⋂

T, where T is open in G. Furthermore,(H; irc) is a

topological subgroup of(G; ◦) and if H⊳G, then(H; ◦) is a topological normal subgroup

of (G; ◦).

Proof We only need to prove that◦ : H × H → H is continuous. Leta, b ∈ H with

a◦ b−1 = c andW a neighborhood ofc in H. Then there is an open neighborhoodW′ of c

in G such thatW = H
⋂

W′. Since (G; ◦) is a topological group, there are neighborhoods

U′, V′ of a andb respectively such thatU′(V′)−1 ⊂ W′. Notice thatU = H
⋂

U′ and

V = H
⋂

V′ are neighborhoods ofa andb in H by definition. We know thatUV−1 ⊂ W.

Thus (H; ◦) is a topological subgroup.

Now let a, b ∈ H. Thena ◦ b−1 ∈ H. In fact, bya, b ∈ H, there exist elements

x, y ∈ H such thatx◦ y−1 ∈ H
⋂

W, which implies thata◦ b−1 ∈ H. Whence (H; irc) is a

topological subgroup.

For∀c ∈ G anda ∈ H, if H ⊳ G, thenc ◦ a ◦ c−1 ∈ H. Let V be a neighborhood of

c ◦ a ◦ c−1. Then there is a neighborhood ofU such thatcUc−1 ⊂ V. Sincea ∈ H, there

existx ∈ H
⋂

U such thatc ◦ x ◦ c−1 ∈ H
⋂

V Thusc ◦ x ◦ c−1 ∈ H. Whence, (H; ◦) is a

topological normal subgroup of (G; ◦). �

Similarly, there are two topological normal subgroups in any topological group (G; ◦),
i.e.,{1G} and (G; ◦) itself. A topological group only has topological normal subgroups{1G}
and (G; ◦) is called asimple topological group.

9.4.3 Quotient Topological Group. Let (G; ◦) be a topological group and letH⊳G be a

normal subgroup of (G; ◦). Consider the quotientG/H with the quotient topology, namely

the finest topology onG/H that makes the canonical projectionq : G→ G/H continuous.

Such a quotient topology consists of all setsq(U), whereU runs over the family of all open

sets of (G; ◦). Whence, ifU ⊂ G is open, thenq−1q(U) = UH = {Uh|h ∈ H} is the union
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of open sets, and so it is also open.

ChooseA, B ∈ G/H, a ∈ A. Notice thatB = bH is closed anda < B. There exists a

neighborhoodU(a) of a with U(a)
⋂

B = ∅. Thus the setU′ consisting of allxH, x ∈ U

is a neighborhood ofA with U′
⋂

B = ∅. Thus (G/H; ◦) is Hausdorff space.

By definition, q(a) = aH. Let U′ be a neighborhood ofa, i.e., consisting ofxH

with x ∈ U and U a neighborhood of (G; ◦). Notice thatUH is open anda ∈ UH.

Whence, there is a neighborhoodV of a such thatV ⊂ UH. Clearly,q(V) ⊂ U′. Thusq

is continuous.

It should be noted that◦ : G/H×G/H → G/H is continuous. In fact, letA, B ∈ G/H,

C = AB−1 andW′ a neighborhood ofC. ThusW′ consists of elementszW, whereW is a

neighborhood in (G; ◦) andz ∈ W. BecauseC ∈ W′, there exists an elementc ∈ W such

thatC = cH. Let b ∈ B anda = c◦ b. Thena ∈ A. By definition, there are neighborhoods

U, V of a andb respectively such thatUV−1 ⊂W in (G; ◦). Define

U′ = { xH | x ∈ U} and V′ = { yH | y ∈ V}.

There are neighborhoods ofA andB in (G/H; ◦), respectively. ByH ⊳ G, we get that

(xH)(yH)−1 = xHH−1y = xHy−1 = (x ◦ y−1)H ∈W′.

Thus U′(V′)−1 ⊂ W′, i.e., ◦ : G/H × G/H → G/H is continuous. Combining these

discussions, we get the following result.

Theorem 9.4.2 For any normal subgroup H of a topological group(G; ◦), the quotient

(G/H; ◦) is a topological group.

Such a topological group (G/H; ◦) is called aquotient topological group.

9.4.4 Isomorphism Theorem.Let (G; ◦), (G′; •) be topological groups andf : (G; ◦)→
(G′; •) be a mapping. Iff is an algebraic homomorphism, also continuous, thenf is

called ahomomorphismfrom topological group (G; ◦) to (G′; •). Such a homomorphism

is openedif it is an opened topological homeomorphism. Particularly, if f is an algebraic

isomorphism and a homeomorphism,f is called anisomorphismfrom topological group

(G; ◦) to (G′; •).

Theorem 9.4.3 Let (G; ◦), (G′; •) be topological groups and g: (G; ◦) → (G′; •) be

an opened onto homomorphism,Kerg = N. Then N is a normal subgroup of(G; ◦) and

(G; ◦)/N ≃ (G′; •).
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Proof Clearly, N is closed by the continuous property ofg and N = Kerg. By

Theorem 1.2.4, Kerg ⊳ G. Thus (N; ◦) is a normal subgroup of (G; ◦). Let x′ ∈ G′. Then

g(x′N) = x′. Define f : G/N→ G′ by f (x′N) = x′. We prove such af is homeomorphism

from topological spaceG to G/N.

Let a′ ∈ G′, f (a′) = A. Denoted byU′ the a neighborhood ofA in (G/N; ◦). Then

U′ consists of cosetsxN for x ∈ U, whereU is a neighborhood of (G; ◦). Let a ∈ U

such thatA = aN. Sinceg is opened andg(a) = a′, there is a neighborhoodV′ of a′

such thatg(U) ⊃ V′. Now let x′ ∈ V′. Then there isx ∈ U such thatg(x) = x′. Thus

f (x′) = xN ∈ U′, which implies thatf (V′) ⊂ U′, i.e., f is continuous.

Let A = aN ∈ G/N, f −1(A) = a′ and U′ a neighborhood ofa′. Becauseg is

continuous andg(a) = a′, there is a neighborhood ofa such thatg(V) ⊂ U′. Denoted by

V′ the neighborhood consisting of all cosetsxN, wherex ∈ V. Notice thatg(V) ⊂ U′. We

get thatf −1(V′) ⊂ U′. Thus f −1 is also continuous.

Combining the above discussion, we know thatf : G/N→ G′ is a homeomorphism.

Notice that such af is an isomorphism of algebraic group. We know it is an isomorphism

of topological group by definition. �

9.4.5 Topological Multi-Group. A topological multi-group(SG; O) is an algebraic

multi-system
(
Ã ; O

)
with Ã =

m⋃
i=1

Hi andO =
m⋃

i=1
{◦i} with conditions following hold:

(1) (Hi; ◦i) is a group for each integeri, 1 ≤ i ≤ m, namely, (H ,O) is a multi-

group;

(2) Ã is a combinatorially topological spaceSG, i.e., a combinatorial topological

space underlying a structureG;

(3) the mapping (a, b)→ a ◦ b−1 is continuous for∀a, b ∈Hi, ∀◦ ∈ Oi, 1 ≤ i ≤ m.

For example, letRni , 1 ≤ i ≤ m be Euclidean spaces with an additive operation+i

and scalar multiplication· determined by

(λ1 · x1, λ2 · x2, · · · , λni · xni ) +i (ζ1 · y1, ζ2 · y2, · · · , ζni · yni )

= (λ1 · x1 + ζ1 · y1, λ2 · x2 + ζ2 · y2, · · · , λni · xni + ζni · yni )

for ∀λl , ζl ∈ R, where 1≤ λl, ζl ≤ ni. Then eachRni is a continuous group under+i.

Whence, the algebraic multi-system (EG(n1, · · · , nm); O) is a topological multi-group with

a underlying structureG by definition, whereO =
m⋃

i=1
{+i}. Particularly, ifm = 1, i.e.,

ann-dimensional Euclidean spaceRn with the vector additive+ and multiplication· is a

topological group.
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A topological spaceS is homogenousif for ∀a, b ∈ S, there exists a continuous

mappingf : S→ S such thatf (b) = a. We know a simple characteristic following.

Theorem 9.4.4 If a topological multi-group(SG; O) is arcwise connected and associa-

tive, then it is homogenous.

Proof Notice thatSG is arcwise connected if and only if its underlying graphG is

connected. For∀a, b ∈ SG, without loss of generality, assumea ∈H0 andb ∈Hs and

P(a, b) =H0H1 · · ·Hs, s≥ 0,

a path fromH0 to Hs in the graphG. Choosec1 ∈ H0 ∩ H1, c2 ∈ H1 ∩ H2,· · ·,
cs ∈Hs−1 ∩Hs. Then

a ◦0 c1 ◦1 c−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c−1

s ◦s b−1

is well-defined and

a ◦0 c1 ◦1 c−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c−1

s ◦s b−1 ◦s b = a.

Let L = a◦0c1◦1c−1
1 ◦2c2◦3c3◦4 · · ·◦s−1c−1

s ◦sb−1◦s. ThenL is continuous by the definition

of topological multi-group. We finally get a continuous mapping L : SG → SG such that

L(b) = Lb = a. Whence, (SG; O) is homogenous. �

Corollary 9.4.1 A topological group is homogenous if it is arcwise connected.

A multi-subsystem (LH;O) of (SG; O) is called atopological multi-subgroupif it

itself is a topological multi-group. Denoted byLH ≤ SG. A criterion on topological

multi-subgroups is shown in the following.

Theorem 9.4.5 A multi-subsystem(LH;O1) is a topological multi-subgroup of(SG; O),

whereO1 ⊂ O if and only if it is a multi-subgroup of(SG; O) in algebra.

Proof The necessity is obvious. For the sufficiency, we only need to prove that for

any operation◦ ∈ O1, a ◦ b−1 is continuous inLH. Notice that the condition (3) in the

definition of topological multi-group can be replaced by:

for any neighborhood NSG(a◦b−1) of a◦b−1 in SG, there always exist neighborhoods

NSG(a) and NSG(b−1) of a and b−1 such that NSG(a) ◦ NSG(b−1) ⊂ NSG(a ◦ b−1), where

NSG(a) ◦ NSG(b−1) = {x ◦ y|∀x ∈ NSG(a), y ∈ NSG(b−1)}

by the definition of mapping continuity. Whence, we only needto show that for any
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neighborhoodNLH (x◦y−1) in LH, wherex, y ∈ LH and◦ ∈ O1, there exist neighborhoods

NLH (x) andNLH (y−1) such thatNLH (x) ◦ NLH (y−1) ⊂ NLH (x ◦ y−1) in LH. In fact, each

neighborhoodNLH (x◦ y−1) of x◦ y−1 can be represented by a formNSG(x◦ y−1)∩LH. By

assumption, (SG; O) is a topological multi-group, we know that there are neighborhoods

NSG(x), NSG(y−1) of x andy−1 in SG such thatNSG(x) ◦NSG(y−1) ⊂ NSG(x ◦ y−1). Notice

thatNSG(x)∩LH, NSG(y−1)∩LH are neighborhoods ofxandy−1 in LH. Now letNLH (x) =

NSG(x) ∩ LH andNLH (y−1) = NSG(y−1) ∩ LH. Then we get thatNLH (x) ◦ NLH (y−1) ⊂
NLH (x◦ y−1) in LH, i.e., the mapping (x, y) → x◦ y−1 is continuous. Whence, (LH;O1) is

a topological multi-subgroup. �

Particularly, for the topological groups, we know the following consequence.

Corollary 9.4.2 A subset of a topological group(Γ; ◦) is a topological subgroup if and

only if it is a closed subgroup of(Γ; ◦) in algebra.

For two topological multi-groups (SG1; O1) and (SG2; O2), a mappingω : (SG1; O1)→
(SG2; O2) is ahomomorphismif it satisfies the following conditions:

(1) ω is a homomorphism from multi-groups (SG1; O1) to (SG2; O2), namely, for

∀a, b ∈ SG1 and◦ ∈ O1, ω(a ◦ b) = ω(a)ω(◦)ω(b);

(2)ω is a continuous mapping from topological spacesSG1 toSG1, i.e., for∀x ∈ SG1

and a neighborhoodU of ω(x), ω−1(U) is a neighborhood ofx.

Furthermore, ifω : (SG1; O1) → (SG2; O2) is an isomorphism in algebra and a

homeomorphism in topology, then it is called anisomorphism, particularly, anauto-

morphismif (SG1; O1) = (SG2; O2) between topological multi-groups (SG1; O1) and

(SG2; O2).

§9.5 COMBINATORIAL METRIC SPACES

9.5.1 Multi-Metric Space. A multi-metric space is a unioñM =
m⋃

i=1
Mi such that each

Mi is a space with a metricρi for ∀i, 1 ≤ i ≤ m. Usually, as we say a multi-metric space

M̃ =
m⋃

i=1
Mi, it means that a multi-metric space with metricsρ1, ρ2, · · · , ρm such that (Mi , ρi)

is a metric space for any integeri, 1 ≤ i ≤ m. For a multi-metric spacẽM =
m⋃

i=1
Mi, x ∈ M̃
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and a positive numberr, a r-disk B(x, r) in M̃ is defined by

B(x, r) = { y | there exists an integerk, 1 ≤ k ≤ m such thatρk(y, x) < r, y ∈ M̃}

Remark 9.5.1 The following two extremal cases are permitted in multi-metric spaces:

(1) there are integersi1, i2, · · · , is such thatMi1 = Mi2 = · · · = Mis, wherei j ∈
{1, 2, · · · ,m}, 1≤ j ≤ s;

(2) there are integersl1, l2, · · · , ls such thatρl1 = ρl2 = · · · = ρls, where l j ∈
{1, 2, · · · ,m}, 1≤ j ≤ s.

Theorem 9.5.1 Let ρ1, ρ2, · · · , ρm be m metrics on a space M and let F be a function on

Rm such that the following conditions hold:

(1) F(x1, x2, · · · , xm) ≥ F(y1, y2, · · · , ym) for ∀i, 1 ≤ i ≤ m, xi ≥ yi;

(2) F(x1, x2, · · · , xm) = 0 only if x1 = x2 = · · · = xm = 0;

(3) for two m-tuples(x1, x2, · · · , xm) and(y1, y2, · · · , ym),

F(x1, x2, · · · , xm) + F(y1, y2, · · · , ym) ≥ F(x1 + y1, x2 + y2, · · · , xm+ ym).

Then F(ρ1, ρ2, · · · , ρm) is also a metric on M.

Proof We only need to prove thatF(ρ1, ρ2, · · · , ρm) satisfies those conditions of met-

ric for ∀x, y, z ∈ M. By the condition (2),F(ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = 0 only if

ρi(x, y) = 0 for any integeri. Sinceρi is a metric onM, we know thatx = y.

For any integeri, 1 ≤ i ≤ m, sinceρi is a metric onM, we know thatρi(x, y) = ρi(y, x).

Whence,

F(ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = F(ρ1(y, x), ρ2(y, x), · · · , ρm(y, x)).

Now by (1) and (3), we get that

F(ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) + F(ρ1(y, z), ρ2(y, z), · · · , ρm(y, z))

≥ F(ρ1(x, y) + ρ1(y, z), ρ2(x, y) + ρ2(y, z), · · · , ρm(x, y) + ρm(y, z))

≥ F(ρ1(x, z), ρ2(x, z), · · · , ρm(x, z)).

Therefore,F(ρ1, ρ2, · · · , ρm) is a metric onM. �

Corollary 9.5.1 If ρ1, ρ2, · · · , ρm aremmetrics on a spaceM, thenρ1 + ρ2 + · · · + ρm and
ρ1

1+ ρ1
+

ρ2

1+ ρ2
+ · · · + ρm

1+ ρm
are also metrics onM.
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9.5.2 Convergent Sequence in Multi-Metric Space.A sequence{xn} in a multi-metric

spaceM̃ =
m⋃

i=1
Mi is said to beconvergent to a point x, x ∈ M̃ if for any numberǫ > 0,

there exist numbersN andi, 1 ≤ i ≤ m such that

ρi(xn, x) < ǫ

providedn ≥ N. If {xn} is convergent to a pointx, x ∈ M̃, we denote it by lim
n

xn = x.

We get a characteristic for convergent sequences in multi-metric spaces following.

Theorem 9.5.2 A sequence{xn} in a multi-metric spacẽM =
m⋃

i=1
Mi is convergent if and

only if there exist integers N and k, 1 ≤ k ≤ m such that the subsequence{xn|n ≥ N} is a

convergent sequence in(Mk, ρk).

Proof If there exist integersN andk, 1 ≤ k ≤ m such that{xn|n ≥ N} is a convergent

sequence in (Mk, ρk), then for any numberǫ > 0, by definition there exist an integerP and

a pointx, x ∈ Mk such that

ρk(xn, x) < ǫ

if n ≥ max{N, P}.
Now if {xn} is a convergent sequence in the multi-spaceM̃, by definition for any

positive numberǫ > 0, there exist a pointx, x ∈ M̃, natural numbersN(ǫ) and integer

k, 1 ≤ k ≤ m such that ifn ≥ N(ǫ), then

ρk(xn, x) < ǫ.

Thus{xn|n ≥ N(ǫ)} ⊂ Mk and{xn|n ≥ N(ǫ)} is a convergent sequence in (Mk, ρk). �

Theorem 9.5.3 Let M̃ =
m⋃

i=1
Mi be a multi-metric space. For two sequences{xn}, {yn}

in M̃, if lim
n

xn = x0, lim
n

yn = y0 and there is an integer p such that x0, y0 ∈ Mp, then

lim
n
ρp(xn, yn) = ρp(x0, y0).

Proof According to Theorem 9.5.2, there exist integersN1 andN2 such that ifn ≥
max{N1,N2}, thenxn, yn ∈ Mp. Whence,

ρp(xn, yn) ≤ ρp(xn, x0) + ρp(x0, y0) + ρp(yn, y0)

and

ρp(x0, y0) ≤ ρp(xn, x0) + ρp(xn, yn) + ρp(yn, y0).
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Therefore,

|ρp(xn, yn) − ρp(x0, y0)| ≤ ρp(xn, x0) + ρp(yn, y0).

Now for any numberǫ > 0, since lim
n

xn = x0 and lim
n

yn = y0, there exist numbers

N1(ǫ),N1(ǫ) ≥ N1 and N2(ǫ),N2(ǫ) ≥ N2 such thatρp(xn, x0) ≤
ǫ

2
if n ≥ N1(ǫ) and

ρp(yn, y0) ≤
ǫ

2
if n ≥ N2(ǫ). Whence, if we choosen ≥ max{N1(ǫ),N2(ǫ)}, then

|ρp(xn, yn)−ρp(x0, y0)| < ǫ. �

Can a convergent sequence has more than one limiting points?The following result

answers this question.

Theorem 9.5.4 If {xn} is a convergent sequence in a multi-metric spaceM̃ =
m⋃

i=1
Mi, then

{xn} has only one limit point.

Proof According to Theorem 9.5.2, there exist integersN andi, 1 ≤ i ≤ m such that

xn ∈ Mi if n ≥ N. Now if

lim
n

xn = x1 and lim
n

xn = x2,

andn ≥ N, by definition,

0 ≤ ρi(x1, x2) ≤ ρi(xn, x1) + ρi(xn, x2).

Thusρi(x1, x2) = 0. Consequently,x1 = x2. �

Theorem9.5.5 Any convergent sequence in a multi-metric space is a boundedpoints set.

Proof According to Theorem 9.5.4, we obtain this result immediately. �

9.5.3 Completed Sequence in Multi-Metric Space.A sequence{xn} in a multi-metric

spaceM̃ =
m⋃

i=1
Mi is called aCauchy sequenceif for any numberǫ > 0, there exist integers

N(ǫ) ands, 1 ≤ s≤ m such that for any integersm, n ≥ N(ǫ), ρs(xm, xn) < ǫ.

Theorem9.5.6 A Cauchy sequence{xn} in a multi-metric spacẽM =
m⋃

i=1
Mi is convergent

if and only if |{xn}
⋂

Mk| is finite or infinite but{xn}
⋂

Mk is convergent in(Mk, ρk) for

∀k, 1 ≤ k ≤ m.

Proof The necessity of conditions in this theorem is known by Theorem 9.5.2. Now

we prove the sufficiency. By definition, there exist integerss, 1 ≤ s≤ m andN1 such that

xn ∈ Ms if n ≥ N1. Whence, if|{xn}
⋂

Mk| is infinite and lim
n
{xn}

⋂
Mk = x, then there

must bek = s. Denote by{xn}
⋂

Mk = {xk1, xk2, · · · , xkn, · · ·}.
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For any positive numberǫ > 0, there exists an integerN2,N2 ≥ N1 such that

ρk(xm, xn) <
ǫ

2
andρk(xkn, x) <

ǫ

2
if m, n ≥ N2. According to Theorem 9.5.3, we

get that

ρk(xn, x) ≤ ρk(xn, xkn) + ρk(xkn, x) < ǫ

if n ≥ N2. Whence, lim
n

xn = x. �

A multi-metric spaceM̃ is said to becompletedif its every Cauchy sequence is

convergent. For a completed multi-metric space, we obtain two important results similar

to Theorems 1.5.3 and 1.5.4 in metric spaces.

Theorem9.5.7 Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space. For anǫ-disk sequence

{B(ǫn, xn)}, whereǫn > 0 for n = 1, 2, 3, · · ·, if the following conditions hold:

(1) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;
(2) lim

n→+∞
ǫn = 0,

then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Proof First, we prove that the sequence{xn} is a Cauchy sequence iñM. By the con-

dition (1), we know that ifm≥ n, thenxm ∈ B(ǫm, xm) ⊂ B(ǫn, xn). Whenceρi(xm, xn) < ǫn

providedxm, xn ∈ Mi for ∀i, 1 ≤ i ≤ m.

Now for any positive numberǫ, since lim
n→+∞

ǫn = 0, there exists an integerN(ǫ) such

that if n ≥ N(ǫ), thenǫn < ǫ. Therefore, ifxn ∈ Ml, then lim
m→+∞

xm = xn. Thereby there

exists an integerN such that ifm ≥ N, thenxm ∈ Ml by Theorem 9.5.2. Choice integers

m, n ≥ max{N,N(ǫ)}, we know that

ρl(xm, xn) < ǫn < ǫ.

So{xn} is a Cauchy sequence.

By the assumption that̃M is completed, we know that the sequence{xn} is convergent

to a pointx0, x0 ∈ M̃. By conditions of (i) and (ii ), we get thatρl(x0, xn) < ǫn if m→ +∞.

Whence,x0 ∈
+∞⋂
n=1

B(ǫn, xn).

Now if there is a pointy ∈
+∞⋂
n=1

B(ǫn, xn), then there must bey ∈ Ml. We get that

0 ≤ ρl(y, x0) = lim
n
ρl(y, xn) ≤ lim

n→+∞
ǫn = 0

by Theorem 9.5.3. Thusρl(y, x0) = 0. By the definition of metric function, we get that

y = x0. �
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Let M̃1 andM̃2 be two multi-metric spaces and letf : M̃1→ M̃2 be a mapping,x0 ∈
M̃1, f (x0) = y0. For∀ǫ > 0, if there exists a numberδ such thatf (x) = y ∈ B(ǫ, y0) ⊂ M̃2

for ∀x ∈ B(δ, x0), i.e.,

f (B(δ, x0)) ⊂ B(ǫ, y0),

then f is calledcontinuous at point x0. A mapping f : M̃1 → M̃2 is called acontinuous

mappingfrom M̃1 to M̃2 if f is continuous at every point of̃M1.

For a continuous mappingf from M̃1 to M̃2 and a convergent sequence{xn} in M̃1,

lim
n

xn = x0, we can prove that

lim
n

f (xn) = f (x0).

For a multi-metric spacẽM =
m⋃

i=1
Mi and a mappingT : M̃ → M̃, if there is a point

x∗ ∈ M̃ such thatT x∗ = x∗, thenx∗ is called afixed pointof T. Denote the number of

fixed points of a mappingT in M̃ by #Φ(T). A mappingT is called acontractionon a

multi-metric spacẽM if there are a constantα, 0 < α < 1 and integersi, j, 1 ≤ i, j ≤ m

such that for∀x, y ∈ Mi, T x,Ty ∈ M j and

ρ j(T x,Ty) ≤ αρi(x, y).

Theorem 9.5.8 Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space and let T be a con-

traction onM̃. Then

1 ≤# Φ(T) ≤ m.

Proof Choose arbitrary pointsx0, y0 ∈ M1 and define recursively

xn+1 = T xn, yn+1 = T xn

for n = 1, 2, 3, · · ·. By definition, we know that for any integern, n ≥ 1, there exists an

integeri, 1 ≤ i ≤ m such thatxn, yn ∈ Mi. Whence, we inductively get that

0 ≤ ρi(xn, yn) ≤ αnρ1(x0, y0).

Notice that 0< α < 1, we know that lim
n→+∞

αn = 0. Thereby there exists an integeri0

such that

ρi0(limn
xn, lim

n
yn) = 0.
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Therefore, there exists an integerN1 such thatxn, yn ∈ Mi0 if n ≥ N1. Now if n ≥ N1, we

get that

ρi0(xn+1, xn) = ρi0(T xn,T xn−1)

≤ αρi0(xn, xn−1) = αρi0(T xn−1,T xn−2)

≤ α2ρi0(xn−1, xn−2) ≤ · · · ≤ αn−N1ρi0(xN1+1, xN1).

and generally,

ρi0(xm, xn) ≤ ρi0(xn, xn+1) + ρi0(xn+1, xn+2) + · · · + ρi0(xn−1, xn)

≤ (αm−1 + αm−2 + · · · + αn)ρi0(xN1+1, xN1)

≤ αn

1− αρi0(xN1+1, xN1)→ 0 (m, n→ +∞).

for m≥ n ≥ N1. Therefore,{xn} is a Cauchy sequence iñM. Similarly, we can also prove

{yn} is a Cauchy sequence.

BecausẽM is a completed multi-metric space, we know that

lim
n

xn = lim
n

yn = z∗.

Now we provez∗ is a fixed point ofT in M̃. In fact, byρi0(limn
xn, lim

n
yn) = 0, there exists

an integerN such that

xn, yn,T xn,Tyn ∈ Mi0

if n ≥ N + 1. Whence,

0 ≤ ρi0(z
∗,Tz∗) ≤ ρi0(z

∗, xn) + ρi0(yn,Tz∗) + ρi0(xn, yn)

≤ ρi0(z
∗, xn) + αρi0(yn−1, z

∗) + ρi0(xn, yn).

Notice that

lim
n→+∞

ρi0(z
∗, xn) = lim

n→+∞
ρi0(yn−1, z

∗) = lim
n→+∞

ρi0(xn, yn) = 0.

We getρi0(z
∗,Tz∗) = 0, i.e.,Tz∗ = z∗.

For other chosen pointsu0, v0 ∈ M1, we can also define recursivelyun+1 = Tun, vn+1 =

Tvn and get a limiting point lim
n

un = lim
n

vn = u∗ ∈ Mi0,Tu∗ ∈ Mi0. Since

ρi0(z
∗, u∗) = ρi0(Tz∗,Tu∗) ≤ αρi0(z

∗, u∗)

and 0< α < 1, there must bez∗ = u∗.
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Similarly, consider the points inMi, 2 ≤ i ≤ m. We get that

1 ≤# Φ(T) ≤ m. �

Particularly, letm= 1. We getBanach theoremin metric spaces following.

Corollary 9.5.2(Banach)Let M be a metric space and let T be a contraction on M. Then

T has just one fixed point.

§9.6 RESEARCH PROBLEMS

9.6.1 Themathematical combinatorics, particularly,spacial combinatoricsis a universal

theory for advancing mathematical sciences on CC conjecture [Mao19], a philosophi-

cal thought on mathematics. Applications of this thought can be found in references

[Mao10]-[Mao11], [Mao17]-[Mao38], Particularly, these monographs [Mao37]-[Mao38].

9.6.2 The inherited graph of a multi-spacẽS =
n⋃

i=1
Σi is uniquely determined by Definition

9.1.1, which enables one to classify multi-space combinatorially. The central problem is

to find an applicable labelinglE, i.e., the characteristic̟ onΣi
⋂
Σ j.

Problem 9.6.1 Characterize multi-spaces with an inherited graph G∈ L , whereL is

a family of graphs, such as those of trees, Euler graphs, Hamiltonian graphs, factorable

graphs, n-colorable graphs,· · ·, etc..

Problem 9.6.2 Characterize inherited graphs of multi-systems
(
Ã; Õ

)
with Ã =

n⋃
i=1

Ai

and Õ = {◦i |1 ≤ i ≤ n} such that(Ai; ◦i) is a well-known algebraic system for integers

1 ≤ i ≤ n, for instance, simple group, Sylow group, cyclic group,· · ·, etc..

9.6.3 Similarly, consider Problems 9.6.1-9.6.2 for combinatorial Euclidean spaces.

Problem 9.6.3 Characterize a combinatorial Euclidean space underlying graph G and

calculate it characteristic, for example, dimension, isometry, · · ·, etc..

9.6.4 For a given integer sequence 1≤ n1 < n2 < · · · < nm, a combinatorialCh-differential

manifold
(
M̃(n1, n2, · · · , nm); Ã

)
is a finitely combinatorial manifold̃M(n1, n2, · · · , nm),

M̃(n1, n2, · · · , nm) =
⋃
i∈I

Ui, endowed with a atlas̃A = {(Uα; ϕα)|α ∈ I } on M̃(n1, n2, · · · , nm)

for an integerh, h ≥ 1 with conditions following hold.
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(1) {Uα;α ∈ I } is an open covering of̃M(n1, n2, · · · , nm).

(2) For∀α, β ∈ I , local charts (Uα; ϕα) and (Uβ; ϕβ) areequivalent, i.e.,Uα

⋂
Uβ = ∅

or Uα

⋂
Uβ , ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ

(
Uα

⋂
Uβ

)
→ ϕβ(Uβ) and ϕβϕ

−1
α : ϕα

(
Uα

⋂
Uβ

)
→ ϕα(Uα)

areCh-mappings, such as those shown in Fig.9.6.1 following.-
-?

Uα

Uβ

Uα ∩ Uβ

ϕα

ϕβ

ϕβ(Uα

⋂
Uβ)

ϕβ(Uα

⋂
Uβ)

ϕβϕ
−1
α

Fig.9.6.1

(3) Ã is maximal, i.e., if (U; ϕ) is a local chart ofM̃(n1, n2, · · · , nm) equivalent with

one of local charts iñA, then (U; ϕ) ∈ Ã.

Such a combinatorial manifold̃M(n1, n2, · · · , nm) is said to besmoothif it is endowed

with a C∞-differential structure. Let̃A be an atlas oñM(n1, n2, · · · , nm). Choose a local

chart (U;̟) in Ã. For∀p ∈ (U; ϕ), if ̟p : Up →
s(p)⋃
i=1

Bni (p) and ŝ(p) = dim(
s(p)⋂
i=1

Bni (p)), the

following s(p) × ns(p) matrix [̟ (p)]

[̟(p)] =



x11

s(p) · · · x1̂s(p)

s(p) x1(̂s(p)+1) · · · x1n1 · · · 0
x21

s(p) · · · x2̂s(p)

s(p) x2(̂s(p)+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xs(p)1

s(p) · · · xs(p)̂s(p)

s(p) xs(p)(̂s(p)+1) · · · · · · xs(p)ns(p)−1 xs(p)ns(p)



with xis = xjs for 1 ≤ i, j ≤ s(p), 1 ≤ s ≤ ŝ(p) is called thecoordinate matrix of p.

For emphasize̟ is a matrix, we often denote local charts in a combinatorial differential

manifold by (U; [̟]). Applying the coordinate matrix system of a combinatorial differen-

tial manifold (M̃(n1, n2, · · · , nm); Ã), we can defineCh mappings, functions and establish
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differential theory on combinatorial manifolds. The reader is refereed to [Mao33] or

[Mao38] for details.

9.6.5 Besides topological multi-groups, there are also topological multi-rings and multi-

fields in mathematics. A distributive multi-system
(
Ã ; O1 ֒→ O2

)
with Ã =

m⋃
i=1

Hi, O1 =

m⋃
i=1
{·i} andO2 =

m⋃
i=1
{+i} is called a topological multi-ring if

(1) (Hi;+i, ·i) is a ring for each integeri, 1 ≤ i ≤ m, i.e., (H ,O1 ֒→ O2) is a

multi-ring;

(2) Ã is a combinatorially topological spaceSG;

(3) the mappings (a, b)→ a ·i b−1, (a, b)→ a+i (−ib) are continuous for∀a, b ∈Hi,

1 ≤ i ≤ m.

Denoted by (SG; O1 ֒→ O2) a topological multi-ring. A topological multi-ring

(SG; O1 ֒→ O2) is called atopological divisible multi-ringor multi-field if the condi-

tion (1) is replaced by (Hi;+i, ·i) is a divisible ring or field for each integer1 ≤ i ≤ m.

Particularly, ifm = 1, then a topological multi-ring, divisible multi-ring or multi-field is

nothing but a topological ring, divisible ring or field in mathematics, i.e., a ring, divisible

ring or field (R;+, ·) such that

(1) R is a topological space;

(2) the mappings (a, b)→ a · b−1, (a, b)→ a− b) are continuous for∀a, b ∈ R.

More results for topological groups, topological rings canbe found in [Pon1] or [Pon2].

The reader is refereed to [Mao30], [Mao33] or [Mao38] for results on topological multi-

groups, topological multi-rings and topological multi-fields.

9.6.6 Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space underlying graphG andT a

contraction onM̃. We have know that 1≤ #Φ(T) ≤ m by Theorem 9.5.8. Such result is

holds for any multi-metric space. Generally, there is an open problem on the number of

fixed points of a contraction on multi-metric spaces following.

Problem 9.6.4 Generalize Banach’s fixed point theorem, or determine the lower and up-

per boundary of#Φ(T) for contractions T on a completed multi-metric space underlying

a graph G, such as those of tree, circuit, completed graph,1-factorable graph,· · ·, etc..



CHAPTER 10.

Applications

There are many simpler but more puzzling questions confusedthe eyes of hu-

man beings thousands years and does not know an answer even until today.

For example,Whether are there finite, or infinite cosmoses? Is there just one?

What is the dimension of our cosmos?The dimension of cosmos in eyes of

the ancient Greeks is 3, but Einstein’s is 4. In recent decades, 10 or 11 is the

dimension of cosmos in superstring theory or M-theory. All these assump-

tions acknowledge that there is just one cosmos.Which one is the correct?

We have known that the Smarandache multi-space is a systematic notion deal-

ing with objective, particularly for one knowing the WORLD.Thus it is the

best candidate for theTheory of Everything, i.e., a fundamental united theory

of all physical phenomena in nature. For introducing the effect of Smaran-

dache multi-space to sciences, the applications of Smarandache multi-spaces

to physics, particularly, the relativity theory with Schwarzschild spacetime,

to generalizing the input-output model for economy analysis and to knowing

well infection rule for decreasing or eliminating infectious disease are pre-

sented in this chapter.
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§10.1 PSEUDO-FACES OF SPACES

10.1.1 Pseudo-Face. For find different representations of a Euclidean spaceRn, we

introduce the conception of pseudo-face following.

Definition 10.1.1 Let Rm be a Euclid space and(Rn, ω) a Euclidean pseudo-space.

If there is a continuous mapping p: Rm → (Rn, ω), then the pseudo-metric space

(Rn, ω(p(Rm))) is called a pseudo-face ofRm in (Rn, ω).

For example, these pseudo-faces ofR3 in R2 have been discussed in Chapter 8. For

the existence of pseudo-faces of a Euclid spaceRm in Rn, we know a result following.

Theorem 10.1.1 Let Rm be a Euclid space and(Rn, ω) a Euclidean pseudo-space. Then

there exists a pseudo-face ofRm in (Rn, ω) if and only if for any numberǫ > 0, there exists

a numberδ > 0 such that for∀u, v ∈ Rm with ‖u− v‖ < δ,

‖ω(p(u)) − ω(p(v))‖ < ǫ,

where‖u‖ denotes the norm of vectoru in Euclid spaces.

Proof We show that there exists a continuous mappingp : Rm→ (Rn, ω) if and only

if all of these conditions hold. By the definition of Euclidean pseudo-space (Rn, ω), ω is

continuous. We know that for any numberǫ > 0, ‖ω(x) − ω(y)‖ < ǫ for ∀x, y ∈ Rn if and

only if there exists a numberδ1 > 0 such that‖x− y)‖ < δ1.

By definition, a mappingq : Rm → Rn is continuous if and only if for any number

δ1 > 0, there exists a numberδ2 > 0 such that‖q(x) − q(y)‖ < δ1 for ∀u, v ∈ Rm with

‖u − v)‖ < δ2. Whence,p : Rm → (Rn, ω) is continuous if and only if for any number

ǫ > 0, there is a numberδ = min{δ1, δ2} such that

‖ω(p(u)) − ω(p(v))‖ < ǫ

for ∀u, v ∈ Rm with ‖u− v)‖ < δ. �

Corollary 10.1.1 If m ≥ n + 1, let ω : Rn → Rm−n be a continuous mapping, then

(Rn, ω(p(Rm))) is a pseudo-face ofRm in (Rn, ω) with

p(x1, x2, · · · , xn, xn+1, · · · , xm) = ω(x1, x2, · · · , xn).

Particularly, if m= 3, n = 2 andω is an angle function, then(Rn, ω(p(Rm))) is a pseudo-

face with p(x1, x2, x3) = ω(x1, x2).
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A relation for a continuous mapping of Euclid space and that of between pseudo-

faces is established in the next.

Theorem 10.1.2 Let g : Rm→ Rm and p: Rm→ (Rn, ω) be continuous mappings. Then

pgp−1 : (Rn, ω)→ (Rn, ω) is also a continuous mapping.

Proof Because the composition of continuous mappings is also a continuous map-

ping, we know thatpgp−1 is continuous.

Now for∀ω(x1, x2, · · · , xn) ∈ (Rn, ω), assume thatp(y1, y2, · · · , ym) = ω(x1, x2, · · · , xn),

g(y1, y2, · · · , ym) = (z1, z2, · · · , zm) and p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn). Calculation

shows that

pgp−(ω(x1, x2, · · · , xn)) = pg(y1, y2, · · · , ym)

= p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn) ∈ (Rn, ω).

Whence,pgp−1 : (Rn, ω)→ (Rn, ω) is continuous. �

Corollary 10.1.2 Let C(Rm) and C(Rn, ω) be sets of continuous mapping on Euclid space

Rm and pseudo-metric space(Rn, ω), respectively. If there is a Euclidean pseudo-space

for Rm in (Rn, ω). Then there is a bijection between C(Rm) and C(Rn, ω).

10.1.2 Pseudo-Shape.For an objectB in a Euclid spaceRm, its shape in a pseudo-

face (Rn, ω(p(Rm))) of Rm in (Rn, ω) is called apseudo-shapeof B. We get results for

pseudo-shapes of balls in the following.

Theorem 10.1.3 LetB be an(n+ 1)-ball of radius R in a spaceRn+1, i.e.,

x2
1 + x2

2 + · · · + x2
n + t2 ≤ R2.

Define a continuous mappingω : Rn→ Rn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

for a real numberς and a continuous mapping p: Rn+1→ Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape ofB in (Rn, ω) is a ball of radius

√
R2 − t2

ςt
for any parameter

t,−R ≤ t ≤ R. Particularly, if n = 2 and ς =
1
2

, it is a circle of radius
√

R2 − t2 for

parameter t and an elliptic ball inR3 as shown in Fig.10.1.1.
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Proof For any parametert, an (n+ 1)-ball

x2
1 + x2

2 + · · · + x2
n + t2 ≤ R2

can be transferred to ann-ball

x2
1 + x2

2 + · · · + x2
n ≤ R2 − t2

of radius
√

R2 − t2. Whence, if we define a continuous mapping onRn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

and

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn),

then we get easily ann-ball

x2
1 + x2

2 + · · · + x2
n ≤

R2 − t2

ς2t2
,

ofB underp for parametert, which is just a pseudo-face ofB on parametert by definition.

For the case ofn = 2 andς =
1
2

, since its pseudo-face is a circle on a Euclid plane

and−R≤ t ≤ R, we get an elliptic ball as shown in Fig.10.1.1. �

Similarly, if we defineω(x1, x2, · · · , xn) = 2∠(
−−→
OP,Ot) for a pointP = (x1, x2, · · · ,

xn, t), i.e., an angle function, we can also get a result like Theorem 10.1.2 for pseudo-

shapes of an (n+ 1)-ball.
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Theorem 10.1.4 LetB be an(n+ 1)-ball of radius R in spaceRn+1, i.e.,

x2
1 + x2

2 + · · · + x2
n + t2 ≤ R2.

Define a continuous mappingω : Rn→ Rn by

ω(x1, x2, · · · , xn) = 2∠(
−−→
OP,Ot)

for a point P onB and a continuous mapping p: Rn+1→ Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape ofB in (Rn, ω) is a ball of radius
√

R2 − t2 for any parameter

t,−R≤ t ≤ R. Particularly, if n= 2, it is a circle of radius
√

R2 − t2 on parameter t and a

body inR3 with equations
∮

arctan(
t
x
) = 2π and

∮
arctan(

t
y
) = 2π

for curves of its intersection with planes XOT and YOT.

Proof The proof is similar to that of Theorem 10.1.3, and these equations
∮

arctan(
t
x
) = 2π or

∮
arctan(

t
y
) = 2π

are implied by the geometrical meaning of an angle function in the case ofn = 2. �

10.1.3 Subspace Inclusion.For a Euclid spaceRn, we can get a subspace sequence

R0 ⊃ R1 ⊃ · · · ⊃ Rn−1 ⊃ Rn,

where the dimension ofRi is n− i for 1 ≤ i ≤ n andRn is just a point. Generally, we can

not get a sequence in a reversing order, i.e., a sequence

R0 ⊂ R1 ⊂ · · · ⊂ Rn−1 ⊂ Rn

in classical space theory. By applying Smarandache multi-spaces, we can really find this

kind of sequence, which can be used to explain a well-known model for our cosmos in

M-theory.

Theorem 10.1.5 Let P = (x1, x2, · · · , xn) be a point inRn. Then there are subspaces of

dimensional s in P for any integer s, 1 ≤ s≤ n.
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Proof Notice that there is a normal basise1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0),

· · ·, ei = (0, · · · , 0, 1, 0, · · · , 0) (every entry is 0 unless thei-th entry is 1), · · ·, en =

(0, 0, · · · , 0, 1) in a Euclid spaceRn such that

(x1, x2, · · · , xn) = x1e1 + x2e2 + · · · + xnen

for any point (x1, x2, · · · , xn) in Rn. Now consider a linear spaceR− = (V,+new, ◦new) on a

field F = {ai, bi, ci, · · · , di; i ≥ 1}, whereV = {x1, x2, · · · , xn}. Not loss of generality, we

assume thatx1, x2, · · · , xs are independent, i.e., if there exist scalarsa1, a2, · · · , as such that

a1 ◦new x1 +new a2 ◦new x2 +new · · · +new as ◦new xs = 0,

thena1 = a2 = · · · = 0new and there are scalarsbi , ci, · · · , di with 1 ≤ i ≤ s in R− such that

xs+1 = b1 ◦new x1 +new b2 ◦new x2 +new · · · +new bs ◦new xs;

xs+2 = c1 ◦new x1 +new c2 ◦new x2 +new · · · +new cs ◦new xs;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ;

xn = d1 ◦new x1 +new d2 ◦new x2 +new · · · +new ds ◦new xs.

Consequently, we get a subspace of dimensionals in point P of Rn. �

Corollary 10.1.3 Let P be a point in a Euclid spaceRn. Then there is a subspace

sequence

R−0 ⊂ R−1 ⊂ · · · ⊂ R−n−1 ⊂ R−n

such thatR−n = {P} and the dimension of the subspaceR−i is n− i, where1 ≤ i ≤ n.

Proof Applying Theorem 10.1.5 repeatedly, we can get such a sequence. �

§10.2 RELATIVITY THEORY

10.2.1 Spacetime.In theoretical physics, these spacetimes are used to describe various

states of particles dependent on the time in a Euclid spaceR3. There are two kinds of

spacetimes. One is theabsolute spacetimeconsisting of a Euclid spaceR3 and an inde-

pendent time, denoted by (x1, x2, x3|t). Another is therelative spacetime, i.e., a Euclid

spaceR4, where time is thet-axis, seeing also in [Car1] for details.
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A point in a spacetime is called anevent, i.e., represented by (x1, x2, x3) ∈ R3 and t ∈
R+ in an absolute spacetime in Newton’s mechanics and (x1, x2, x3, t) ∈ R4 with time

parametert in a relative spacetime in Einstein’s relativity theory.

For two eventsA1 = (x1, x2, x3|t1) and A2 = (y1, y2, y3|t2), the time interval△t is

defined by△t = t1 − t2 and thespace interval△(A1,A2) by

△(A1,A2) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Similarly, for two eventsB1 = (x1, x2, x3, t1) andB2 = (y1, y2, y3, t2), thespacetime

interval△s is defined by

△2s= −c2△t2 + △2(B1, B2),

wherec is the speed of the light in vacuum. For example, a spacetime only with two

parametersx, y and the time parametert is shown in Fig.10.2.1.

-
6

	
x

y

z

future

past

Fig.10.2.1

10.2.2 Lorentz Transformation. The Einstein’s spacetime is a uniform linear space.

By the assumption of linearity of spacetime and invariance of the light speed, it can be

shown that the invariance of space-time intervals, i.e.,

For two reference systems S1 and S2 with a homogenous relative velocity, there must

be

△s2 = △s′2.

We can also get the Lorentz transformation of spacetime or velocities by this as-

sumption. For two parallel reference systemsS1 andS2, if the velocity ofS2 relative to
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S1 alongx-axis isv, such as shown in Fig.10.2.2,

-6
+

6 -=O1 O2

v

x1

y1

z1

x2

y2

z2

Fig.10.2.2

then theLorentz transformation of spacetime, transformation of velocityare respectively


x2 =
x1 − vt1√
1− (v

c)
2

y2 = y1

z2 = z1

t2 =
t1 − v

cx1√
1− (v

c)2

and



vx2 =
vx1 − v

1− vvx1
c2

vy2 =

vy1

√
1− (v

c)2

1− vvx1
c2

vz2 =

vz1

√
1− (v

c)2

1− vvx1
c2

.

In a relative spacetime, thegeneral intervalis defined by

ds2 = gµνdxµdxν,

wheregµν = gµν(xσ, t) is a metric both dependent on the space and time. We can also

introduce the invariance of general intervals, i.e.,

ds2 = gµνdxµdxν = g′µνdx′µdx′ν.

Then theEinstein’s equivalence principlesays that

There are no difference for physical effects of the inertial force and the gravitation

in a field small enough.

An immediately consequence of the this equivalence principle is the idea that the

geometrization of gravitation, i.e., considering the curvature at each point in a spacetime

to be all effect of gravitation), which is called agravitational factorat that point.

Combining these discussions in Section 10.1.1 with Einstein’s idea of the geometriza-

tion of gravitation, we get a result for spacetimes following.
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Theorem 10.2.1 Every spacetime is a pseudo-face in a Euclid pseudo-space, especially,

the Einstein’s space-time isRn in (R4, ω) for an integer n, n ≥ 4.

By the uniformity of spacetime, we get an equation by equilibrium of vectors in

cosmos following.

Theorem 10.2.2 For a spacetime in(R4, ω), there exists an anti-vectorω−O of ωO along

any orientation
−→
O in R4 such that

ωO + ω
−
O = 0.

Proof SinceR4 is uniformity, by the principle of equilibrium in uniform spaces,

along any orientation
−→
O in R4, there must exists an anti-vectorω−O of ωO such that

ωO + ω
−
O = 0. �

10.2.3 Einstein Gravitational Field. For a gravitational field, let

ωµν = Rµν −
1
2

Rgµν + λgµν

in Theorem 10.2.2. Then we get that

ω−µν = −8πGTµν.

Consequently, we get theEinstein’s equations

Rµν −
1
2

Rgµν + λgµν = −8πGTµν

of gravitational field. For solving these equations, two assumptions following are needed.

One is partially adopted from that Einstein’s, another is suggested by ours.

Postulate10.2.1 At the beginning our cosmos is homogenous.

Postulate6.2.2 Human beings can only survey pseudo-faces of our cosmos by observa-

tions and experiments.

10.2.4 Schwarzschild Spacetime.A Schwarzschild metricis a spherically symmetric

Riemannian metric

d2s= gµνdxµν

used to describe the solution of Einstein gravitational field equations in vacuum due to

a spherically symmetric distribution of matter. Usually, the coordinates for such space
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can be chosen to be the spherical coordinates (r, θ, φ), and consequently (t, r, θ, φ) the

coordinates of a spherically symmetric spacetime. Then a standard such metric can be

written as follows:

ds2 = B(r, t)dt2 − A(r, t)dr2 − r2(dθ2 + sin2 θdφ2).

Solving these equations enables one to get the line element

ds2 = f (t)
(
1−

rg

r

)
dt2 − 1

1− rg

r

dr2 − r2(dθ2 + sin2 θdφ2)

for Schwarzschild spaces. See [Car1] or [Mao36] for details.

TheSchwarzschild radius rs is defined to be

rs =
rg

c2
=

2Gm
c2

.

At its surfacer = rs, these metric tensorsgrr diverge andgtt vanishes, which giving the

existence of a singularity in Schwarzschild spacetime.

One can show that each line with constantst, θ andφ are geodesic lines. These

geodesic lines are spacelike ifr > rs and timelike if r < rs. But the tangent vector of

a geodesic line undergoes a parallel transport along this line and can not change from

timelike to spacelike. Whence, the two regionsr > rs andr < rs can not join smoothly at

the surfacer = rs.

We can also find this fact if we examine the radical null directions alongdθ = φ = 0.

In such a case, we have

ds2 =

(
1− rs

r

)
dt2 −

(
1− rs

r

)−1

dr2 = 0.

Therefore, the radical null directions must satisfy the following equation

dr
dt
= ±

(
1− rs

r

)

in units in which the speed of light is unity. Notice that the timelike directions are con-

tained within the light cone, we know that in the regionr > rs the opening of light cone

decreases withr and tends to 0 atr = rs, such as those shown in Fig.10.2.3.

In the regionr < rs the parametric lines of the timet become spacelike. Conse-

quently, the light cones rotate 90◦, such as those shown in Fig.10.2.3, and their openings

increase when moving fromr = 0 to r = rs. Comparing the light cones on both sides of
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r = rs, we can easy find that these regions on the two sides of the surfacer = rs do not

join smoothly atr = rs.

-
6 t

rs
r

Fig. 10.2.3

10.2.5 Kruskal Coordinate. For removing the singularity appeared in Schwarzschild

spacetime, Kruskal introduced a new spherically symmetriccoordinate system, in which

radical light rays have the slopedr/dt = ±1 everywhere. Then the line element will has a

form

ds2 = f 2dt2 − f 2dr2 − r2(dθ2 + sin2 θdφ2).

By requiring the functionf to depend only onr and to remain finite and nonzero for

u = v = 0, we find a transformation between the exterior of thespherically singularity

r > rs and the quadrantu > |v| with new variables following:

v =

(
r
rs
− 1

) 1
2

exp

(
r

2rs

)
sinh

(
t

2rs

)
,

u =

(
r
rs
− 1

) 1
2

exp

(
r

2rs

)
cosh

(
t

2rs

)
.

The inverse transformations are given by
(

r
rs
− 1

)
exp

(
r

2rs

)
= u2 − v2,

t
2rs
= arctanh

(v
u

)

and the function f is defined by

f 2 =
32Gm3

r
exp

(
− r

rs

)

= a transcendental function ofu2 − v2.



Sec.10.3 A Combinatorial Model for Cosmos 317

This new coordinates present an analytic extensionE of the limited regionS of the

Schwarzschild spacetime without singularity forr > rs. The metric in the extended region

joins on smoothly and without singularity to the metric at the boundary ofS atr = rs. This

fact may be seen by a direction examination of the geodesics,i.e., every geodesic followed

in which ever direction, either runs into thebarrier of intrinsic singularity atr = 0, i.e.,

v2 − u2 = 1, or is continuable infinitely. Notice that this transformation also presents a

bridgebetween two otherwise Euclidean spaces in topology, which can be interpreted as

thethroat of a wormholeconnecting two distant regions in a Euclidean space.

10.2.6 Friedmann Cosmos. Applying these postulates, Einstein’s gravitational equa-

tions and thecosmological principle, i.e., there are no difference at different points and

different orientations at a point of a cosmos on the metric104l.y., we can get a standard

model for cosmos, called theFriedmann cosmosby letting

ds2 = −c2dt2 + a2(t)[
dr2

1− Kr2
+ r2(dθ2 + sin2 θdϕ2)]

in Schwarzschild cosmos, seeing [Car1] for details. Such cosmoses are classified into

three types:

Static Cosmos: da/dt = 0;

Contracting Cosmos: da/dt < 0;

Expanding Cosmos: da/dt > 0.

By Einstein’s view, our living cosmos is the static cosmos. That is why he added a cos-

mological constantλ in his equation of gravitational field. But unfortunately, our cosmos

is an expanding cosmos found by Hubble in 1929.

§10.3 A COMBINATORIAL MODEL FOR COSMOS

As shown in Chapter 2, a graph with more than 2 vertices is itself a multi-space with

different vertices, edges two by two. As an application, we consider such multi-spaces for

physics in this section.

10.3.1 M-Theory. Today, we have know that all matter are made of atoms and sub-

atomic particles, held together by four fundamental forces: gravity, electro-magnetism,
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strong nuclear forceandweak force. Their features are partially explained by thequantum

theoryand therelativity theory. The former is a theory for the microcosm but the later is

for the macrocosm. However, these two theories do not resemble each other in any way.

The quantum theory reduces forces to the exchange of discrete packet of quanta, while

the relativity theory explains the cosmic forces by postulating the smooth deformation of

the fabric spacetime.

As we known, there are two string theories : theE8 × E8 heterotic string, theSO(32)

heterotic stringand three superstring theories: theSO(32) Type I string, theType IIAand

Type IIB in superstring theories. Two physical theories aredual to each other if they

have identical physics after a certain mathematical transformation. There areT-duality

andS-dualityin superstring theories defined in the following table 10.3.1([Duf1]).

fundamental string dual string

T-duality Radius↔ 1/(radius) charge↔ 1/(charge)

Kaluza-Klein↔Winding Electric↔ Magnet

S-duality charge↔ 1/(charge) Radius↔ 1/(Radius)

Electric↔ Magnetic Kaluza-Klein↔Winding

table 10.3.1

We already know some profound properties for these spring orsuperspring theories,

such as:

(1) TypeIIA andIIB are related by T-duality, as are the two heterotic theories.

(2) TypeI and heteroticS O(32) are related by S-duality and TypeIIB is also S-dual

with itself.

(3) TypeII theories have two supersymmetries in the 10-dimensional sense, but the

rest just one.

(4) TypeI theory is special in that it is based on unoriented open and closed strings,

but the other four are based on oriented closed strings.

(5) The IIA theory is special because it is non-chiral(parity conserving), but the

other four are chiral(parity violating).

(6) In each of these cases there is an 11th dimension that becomes large at strong

coupling. For substance, in theIIA case the 11th dimension is a circle and inIIB case

it is a line interval, which makes 11-dimensional spacetimedisplay two 10-dimensional

boundaries.
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(7) The strong coupling limit of either theory produces an 11-dimensional space-

time.

(8) · · ·, etc..

The M-theory was established by Witten in 1995 for the unity of those two string

theories and three superstring theories, which postulatesthat all matter and energy can be

reduced tobranesof energy vibrating in an 11 dimensional space. This theory gives one

a compelling explanation of the origin of our cosmos and combines all of existed string

theories by showing those are just special cases of M-theory, such as those shown in the

following.

M − theory⊃



E8 × E8 heterotic string

S O(32)heterotic string

S O(32)Type I string

Type IIA

Type IIB.

See Fig.10.3.1 for the M-theory planet in which we can find a relation of M-theory

with these two strings or three superstring theories.

The M-theory Planet

Type I superstringIIA Superstring

Heterotic SO(32)

IIB Superstring

IIB Superstring

Uncharted water

HeteroticE8× E8

Fig.10.3.1

A widely accepted opinion on our cosmos is that itis in accelerating expansion, i.e.,
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it is most possible an accelerating cosmos of expansion. This observation implies that it

should satisfies the following condition

d2a
dt2

> 0.

TheKasnertype metric

ds2 = −dt2 + a(t)2d2
R3 + b(t)2ds2(Tm)

solves the 4+m dimensional vacuum Einstein equations if

a(t) = tµ and b(t) = tν

with

µ =
3±
√

3m(m+ 2)
3(m+ 3)

, ν =
3∓
√

3m(m+ 2)
3(m+ 3)

.

These solutions in general do not give an accelerating expansion of spacetime of dimen-

sion 4. However, by applying the time-shift symmetry

t → t+∞ − t, a(t) = (t+∞ − t)µ,

we see that yields a really accelerating expansion since

da(t)
dt

> 0 and
d2a(t)

dt2
> 0.

According to M-theory, our cosmos started as a perfect 11 dimensional space with

nothing in it. However, this 11 dimensional space was unstable. The original 11 dimen-

sional spacetime finally cracked into two pieces, a 4 and a 7 dimensional cosmos. The

cosmos made the 7 of the 11 dimensions curled into a tiny ball,allowing the remaining 4

dimensional cosmos to inflate at enormous rates. This originality of our cosmos implies

a multi-space result for our cosmos verified by Theorem 10.1.5.

Theorem 10.3.1 The spacetime of M-theory is a multi-space with a warpingR7 at each

point ofR4.

Applying Theorem 10.3.1, an example for an accelerating expansion cosmos of

4-dimensional cosmos from supergravity compactification on hyperbolic spaces is the

Townsend-Wohlfarth typein which the solution is

ds2 = e−mφ(t)
(
−S6dt2 + S2dx2

3

)
+ r2

Ce2φ(t)ds2
Hm
,
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where

φ(t) =
1

m− 1
(ln K(t) − 3λ0t), S2 = K

m
m−1 e−

m+2
m−1λ0t

and

K(t) =
λ0ζrc

(m− 1) sin[λ0ζ |t + t1|]

with ζ =
√

3+ 6/m. This solution is obtainable from space-like brane solution and if

the proper timeς is defined bydς = S3(t)dt, then the conditions for expansion and

acceleration aredS
dς > 0 andd2S

dς2 > 0. For example, the expansion factor is 3.04 if m = 7,

i.e., a really expanding cosmos.

10.3.2 Pseudo-Face Model ofp-Brane. In fact, M-theory contains much more than just

strings, which is also implied in Fig.10.3.1. It contains both higher and lower dimensional

objects, calledbranes. A braneis an object or subspace which can have various spatial

dimensions. For any integerp ≥ 0, a p-branehas length inp dimensions, for example, a

0-braneis just a point; a 1-braneis a string and a 2-braneis a surface or membrane· · ·.
For example, two branes and their motion have been shown in Fig.10.3.2, where (a)

is a 1-brane and (b) is a 2-brane.

? 6 ? 6 ? 6-
(a)

? 6 ?
6 6

?-
(b)

Fig.10.3.2

Combining these ideas in the pseudo-spaces theory and M-theory, a model forRm

by combinatorial manifolds is constructed in the below.

Model 10.3.1 For each m-braneB of a spaceRm, let (n1(B), n2(B), · · · , np(B)) be its unit

vibrating normal vector along these p directions and q: Rm→ R4 a continuous mapping.
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Now for∀P ∈ B, define

ω(q(P)) = (n1(P), n2(P), · · · , np(P)).

Then(R4, ω) is a pseudo-face ofRm, particularly, if m = 11, it is a pseudo-face for the

M-theory.

If p = 4, the interesting conclusions are obtained by applying results in Chapters 9.

Theorem10.3.2 For a sphere-like cosmosB2, there is a continuous mapping q: B2→ R2

such that its spacetime is a pseudo-plane.

Proof According to the classical geometry, we know that there is a projectionq :

B2→ R2 from a 2-ballB2 to a Euclid planeR2, as shown in Fig.10.3.3.

N

S
R2 p(u)

u

Fig.10.3.3

Now for any pointu ∈ B2 with an unit vibrating normal vector (x(u), y(u), z(u)),

define

ω(q(u)) = (z(u), t),

wheret is the time parameter. Then (R2, ω) is a pseudo-face of (B2, t). �

Generally, we can also find pseudo-surfaces as a pseudo-faceof sphere-like cos-

moses.

Theorem 10.3.3 For a sphere-like cosmosB2 and a surface S , there is a continuous

mapping q: B2 → S such that its spacetime is a pseudo-surface on S .

Proof According to the classification theorem of surfaces, an surfaceS can be com-

binatorially represented by a 2n-polygon for an integern, n ≥ 1. If we assume that each

edge of this polygon is at an infinite place, then the projection in Fig.6.6 also enables us
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to get a continuous mappingq : B2 → S. Thereby we get a pseudo-face onS for the

cosmosB2. �

Furthermore, we can construct a combinatorial model for ourcosmos.

Model 10.3.2 For each m-braneB of a spaceRm, let (n1(B), n2(B), · · · , np(B)) be its unit

vibrating normal vector along these p directions and q: Rm→ R4 a continuous mapping.

Now construct a graph phase(G, ω,Λ) by

V(G) = {p− branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action betweenB1 andB2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = f orces betweenB1 andB2.

Then we get a graph phase(G, ω,Λ) in R4. Similarly, if m= 11, it is a graph phase for

the M-theory.

If there are only finitep-branes in our cosmos, then Theorems 10.3.2 and 10.3.3 can

be restated as follows.

Theorem 10.3.4 For a sphere-like cosmosB2 with finite p-branes and a surface S , its

spacetime is a map geometry on S .

Now we consider the transport of a graph phase (G, ω,Λ) in Rm by applying conclu-

sions in Chapter 2.

Theorem 10.3.5 A graph phase(G1, ω1,Λ1) of spaceRm is transformable to a graph

phase(G2, ω2,Λ2) of spaceRn if and only ifG1 is embeddable inRn and there is a con-

tinuous mappingτ such thatω2 = τ(ω1) andΛ2 = τ(Λ1).

Proof If (G1, ω1,Λ1) is transformable to (G2, ω2,Λ2), by the definition of transfor-

mation there must beG1 embeddable inRn and there is a continuous mappingτ such that

ω2 = τ(ω1) andΛ2 = τ(Λ1).

Now if G1 is embeddable inRn and there is a continuous mappingτ such thatω2 =

τ(ω1),Λ2 = τ(Λ1), let ς : G1→ G2 be a continuous mapping fromG1 toG2, then (ς, τ) is

continuous and

(ς, τ) : (G1, ω1,Λ1)→ (G2, ω2,Λ2).
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Therefore (G1, ω1,Λ1) is transformable to (G2, ω2,Λ2). �

Theorem 10.3.5 has many interesting consequences as by-products.

Corollary 10.3.1 A graph phase(G1, ω1,Λ1) in Rm is transformable to a planar graph

phase(G2, ω2,Λ2) if and only ifG2 is a planar embedding ofG1 and there is a contin-

uous mappingτ such thatω2 = τ(ω1), Λ2 = τ(Λ1) and vice via, a planar graph phase

(G2, ω2,Λ2) is transformable to a graph phase(G1, ω1,Λ1) in Rm if and only ifG1 is an

embedding ofG2 in Rm and there is a continuous mappingτ−1 such thatω1 = τ−1(ω2),

Λ1 = τ
−1(Λ2).

Corollary 10.3.2 For a continuous mappingτ, a graph phase(G1, ω1,Λ1) in Rm is trans-

formable to a graph phase(G2, τ(ω1), τ(Λ1)) in Rn with m, n ≥ 3.

Proof This result follows immediately from Theorems 5.2.2 and 10.3.5. �

Theorem 10.3.5 can be also used to explain the problems oftravelling between cos-

mosesor getting into the heaven or hellfor a person. We all know that water can go

from liquid phase to steam phase by heating and then come backto liquid phase by cool-

ing because its phase is transformable between liquid phaseand steam phase. Thus it

satisfies the conditions of Theorem 10.3.5. For a person on the earth, he can only get

into the heaven or hell after death because the dimensions ofthe heaven and that of the

hell are respectively more or less than 4 and there are no transformations from a pattern

of alive person in cosmos to that of in heaven or hell by the biological structure of his

body. Whence, if the black holes are really these tunnels between different cosmoses, the

destiny for a cosmonaut unfortunately fell into a black holeis only the death ([Haw1]-

[Haw3]). Perhaps, there are other kind of beings found by human beings in the future

who can freely change his phase from one state in spaceRm to another inRn with m > n

or m< n. Then at that time, the travelling between cosmoses is possible for those beings.

10.3.3 Combinatorial Cosmos.Until today, many problems in cosmology are puzzling

one’s eyes. Comparing with these vast cosmoses, human beings are very tiny. In spite of

this depressed fact, we can still investigate cosmoses by our deeply thinking. Motivated by

this belief, a multi-space model for cosmoses, called combinatorial cosmos is introduced

following.
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Model 10.3.3 A combinatorial cosmos is constructed by a triple(Ω,∆,T), where

Ω =
⋃

i≥0

Ωi , ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set with

the following conditions hold.

(1) (Ω,∆) is a Smarandache multi-space dependent on T, i.e., the cosmos (Ωi ,Oi) is

dependent on time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos(Ωi ,Oi) and for two sub-cosmoses(Ωi j ,Oi) and(Ωil ,Oi), if Ωi j ⊃ Ωil , then

there is a homomorphismρΩi j ,Ωil : (Ωi j ,Oi)→ (Ωil ,Oi) such that

(i) for ∀(Ωi1,Oi), (Ωi2,Oi), (Ωi3,Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3 = ρΩi1,Ωi2 ◦ ρΩi2,Ωi3,

where�◦�denotes the composition operation on homomorphisms.

(ii ) for ∀g, h ∈ Ωi, if for any integer i,ρΩ,Ωi (g) = ρΩ,Ωi (h), then g= h.

(iii ) for ∀i, if there is an fi ∈ Ωi with

ρΩi ,Ωi
⋂
Ω j ( fi) = ρΩ j ,Ωi

⋂
Ω j ( f j)

for integers i, j,Ωi
⋂
Ω j , ∅, then there exists an f∈ Ω such thatρΩ,Ωi ( f ) = fi for any

integer i.

These conditions in (2) are used to ensure that a combinatorial cosmos posses the

general structure sheafof topological space, for instance if we equip each multi-space

(Ωi ,Oi) with an Abelian groupGi for any integeri, i ≥ 0, then we get structure sheaf

on a combinatorial cosmos. This structure enables that a being in a cosmos of higher

dimension can supervises those in lower dimension. Forgeneral sheaf theory, the reader

is referred to the reference [Har1] for details.

By Model 10.3.3, there is just one cosmosΩ and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−7 ⊃ · · · ⊃ R−1 ⊃ R−0 = {Q}.
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in the string/M-theory. In Fig.10.3.4, we have shown the idea of the combinatorial cos-

mos. 6?
+ 3 sk

dimension≥ 4visual cosmos

higher cosmos

Fig.10.3.4

For 5 or 6 dimensional spaces, it has been established a dynamical theory by this

combinatorial speculation([Pap1]-[Pap2]). In this dynamics, we look for a solution in the

Einstein’s equation of gravitational field in 6-dimensional spacetime with a metric of the

form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d
2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

whered
∑2

k represents the 3-dimensional spatial sections metric withk = −1, 0, 1 respec-

tive corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional space-

time, deletes the indefinitez in this metric form. Now consider a 4-brane moving in a

6-dimensionalSchwarzschild-ADS spacetime, the metric can be written as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,

where

d
2∑

k

=
dr2

1− kr2
+ r2dΩ2

(2) + (1− kr2)dy2

and

h(z) = k+
z2

l2
− M

z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

2
R̈
R
+ 3(

Ṙ
R

)2 = −3
κ4

(6)

64
ρ2 −

κ4
(6)

8
ρp− 3

κ

R2
− 5

l2
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by applying theDarmois-Israel conditionsfor a moving brane. Similarly, for the case of

a(z) , b(z), the equations of motion of the brane are

d2ḋṘ− dR̈
√

1+ d2Ṙ2
−
√

1+ d2Ṙ2

n

(
dṅṘ+

∂zn
d
− (d∂zn− n∂zd)Ṙ2

)
= −

κ4
(6)

8
(3(p+ ρ) + p̂) ,

∂za
ad

√
1+ d2Ṙ2 = −

κ4
(6)

8
(ρ + p− p̂) ,

∂zb
bd

√
1+ d2Ṙ2 = −

κ4
(6)

8
(ρ − 3(p− p̂)) ,

where the energy-momentum tensor on the brane is

T̂µν = hναT
α
µ −

1
4

Thµν

with Tα
µ = diag(−ρ, p, p, p, p̂) and theDarmois-Israel conditions

[Kµν] = −κ2
(6)T̂µν,

whereKµν is the extrinsic curvature tensor.

10.3.4 Combinatorial Gravitational Field. A parallel probeon a combinatorial Eu-

clidean spacẽR =
m⋃

i=1
Rni is the set of probes established on each Euclidean spaceRni for

integers 1≤ i ≤ m, particularly forRni = R3 for integers 1≤ i ≤ mwhich one can detects

a particle in its each spaceR3 such as those shown in Fig.10.3.5 in whereG = K4 and

there are four probesP1,P2,P3,P4.

R3 R3

R3 R3

P1 P2

P3 P4

- ? ? �
- 6 �6

Fig.10.3.5
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Notice that data obtained by such parallel probe is a set of local dataF(xi1, xi2, xi3)

for 1 ≤ i ≤ m underlyingG, i.e., the detecting data in a spatialǫ should be same if

ǫ ∈ R3
u ∩ R3

v, whereR3
u denotes theR3 at u ∈ V(G) and

(
R3

u,R
3
v

)
∈ E(G).

For data not in theR3 we lived, it is reasonable that we can conclude that all are the

same as we obtained. Then we can analyze the global behavior of a particle in Euclidean

spaceRn with n ≥ 4. Let us consider the gravitational field with dimensional≥ 4. We

know the Einstein’s gravitation field equations inR3 are

Rµν −
1
2

gµνR= κTµν,

whereRµν = Rα
µαν = gαβRαµβν, R = gµνRµν are the respectiveRicci tensor, Ricci scalar

curvatureand

κ =
8πG
c4
= 2.08× 10−48cm−1 · g−1 · s2

Now for a gravitational fieldRn with n ≥ 4, we decompose it into dimensional 3 Euclidean

spacesR3
u, R3

v, · · ·, R3
w. Then we find Einstein’s gravitational equations as follows:

Rµuνu −
1
2

gµuνuR= −8πGEµuνu,

Rµvνv −
1
2

gµvνvR= −8πGEµvνv,

· · · · · · · · · · · · · · · ,

Rµwνw −
1
2

gµwνwR= −8πGEµwνw

for eachR3
u, R3

v, · · · , R3
w. If we decomposeRn into a combinatorial Euclidean fan-space

R̃(3, 3, · · · , 3︸      ︷︷      ︸
m

), thenu, v, · · · ,w can be abbreviated to 1, 2 · · · ,m. In this case, these gravi-

tational equations can be represented by

R(µν)(στ) −
1
2

g(µν)(στ)R= −8πGE(µν)(στ)

with a coordinate matrix

[xp] =



x11 · · · x1m̂ · · · x13

x21 · · · x2m̂ · · · x23

· · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · xm3





Sec.10.3 A Combinatorial Model for Cosmos 329

for a point p ∈ Rn, wherem̂ = dim

(
m⋂

i=1
Rni

)
a constant for∀p ∈

m⋂
i=1

Rni andxil = xl

m for

1 ≤ i ≤ m, 1 ≤ l ≤ m̂. Because the local behavior is that of the projection of the global.

Whence, the following principle for determining behavior of particles inRn, n ≥ 4 hold.

Projective Principle A physics law in a Euclidean spaceRn ≃ R̃ =
n⋃

i=1
R3 with n ≥ 4 is

invariant under a projection onR3 in R̃.

Applying this principe enables us to find a spherically symmetric solution of Ein-

stein’s gravitational equations in Euclidean spaceRn.

A combinatorial metricis defined by

ds2 = g(µν)(κλ)dxµνdxκλ,

whereg(µν)(κλ) is the Riemannian metric in
(
M̃, g, D̃

)
. Generally, we can choose a orthog-

onal basis{e11, · · · , e1n1, · · · , es(p)ns(p)} for ϕp[U], p ∈ M̃(t), i.e.,
〈
eµν, eκλ

〉
= δ

(κλ)
(µν). Then

ds2 = g(µν)(µν)(dxµν)2

=

s(p)∑

µ=1

ŝ(p)∑

ν=1

g(µν)(µν)(dxµν)2 +

s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dxµν)2

=
1

s2(p)

ŝ(p)∑

ν=1

(
s(p)∑

µ=1

g(µν)(µν))dxν +
s(p)∑

µ=1

ŝ(p)+1∑

ν=1

g(µν)(µν)(dxµν)2,

which enables one find an important relation of combinatorial metric with that of its pro-

jections following.

Theorem 10.3.6 Let µds2 be the metric ofφ−1
p (Bnµ(p)) for integers 1 ≤ µ ≤ s(p). Then

ds2 = 1ds2 + 2ds2 + · · · + s(p)ds2.

Proof Applying the projective principle, we immediately know that

µds2 = ds2|φ−1
p (Bnµ(p)), 1 ≤ µ ≤ s(p).

Whence, we find that

ds2 = g(µν)(µν)(dxµν)2 =

s(p)∑

µ=1

ni (p)∑

ν=1

g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ds2
∣∣∣
φ−1

p (Bnµ(p))
=

s(p)∑

µ=1

µds2. �
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Let M be a gravitational field. We have known its Schwarzschild metric, i.e., a

spherically symmetric solution of Einstein’s gravitational equations in vacuum is

ds2 =

(
1− rs

r

)
dt2 − dr2

1− rs

r

− r2dθ2 − r2 sin2 θdφ2,

wherers = 2Gm/c2. Now we generalize it to combinatorial gravitational fieldsto find the

solutions of equations

R(µν)(στ) −
1
2

g(µν)(στ)R= −8πGE(µν)(στ)

in vacuum, i.e.,E(µν)(στ) = 0. For such a objective, we only consider the homogenous

combinatorial Euclidean spaces̃M =
⋃m

i=1 Rni , i.e., for any pointp ∈ M̃,

[ϕp] =



x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · · · · xmnm



with m̂= dim(
m⋂

i=1
Rni ) a constant for∀p ∈

m⋂
i=1

Rni andxil = xl

m for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂.

Let M̃(t) be a combinatorial field of gravitational fieldsM1,M2, · · · ,Mm with masses

m1,m2, · · · ,mm respectively. For usually undergoing, we consider the caseof nµ = 4

for 1 ≤ µ ≤ m since line elements have been found concretely in classicalgravitational

field in these cases. Now establishm spherical coordinate subframe (tµ; rµ, θµ, φµ) with

its originality at the center of such a mass space. Then we have known its a spherically

symmetric solution to be

ds2
µ =

(
1−

rµs

rµ

)
dt2µ −

(
1−

rµs

rµ

)−1

dr2
µ − r2

µ(dθ
2
µ + sin2 θµdφ

2
µ).

for 1 ≤ µ ≤ m with rµs = 2Gmµ/c2. By Theorem 8.3.1, we know that

ds2 = 1ds2 + 2ds2 + · · · + mds2,

where µds2 = ds2
µ by the projective principle on combinatorial fields. Noticethat 1 ≤

m̂≤ 4. We therefore get combinatorial metrics dependent onm̂ following.

Case 1. m̂= 1, i.e., tµ = t for 1 ≤ µ ≤ m.
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In this case, the combinatorial metricds is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(1−
2Gmµ

c2rµ
)−1dr2

µ −
m∑

µ=1

r2
µ(dθ

2
µ + sin2 θµdφ

2
µ).

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ, or tµ = t andφµ = φ for

1 ≤ µ ≤ m.

We consider the following subcases.

Subcase 2.1.tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2r

)
dt2 − (

m∑

µ=1

(
1−

2Gmµ

c2r

)−1

)dr2 −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2
µ),

which can only happens if thesem fields are at a same pointO in a space. Particularly, if

mµ = M for 1 ≤ µ ≤ m, the masses ofM1,M2, · · · ,Mm are the same, thenrµg = 2GM is a

constant, which enables us knowing that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −
m∑

µ=1

r2(dθ2
µ + sin2 θµdφ

2
µ).

Subcase 2.2.tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2rµ

)
dt2

−
m∑

µ=1

(
1−

2Gmµ

c2rµ

)−1

dr2
µ −

m∑

µ=1

r2
µ(dθ

2 + sin2 θdφ2
µ).

Subcase 2.3.tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2rµ

)
dt2 − (

m∑

µ=1

(
1−

2Gmµ

c2rµ

)−1

)dr2
µ −

m∑

µ=1

r2
µ(dθ

2
µ + sin2 θµdφ

2).

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r andφµ = φ, or or tµ = t,

θµ = θ andφµ = φ for 1 ≤ µ ≤ m.
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We consider three subcases following.

Subcase 3.1.tµ = t, rµ = r andθµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1−

2Gmµ

c2r

)−1

dr2 −mr2dθ2 − r2 sin2 θ

m∑

µ=1

dφ2
µ.

Subcase 3.2.tµ = t, rµ = r andφµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1−

2Gmµ

c2r

)−1

dr2 − r2
m∑

µ=1

(dθ2
µ + sin2 θµdφ

2).

There subcases 3.1 and 3.2 can be only happen if the centers of thesem fields are at

a same pointO in a space.

Subcase 3.3.tµ = t, θµ = θ andφµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2rµ

)
dt2 −

m∑

µ=1

(
1−

2Gmµ

c2rµ

)−1

dr2
µ −

m∑

µ=1

rµ(dθ
2 + sin2 θdφ2).

Case 4. m̂= 4, i.e., tµ = t, rµ = r, θµ = θ andφµ = φ for 1 ≤ µ ≤ m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1−

2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1−

2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2).

Particularly, ifmµ = M for 1 ≤ µ ≤ m, we get that

ds2 =

(
1− 2GM

c2r

)
mdt2 −

(
1− 2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2).

Define a coordinate transformation (t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ).

Then the previous formula turns to

ds2 =

(
1− 2GM

c2r

)
dst

2 − dsr2

1− 2GM
c2r

− sr
2(dsθ

2 + sin2
sθdsφ

2)
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in this new coordinate system (st, sr, sθ, sφ), whose geometrical behavior likes that of

the gravitational field.

Considerm̂ the discussion is divided into two cases, which lead to two opposite

conclusions following.

Case 1. m̂= 4.

In this case, we get that dim̃R = 3, i.e., all Euclidean spacesR3
1,R

3
2, · · · ,R3

m are in

oneR3, which is the most enjoyed case by human beings. If it is so, all the behavior

of Universe can be realized finally by human beings, particularly, the observed interval

is ds and all natural things can be come true by experiments. This also means that the

discover of science will be ended, i.e., we can find an ultimate theory for our cosmos - the

Theory of Everything. This is the earnest wish of Einstein himself beginning, andthen

more physicists devoted all their lifetime to do so in last century.

Case 2. m̂≤ 3.

If our cosmos is so, then dim̃R ≥ 4. In this case, the observed interval in the field

R3
humanwhere human beings live is

ds2
human= a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 − c(t, r, θ, φ)dθ2 − d(t, r, θ, φ)dφ2.

by Schwarzschild metrics inR3. But we know the metric iñR should beds̃R. Then

how to we explain the differences(ds̃R − dshuman) in physics?

Notice that one can only observes the line elementdshuman, i.e.,, a projection ofds̃R on

R3
humanby the projective principle. Whence, all contributions in (ds̃R−dshuman) come from

the spatial direction not observable by human beings. In this case, it is difficult to deter-

mine the exact behavior and sometimes only partial information of the Universe, which

means that each law on the Universe determined by human beings is an approximate result

and hold with conditions.

Furthermore, if̂m≤ 3 holds, because there are infinite underlying connected graphs,

i.e., there are infinite combinations ofR3, one can not find an ultimate theory for the

Universe, which means the discover of science for human beings will endless forever,

i.e., there are no aTheory of Everything.
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§10.4 A COMBINATORIAL MODEL FOR CIRCULATING ECONOMY

10.4.1 Input-Output Analysis in Macro-Economy. Assume these aren departments

D1,D2, · · · ,Dn in a macro-economic systemL satisfy conditions following:

(1) The total output value of departmentDi is xi. Among them, there arexi j out-

put values for the departmentD j anddi for the social demand, such as those shown in

Fig.10.4.1.

Di

D1>*
-

D2

Dn

xi1

xi2

xin

Social
Demand6
di

Fig.10.4.1

(2) A unit output value of departmentD j consumesti j input values coming from

departmentDi. Such numbersti j , 1 ≤ i, j ≤ n are calledconsuming coefficients.

Therefore, such a overall balance macro-economic systemL satisfiesn linear equations

xi =

n∑

j=1

xi j + di (10− 1)

for integers 1≤ i ≤ n. Furthermore, substituteti j = xi j/xj into equation (10-1), we get

that

xi =

n∑

j=1

ti j xj + di (10− 2)

for any integeri. Let T = [ti j ]n×n, A = In×n − T. Then

Ax = d, (10− 3)

from (10-2), wherex = (x1, x2, · · · , xn)T , d = (d1, d2, · · · , dn)T are the output vector or

demand vectors, respectively. This is the famousinput-output modelin macro-economic

analysis established by a economist Leontief won the Nobel economic prize in 1973.
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For an simple example, letL consists of 3 departmentsD1,D2,D3, whereD1=agriculture,

D2=manufacture industry,D3=service with an input-output data in Table 10.4.1([TaC1]).

Department D1 D2 D3 Social demand Total value

D1 15 20 30 35 100

D2 30 10 45 115 200

D3 20 60 / 70 150

Table 10.4.1

This table can be turned to a consuming coefficient table byti j = xi j/xj following.

Department D1 D2 D3

D1 0.15 0.10 0.20

D2 0.30 0.05 0.30

D3 0.20 0.30 0.00

Thus

T =



0.15 0.10 0.20

0.30 0.05 0.30

0.20 0.30 0.00


, A = I3×3 − T =



0.85 −0.10 −0.20

−0.30 0.95 −0.30

−0.20 −0.30 1.00



and the input-output equation system is

0.85x1 − 0.10x2 − 0.20x3 = d1

−0.30x1 + 0.95x2 − 0.30x3 = d2

−0.20x1 − 0.30x2 + x− 3 = d3

Solving this equation system enables one to find the input andoutput data for economy.

Notice that the WORLD is not linear in general, i.e., the assumption ti j = xi j/xj

does not hold in general. A non-linear input-output model isshown in Fig.10.4.2, where

x = (x1i , x2i , · · · , xni), D1,D2, · · · ,Dn aren departments and SD=social demand. Usually,

the functionF(x) is called theproducing function.
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Fi(x)

D1

D2

Dn

6?-
x1i

x2i

xni

D1

D2

Dn

--
-

xi1

xi2

xin

SD6
di

Fig.10.4.2

Thus a general overall balance input-output model is characterized by equations

Fi(x) =
n∑

j=1

xi j + di , (10− 4)

for integers 1≤ i ≤ n, whereFi(x) may be linear or non-linear.

10.4.2 Circulating Economic System. A scientific economical system should be a

conservation system of human being with nature in harmony, i.e., to make use of matter

and energy rationally and everlastingly�to decrease the unfavorable effect that economic

activities may make upon our natural environment as far as possible, which implies to

establish a circulating economic system shown in Fig.10.4.3.

-/ oUtility resources

Green product Recyclic resource

Fig.10.4.3

Generally, acirculating economic systemis such a overall balance input-output multi-
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spaceM̃ =
k⋃

i=1
Mi(t) that there are no rubbish in each producing department. Particularly,

there are no harmful wastes to the WORLD. Thus any producing department of a cir-

culating economical system is in a locally economical system M1(t),M2(t), · · · ,Mk(t)

underlying a directed circuitG
[
M̃L

]
=
−→
Ck for an integerk ≥ 2, such as those shown in

Fig.10.4.4.

-/ oM1(t)

M2(t) Ms(t)

Fig.10.4.4

Consequently, we get a structure result for circulating economic system following.

Theorem 10.4.1 Let M̃(t) be a circulating economic system consisting of producing de-

partments M1(t), M2(t), · · · ,Mn(t) underlying a graph G
[
M̃(t)

]
. Then there is a circuit-

decomposition

G
[
M̃(t)

]
=

l⋃

i=1

−→
Cs

for the directed graph G
[
M̃(t)

]
such that each output of a producing department Mi(t),

1 ≤ i ≤ n is on a directed circuit
−→
Cs for an integer1 ≤ s≤ l.

Similarly, assume that there aren producing departmentsM1(t), M2(t), · · · ,Mn(t),

xi j output values ofMi(t) for the departmentM j(t) anddi for the social demand. Let

Fi(x1i , x2i, · · · , xni) be the producing function inMi(t). Then a circulating economic system

can be characterized by equations

Fi(x) =
n∑

j=1

xi j + di, (10− 5)

for integers 1≤ i ≤ n with eachxi j on one and only one directed circuit consisting some

of departmentsM1(t), M2(t), · · · ,Mn(t), such as those shown in Fig.10.4.4.
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§10.5 A COMBINATORIAL MODEL FOR CONTAGION

10.5.1 Infective Model in One Space.Let N be the number of persons in considered

groupG . Assume that there are only two kind groups in persons at timet. One is in-

fected crowd. Another is susceptible crowd. Denoted byI (t) andS(t), respectively. Thus

S(t) + I (t) = N, i.e., (S(t)/N) + (I (t)/N) = 1. The numbersS(t)/N, I (t)/N are called

susceptibility or infection rate and denoted byS(t) andI (t) usually, i.e.,S(t)+ I (t) = 1. If

N is sufficiently large, we can further assume thatS(t), I (t) are smoothly.

Assume that the infected crowd is a direct proportion of susceptible crowd. Letk

be such a rate. Thus an infected person can infectskS(t) susceptible persons. It is easily

know that there areN(I (t +∆t)− I (t)) new infected persons in the time interval [t, t +∆t].

We know that

N(I (t + ∆t) − I (t)) = kNS(t)I (t)∆t.

Divide its both sides byN∆t and lett → ∞, we get that

dI
dt
= kIS.

Notice thatS(t) + I (t) = 1. We finally get that



dI
dt
= kI(1− I ),

I (0) = I0.
(10− 6)

This is theSI model of infectious diseaseon infected diseases. Separating variables we

get that

I (t) =
1

1+ (I−1
0 − 1)

e−kt

and

S(t) = 1− I (t) =
(I−1

0 − 1)e−kt

1+ (I−1
0 − 1)e−kt

.

Clearly, if t → +∞, thenI (t)→ 1 in SI model. This is not in keeping with the actual

situation. Assume the rate of heal persons in infected persons ish. Then 1/h denoted the

infective stage of disease. The SI model (10-6) is reformed to



dI
dt
= kI(1− I ) − hI,

I (0) = I0,
(10− 7)
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called theSIS model of infectious disease. Similarly, by separating variables we know

that

I (t) =



[
e−(k−h)t

(
1
I0
− 1

1− σ−1

)
+

1
1− σ−1

]−1

,

I0

ktI0 + 1
,

whereσ = k/h is the number of average infections by one infected person inan infective

stage. Clearly,

lim
t→+∞

I (t) =


1− 1

σ
if σ > 1

0 if σ ≤ 1.

Consequently, ifσ ≤ 1, the infection rate is gradually little by little, and finally approaches

0. But ifσ ≥ 1, the increase or decrease ofI (t) is dependent onI0. In fact, if I0 < 1−σ−1,

I (t) is increasing and it is decreasing ifI0 > 1− σ−1. Both of them will letI (t) tend to a

non-zero limitation 1− σ−1. Thus we have not a radical cure of this disease.

Now assume the heal persons acquired immunity after infected the decrease and will

never be infected again. Denoted the rate of such persons byR(t). ThenS(t)+ I (t)+R(t) =

1 and the SIS model (10-7) is reformed to


dS
dt
= −kIS,

dI
dt
= kIS − hI,

S(0) = S0, I (0) = I0,R(0) = 0,

(10− 8)

called theSIR model of infectious disease. These differential equations are first order

non-linear equations. We can not get the analytic solutionsS(t), I (t).

Furthermore, letI and J be respectively diagnosis of infection and non-diagnosis

infection. Letk1, k2 be the infection rate by an infection, or a diagnosis,h1, h2 the heal

rate from infection or diagnosis and the detecting rate of this infectious disease byα. We

get the followingSIJR model of infectious disease


dS
dt
= −(k1I + k2J)S,

dI
dt
= (k1I + k2J)S − (α + h1)I ,

dJ
dt
= αI − h2J,

dR
dt
= h1I + h2J,

S(0) = S0, I (0) = I0,

J(0) = J0, R(0) = R0,

(10− 9)
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which are also first order differential non-linear equations and can be find behaviors by

qualitative analysis only.

10.5.2 Combinatorial Model on Infectious Disease.Let C1,C2, · · · ,Cm bem segrega-

tion crowds, i.e., a person moving from crowdsCi to C j can be only dependent on traffic

means with personsN1,N2, · · · ,Nm, respectively. For an infectious disease, we assume

that there are only two kind groups inCi, namely the infected crowdI i(t) and susceptible

crowdSi(t) for integers 1≤ i ≤ m. Among them, there areUi(t), Vi(t) persons moving in

or awayCi at timet. ThusSi(t) + I i(t) − Ui(t) + Vi(t) = Ni. Denoted byci j (t) the persons

moving fromCi to C j for integers 1≤ i, j ≤ m. Then

m∑

s=1

csi(t) = Ui(t) and
m∑

s=1

cis(t) = Vi(t).

A combinatorial model of infectious disease is defined by labeling graphGL following:

V
(
Gl

)
= {C1,C2, · · · ,Cm},

E
(
Gl

)
= {(Ci ,C j)| there are traffic means from Ci to Cj , 1 ≤ i, j ≤ m };

l (Ci) = Ni , l+(Ci ,C j) = ci j

for ∀(Ci ,C j) ∈ E
(
Gl

)
and integers 1≤ i, j ≤ m. Such as those shown in Fig.10.5.1.

N1 N2

N3 N4

-
?�

6
s 6�

�

-Y
c21

c12

c13 c31

c14

c41

c43

c34

c42c24

Fig.10.5.1

Similarly, assume that an infected person can infectsk susceptible persons andci j = ti j Ni,
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whereti j is a constant. Then the number of persons in crowdCi is also a constant

Ni

1+
n∑

s=1

(tsi − tis)

 .

In this case, the SI, SIS, SIR and SIJR models of infectious disease for crowdCi turn to


dIi
dt
= kIi(1− I i),

I i(0) = I i0.
(10− 10)



dIi
dt
= kIi(1− I i) − hIi ,

I i(0) = I i0,
(10− 11)



dSi

dt
= −kIiSi,

dIi
dt
= kIiSi − hIi ,

Si(0) = Si0, I i(0) = I i0,R(0) = 0,

(10− 12)



dSi

dt
= −(k1I i + k2Ji)Si,

dIi
dt
= (k1I i + k2J)S − (α + h1)I ,

dJi

dt
= αI i − h2Ji ,

dRi

dt
= h1I i + h2Ji ,

Si(0) = Si0, I i(0) = I i0,

Ji(0) = Ji0, Ri(0) = Ri0

(10− 13)

if there are always exist a contagium inCi for any integer 1≤ i ≤ m, whereh andR

are the respective rates of heal persons in infected personsand the heal persons acquired

immunity after infected,k1, k2 the infection rate by an infection, or a diagnosis,h1, h2

the heal rate from infection or diagnosis andα the detecting rate of the infectious disease.

Similarly, we can solve SI or SIS models by separating variables. For example,

I i(t) =



[
e−(k−h)t

(
1
I0
− 1

1− σ−1

)
+

1
1− σ−1

]−1

,

I0

ktI0 + 1

for the SIS model of infectious disease, whereσ = k/h. Thus we can control the infectious

likewise that in one space.

But the first contagium can only appears in one crowd, for instanceC1. As we know,

the purpose of infectious disease is to know well its infection rule, decrease or eliminate
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such disease. Applying the combinatorial model of infectious disease, an even more

effective measure is isolating contagia unless to cure the infections, which means that we

need to cut off all traffic lines from the contagia appeared crowds, for example, all such

traffic lines (C1,Cs), (Cs,C1) for integers 1≤ s ≤ m, whereC1 is the crowd found the

first contagium.

§10.6 RESEARCH PROBLEMS

10.6.1 In fact, Smarandache multi-space is a systematic notion on objectives. More and

more its applications to natural sciences and humanities are found today. The readers are

refereed to [Mao37]-[Mao38] for its further applications,and also encouraged to apply it

to new fields or questions.

10.6.2 The combinatorial model on cosmos presents research problems to both physics

and combinatorics, such as those of the following:

Problem 10.6.1 Embed a connected graph into Euclidean spaces of dimension≥ 4, re-

search its phase space and apply it to cosmos.

Motivated by this combinatorial model on cosmos, a number ofconjectures on cos-

moses are proposed following.

Conjecture 10.6.1 There are infinite many cosmoses and all dimensions of cosmoses

make up an integer interval[1,+∞].

A famous proverbs in Chinese says thatseeing is believing but hearing is unbeliev-

ing, which is also a dogma in the pragmatism. Today, this view should be abandoned for

a scientist if he wish to understand the WORLD. On the first, wepresent a conjecture on

the traveling problem between cosmoses.

Conjecture 10.6.2 There exists beings who can get from one cosmos into another,and

there exists being who can enter the subspace of lower dimension from that of higher

dimensional space, particularly, on the earth.

Although nearly every physicist acknowledges the existence of black and white

holes. All these holes are worked out by mathematical calculation, not observation of
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human beings.

Conjecture 10.6.3 A black hole is also a white hole in space, different from the observa-

tion in or out the observed space.

Our cosmonauts is good luck if Conjecture 6.6.3 holds since they are never needed

for worrying about attracted by these black holes. Today, animportant task for experi-

mental physicists is looking for dark matters on the earth. However, this would be never

success by the combinatorial model of cosmos, included in the next conjecture.

Conjecture 10.6.4 One can not find dark matters by experiments on the earth because

they are in spatial can not be found by human beings.

Few consideration is on the relation of dark energy with darkmatters. We believe

that there exists relations between them, particularly, the following conjecture.

Conjecture 10.6.5 The dark energy is nothing but a kind of effect of internal action in

dark matters and the action of black on white matters. One canonly surveys the acting

effect of black matters on that of white, will never be the all.

10.6.3 The input-output model is a useful in macro-economy analysis. In fact, any sys-

tem established by scientist is such an input-output systemby combinatorial speculation.

Certainly, these systems are non-linear in general becauseour WORLD is non-linear.

Problem 10.6.2 Let Fi(x) be a polynomial of degree d≥ 2 for integers1 ≤ i ≤ n. Solve

equations (10-5) for circulating economic system underlying a graph G, particularly,

d = 2 and G≃ Cn or n ≤ 4.

Problem 10.6.3 Let Fi(x) be a well-known functions f(x), such as those of f(x) = xµ,

whereµ is a rational number, or f(x) = ln x, sinx, cosx, · · ·, etc.. Determine such

conditions that equations (10-5) are solvable.

10.6.4 We have shown in Subsection 10.5.2 that one can control an infectious disease in

a combinatorial space likewise that in one space if assume that the numberci j of persons

moving from crowdCi to C j is a proportion of persons in crowdCi, i.e.,ci j = ti j Ni with

a constantti j for integers 1≤ i, j ≤ m. Such a assumption is too special, can not hold in

general.

Problem 10.6.4 Establish SI, SIS, SIR and SIJR models of infectious diseasewithout the
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assumption ci j = ti j Ni , i.e., ci j = f (Ni ,Nj , t) for integers1 ≤ i, j ≤ m and solve these

differential equations.

Although these differential equations maybe very different from these equations (10-

10)-(10-13), the measure by isolating contagia and cuttingoff all traffic lines from the

contagia appeared crowds is still effective for control a disease in its infective stage. That

is why this measure is usually adopted when an infective disease occurs.
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