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Preface to the Second Edition

Our WORLD is a multiple one both shown by the natural world aochan beings. For
example, the observation enables one knowing that thermfimée planets in the uni-
verse. Each of them revolves on its own axis and has its owsossa In the human
society, these rich or poor, big or small countries appedreach of them has its own sys-
tem. All of these show that our WORLD is not in homogenous hutultiple. Besides,
all things that one can acknowledge is determined by his eye=ars, or nose, or tongue,
or body or passions, i.e., these six organs, which means @RBMD consists ohaveand
not haveparts for human beings. For thousands years, human beingehasstopped his
steps for exploring its behaviors of all kinds.

We are used to the idea that our space has three dimendength, breadthand
heightwith time providing the fourth dimension of spacetime by $ein. In the string or
superstring theories, we encounter 10 dimensions. Howexedo not even know what
the right degree of freedom,ias Witten said. Today, we have known two heartening no-
tions for sciences. One is tl@marandache multi-spacame into being by purely logic.
Another is thanathematical combinatorigaotivated by a combinatorial speculation, i.e.,
a mathematical science can be reconstructed from or madernypinatorialization Both
of them contribute sciences for consistency of researdh tlvdat human progress in 21st
century.

What is a Smarandache multi-sp&c# is nothing but a union af different spaces
equipped with dierent structures for an integee= 2, which can be used both for discrete
or connected spaces, particularly for systems in naturaupram beings. We think the
Smarandache multi-spaesd thenathematical combinatoriee the best candidates for
21st century sciences. This is the reason that the authae wrig book in 2006, published
by HEXIS in USA. Now 5 years have pasted after the first edipablished. More and
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more results on Smarandache multi-spaces appeared. Tphespuof this edition is to
survey Smarandache multi-space theory including new gliedl results, also show its
applications to physics, economy and epidemiology.

There are 10 chapters with 71 research problems in thisoaditChapter 1 is a
preparation for the following chapters. The materials,hsas those of groups, rings,
commutative rings, vector spaces, metric spaces and Sdeuia® multi-spaces including
important results are introduced in this chapter.

Chapter 2 concentrates on multi-spaces determined by grdpbics, such as those
of the valency sequence, the eccentricity value sequeheesdmi-arc automorphism,
the decomposition of graph, operations on graphs, hamaltographs and Smarandache
sequences on symmetric graphs with results are discusdbisichapter, which can be
also viewed as an introduction to graphs and multi-setsnlyidg structures.

Algebraic multi-spaces are introduced in Chapter 3. Varialigebraic multi-spaces,
such as those of multi-systems, multi-groups, multi-ringsctor multi-spaces, multi-
modules are discussed and elementary results are obtaiti@d chapter.

Chapters 4-5 continue the discussion of graph multi-spackapter 4 concentrates
on voltage assignments by multi-groups and constructsi4vailiage graphs of type I, II
with liftings. Chapter 5 introduces the multi-embeddin§gm@aphs in spaces. Topics such
as those of topological surfaces, graph embeddings in spaudti-surface embeddings,
2-cell embeddings, and particularly, combinatorial mapanifold graphs with classifi-
cation, graph phase spaces are included in this chapter.

Chapters 6-8 introduce Smarandache geometry, i.e., gaoai@nulti-spaces. Chap-
ter 6 discusses the map geometry with or without boundariyding a short introduction
on these paradoxist geometry, non-geometry, counteeqiio¢ geometry, anti-geometry
with classification, constructs these Smarandache gepigtmap geometry and finds
curvature equations in map geometry. Chapter 7 considese telements of geometry,
such as those of points, lines, polygons, circles and limedlas in planar map geom-
etry and Chapter 8 concentrates on pseudo-Euclidean ggooreR", including inte-
gral curves, stability of dierential equations, pseudo-Euclidean geometiyemdintial
pseudo-manifolds; -, etc..

Chapter 9 discusses spacial combinatorics, which is thébr@torial counterpart
of multi-space, also an approach for constructing Smamaulti-spaces. Topics in
this chapter includes the inherited graph in multi-spalgglaaic multi-systems, such as
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those of multi-groups, multi-rings and vector multi-spaemderlying a graph, combi-
natorial Euclidean spaces, combinatorial manifolds, lmgioal groups and topological
multi-groups and combinatorial metric spaces. It shoulchbeed that the topological
group is a typical example of Smarandache multi-spacesassidal mathematics. The
final chapter presents applications of Smarandache npadtiess, particularly to physics,
economy and epidemiology.

In fact, Smarandache multi-spaces underlying graphs alienpartant systemati-
cally notion for scientific research in 21st century. As altexk, this book can be appli-
cable for graduate students in combinatorics, topologjcgbhs, Smarandache geometry,
physics and macro-economy.

This edition was began to prepare in 2010. Many colleagudsfréands of mine
have given me enthusiastic support and endless helps imgvriHere | must mention
some of them. On the first, | would like to give my sincerelyrtkga to Dr.Perze for
his encourage and endless help. Without his encourage, ldwtisome else works,
can not investigate Smarandache multi-spaces for yearBrasid this edition. Second, |
would like to thank Professors Feng Tian, Yanpei Liu, Mingy&u, Jiyi Yan, Fuji Zhang
and Wenpeng Zhang for them interested in my research worksir €ncouraging and
warmhearted supports advance this book. Thanks are alsn tpWrofessors Han Ren,
Yuangiu Huang, Junliang Cai, Rongxia Hao, Wenguang Zai,d8nog Liu, Weili He and
Erling Wei for their kindly helps and often discussing prels in mathematics altogether.
Partially research results of mine were reported at Chideselemy of Mathematics
& System Sciences, Beijing Jiaotong University, Beijingrival University, East-China
Normal University and Hunan Normal University in past yeé8sme of them were also
reported afThe 2nd 3rd and 7th Conference on Graph Theory and Combinatorics of
Chinain 2006, 2008 and 2011. My sincerely thanks are also give ésdlaudiences
discussing mathematical topics with me in these periods.

Of course, | am responsible for the correctness all of thestemals presented here.
Any suggestions for improving this book or solutions for ngpeoblems in this book are
welcome.

L.F.Mao
October 20, 2011
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CHAPTER 1.

Preliminaries

What is a Smarandache multi-space? Why is it important toamo8cience?
A Smarandache multi-spaéis a union ofn different spaceS:, S,, Sh
equipped with some ferent structures, such as those of algebraic, topolog-
ical, differential,- - - structures for an integer > 2, introduced by Smaran-
dache in 1969 [Sma2]. Whence, it is a systematic notion feeldping mod-
ern sciences, not isolated but an unified way connected \ilir dields. To-
day, this notion is widely accepted by the scientific sociégplying it fur-
ther will develops mathematical sciences in the 21st cgnalso enhances
the ability of human beings understanding the WORLD. Faoihicing the
readers knowing this notion, preliminaries, such as thésets and neutro-
sophic sets, groups, rings, vector spaces and metric spagesintroduced
in this chapter, which are more useful in the following cleapt The reader
familiar with these topics can skips over this chapter.



2 Chap.1 Preliminaries

§1.1 SETS

1.1.1 Set. A setE is a category consisting of parts, i.e., a collection of otgg@ossessing
with a property<?, denoted usually by

= = { X| X possesses the property }.

If an elemenix possesses the proper#, we say thak is an element of the s&t, denoted
by x € Z. On the other hand, if an elemgntioes not possesses the propertythen we
say it is not an element & and denoted by ¢ =.

For examples,

1,2,3,4,5,6,7,8,9,10},

(%Y +y? =1},
the cities in the World

A={

B = {p| pis a prime numbeér
C={

D={

are 4 sets by definition.

Two setsE; andZ; are said to b&denticalif and only if for Vx € E;, we havex € =,
and forvx € Z,, we also have € Z,. For example, the following two sets

E={1,2-2)andF = { x|>)¢ — X¥* — 4x + 4 = 0}

are identical since we can solve the equati®n- x> — 4x + 4 = 0 and get the solutions
x=12o0r-2.
LetS, T be two sets. Define binary operatiamsion SU T, intersection SN T and
S minusT respectively by
SUT ={XxeSorxeT}, SﬂT = {x]xe Sandx e T}
and
S\T={xXxeShbutx¢T}.

Calculation shows that

Al JE=1{1,2.-2,34,56,7,8,9,10},
A(E=112,

A\E = {3,4,5,6,7,8,9,10},
E\A={-2).
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The operations) andn possess the following properties.
Theorem1.1.1 Let X T and R be sets. Then
() XUX=X and XN\ X = X;
(i) XUT=TUX and XN\ T=TNX;
(i) XU(TUR) = (XUT)UR and XW(TNR) =(XNT)NR;
(iv) XUMNR) = XUT)NXUR),
XATUR) =(XNT)UXNR).

Proof These lawsi{-(iii ) can be verified immediately by definition. For the law)(
letx e XU(TNR) = XUT)NXUR). Thenx e Xorx e TNR,i.e.,x e T and
x € R Now if x € X, we know thatx e XU T andx € X U R. Whence, we get that
xe XUT)NXJR). Otherwisex € TNR, i.e.,,x € T andx € R. We also get that
xe XUT)NXUR).

Conversely, foivx € (XU T) N(XUR), we know thatx e X|JT andx € XUJR,
e, xe Xorxe Tandx e R If x e X, we getthatx e X(J(TNR). If xe T and
x € R, we also get that € X J(T N R). Therefore X J(TNR) = (XUT)N(XUR) by
definition.

Similarly, we can also get the laNT = XU T. O

Let Z; andZ; be two sets. If folvx € 4, there must b& € =,, then we say theE,
is asubsebdf =,, denoted byg, C =,. A subse&, of =, is proper, denoted byg, c &, if
there exists an elemente =, withy ¢ Z; hold. It should be noted that the void (empty)
set( is a subset of all sets by definition. All subsets of asaaturally form a set”(2),
called thepower sebf =.

For a seX € Z(2), its complemenkK is defined byX = { y|y € Z buty ¢ X}. Then
we know the following result.

Theorem1.1.2 Let= be aset, ST c E. Then
(1) XnX=0andXuX =2
(2) X=X
(3) XuT =XNTandXNT=XUT.
Proof The laws (1) and (2) can be immediately verified by definitiGor (3), let
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xe XUT. Thenxe Zbutx¢ XUT,ie,x¢ Xandx¢ T. Whencex € X andx € T.
Thereforex e XN T. Now for¥x e XN T, there mustbex € X andx e T, i.e.,x € &
butx ¢ X andx ¢ T. Hence,x ¢ X U T. This fact implies thak € X U T. By definition,
we find thatXUT = X N T. Similarly, we can also get the laWN T = XU T. This
completes the proof. O

For a setZ andH C Z, the set= \ H is said thecomplemenbf H in E, denoted
by H(Z). We also abbreviate it tbl if each set considered in the situation is a subset of
E = Q, i.e., theuniversal set

These operations on setsd4A(=Z) observe the following laws.

L1 Itempotentlaw. Fo¥S C Q,

Al JA=A[A=A

L2 Commutative law. FovU,V c Q,

ul Jv=v[Juiu(v=Vv u
L3 Associative law. FowU,V,W c Q,

oUW = UM Uw s W)= V)W

L4 Absorption law. FoiU,V c Q,

UL UY=L NY-u
L5 Distributive law. For/U,V,W c Q,
oUW =0 UMNEUW: vNvUw= oUW,
L6 Universal bound law. ForU c Q,

o(Ju=00| Ju=u;ou=Ual Ju=Q
L7 Unary complement law. FofU c Q,
u(lU=0, Ul JU=0

A set with two operations‘()” and “ J” satisfying the laws.1 ~ L7 is said to be a
Boolean algebraWhence, we get the following result.
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Theorem1.1.3 For any set U, all its subsets form a Boolean algebra undepfterations
«m” and uU” .

1.1.2 Partially Order Set. Let = be a set. Th€artesian producE x = is defined by
ExXE={(XY)IVXy€ E}

and a subseR C = x E is called abinary relationon Z. We usually writexRyto denote
thatV(x,y) € R A partially order setis a set= with a binary relation< such that the
following laws hold.

O1 Reflective Law. Forx e E, xRx
02 Antisymmetry Law. Forxy € E, XRyandyRx= x =Y.
O3 Transitive Law. Forx,y,ze€ 2, xRyandyRz= xRz

Denote by E, <) a partially order seE with a binary relatiorx. A partially ordered
set with finite number of elements can be conveniently regmesi by a diagram in such
a way that each element in the &:is represented by a point so placed on the plane that
pointais above another poirttif and only if b < a. This kind of diagram is essentially
a directed graph. In fact, a directed graph is correspondghta partially set and vice
versa. For example, a few partially order sets are showngriLEiwhere each diagram

\/

represents a finite partially order set.

(@) (b) (©) (d)

Fig.1.1

An elementa in a partially order setH, <) is calledmaximal(or minimal if for
¥YXxe E, a<x=Xx=a(orx <a= x=a). The following result is obtained by the
definition of partially order sets and the induction pririeip
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Theorem 1.1.4 Any finite non-empty partially order s€Z, <) has maximal and minimal
elements.

A partially order setE, <) is anorder setif for any Yx,y € =, there must bex < 'y
ory < x. For example,lf) in Fig.11 is such a ordered set. Obviously, any partially order
set contains an order subset, which is easily find in Flg.1

An equivalence relation B = x E on a seE is defined by

R1 Reflective Law. Forx € Z, XRX

R2 Symmetry Law. Forxy € E, XRy= yRx

R3 Transitive Law. Forx,y,ze =, xRyandyRz= xRz

Let Rbe an equivalence relation on &tWe classify elements i& by R with
R(X) = {y| y € E andyRx}.

Then we get a useful result for the combinatorial enumendttiowing.
Theorem 1.1.5 Let R be an equivalence relation on &tFor ¥Yx,y € E, if there is an
bijectiong between R) and Ry), then the number of equivalence classes under R is

-
=]
B

IROI

where x is a chosen elementdn

Proof Notice that there is an bijectioq betweenR(x) and R(y) for Vx,y € E.
Whence]R(X)| = |R(y)|. By definition, forvVx,y € E, R(X) (" R(y) = 0 or R(X) = R(y). Let
T be a representation set of equivalence classes, i.e.,ecbai element in each class.
Then we get that

[1]

2= ) IRMI = TIRO!

xeT
Whence, we know that

—
b
—

" RO

IT| O

1.1.3 Neutrosophic Set.Let [0, 1] be a closed interval. For three subskts, F C [0, 1]
andS ¢ Q, define a relation of element € Q with the subsest to bex(T, I, F), i,e.,
the confidence set ,Ttheindefinite set land thefail set Ffor x € S. A setS with three
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subsetd, |, F is said to be aeutrosophic setWe clarify the conception of neutrosophic
set by set theory following.
Let = be a set and\;, Ao, - -+, Ac € E. Define X functions fy, £, .-, fX by f* :
—[0,1], 1 <i <k wherex=T,I,F. Denoted by &; fT, f!, fF) the subse#\ with
three functions", f!, £F, 1 <i < k. Then

k
U AI’ fIT’ f| ’ f|
i=1

is a union of neutrosophic sets. Some extremal cases foutio is in the following,
which convince us that neutrosophic sets are a generalizaficlassical sets.

Casel f' =1, f'=fF=0fori=1,2,--- k.

In this case,

Case2 fT =f'=0, fF=1fori=12---,k

In this case,

Case3 There is an integes such thatf” = 1 f' = f7 =0, 1<i < sbutfl = f/ =
0 ff =1lfors+1<j<k

In this case,

k s k
U(A-,fi):UA-U[ A
i=1 i=1 i=s+1

Case4 There is an integdrsuch thatf,” # 1 or f™ # 1.

~———

In this case, the union is a general neutrosophic set. It cae represented by
abstract sets. IA( B = 0, define the function value of a functiohon the union set
AlJBto be

f(AU B) = f(A) + (B)
and

f(Aﬂ B) = f(A)f(B).
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Then if A B # 0, we get that
f(AU B) = f(A) + f(B) - f(A)(B).

Generally, we get the following formulae.

(-

f(QAi) = Z(—l)j‘l ]_[ f (As).

j=1 s=1

|
f(A),
-1

by applying the inclusion-exclusion principle to a uniorsets.

§1.2 GROUPS

1.2.1 Group. A setG with a binary operatior, denoted byG; o), is called agroupif
xoye GforV¥xy e G with conditions following hold:

(1) (Xoy)oz=Xxo(yo2)forVvxy,zeG;

(2) There is an elementlls € G such thatxo 1 = X;
(3) ForVx € G, there is an elementy € G, such thatxo y = 1.

A groupG is Abelianif the following additional condition holds.

(4) For¥x,ye G, Xxoy=YyoX

A setG with a binary operatior satisfying the condition (1) is called to besami-
group. Similarly, if it satisfies the conditions (1) and (4), thend called anAbelian
semigroup

Example 1.2.1 The following sets with operations are groups:

(1) (R; +) and R; -), whereR is the set of real numbers.
(2) (Uy; ), whereU, = {1,-1} and generally,{,; -), whereU, = {eiz”Tk,k: 1,2,
.-, n}.
(3) For a finite sek, the setS ymXof all permutations orX with respect to permu-
tation composition.

Clearly, the groups (1) and (2) are Abelian, but (3) is noteneyal.
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Example 1.2.2 LetGL(n,R) be the set of all invertible x n matrixes with coéicients
in R and+, - the ordinary matrix addition and multiplication. Then

(1) (GL(n,R); +) is an Abelian infinite group with identityQ,, thenxn zero matrix
and inverse-Afor A e GL(n, R), where—A is the matrix replacing each entaby —ain
matrix A.

(2) (GL(n,R); -) is a non-Abelian infinite group i > 2 with identity 1..n, thenx n
unit matrix and inversé! for A € GL(n,R), whereA - A~! = 1,,,,. For its non-Abelian,

1 2 2 -3
, B= .
2 1 3 1
Calculations show that

I Y

WhenceA-B = B- A.

let n = 2 for simplicity and

>
I

4 1
5 7

1.2.2 Group Property. A few properties of groups are listed in the following.
P1. There is only one unity in a group(¥; o).

In fact, if there are two unitsidand 1, in (¢;0), thenwegetd = 1,01, =1/, a
contradiction.

P2. There is only one inverseafor a € ¢ in a group(¥¢; o).

If a;*, a;* both are the inverses afe ¢, then we get that, = a;* cao &t = a7,
a contradiction.

P3. (@) 1t=a ac¥.
P4. Ifaob=aocorboa=coa, where ab,c € ¢, then b= c.

If aob=aoc, thenato(aoh) =a'o(aoc). According to the associative law, we
getthato=1,0b=(aloa)ob=alo(aoc)=(atoa)oc=1y0c=c. Similarly, if
boa=coa, wecanalso gdi = c.

P5. There is a unique solution for equationsa= b and yoa = b in a group(¥; o)
fora,be ¥.
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Denote bya" = aoao---oa. Then the following property is obvious.

n
P6. For any integers ym and gab € ¢4, & o a™ = a™™, (a")™ = a™. Particularly, if
(¢; o) is Abelian, therfao b)" = a" o b".

1.2.3 Subgroup. A subsetH of a groupG is asubgroupif H is also a group under the
same operation i®, denoted byH < G. The following results are well-known.

Theorem 1.2.1 Let H be a subset of a groyfs; o). Then(H; o) is a subgroup ofG; o)
if and only if H# 0 and ac b™* € H for Va,b € H.

Proof By definition if (H; o) is a group itself, thei # 0, there i~ € H andaob™
is closed inH, i.e.,aob™ e H for Va,b € H.
Now if H # 0 andao b~ € H for Va, b € H, then,

(1) there existsahe Hand k; = hoh™ € H;

(2) if x,y€ H, theny! = 10y € Hand hencexo (y})™ = xoye H;

(3) the associative lawo (yo z) = (xoy)ozfor x,y,z€ H is hold in G; o). By (2),
it is also hold inH. Thus, combining (1)-(3) enables us to know tHat ¢) is a group.]

Corollary 1.2.1 LetH; <Gand H <G. ThenHNnH, <G.

Proof Obviously, & = 14, = 14, € Hi N Hy. SoH; N H, # 0. Letx,y € Hy N Ha.
Applying Theorem 12.2, we get that

XoylteH;, Xoy?leH..
Whence,
XoyteH;NH..

Thus, Hi N Hy; o) is a subgroup ofG; o). O
Theorem 1.2.2 (Lagrange)Let H < G. ThenG| = [H||G : H].

Proof Let
G-= U toH.

teG:H
Notice thatt; cH Nty o H = 0 if t; # t, and|t o H| = |H|. We get that

|G|:ZtoH:|H||G:H|. O

teG:H
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Let H < G be a subgroup o6G. For Yx € G, denote the setéxh | Yh € H},
{hx| Yh € H} by xH andHXx, respectively. A subgroupl of a group G ;o) is called a
normal subgroupf for Yx € G, xH = Hx. Such a subgrouB is denoted byH < G

For two subset#, B of group G; o), the produciA o B is defined by

AoB={aob/Vace A VYbeb}.
Furthermore, iH is normal, i.e.H < G, it can be verified easily that

(XxH) o (yH) = (xoy)H and HX) o (Hy) = H(xoYy)

for ¥x,y € G. Thus the operations” is closed on the sgixH|x € G} = {HXx/x € G}. Such
a set is usually denoted I6y/H. Notice that

(XHoyH)ozH=xHo (yHo zH), ¥YXx,y,ze G

and
(xH) o H = xH, (xH) o (x *H) = H.

Whence,G/H is also a group by definition, calledcuotient group Furthermore, we
know the following result.

Theorem 1.2.3 G/H is a group if and only if H is normal.

Proof If H is a normal subgroup, then
(@aoH)(boH)=ao(Hob)oH =ao(boH)oH =(aoch)oH

by the definition of normal subgroup. This equality enablesaucheck laws of a group
following.

(1) Associative laws i /H.

[(ao H)(bo H)](coH) [(@ob)oc]oH =[ao(boC)] o H

(@o H)[(bo H)(co H)].

(2) Existence of identity elementg}, in G/H.
In fact, Ig)y =10 H = H.

(3) Inverse element fofxo H € G/H.
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Because of{toH)(XxoH) = (x1oX)oH = H = 15,4, we know the inverse element
of xoH e G/Hisx!oH.
Conversely, iiG/H is a group, then foaoc H,bo H € G/H, we have

(@oH)(boH)=coH.
Obviously,ao b € (ao H)(b o H). Therefore,
(@aoH)(boH)=(aoh)oH.
Multiply both sides bya™*, we get that
HoboH=boH.
Notice that } € H, we know that
boHcHoboH=boH,

i.e.,boHob™c H. Consequently, we also fifat! o H o b ¢ H if replaceb by b, i.e.,
H c boHob™ Whence,
bloHob=H

for Yb € G. Namely,H is a normal subgroup d@3. OJ

A normal serieof a group G; o) is a sequence of normal subgroups
16} =G <G <Gy <---<1Gs =G,

where theG;, 1 < i < sare theterms the quotient group&;,,1/Gj, 1 <i < s— 1 are the
factorsof the series and if alG; are distinct, and the integeris called thdengthof the
series. Particularly, if the length= 2, i.e., there are only normal subgroyfs} andG

in (G; o), such a group@,; o) is said to besimple

1.2.4 Isomorphism Theorem. For two groupss, G/, let o be a mapping fron® to G'.
If
o(xoy) = a(X) o o(y)
for Yx,y € G, theno is called ahomomorphisnifrom G to G’. Usually, a one to one

homomorphism is called monomorphisnand an onto homomorphism apimorphism
A homomorphism is dijectionif it is both one to one and onto. Two grou@sG’ are
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said to basomorphidf there exists a bijective homomorphismbetween them, denoted
byG=~G'.

Some properties of homomorphism are listed following. Taeyeasily verified by
definition.

H1. ¢(x") = ¢"(x) for all integers n, xe ¢, whenceg(ly) = 1, andg(x?) =
¢~ (%)

H2. o(¢(X))|o(X), x € 4.

H3. If Xoy =yo X, theng(x) - ¢(y) = ¢(y) - ¢(X).

H4. Im¢ < 27 and Kep < ¥4.

Now let¢ : G — G’ be a homomorphism. Itsnagelm¢ and kernel Kerg are
respectively defined by
Img = G? = {¢(X) | Yx € G}

and
Kerg = { X| VX € G, ¢(X) = 1s }.

The following result, usually called tHeomomorphism theorera well-known.
Theorem1.24 Let¢ : G — G’ be a homomorphism of group. Then
(G, o)/Kergp ~ Ime.

Proof Notice that I < H and Kep <1 G by definition. SoG/Kerg is a group by
Theorem 12.3. We only need to check thatis a bijection. In factx o Kerp € Kerg if
and only ifx € Kerg. Thusg is an isomorphism frons/Kerg to Imeg. O

Corollary 1.2.1(Fundamental Homomorphism Theorerf)¢ : G — H is an epimor-
phism, then @Ker¢ is isomorphic to H.

§1.3 RINGS

1.3.1 Ring. A setRwith two binary operations‘+” and “o” , denoted byR; +, o), is
said to be aing if x+y € R, xoy € Rfor ¥x,y € R such that the following conditions
hold.

(1) (R;+)is an Abelian group with unit 0, and in;
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(2) (R; o) is a semigroup;

(3) Foryx,y,ze Ry Xo(y+2 =Xoy+Xozand X+y)oz=Xoz+Yyoz

Denote the unit by 0, the inverse afby —a in the Abelian groupR; +). A ring
(R; +, o) isfiniteif |R| < +co0. Otherwisejnfinite.
Example 1.3.1 Some examples of rings are as follows.

(1) (Z;+,-), whereZ is the set of integers.

(2) (pZ;+,-), wherep is a prime number angZ = {pnn € Z}.

(3) Mn(Z); +, -), whereM,(Z) is the set oh x n matrices with each entry being an
integer,n > 2.

Some elementary properties of rinds ¢, o) can be found in the following:

R1. Oca=ao0=0forYaeR

In fact, letb € Rbe an element iR Byaob =ao(b+0)=aob+ao-0and
boa=(b+0)oca=boa+00a, we are easily know thaoc 0=00a=0.

R1. (-a)ocb=ao(-b)=-aoband a)o(-b) =aobforvVabeR

By definition, we are easily know that§) ob+aob=(-a+a) ocb=00b=0
in (R;+,0). Thus (a) o b = —aob. Similarly, we can get thah o (-b) = —ao b.
Consequently,

(-a) o (-b) = —ao(-b) = —(-aob)=aoh.

R3. Foranyintegen,m> 1 anda,b e R,

(n+ m)a=na+ma
n(ma) = (nma,
n(a+ b) = na+ nb,
an o am — an+m

(an)m — anm

b

wherena=a+a+---+aanda”=aocao---oa.
N e’ ~—
n n

All these identities can be verified by induction on the imten. We only prove the
last identity. Fom = 1, we are easily know thaa{)! = (a") = a™, i.e., @")™ = a™ holds
form= 1. Ifitis held form=k > 1, then

(an)k+1 — ((an)k)o(an)
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= a”ko(aoao---oa)
~—

n
ank+n — an(k+1)

Thus(@")™ = a™is held form = k + 1. By the induction principle, we know it is true for
any integen, m> 1.

If R contains an elemenkisuch that foWx € R, Xxo 1g = 1g o X = X, we callRa
ring with unit All of these examples of rings in the above are rings with.ufor (1), the
unitis 1, (2) isZ and (3) isl pxn.

The unitof R, +) inaring R; +, o) is calledzerg denoted by 0. Fo¥a,b € R, if

aob =0,

thena andb are calledivisors of zeroln some rings, such as th&;(+, -) and (Z ; +, -),
there must be or b be 0. We call it only has #&ivial divisor of zera But in the ring
(paZ; +, -) with p, q both being prime, since

PZ - qZ = 0

andpzZ # 0,97 + 0, we get non-zero divisors of zero, which is called to hawe-trivial
divisors of zeroThe ring (M(Z); +, -) also has non-trivial divisors of zero

1 00 ---0
:Onxn-

A division ringis a ring which has no non-trivial divisors of zero. The irdegng (Z; +, -)
is a divisor ring, but the matrix ring¥,(Z); +, -) is not. Furthermore, ifR \ {0}; o) is a
group, then the ringR; +, o) is called askew field Clearly, a skew field is a divisor ring
by properties of groups.

1.3.2 Subring. A non-empty subsd® of aring R; +, o) is called asubringif (R’; +, o) is
also a ring. The following result for subrings can be obtdimemediately by definition.

Theorem 1.3.1 Let R c R be asubset of arin@; +, o). If (R’; +) is a subgroup ofR; +)
and R is closed under the operatiofio” , then(R’; +, o) is a subring of(R, +.0).
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Proof Becausd&® c Rand R; +, o) is aring, we know thatR}; o) is also a semigroup
and the distribute lowgo (y+2) = Xoy+Xoz, (X+Yy)oz= Xoz+Yyozholdfor¥x,y,ze R
Thus (R; +, o is also a ring. OJ

Combining Theorems.3.1 with 1.2.1, we know the following criterion for subrings
of aring.

Theorem1.3.2 Let R c R be asubsetofarin@; +,0). Ifa—b, a-be R forvYa,be R,
then(R'; +, o) is a subring of(R, +.0).

Example 1.3.2 Let (M3(Z); +, ) be the ring determined in Example311(3). Then all
matrixes with following forms

abao

c d o], a,b,c,deZ

000
consist of a subring of\I3(Z); +, -).
1.3.3 Commutative Ring. A commutative rings such aringR; +, o) thatacb =boa
for Ya,b € R. Furthermore, if R\ {0}; o) is an Abelian group, therR +, o) is called a
field. For example, the rational number rinty;+, -) is a field.

A commutative ring R; +, o) is called anntegral domainis there are no non-trivial
divisors of zero irR. We know the following result for finite integral domains.

Theorem 1.3.3 Any finite integral domain is a field.

Proof Let (R; +0) be a finite integral domain witR = {a; = 1g,a,---,a,}, b e R
and a sequence
boal’bOaZ"“’boan'

Then forany integeir# j, 1 <i,j <m,boa # boa;. Otherwise, we gdio (a —a;) =0
with a # 0 anda; — a; # 0. Contradicts to the definition of integral domain. Therefo

R={boaj,boay,---,boa).

Consequently, there must be an intekiet < k < nsuch thab o a, = 1z. Thusb™ = a.
This implies thatR \ {0}; o) is a group, i.e.,R; +o) is a field. OJ
Let D be an integral domain. Define the quotient fi€ltD] by

QD] ={(ab)labeD, b#0}
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with the convention that
(a,b) = (@,b) if and only if alby = a’b.
Define operations of sums and products respectively by

(a,b) + (a,b) = (aly + &b, bh)
(ab) - (a,b) = (ad, bb).

Theorem 1.3.4 Q[D] is a field for any integral domain D.

Proof Itis easily to verify thaQ[ D] is also an integral domain with identity elements
(0, 1) for addition and (11) for multiplication. We prove that there exists an inveise
every elementi # 0 in Q[D]. In fact, for (&, b) # (0, 1),

(a,b) - (b,a) = (ab,ab) = (1, 1).

Thus @, b)™! = (b, a). WhenceQ[D] is a field by definition. O

For seeingD is actually a subdomain d[D], associate each elemeate D with
(a,1) € Q[D]. Then itis easily to verify that

@l)+(l)=(a-1+b-1,1-1)=(a+b,1),
(& 1)-(b,1)=(ab1-1)=(ab 1),
(a1)=(b,1) ifandonlyif a=nh.

Thus the 1-1 mapping < (a, 1) is an isomorphism between the domBirand a subdo-
main{ (a,1)| a€ D } of Q[D]. We get a result following.

Theorem 1.3.5 Any integral domain D can be embedded isomorphically in d #D].
Particularly, let D = Z. Then the integral domaifi can be embedded in[Q] = Q.

1.3.4 Ideal. Anideal | of aring (R; +, o) is a non-void subset d® with properties:

(1) (I;+) is a subgroup ofR; +);
(2) aoXel andxoace | forvVae I,VxeR.

Let (R; +,0) be aring. A chain

R>R > >R ={1}
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satisfying thatR,, is an ideal ofR, for any integeii,1 < i < I, is called andeal chain
of (R, +,0). A ring whose every ideal chain only has finite terms is che@Artin ring.
Similar to the case of normal subgroup, consider thexset in the group R; +). Calcu-
lation shows thaR/l = {x+ || x € R} is also a ring under these operatiofis” and “o”,
called aquotient ringof Rto I.

For two rings ringsi; +, o), (R; %, ), let: : R— R be a mapping fronRto R.. If

X +y) = u(X) = u(y),
(xoy) =uX) e u(y)
for Yx,y € R, then¢ is called ahomomorphisnfrom (R; +, o) to (R’; *, ). Furthermore, if

¢ is an objection, then ringx; +, o) is said to basomorphicto ring (R’; «, ) and denoted
by rings R; +, o) = (R; %, ). Similar to Theorem 2.4, we know the following result.

Theorem 1.3.6 Let: : R — R be a homomorphism frofi; +, o) to (R’; *, ®). Then

(R; +,0)/Kert =~ Im.

§1.4 VECTOR SPACES

1.4.1 Vector Space.A vector spacer linear spaceconsists of the following:

(1) Afield F of scalars;
(2) A setV of objects, called vectors;

(3) An operation, called vector addition, which associatégk each pair of vectors
a,binV avectora+ b inV, called the sum ch andb, in such a way that

(a) Addition is commutativea+ b =b + a;

(b) Addition is associativea+ b) +c=a+ (b + ¢);

(c) There is a unique vectdrin V, called the zero vector, such theat 0 = afor all
ainV;

(d) For each vectoa in Vthere is a unique vecterain V such that + (—a) = 0;

(4) Anoperation“-”, called scalar multiplication, which associates with escdlar
kin F and a vectoa in V a vectork - ain V, called the product df with a, in such a way
that
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(@ 1-a=aforeveryainV;
(b) (kiko) - a=ki(kz - @);

(© k-(a+b)=k-a+k-b;
(d) (k+k)-a=k-a+k-a

We say thaV/ is avector space over the field F, denoted(®Yy; +, -).

Example 1.4.1 Two vector spaces are listed in the following.

(1) The n-tuple spaceR" over the real number fieldR. LetV be the set of alh-
tuples &g, o, - -, X)) With x e R 1 <i<n. If Ya= (X, X, -+, %), b = (Y1, Y2, -, ¥n) €
V, then the sum o& andb is defined by

a+b=(Xg+yLX+VY2 ) % + Yn)
The product of a real numbé&mwith a is defined by
ka = (kxg, KX, - - -, KXy).

(2) The spaceQ™" of mx n matrices over the rational number fieldQ. Let Q™"
be the set of alin x n matrices over the natural number figld The sum of two vectors
AandBin Q™" is defined by

(A+ B)ij = Aj + Bij,
and the product of a rational numbewwith a matrixA is defined by
(PA)ij; = PA;.

1.4.2 Vector Subspace.LetV be a vector space over a field A subspace VWf V is a
subsetV of V which is itself a vector space ovErwith the operations of vector addition
and scalar multiplication oW. The following result for subspaces of a vector space is
easily obtained.

Theorem 1.4.1 A non-empty subset W of a vector spé¢e+, -) over the field F is a
subspace ofV; +, -) if and only if for each pair of vectora, b in W and each scalat in
F the vectorr - a+ b is alsoin W.

Proof Let W be a non-empty subsetdfsuch thatr-a+b belongs tdV for Va, b € V
and all scalars in F. Notice thatW # 0, there are a vector € W. By assumption, we
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getthat €1)x + x = 0 € W. Henceax + 0 = ax € W for x € W anda € F. Particularly,

(-1)x = —x € W. Finally, if X, y € W, thenx + y € W. ThusW is a subspace df.
Conversely, ilW c V is a subspace of, a, b in W anda is scalaf-, thena-a+b € W

by definition. O

This theorem enables one to get the following result.

Theorem 1.4.2 Let V be a vector space over a field F. Then the intersectiomgf a
collection of subspaces of V is a subspace of V.

Proof LetW = MW, whereW is a subspace of for eachi € I. First, we know
that0 e W, fori € | blf/I definition. WhenceQ € W. Now leta, b € Wanda € F. Then
a, b e W for W c W for Vi € |. According Theorem .1, we know thatr - a+ b € W.
Soa-a+be W =W. WhenceW is a subspace of by Theorem 4.1. OJ
LetU be Ig set of some vectors in a vector spdaaverF. The subspace spanned by
U is defined by

U) ={ag-ay+az-a+--+a-a|l>LaecF andg eS 1<i<l|}.

A subsetS of V is said to bdinearly dependenit there exist distinct vectora,, a,, - - -, a,
in S and scalargq, a», - - -, @, in F, not all of which are 0, such that

al-a1+a/2-a2+---+an-an:0.

A set which is not linearly dependent is usually calleearly independent.e., for dis-
tinct vectorsay, ay, - - -, @, in S if there are scalargq, a», - - -, @, in F such that

al-a1+a/2-a2+---+an-an:0,

thenq; = O forintegers I<i < n.

LetV be a vector space over a fidid A basisfor V is a linearly independent set of
vectors inV which spans the spasé Such a spac¥ is calledfinite-dimensionaif it has
a finite basis.

Theorem 1.4.3 Let V be a vector space spanned by a finite set of veeiges, - - -, an,.
then each independent set of vectors in V is finite, and cosmted more than m elements.

Proof Let S be a set oV containing more tham vectors. We only need to show
thatS is linearly dependent. Choose, Xo, - -+, X, € S with n > m. Sinceay, a, - -, anm
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spanV, there must exist scalasg; € F such that

m
Xj = ;Aijai-

Whence, for anyr scalarsyy, as, - - -, @n, We get that

n m
a1X1+aXo + -+ apXp = Za,-ZAijai
=1 =1

I
[
>
R
®
I
[
-
B
R
o

Notice thatn > m. There exist scalarg,, a», - - -, @, hot all 0 such that
n
ZAijaj:O, 1<i<m
=1

ThusaiX; + aXs + - - - + apXy = 0. Whence S is linearly dependent. O
Theorem 14.3 enables one knowing the following consequences.

Corollary 1.4.1 If V is a finite-dimensional, then any two bases of V have tmeesa

number of vectors.

Proof Letay, ap, - - -, ayn be a basis of. according to Theorem.4.3, every basis of
V is finite and contains no more thamvectors. Thus iby, b,, - - -, b, is a basis oV, then
n < m. Similarly, e also know thai < n. Whencen = m. O

This consequence allows one to define the dimensioWdira finite-dimensional
vector space as the number of elements in a basfs of

Corollary 1.4.2 Let V be a finite-dimensional vector space with=ndimV. Then no
subset of V containing fewer than n vectors can span V.

Let dimV = n < +oo. An ordered basidor V is a finite sequencgy, ay, - - -, a,} of
vectors which is linearly independent and sp&ndNhence, for any vector € V, there
is ann-tuple (X, X, - - -, X,) such that

X = Zn: Xiay.
i=1

Then-tuple is unique, because if there is anotheuple @z, 2, - - -, Z,) such that

X = i z4q;,
i=1
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Then there must be .
> (x-z)a=0.
i=1

We getz, = x for 1 < i < n by the linear independence (;, a,, - - -,a,}. Thus each
ordered basis fov determines a 1-1 correspondence

X & (Xg, X2, Xn)

between the set of all vectorsVhand the set of alh-tuples inF" = F xF x --- X F.

n
The following result shows that the dimensions of subspatadinite-dimensional
vector space is finite.

Theorem 1.4.4 If W is a subspace of a finite-dimensional vector space V, gveny
linearly independent subset of W is finite and is part of basisV.

Proof Let Sy = {a1,ay, - -, ay} be a linearly independent subsetif By Theorem
1.4.3,n < dimW. We extendS, to a basis foW. If So spansWV, thenS, is a basis ofV.
Otherwise, we can find a vectby € W which can not be spanned by elementS§nThen
So U {by} is also linearly independent. Otherwise, there exist ssalg@ a;, 1 < i < |Sy

with ag # 0 such that
ISol

agb1 + Zaiai =0.
i=1

Whence

a contradiction.

LetS; = So U {by}. If S; spansW, we get a basis dfV containingSy. Otherwise,
we can similarly find a vectdb, such thatS, = Sy U {by, by} is linearly independent.
Continue i this way, we can get a set

Sm=SoU{by, by, -, b}

in at more than diw — n < dimV — n step such thas,, is a basis foiV. O

For two subspacdd, W of a spaceV/, the sum of subspacés W is defined by
U+W={u+w|uelU, weW}.

Then, we have results in the following result.
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Theorem 1.4.5 If W; and W are finite-dimensional subspaces of a vector space V, then
W; + W, is finite-dimensional and

dimw, + dimw, = dim (W, ﬂwz) +dim (W + W) .

Proof According to Theorem.2.4, W;NW, has a finite basigy, a,, - - -, &} which is
part of abasi¢a;, a,, - - -, ax, by, - - -, by} for Wy and part of a basigy, ay, - - -, ax, €1, - - -, Cm}
for W,. Clearly, W; + W, is spanned by vectoi®, a,, - - -, ax, by, --,by, €, -+, Cn. If
there are scalaxs, gjandy,, 1<i <k, 1<j<I, 1<r <msuchthat

k |
Zaiai + Z,ijj + i?’rcr =0,
i=1 ]=1 r=1

then
m k |

_Zyrcr = Za'iai + Zﬁjbj,
i1 =

r=1

m

which implies thatv = ) y,c¢, belongs tow,;. Becauser also belongs ta\V, it follows
=1

thatv belongs tovV; N V\rlz. So there are scala#s, o, - - -, 5§ such that

Notice that{a;, a,, - - -, ax, C1, - - -, C} IS linearly independent. There must e= 0 for
1 <r < m. We therefore get that

M1~
8
L
+
NG|
=
=
I
o

i=1 =1

But{a;,a,, - -,a by, --,b} is also linearly independent. We get also that 0, 1 <
i<kandB; =0, 1<j<I. Thus

{al’aZ""’ak’ bls"',bh Cl,"',cm}
is a basis foW; + W,. Counting numbers in this basis féf, + W,, we get that

dimW, +dimW, = (k+1)+k+m=k+ (k+1+m)
dim (W, ﬂ W) + dim (Wy + W)

This completes the proof. O
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1.4.3 Linear Transformation. LetV andW be vector spaces over a fidid A linear
transformatiorfrom V to W is a mappingl' from V to W such that

T(ea+b) =a(T(a)) + T(b)

forall a,bin V and all scalars in F. If such a linear transformation is 1-1, the spate
is calledlinear isomorphiado W, denoted by Lw.

Theorem 1.4.6 Every finite-dimensional vector space V over a field F is isgmic to
space P, i.e., va F", where n= dimV.

Proof Let{a;, a,,- - -, a,} be an ordered basis fd. Then for any vectox in V, there
exist scalary, %o, - - -, X, such that

X = X181 + Xoadp + - - - + Xpapn.
Define a linear mapping frod to F" by
T: X (X,X—2,-+, %)

Then such a mapping is linear, 1-1 and mappingé ontoF". ThusV L En, 0J

Let{as, a,--,a,} and{by, b,, - - -, by} be ordered bases for vectd&faandW, respec-
tively. Then a linear transformatiohis determined by its action a, 1 < j < n. In fact,
eachT (a;) is a linear combination

T(aj) = Y Ajb
i=1

of b, the scalarsAyj, Ayj, - - -, Anj being the coordinates df(a;) in the ordered basis
{b1, b, -+, bn}. Define antmx n matrix by A = [A;;] with entry A; in the position {, j).
Such a matrix is called mansformation matrixdenoted byA = [T]a, 4, -

Now leta = a1ay + aray + - - - + apa, be a vector irlV. Then

T(a) T Zajaj] = ZCYJ'T (aj)

Il
M-
2
NgE
>
o
Il
(NgE
-
2
2
E
o

Whence, ifX is the coordinate matrix ad in the ordered basib,, b,, - - -, by}, thenAX

n
is the coordinate matrix of (a) in the same basis because the scajaja; is the entry
j=1
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in theith row of the column matriXAX. On the other hand, i is anm x n matrix over a

field F, then
n m n
T(Zajaj] = Z[ a/injaj]bi
=1 =1

indeed defines a linear transformatidrfrom V into W with a transformation matriA.
This enables one getting the following result.

Theorem 1.4.7 Let{a;,a,---,a,} and{by,bs,---, by} be ordered bases for vectors V
and W over a field F, respectively. Then for each linear trarmmeftion T from V into W,
there is an mx n matrix A with entries in F such that

[T@]b,05.-by = Alalp, by, brm

for everyain V. Furthermore, T— A is a 1-1 correspondence between the set of all
linear transformations from V into W and the set of alkm matrix over F.

LetV be a vector space over a fighd A linear operatorof V is a linear transforma-
tion fromV to V. Calculation can show easily the following result.

Theorem 1.4.8 Let V be a vector space over a field F with ordered bdagsy, - - -, an}
and{a},a,,---,a;} and T a linear operator on V. If A= [Aq, Ay, ---,Ay] is the nx n
matrix with columns A= [&]a;,a,.a,, then

[T]ai,aé,,a’n = A_l [T] az,ap, +,an A-

Generally, if T is an invertible operator on V determined by(&;) = &; for j = 1,2,
---,n, then

[T]a’lsaé,---,aé\ = [Tl]gll,az,-.-,an[T]al,az,---,an[T,]al,az,---,an-

§1.5 METRIC SPACES
1.5.1 Metric Space. A metric spacdX; d) is a setX associated with a metric function
d: MxM — R ={x]| xeR, x> 0} with conditions following hold fowx,y,ze M.
(1)(definiteness d(x,y) = O if and only ifx = y;
(2)(symmetry d(x,y) = d(y, X);
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(3)(triangle inequality d(x,y) + d(y, 2) > d(x, 2).
Example 1.5.1 Euclidean SpacRB".

Let R" = { (X5, X2, - -+, %) | X € R, < i < n} ForVx = (Xg, %, -+, %) and
y = (yl’ y2’ e ,Yn) € Rn, deflne

POGY) = [ D 0% = ).
i=1

Clearly, conditions (1) and (2) are true. We only need tofydhe condition (3).

Notice that . . . .
Zbiz +2xZa,-bi + xzzwlbi2 = Z(ai +xb)%2 > 0.
i=1 i=1 i=1 i=1

Consequently, the discriminant

Thend is a metric orR".

Thus

Applying this inequality, we know that

Zn:ai2+22nla,-bi +Zn:bi2
i=1 i=1 i=1

z”: (a + by)?
i=1

IA

Leta = X% -V, b =Yy, —z. Thenx, — z = g + b; for integers 1< i < n. Substitute these
numbers in the previous inequality, we get that

2
2,0 —a)zsNZm Y+ JZ(yi —a)Z} .
i=1 i=1 i=1

Thusd(x, 2) < d(x,y) + d(y, 2).
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Example 1.5.2 If (X;d) is a metric space. Define

d(x.y)

di(xy) = m

Then (X; d,) is also a metric space. In fact, by noting that the funcgbr = %( is an
increasing function fox > 0, it is easily to verify that conditions (B (3) hold.

1.5.2 Convergent SequenceAny x, x € X is called a point of X; d). A sequencéx,}
is said to beconvergent to X for any numbetre > 0 there is an integed such than > N
impliesd(x,, X) < €, denoted by limk, = x. We have known the following results.

n

Theorem 1.5.1 Any sequencgx,} in a metric space has at most one limit point.

Proof Otherwise, if{x,} has two limit points limx, — xand limx, — X/, then

n—oo N—oo
0 < d(x X) < d(Xn, X) + d(Xn, X)
for anintegen > 1. Letn — oo. thend(x, X') = 0. Thusx = X’ by the condition (1). [J

Theorem 1.5.2 Let (X; d) be a metric space. Ifx— X, and y, — Yo, then dX,,Yy,) —
d(Xo, Yo) When n— oo, i.e., dX,y) is continuous.

Proof Applying the condition (3), we get inequalities

d(Xn, Yn) < d(Xn, Xo) + d(Xo, Yo) + d(Yn, Yo)

and
d(Xo. o) < d(Xo. Xn) + d(Xn, Yn) + d(Yn, Yo)-
Whence,
1d(Xa, Yn) = d(Xo, Yo)I < d(%n, Xo) + d(Yn, Yo) — O
if N — oco. Thusd(X,, Yn) — d(Xo, Yo) whenn — co. U

For X, € X ande > 0, ane-disk aboutx, is defined by
B(Xo, €) = { X| x€ X, d(X, %) < €}.

If A c Xand there is al-disk B(xo, €) > A, we sayA is a bounded point set &.

Theorem 1.5.3 Any convergent sequenfeg} in a metric spacé€X; d) is bounded.



28 Chap.1 Preliminaries

Proof Let x, — X whenn — oo ande = 1. Then there exists an integdrsuch that
for any integem > N, d(X,, %) < 1. Denotec = maxd(Xs, Xo), d(Xo, Xo), - - - , d(Xn, X0)}.
We get that

d(Xn, %) <1+¢, n=12---Kk---.

LetR= 1+ c. Then{x,} C B(Xo, R). O

1.5.3 Completed SpaceLet (X; d) be a metric space anfg,} a sequence iX. If for any

numbere > 0, ¢ € R, there is an integeM such thah, m > N impliesp(X,, Xm) < &, then

we call{x,} a Cauchy sequenceA metric spaceX; d) is completedf its every Cauchy
sequence converges.

Theorem 1.5.3 For a completed metric spa¢; d), if an e-disk sequencgB,} satisfies

(1) BioB,>--->By,> -
(2) Iirr]nsn:O,

whereeg, > 0and B, = { x| x € X, d(X, X,) < &y} foranyintegernpn=1,2,-- -, thenﬁ B
only has one point. "

Proof First, we prove the sequen¢g,} consisting of centers of-disk B, is an
Cauchy sequence. In fact, by the condition (1)mif> n, thenx,, € B, c B,. Thus
d(Xm, Xn) < &n. According to the condition (2), for any positive number- 0, there
exists an integeN such thats, < ¢ if n > N. Whence, ifm, n > N, there must be that
d(xm, Xn) < &, i.€.,{X,} is a Cauchy sequence.

By assumption,X; d) is completed. We know th4k,} convergent to a point € X.
Letm — oo in the inequalityd(Xm, X,) < &,. We get thatd(x x,) < epforalln=12,2,---.
Whence X, € By, for all integersn > 1. Thusxg € ﬁl Bn.

i=

If there exists another pointe ﬁ Bn, there must bel(y, x,) < e, forn=12,2,--..
i=1
By Theorem 15.2, we have that

0 < d(y, %) =Ilim <limeg, = 0.
n n

Thusd(y, X)) = 0, i.e.,y = Xo. O
For a metric spaceX d) and a mapping : X — X on (X; d), if there exists a point
x* € X such that
X =X,
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thenx" is called &fixed pointof T. If there exists a constant 0 < n < 1 such that

p(TXTyY) < nd(x,y)
for Vx, y € X, thenT is called acontraction

Theorem 1.5.4 (Banach)Let (X; d) be a completed metric space and let X — X be a
contraction. Then T only has one fixed point.

Proof Choosexy € X. Let
Xl = T(XO)? X2 = T(Xl)’ ) Xn+1 = T(Xn), .

We prove first such a sequenpeg} is a Cauchy sequence. In fact, for integetsn,
m < n, by

d(T (Xm), d(Xm-1)) < nd(Xm, Xm-1)
72d(Xm-1, Xm-2) < -+ < 7"d(X4, Xo).

d(Xme1, Xm)

IA

we know that

IA

d(Xm, Xm=1) + A(Xme1, Xme2) + - - - + A(Xa-1, Xn)
(nm + 77m—1 R 77n—l) d(X]_, XO)

d(Xm, Xn)

IA

_ n-m

1
= "X d(x1, Xo)

n"d(X, %o)

-0 (ifm n— o).
l-7

BecauseX; d) is completed, there must exists a potht X such that, — x* when
n — co. Such ax* is in fact a fixed point off by

0

IA

d(xx, T(X)) < d(X', X3) + (%, T(X))
d(x’, %) + d(T (Xa-1), (X))
d(X", Xy) + 7d(X-1,X) = 0 (if n - o).

IA

Whence,T(x") = x*. Now if there is another point; € X such thatT(x]) = x{, by
l<np<land
d(x", xp) = d(T(x), T(xy)) < nd(X", x1)

There must bel(x*, X;) = 0, i.e.,x" = X]. Thus such a fixed point' is unique. O



30 Chap.1 Preliminaries

§1.6 SMARANDACHE MULTI-SPACES

1.6.1 Smarandache Multi-Space.Let X be a finite or infinite set. Aule or alaw on a
setX is a mappingz X X - - - X ¥ — X for some integers. Then amathematical spacis

n
nothing but a pairX; R), whereR consists those of rules @hby logic providing all these
resultants are still ilx.

Definition 1.6.1 Let (X1;Ry) and (Z,; R>) be two mathematical spaces. 3f # X, or
¥, = X, butR, # R are said to be dferent, otherwise, identical.

The Smarandache multi-space is a qualitative notion defolkxving.

Definition 1.6.2 Let(Z1; R1), (Z2; R2), - - -, (Zm; Rm) be m mathematical spacesﬁdrent

two by two. A Smarandache multi- spéf:es a unlonU % with rulesR = U Rion, i.e.,
i=1 i=1

the ruleR; on %; for integersl < i < m, denoted b(/Z, R).

1.6.2 Multi-Space Type. By Definition 16.2, a Smarandache multi-spa(® R) is
dependent on spaces, X,, - - -, Xy and rulersRy, Ry, - - -, Rm. There are many types of
Smarandache multi-spaces.

s —_ m —_ m
Definition 1.6.3 A Smarandache muIti-spaoéE;R) with = X andR =R is a
i=1 i=1
finite if each;, 1< i < mis finite, otherwise, infinite. | |

— — —_ m —_ m

Definition 1.6.4 A Smarandache multi-spaoéE;R) with = JZandR = |JRiis a
i=1 i=1
metric space if eacf;; R;) is a metric space, otherwise, a non-metric space.

Definition 1.6.5 A Smarandache multi- spacfE R) with = U % andR = U Ri is
countable if eacltZi; R;) is countable, otherwise, uncountable

1.6.3 Example. As we known, there are many kinds of spaces such as thoseabtpp
ical spaces, Euclidean spaces, metric spaces) classical mathematics and spacetimes
in physics. All of them can be combined into a Smarandachéispéce E; 7~€). We list
some of these Smarandache multi-spaces following.

Example 1.6.1 LetSl, So, - -+, Sy bemfinite or infinite sets. By Definition 6.2, we get

a multi-spaces = U Si. In fact, it is still a finite or infinite set.
i=1

Example1.6.2 LetT,, Ty, -- T bem partially order sets. By Definition.&.2, we get a

partially order multi-spacé = U T;. Infact, itis also a partially order set.
i=1
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Example 1.6.3 Let (Aq; 01), (A2 02), - - -, (Am; om) bemfinite or infinite algebraic systems
such as those of groups, rings or fields. By Definitiof2, we get an algebraic multi-
space(ﬂ; O) with A = iL_nlei andO = {o;; 1 <i < m}. It maybe with diferentm closed
operations.

Example 1.6.4 Let My, Mz, .-+, My, bem vector spaces. By Definition.@.2, we get a

vector multi-spacé = U M;. It may be a linear space or not.
i=1

Example 1.6.5 Let .7, %, --, 9, be m metric spaces. By Definition.6.2, we get a
—_~ m
metric multi-space”Z = |J Z. It maybe withm different metrics.
i=1

Example 1.6.6 Let Ql, 2,,---, 2, be m spacetimes. By Definition.6.2, we get a
multi- spacetlme? U Z;. It maybe used to characterize particles in a parallel useze
Example 1.6.7 Let ,%’1,,%’2, -, %mbem graV|tat|onaI electrostatic or electromagnetic
field. By Definition 16.2, we get a multi- fieldz = U ;. It contains partially gravita-
tional or electrostatic fields, or partially electromagnéelds

§1.7 REMARKS

1.7.1 The multi-space and neutrosophic set were introduced by&rdache in [Smaz2]
and then discussed himself in [SmaZ2]-[Sma5]. Indeed, thkrosophic set is a simple
way for measuring dierent degrees of spaces in a multi-space. Generally, weefared
a functiony : U Si — [0,1] with u(S;) # w(S;) if i # | for distinguishing each space
Si,1<i<n More conceptions appeared in Smarandache mathematidedannd in
[Dell].

1.7.2 There are many standard textbooks on groups, rings, vectoetic spaces, such
as those of [BiM1] and [NiD1] for modern algebra, [HoK1] fanéar algebra, [Wan1],
[Xum1] and [Rob1] for groups, [Xonl] for rings and [LiQ1] fanetric spaces. The
reference [BiM1] is an excellent textbook on modern algekith first edition in 1941.
The reader is inferred to these references [BiM1] and [Nifot kopics discussed in this
chapter, and then understand conceptions such as thosdtegroup, multi-ring, multi-
field, vector multi-space, metric multi-space, pseudotlilean space and Smarandache
geometry appeared in this book.



CHAPTER 2.

Graph Multi-Spaces

A graph G consisting of vertices and edges is itself a Smarandach&-mul
space, i.e., Smarandache multi-set if it is not an isolattkex graph and
vertices, edges distinct two by two, i.e., they are not equsiatus in consid-
eration. Whence, we are easily get two kinds of Smarandacitte spaces by
graphs. One consists of those of labeled graphs with arder bouquet®,
with n > 1. Another consists of those of graggossessing a graphical prop-
erty & validated and invalided, or only invalided but in multipietthct ways
onG. For introducing such Smarandache multi-space, graphgramih fam-
ilies, such as those of regular graphs, planar graphs andtbaian graphs
are discussed in the first sections, including graphicaleeces, eccentricity
value sequences of graphs. Operations, i.e., these uoionand Cartesian
product on graphs are introduced in Sectio® fdr finding multi-space rep-
resentations of graphs. Then in Sectiod,2ve show how to decompose
a complete graph or a Cayley graph to typical graphs, i.emar&ndache
multi-space consisting of these typical graphs. Sectidncadncentrates on
labeling symmetric graphs by Smarandache digital, Smacre symmet-
ric sequences and find symmetries both on graph structucesdligits, i.e.,
beautiful geometrical figures with digits.
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§2.1 GRAPHS

2.1.1 Graph. A graph Gis an ordered 3-tuple/E; 1), whereV, E are finite setsy # 0
andl : E — V x V, where each element M or E is alabelonG. The sets/ andE are
called respectively theertex seandedge sebf G, denoted by (G) andE(G).

An elementss € V(G) is incidentwith an elemene € E(G) if 1(e) = (v, X) or (X, V)
for anx € V(G). Usually, if (u, v) = (v, u), denoted byuvor vu € E(G) for ¥(u, V) € E(G),
thenG is called to be a graph without orientation and abbreviategdaphfor simplicity.
Otherwise, it is called to be a directed graph with an origoiau — v on each edge
(u,v). The cardinal numbers ¢¥(G)| and|E(G)| are called itorder andsizeof a graph
G, denoted byG| ande(G), respectively.

Let G be a graph. We can represent a gr&phy locating each vertex in G by a
point p(u), p(u) # p(v) if u# vand an edgel v) by a curve connecting poinfgu) and
p(v) on a planeR?, wherep : G — p(G) is a mapping from thé& to R?. For example,
a graphG = (V,E; 1) with V = {vi,V,, V3, V4}, E = {€1, &, €, €4, &5, €, €7, €, 9, €10} and
(&) = (vi,vi),1 <0 < 41(&) = (i, Vo) = (Vo, V1), (&) = (V3,Va) = (Va,V3),1(6) =
[(e7) = (Vo,V3) = (V3,V2), l(eg) = I(&) = (V4, V1) = (V1,V4) Can be drawn on a plane as
shown in Fig.21.1.

\') € 3

Fig. 2.1.1

InagraphG = (V,E; 1), forVee E, if 1(e) = (u,u), u € V, theneis called doop. For
Ve, & € E, if I(e)) = I1(e;) and they are not loops, thenande, are callednultiple edges
of G. A graph issimpleif it is loopless and without multiple edges, i.&g, e, € E(I),
I(e) # I(e) if &1 # & and forYe € E, if 1(e) = (u,V), thenu # v. In a simple graph, an
edge (1, v) can be abbreviated tov.

An edgee € E(G) can be divided into two semi-ares, g, if 1(€) = (u, V). Calluthe
root vertexof the semi-are,. Two semi-are,, f, are said to b&-incidentor e-incident
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if u=vore= f. The set of all semi-arcs of a graghis denoted b)X% (G).

A walk in a graphl’ is an alternating sequence of vertices and edggesy, Uy, €,
“++, €y, U, With & = (U, Uiy1) for 1 < i < n. The numben is thelength of the walk If
U; = Uny1, the walk is said to belosed andopenotherwise. For example, the sequence
V1€1V165V065V363V3E67 V06V, IS a walk in Fig.21.1. A walk is atrail if all its edges are
distinct and gpathif all the vertices are distinct also. A closed path is usuedlled a
circuit or cycle For exampley,V,oVav, andvyVoVaV,avy are respective path and circuit in
Fig.21.1.

A graphG = (V, E; 1) is connectedf there is a path connecting any two vertices in
this graph. In a graph, a maximal connected subgraph isdcatemponentA graphG
is k-connectedf removing vertices less thanfrom G remains a connected graph.

A graphG is n-partite for an integen > 1, if it is possible to partitio’/(G) into n
subsetd/;, Vs, - - -, V, such that every edge joints a vertexX\wifo a vertex olV;, j #1i, 1 <
i, ] < n. A complete n-partite graph @& such am-partite graph with edgasv € E(G) for
Yu e V;andv e Vj for 1 < i, j < n, denoted byK(py, p2,-- -, pn) if [Vi| = p; for integers
1 <i < n. Particularly, if|Vj| = 1 for integers 1< i < n, such a completa-partite graph
is calledcomplete grapland denoted b¥,. In Fig.21.2, we can find the bipartite graph
K(4,4) and the complete gragfs. Usually, a complete subgraph of a graph is called a
clique and its &-regular vertex-spanning subgraph also callédfactor.

K(4,4) Ks
Fig.2.1.2

2.1.2 Isomorphic Graph. Let G; = (V4, Ey; 1) andG, = (V,, Ep; 1) be two graphs.
They areidentical denoted byG; = G, if V; = V,, E; = E; andl; = I,. If there exists
al-1 mappings : E; —» E; and¢ : Vi — V, such thatli(e) = l,¢(e) for Ve € E;
with the convention thad(u, v) = (¢(u), ¢(v)), then we say thab; is isomorphicto G,
denoted bys; ~ G, and¢ anisomorphisnbetweers; andG,. For simple graphsly, Ho,
this definition can be simplified byu(v) € 11(E;) if and only if (¢(u), (V) € 1,(E>) for
Yu,v e V.
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For example, leG; = (V1, E1; 1) andG, = (V,, E;; 1,) be two graphs with
Vi ={vi,Vo,V3}, Ej1={e, e, e ey},
l1(€1) = (V1, V), 11(&2) = (Vo, V3), l1(€3) = (V3, V1), 11(€4) = (Va, V1)
and
Vo = {ug, U, Ug}, Ez = {fy, fy, f3, a4},
12(f1) = (U1, Up), 12(f2) = (U, Ug), 12(f3) = (Us, uy), 12(fa) = (U, U2),
i.e., the graphs shown in Fig123.

€4 f4
e e f f,
V3 Vo Us Uz
f3
G1 GZ
Fig. 2.1.3

Define a mapping : E; U V1 — EoU V2 by ¢(e1) = o, ¢(&) = fa, p(€3) = f1, d(es) = 4
and¢(v;) = u; for 1 < i < 3. It can be verified immediately that;(e) = I.¢(€) for Ve €
E.. Thereforeg is an isomorphism betwedd, andG,, i.e.,G; andG, are isomorphic.

If G, = G, = G, an isomorphism betweds, andG; is said to be amutomorphism
of G. All automorphisms of a grap@ form a group under the composition operation, i.e.,
#0(X) = ¢(0(x)) for x € E(G) | V(G), denoted by Aub.

2.1.3 Subgraph. A graphH = (Vi, Ej; l,) is asubgraphof a graphG = (V,E; ) if
V, CV,E; cEandl; : E; — V; xVi. We useH < G to denote thaH is a subgraph of
G. For example, graphs,, G,, Gs are subgraphs of the graghin Fig.21.4.

V] Uy u U U Uy
Uy 3 Us Uz Us Uy
G G 1 Gz G3

Fig. 2.1.4
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For a nonempty subset of the vertex seV(G) of a graphG, the subgrapkU) of G
inducedby U is a graph having vertex set and whose edge set consists of these edges
of G incident with elements df}. A subgrapiH of G is calledvertex-inducedf H ~ (U)
for some subsdt of V(G). Similarly, for a nonempty subsetof E(G), the subgrapkF)
induced byF in G is a graph having edge sétand whose vertex set consists of vertices
of G incident with at least one edge Bf A subgraptH of G is edge-inducedf H ~ (F)
for some subsef of E(G). In Fig.21.4, subgraph$&; andG, are both vertex-induced
subgraphs{us, us}), ({Up, Uz}) and edge-induced subgrapfiéus, us)}), ({(uy, Us)}). For
a subgrap of G, if [V(H)| = |[V(G)|, thenH is called aspanning subgrapbf G. In
Fig.21.4, the subgrapfs; is a spanning subgraph of the graph

A spanning subgraph without circuits is called@anning forestlt is called aspan-
ning treeif it is connected. A path is also a tree in which each vertexuzency 2 unless
the two pendent vertices valency 1. We definelémgthof P, to ben — 1. The following
characteristic for spanning trees of a connected graphlisavewn.

Theorem 2.1.1 A subgraph T of a connected graph G is a spanning tree if ang ibil
is connected and @) = [V(G)| — 1.

Proof The necessity is obvious. For itsfBaiency, sincdl’ is connected anB(T) =
IV(G)| — 1, there are no circuits ili. Whence T is a spanning tree. 0J

2.1.4 Graphical Sequence.Let G be a graph. FoYu € V(G), the neighborhoo®(u)
of vertexu in G is defined byNg(u) = {v|¥(u,Vv) € E(G)}. The cardinal numbgNg(u)|
is called thevalency of vertex in the graphG and denoted byg(u). A vertexv with
pc(V) = 0 is called ansolated vertexandpg(v) = 1 apendent vertexNow we arrange all
vertices valency o6 as a sequenges(u) > ps(v) > --- > ps(w). Call this sequence the
valency sequenagf G. By enumerating edges B(G), the following result

D, palu) = 2E(G)]
ueV(G)
holds. Letps,po,-- -, pp be a sequence of non-negative integers. If there existsphgra

whose valency sequenceds > p, > --- > p,, We say thap,, po, - - -, pp is agraphical
sequenceWe know results following for graphical sequences.

Theorem2.1.2(Havel,1955 and Hakimi, 1962) sequencps, p», - - -, pp Of NoN-negative
integers witho; > p, > -+ > py, P> 2,p1 > 1is graphical if and only if the sequence
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P2 — 1’p3 - 1’ s Ppr+l T 1’pp1+2’ L Pp is graphlcal

Theorem 2.1.3(Erdds and Gallai, 1960)A sequences, pa, - - -, pp Of NON-negative inte-
gers withp; > p, > --- > p, is graphical if and only ifi pi is even and for each integer
nl<n<p-1, i
n P
Zpi <n(n-1)+ Z min{n, p;}.
i=1 i=n+1
A graphG with vertex seV(G) = {vi, vy, - - -, Vp} and edge seE(G) = {e, &, - - -, &)

can be also described by that of matrixes. One such a matip is q adjacency matrix
AG) = [aj]pxq: Wherea; = |I7*(vi,vj)l. Thus, the adjacency matrix of a graghis
symmetric and is a,d-matrix having O entries on its main diagonalGfis simple. For
example, the adjacency mat#XG) of the graph in Fig.2.1is

AG) =

N O - -
o N - -
= ~ N O
= B O DN

2.1.5 Eccentricity Value Sequence. For a connected grapg, let x,y € V(G). The
distanced(x,y) from xtoy in G is defined by

ds(x,y) = min{ [V(P(x,y))| — 1| P(x,y) is a path connecting x and}
and theeccentricity g(u) of for u € V(G) is defined by
es(U) = max ds(u, X) | x € V(G)}.

A vertexu® is called anultimate vertexof vertexu if d(u, u*) = eg(u). Not loss of
generality, arrange these eccentricities of vertices in ordereg(vy), es(V2), - - -, €s(Vn)
with eg(vy) < es(Vo) < -+ < es(Wn), wWhere{vy, Vo, ---, vy} = V(G). The sequence
{ec(Vi)}1<i<s is called theeccentricity sequencd G. If {e;, &, - - -, &5} = {eg(V1), s(V2), - - -,
es(Vn)} ande; < & < --- < g, the sequencés}i.i<s is called theeccentricity value se-
guenceof G. For convenience, we abbreviate an integer sequéne€l + i}i<j<s.1 tO
[r,r+ 9.

Theradius r(G) anddiameter OG) of graphG are respectively defined byG) =
min{eg(u)lu € V(G)} and D(G) = maxXes(u)lu € V(G)}. Particularly, ifr(G) = D(G),
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such a grapl® is called to be @elf-centered graph.e., its eccentricity value sequence is
nothing but [(G), r(G)].
ForVx e V(G), define adistance decompositidiV;(X)}1<i<es(x Of G in root xby

G = V10 (P Vo) (D -+ D Vesta (-

whereV;(x) = { uld(x,u) =i, u € V(G)} for any integen, 0 < i < es(X). Then a
necessary and flicient condition for the eccentricity value sequence of sengpaph is
obtained in the following.

Theorem 2.1.4 A non-decreasing integer sequentgi<i<s iS a graphical eccentricity
value sequence if and only if

(1) ry <rg< 2ry;
(2) A(rizq,ri) =|rizs—ril=1foranyintegerj 1<i<s-1.

Proof If there is a grapl& whose eccentricity value sequencéri$i<i<s, thenry < rg
is trivial. Now we choose three filerent verticesu,, U,, uz in G such thateg(u;) = r;
anddg(up, U3) = rs. By definition, we know thatd(u;, u,) < r; andd(ug, us) < ry.
According to the triangle inequality on distance, we knoatth = d(u,, u3) < dg(Up, Up)+
ds(uy, U3) = dg(uy, Up) + dg(ug, Ug) < 2r;. Thusry < rg < 2ry.

Now if {g}1<i<s IS the eccentricity value sequence of a gr&ldefinea(i) = e,1—€,
1<i<n-1 Weassertthat @ A(i) < 1. If this assertion is not true, then there must
exists a positive integdt 1 <1 < n- 1 suchthair(l) = e,1 — g > 2. Choose a vertex
x € V(G) such thaies(X) = & and consider the distance decomposifidiix)}o<i<es(x Of
G inrootx.

Clearly,es(X) — 1 < es(u;) < eg(X) + 1 for any vertexu; € V1(G). Sincea(l) > 2,
there does not exist a vertex with the eccentrieg{x)+1. Whence, we get;(u;) < es(X)
for Yu; € Vi(X). Now if we have proved thads(u;j) < es(X) for Yu; € Vi(X), 1 < j <
es(X), we consider these eccentricity values of vertice¥jn(x). Letuj; € Vj.1(X).
According to the definition ofV;(X)}o<i<es(x, there must exists a vertex € V;(x) such
that @, uj;+1) € E(G). Consider the distance decompositivM(u;)}o<j<es ) Of G in root
u;. Notice thatuj,; € Vi(u;). Thereby we get that

es(Uj1) < es(uj) + 1< eg(X) + 1.

Because we have assumed that there are no vertices withdbmetecity es(x) + 1,
soes(uj.1) < es(X) for any vertexuj,; € Vi, 1(X). Continuing this process, we know that



Sec.2.1 Graphs 39

es(Y) < es(X) = g for any vertexy € V(G). But then there are no vertices with the
eccentricitye, + 1, contradicts to the assumption thet) > 2. Therefore O< A(i)) < 1
andA(ri;e, 1) =11<i<s-1.

For any integer sequené¢g}i<i<s With conditions () and {i) hold, it can be simply
written as{r,r + 1,---,r + s— 1} = [r,r + s— 1, wheres < r. We construct a graph with
the eccentricity value sequenger[+ s— 1] in the following.

Casel. s=1.

In this case{ri}i<i<s = [r,r]. We can choose any self-centered graph witB) = r,
for example, the circui€,. Clearly, the eccentricity value sequencedgfis [r, r].

Case2. s> 2.

Choose a self-centered gradlwith r(H) = r, x € V(H) and a pathPs = ugu; - - - Us_1.
Define a new grapts = Ps () H as follows:

V(G) = V(P [ JV(H)\{uol,  E(G) = E(P)|_Jixu} | E(H)\ {uauo}

such as the grapB shown in Fig.2L.5.

Us-1Us2 --- U U

G=P;(OH

Fig 2.1.5

Then we know thaég(X) =1, es(Us.1) =r + s— 1 andr < es(X) < r + s— 1 for all other
verticesx € V(G). Therefore, the eccentricity value sequence of G,isf s— 1]. This
completes the proof. O

For a given eccentricity value the multiplicity set N(I) is defined byNg(l) =
{ x| x e V(G),e(x) = | }. Jordan proved that th@dNg(r(G))) in a tree is a vertex or two
adjacent vertices in 1869. For a general graph, maybe aweeget the following result
which generalizes Jordan’s result on trees.
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Theorem 2.1.5 Let{ri}1<i<s be a graphical eccentricity value sequence|N§(r))| = 1,
then there must be# 1, i.e.,|Ng(r;)| > 2 for any integerj2 <i <s.

Proof Let G be a graph with the eccentricity value sequefrge<i<s andNg(r)) =
{Xo}, €s(X0) = r;. We prove thats(X) > es(Xo) for any vertexx € V(G) \ {X}. Consider
the distance decompositig¥;(Xo)}o<i<es(x,) Of G in root Xo. First, we prove thags(vi) =
es(Xp) + 1 for any vertex; € Vi(Xg). Sinceeg(Xo) — 1 < eg(v1) < es(Xo) + 1 for any vertex
v; € Vi1(Xo), we only need to prove thag(vy) > es(Xo) for any vertexv; € Vi(Xo). In fact,
since for any ultimate vertex; of X,, we haveds(Xo, Xj;) = €s(X). Soes(Xf) > es(Xo).
Notice thatNg(ez(Xo)) = {Xo}, X5 ¢ Ns(es(X0)). Consequentlyes(X3) > es(X). Choose
vi € Vi(Xp). Assume the shortest path fromto xj is Py = viV, - - - vsX§ andxp ¢ V(P1).
Otherwise, we already hawg(v;) > es(Xy). Now consider the distance decomposition
{Vi(XS)}OSiseG(xa) of G in root x{. We know that/s € Vi(xj). Thus we get that

es(%)) — 1 < es(Vs) < es(xg) + 1.

Thereforegs(vs) > es(x)) — 1 > €5(%o). BecauseNg(es(%o)) = {Xo}, SOVs ¢ No(€c(X0))-
This fact enables us finally getting theg(vs) > es(Xo)-

Similarly, choosevs, Vs 1, - - -, Vo t0 be root vertices respectively and consider these
distance decompositions &fin rootsvg, Vs 1, - - -, Vo, we find that

&(Vs) > €s(Xo),
ec(Vs-1) > €5(X0),

&c(v1) > e(Xo).

Therefore,eg(vi) = es(X) + 1 for any vertexv; € Vi(Xy). Now consider these vertices
in V,(Xo). Forvv, € V,(Xg), assume that, is adjacent tai, u; € Vi(X). We know that
es(V2) > es(U1)—1 > es(X0). SincelNg(es(%0))l = INs(1)l = 1, we gets(v2) > e5(Xo)+1.
Now if we have prove@s(vk) > es(Xo) + 1 for any vertexy € Vi(Xo) U Va(xo) U - -
U Vk(Xo) for 1 < k < es(Xg). Letvi,1 € Vki1(Xo) and assume that,, is adjacent tay in
Vi(Xo). Then we know thags (Vi,1) > es(U) — 1 > es(Xo). SincelNg(es(Xo))| = 1, we get
thateg (V1) = es(Xo) + 1. Thereforegs(X) > es(Xg) for any vertexx, x € V(G) \ {Xo}.
Thus, if[INg(r))| = 1, then there must ble= 1. O

Theorem 2L.5 is the best possible in some cases of trees. For examplkxd¢batric-
ity value sequence of a paB .1 is [r, 2r] and we have thaiNg(r)| = 1 and|Ng(K)| = 2
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forr+1 < k < 2r. But for graphs not being trees, we only found some examplesfying
INg(r1)| = 1 and|Ng(ri)| > 2. A non-tree graph with the eccentricity value sequencg][2
and|NG(2)| = 1 can be found in Fig.2 in the reference [MaL2].

§2.2 GRAPH EXAMPLES

Some important classes of graphs are introduced in theAfimltn

2.2.1 Bouquet and Dipole.In graphs, two simple cases is these graphs with one or two
vertices, which are just bouquets or dipoles. A gr&h= (Vp, Ep; Ip) with V, = { O },

E, = {e, &, -+, 6} andly(e) = (O, 0) for any integeli,1 < i < nis called abouquet

of n edges. Similarly, a grapBg; = (Vg, Eg; lg) is called adipole if Vy = {O4, Oy},
Eq={€1, €&, 8 €1, ", €, Esir1, -, Esuist} AN

(0,0y), ifl<ic<s
la(g) ={ (0,,0,), ifs+1<i<s+l,
(0,,0,), ifs+l+1<i<s+l+t

For exampleB; andD, 3, are shown in Fig.2.1.

D o=

Fig. 2.2.1

In the past two decades, the behavior of bouquets on sufe@@sated many mathemati-
cians on topological graphs. Indeed, its behaviors on sesfaimplify the conception of
surface. For such a contribution, a typical example is thssification theorem of sur-
faces. Thus by a combinatorial view, these connected surtwripr these connected
sums of projective planes are nothing but a bouquet on ssfac

2.2.2 Complete Graph. A complete graph K= (V,, E; |¢) is a simple graph witlv, =
Vi, Vo, -, W}, Ec = {8, 1 < i, ] < n,i # j}andlc(ej) = (v, V;). SinceK, is simple, it can
be also defined by a pai¥(E) with V = {v, V5, - - -, Vp} andE = {vivj, 1 <i, j < n,i # j}.
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The one edge grapk, and the triangle grapK; are both complete graphs.
A complete subgraph in a graph is calledliigue Obviously, every graph is a union
of its cliques.

2.2.3 r-Partite Graph. A simple graptG = (V, E; I) is r-partite for an integer > 1 if it

is possible to partitiol into r subsetsd/;, Vs, - - -, V; such that fove € E, 1(€) = (v, V))
forvi e Vi, v; € Vjandi # j,1 < i, <r. Notice that by definition, there are no edges
between vertices d¥;, 1 < i < r. A vertex subset of this kind in a graph is called an
independent vertex subset

Forn = 2, a 2-partite graph is also called#gpartite. It can be shown that graph is
bipartite if and only if there are no odd circuits in this grapAs a consequence, a tree or
a forest is a bipartite graph since they are circuit-free.

Let G = (V,E; ) be an r-partite graph and I8, V5, - - -, V; be itsr-partite vertex
subsets. If there is an edgg € E for Vv, € V; andV¥v; € Vj, where 1< i, j <r,i # |
such thatl(e) = (v,Vv;), then we callG a complete r-partite graphdenoted byG =
K(IVal, [Val, - - -, |Vi]). Whence, a complete graph is just a complete 1-partitehgré&r
an integem, the complete bipartite grapki(n, 1) is called astar. For a graphG, we
have an obvious formula shown in the following, which cope@sds to the neighborhood
decomposition in topology.

EG) = | ] Es(xNe(x).
xeV(G)
2.2.4 Regular Graph. A graphG is regular of valency kf pg(u) = k for Yu € V(G).
These graphs are also callkdegular. There 3-regular graphs are referred tocabic
graphs A k-regular vertex-spanning subgraph of a gr&pis also called &-factor ofG.

For ak-regular graplG, by klV(G)| = 2|E(G)|, thereby one ok and|V(G)| must be
an even number, i.e., there are koegular graphs of odd order with= 1(mod2). A
complete graplK, is (n — 1)-regular and a completepartite graphK(py, p2, - - -, pPs) Of
ordernwith p; = p, =--- = ps = pis (n— p)-regular.

In regular graphs, those of simple graphs with high symmateyparticularly im-
portant to mathematics. They are related combinatorics gibup theory and crystal
geometry. We briefly introduce them in the following.

Let G be a simple graph and a subgroup of Aub. G is said to beH-vertex tran-
sitive, H-edge transitiveor H-symmetricif H acts transitively on the vertex se{G),
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the edge seE(G) or the set of ordered adjacent pairs of vertexGoflf H = AutG, an
H-vertex transitive, arH-edge transitive or ail-symmetric graph is abbreviated to a
vertex-transitiveanedge-transitiver asymmetriqgraph.

Now letT be a finite generated group aBdc I'such that £ ¢ SandS™ = {x|x €
S} = S. A Cayley graph Caff” : S) is a simple graph with vertex s¥{G) = I" and edge
setE(G) = {(g, h)lg~th € S}. By the definition of Cayley graphs, we know tleCayley
graph CayI' : S) is complete if and only if S= '\ {11} and connected if and only if
I' =<(S).

Theorem 2.2.1 A Cayley graph Ca" : S) is vertex-transitive.

Proof ForVg € I, define a permutatioty onV(Cay( : S)) = I' by {4(h) = gh he
I. ThenZy is an automorphism of Cay(: S) for (h,k) € E(Cay( : S)) = h''lke S =
(Gh) (9K € S = (&(h), 4(K)) € E(Cay( : S)).

Now we know that/,,:(h) = (kh')h = k for Yh,k € . Whence, Cay{ : S) is
vertex-transitive. O

It should be noted that not every vertex-transitive grapa Gayley graph of a fi-
nite group. For example, the Petersen graph is vertexitnabut not a Cayley graph
(see[CaM1], [GoR1 and [Yapl] for details). However, eveeytex-transitive graph can
be constructed almost like a Cayley graph. This result istdugabidussi in 1964. The
readers can see [Yapl] for a complete proof of this result.

Theorem 2.2.2 Let G be a vertex-transitive graph whose automorphism grsuj Let

H = A, be the stabilizer of & V(G). Then G is isomorphic with the group-coset graph
C(A/H,S), where S is the set of all automorphisms x of G such that(b)) € E(G),
V(C(A/H,S)) = A/H and EC(A/H, S)) = {(xH,yH)|xty € HS H}.

tetrahedron cube

Fig. 2.2.2

2.2.5 Planar Graph. Every graph is drawn on the plane. A graplpianarif it can be
drawn on the plane in such a way that edges are disjoint expessibly for endpoints.
When we remove vertices and edges of a planar g&afilom the plane, each remained
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connected region is calledfaceof G. The length of the boundary of a face is called its
valency Two planar graphs are shown in Fi@22.

For a planar grapt, its order, size and number of faces are related by a welivkno
formula discovered by Euler.

Theorem 2.2.3 let G be a planar graph witlp(G) faces. Then
IGl - &(G) + ¢(G) = 2

Proof This result can be proved by induction efG). See [GrT1] or [MoT1] for a
complete proof. O

For an integes, s > 3, ans-regular planar graph with the same lengfior all faces
is often called ang r)-polyhedronwhich are completely classified by the ancient Greeks.

(3,3) (3,4) (4,3)
tetrahedron hexahedron octahedron
(3,5) (5,3)
dodecahedron icosahedron
Fig2.2.3

Theorem 2.2.4 There are exactly five polyhedrons, two of them are showngr2R2.3.

Proof Let G be ak-regular planar graph withfaces. By definition, we know that

IGlk = ¢(G)l = 2¢(G). Whence, we get thaB| = ngG and¢(G) = @ According
to Theorem 2.3, we get that
26(G) £(G) + 2¢(G) _o
k I
ie., )
&(G) =
E -1+ g
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Whence% + TZ — 1> 0. Sincek, | are both integers arkd> 3, | > 3, if k > 6, we get

+--1=0,

wIN
(21N \V]

2
+T—1S

1IN

contradicts to thaé - TZ —1 > 0. Thereforek < 5. Similarly,| < 5. So we have
3 <k<5and3< | < 5. Calculation shows that all possibilities fd¢, () are k1) =
(3,3),(3,4),(3,5),(4,3) and (53). The (33), (34), (35),(4,3) and (53) polyhedrons
are shown in Fig.2.3. O

An elementary subdivisioon a graplG is a graph obtained froi@ replacing an edge
e = uv by a pathuwy, where,w ¢ V(G). A subdivisionof G is a graph obtained fror®
by a succession of elementary subdivision. A gribis defined to be Aomeomorphism
of G if eitherH ~ G or H is isomorphic to a subdivision db. Kuratowski found the
following characterization for planar graphs in 1930. Eeaicomplete proof, see [BoM1]
or [ChL1] for details.

Theorem 2.2.5 A graph is planar if and only if it contains no subgraph homeophic
with Ks or K(3, 3).

2.2.6 Hamiltonian Graph. A graphG is hamiltonianif it has a circuit containing all
vertices ofG. Such a circuit is called hamiltonian circuit Similarly, if a path containing
all vertices of a grapks, such a path is calledt@amiltonian path

For a given graplé andV,, V, € V(G), define aredge cut &(V1, Vo) by

EG(V]_,VZ) = { (U, V) € E(G) |ue Vi,V e V2}

Then we have the following result for characterizing haomi&n circuits.

Theorem 2.2.6 A circuit C of a graph G without isolated vertices is a hamiian circuit
if and only if for any edge cu, |E(C) N E(C)| = 0(mod2) and|E(C) N E(C)| = 2.

Proof For any circuitC and an edge cu, the times crossing as we travel along
C must be even. Otherwise, we can not come back to the initiegxeWhence, iC is a
hamiltonian circuit, thefE(C) N E(C)| # 0. So|E(C) N E(C)| = 2 and|E(C) N E(C)| =
0(mod2) for any edge cut.

Conversely, if a circuiC satisfie§E(C) N E(C)| > 2 and|E(C) (N E(C)| = O(mo2)
for any edge cuf, we prove thaC is a hamiltonian circuit 06. In fact, if V(G) \ V(C) #
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0, choosex € V(G) \ V(C). Consider an edge clg({x}, V(G) \ {X}). Sincepg(X) # O,
we know thaiEg({x}, V(G) \ {x})| = 1. But sinceV(C) N(V(G) \ V(C)) = 0, there must
be|Ec({x}, V(G) \ {x}) N E(C)| = 0, contradicts to the fact th&(C) " E(C)| > 2 for any
edge cuC. ThereforeV(C) = V(G) andC is a hamiltonian circuit 0G. O

Let G be a simple graph. Thdosureof G, denoted byC(G) is defined to be a graph
obtained fronG by recursively joining pairs of non-adjacent vertices waealency sum
is at leastG| until no such pair remains. In 1976, Bondy and @faV proved a very useful
theorem for hamiltonian graphs in [BoC1], seeing also [Bokéllowing.

Theorem 2.2.7 A simple graph is hamiltonian if and only if its closure is hdamian.
This theorem generalizes Dirac’s and Ore’s theorems sanetiusly following:

Dirac (1952): Every connected simple graph G of orden3 with the minimum
valency 7 is hamiltonian.

Ore (1960): If G is a simple graph of order & 3 such thajg(u) + ps(v) > n for all
distinct non-adjacent vertices u and v, then G is hamiltania

In 1984, Fan generalized Dirac’s theorem to a localized fanah proved that:

Let G be a2-connected simple graph of order n. If the condition

NI >

maxXpg(U), pc(V)} >

holds forvVu, v € V(G) provided &(u, v) = 2, then G is hamiltonian.

After Fan’s paper [Fanl], many researches concentratedeakening Fan’s condi-
tion and found new localized conditions for hamiltoniangirs. For example, the next
result on hamiltonian graphs obtained by Shi in 1992 is sudsalt.

Theorem 2.2.8(Shi, 1992) Let G be a2-connected simple graph of order n. Then G
contains a circuit passing through all vertices of vale]acg'.

Proof Assume the assertion is false. @&t viV, - - - vy be a circuit containing as
many vertices of valencyg as possible and with an orientation on it. Fwe V(C),
vt denotes the successor andthe predecessor afonC. SetR = V(G) \ V(C). Since
G is 2-connected, there exists a path length than 2 connebtingertices ofC that is
internally disjoint fromC and containing one internal vertexof valency g at least.
AssumeC andP are chosen in such a way that the lengtiPais small as possible. Let
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Nr() = No(x) R, Ne(x) = Na() NC, N&(X) = {vv~ & Ne(x)} andNg(x) = {wV* &
Ne (X))}

Not loss of generality, we assume € V(P) (N V(C). Letv; be the other vertex in
V(P) N V(C). By the wayC was chosen, there exists a vertgxith 1 < s < t such that
po(Ve) > g andp(v;) < g fori<i<s

If s> 3, by the choice o€ andP the sets

Ne(Vs) \ {vi), Ne(X), Nr(Vs), Nr(X), {X,Vs_1}

are pairwise disjoint, which implies that

>
\%

INc(Vs) \ {va}] + INc(X)] + INR(Vs)l + INR(X)] + [{X, Vs-1}]

pe(Vs) +pc(X) +1>n+1,

a contradiction. Ifs = 2, then the sets
Nc(Vs), Ne(X), Nr(vs), Nr(X), {x}

are pairwise disjoint, which yields a similar contradictio O

There are three induced subgraphs shown in R2gi2which are usually used for
finding local conditions for hamiltonian graphs.

K13 Z; Z5

Fig 2.2.4

For an induced subgraph of a simple graphG, a condition is called docalized
condition O (1) if d.(x, y) = | implies thatmaXps(X), pc(y)} = |G7| for¥x,y € V(L). Then

we get the following result.

Theorem 2.2.9 Let G be a2-connected simple graph. If the localized condition(Z)
holds for induced subgraphs+ K, 3 or Z, in G, then G is hamiltonian.
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Proof By Theorem 2 8, we denote by (G) the maximum length of circuits pass-
ing through all vertlces —. Similar to the proof of Theorem.27, we know that for
Xy € V@), if ps®) 2 5, pel) = g andxy ¢ E(G), thency(GUixy) = c3(G).
Otherwise, ifcs (G U{xy}) >n Cy(G), there exists a circuit of lengtty (G (J{xy}) and pass-
ing through all vertices > Let Cy be such a circuit an@s = XXX - - - XyX With
s = cg(GU{xy}) — 2. Notice that

No0) () (V@) \ Vv (C (6 o)) = 0
and

No() () (V@ \V(Cs (G Jixw))) = o.
If there exists an integerl < i < s, xx € E(G), thenx_,y ¢ E(G). Otherwise, there is
a circuitC’ = XX X41 -+ - XsyX_1X_2 - - - X in G passing through all verticesg with length
¢y (G U{xy}), contradicts to the assumption tlea{G (J{xy}) > c5(G). Whence,

pc(X) + pa(y) < =n-1,

also contradicts to thats(x) > g andpg(y) > g Thereforecy (G U{xy}) = ¢y(G) and
generallycy(C(G)) = ¢y (G).

Now letC be a maximal circuit passing through all vertlzeg in the closureC(G)
of G with an orientationC. According to Theorem .2.7, if C(G) is non-hamiltonian,
we can choosél be a component i€(G) \ C. DefineN¢(H) = (U Ne) (X)) N V(C).
SinceC(G) is 2-connected, we get thiN:(H)| > 2. This enables one to choose vertices
X1, X2 € Nc(H), X1 # X andx; can arrive a, alongf:). Denote byxlf:)xz the path from
X1 10 Xo onC and x28x1 the reverse. LelP be a shortest path connectirg x, in C(G)
and

Uz € Ne) (x0) (| V(H) [ V(P), Uz € Ne () | V(H) [ V(P).

Then
ECOGN [ ) (e x>} Ec (tun, tal, 3.5, %, 1) = 0
and({x;,xl, xI,u1}> % Kyzo0r <{x5, Xo, xg,u2}> # K, 3. Otherwise, there exists a circuit
longer tharC, a contradiction. We need to consider two cases following.
Casel. <{>q, X1, X7, u1}> # Kiz and({xg, X2, X5, u2}> # K.
In this casex; x; € E(C(G)) andx; x5 € E(C(G)). By the maximality ofC in C(G),

we have two claims.
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Clam1l u =u =u.
Otherwise, leP = x;uyy; - - - yjUp. By the choice oP, there must be

{XT, X1, X7, Up, Y1}y = Zp and ({X5, X2, X3, Uz, Wi}) = Z

SinceC(G) also has th®, (2) property, we get that

NI S

, maXpce)(X127), pce)(Uz)} >

NI >

maxXpce)(X,), Pce)(U1)} =

Whencepc) (X)) = g,pqc;)(xg) > g andx;x; € E(C(G)), a contradiction.
Claim 1.2 x;X% € E(C(G)).
If xi% ¢ E(C(G)), then({x;,xl, Xt, U, x2}> ~ Z,. Otherwisex;x; € E(C(G)) or
XX; € E(C(G)). But then there is a circuit
Ci= ng:)xgxzuxlffxgx; orC, = ng:) xluxzxjffxgxg,
contradicts the maximality a€. Therefore, we know that

XL, Xa, X7, U, Xo}) = Zo.

By the propertyD.(2), we get thapc)(X]) > g

Similarly, consider the induced subgra(){rxg,xz,@,u, x2}>, we get thaje)(%;)
> g Whence x;x; € E(C(G)), also a contradiction. Thereby we know the structure of
G as shown in Fig.2.5.

2

Fig 2.2.5

By the maximality ofC in C(G), it is obvious thatx;~ # Xxj. We construct an
induced subgraph sequen&}i<i<m, M = |V(x1§x§)|—2 and prove there exists an integer
r,1 <r <msuchthaG, =~ 7.
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First, we consider the induced subgraph= <{x1, U, Xp, X

X I Gy = 75, take
r = 1. Otherwise, there must be

(X%, X %, XU X e} [ E(C(G)) # 0.

If x;x; € E(C(G)), or x;"x € E(C(G)), or x;"u € E(C(G)), there is a circuiC; =
x;@x;xgﬁxluxzxg, orC, = xg‘ﬁxgxgﬁqxgxluxzx;, orCs = x;&x{x;xluxi‘. Each
of these circuits contradicts the maximality©f Therefore x;~x; € E(C(G)).

Now Ietxf(?xz+ = X Y1Y2- - YmX5, Whereyo = X, y1 = X~ andyy, = X3 *. If we have
defined an induced subgrafi for any integek and have gottegx; € E(C(G)) for any
integeri, 1 <i < kandyi,1 # X5, then we define

Gir1 = {Yie1, Yoo X1, X2, U}) .

If Gi1 = Zo, thenr = k+ 1. Otherwise, there must be

{YKU, VX2, YU, Yie1 X2, Yier1 X1} ﬂ E(C(G)) # 0.

If yu € E(C(G)), or yixe € E(C(G)), or i1t € E(C(G)), or Yiraxe € E(C(G)),
there is a circuilCg = yk8>qx18yk_1x1uyk, orC; = ykﬁxgxgﬁxixlﬁ Y 1 X1UXoYk, OF
Cs = yk+1<5>qx;<534<x1u34<+1, orCy = yk+1<5x2+xg<5>qx1<5ykx1u %VYki1. Each of these
circuits contradicts the maximality &. Therebyyy,1%; € E(C(G)).

Continue this process. If there are no subgraphi&i<i<m isomorphic toz,, we
finally getx;xj* € E(C(G)). But then there is a circull,o = x18><§+xlux2x; 8>qx1 in
C(G). Also contradicts the maximality & in C(G). Therefore, there must be an integer
r,1<r <msuchthatG, ~ Z,.

Similarly, Ietxgﬁx{ = X012 -- X, Wheret = |V(x§8>q)| -2, = %,;" =
X2,z = X;*. We can also construct an induced subgraph sequU&ikei: and know that
there exists an integér 1 < h < t such thaG" ~ Z, andx,z € E(C(G)) for0 <i < h-1.

Since the localized conditio®, (2) holds for an induced subgragh in C(G),
we get that mafpcg)(U), pe@)(Yr-1)} = r_21 and maXoc()(U), pc)(Zn-1)} = g Whence
pce)(Yri-1) = g pc©)(Zn-1) > r_21 andy;_1z,_, € E(C(G)). But then there is a circuit

Ci1 = Yi-1C X% C 2 2XUXyYr—2G % X C Z1Yr 1

in C(G), where ifh = 1, orr = 1, x§62h_2 =0, or yr_zfl)xi = (. Also contradicts the
maximality ofC in C(G).
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Casez <{XI? X1, XI? ul}> * K1.3’ <{X£? X2, X;’ u2}> = K1.3 or <{XI? X1, XI’ U1}> = K1.3’ bUt
<{X§, X2, X3, U2}> #* Ki3
Not loss of generality, we assume that

X, X1, X7, U} # Kis, (%G, X2, X5, Up}) =~ Ky 3.

Since each induced subgraph; in C(G) possesseB, (2), we get that maycc)(u).
pce) ()} = g and maxoc()(U), oc@) (%)} = g Whenceoc) (%) = g pcE) (%) = g
andx; x5 € E(C(G)). Therefore, the discussion of Case 1 also holds in this and yields
similar contradictions.

Combining Case 1 with Case 2, the proof is complete. O

LetG, Fq,Fy, -+, Fc bek + 1 graphs. If there are no induced subgraph&a$o-
morphic toF;,1 < i < k, thenG is called{F, F,,-- -, Fx}-free We immediately get a
consequence by Theoren2®.

Corollary 2.2.1 Every2-connectedKj, 3, Z,}-free graph is hamiltonian.

For a graphG, u € V(G) with pg(u) = I, let H be a graph witH pendent vertices
V1, Vo, - - -, V. Define a splitting operatat : G — G’ onu by

V(G"Y) = (VG)\ {u) |J(V(H) \ (va, v, -, ),
E(G") = (E(G) \ {ux € E(G),1<i <1}
| JEM) vy e E(H), 1<i < {Jixy, 1<i <),

Such numberis called thedegree of the splitting operat@randN(#(u)) = H \ {xy;, 1 <
I < |} thenucleus of} . A splitting operator is shown in Fig.26.

X1 X1

Fig 2.2.6

Erdds and Rényi raised a question in 19@Mwhat model of random graphs is it true
that almost every graph is hamiltoniarP6sa and Korshuuov proved independently that
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for some constart almost every labeled graph withvertices and at leastlogn edges
is hamiltonian in 1974. Contrasting this probabilisticuigsthere is another property for
hamiltonian graphs, i.e., there is a splitting operat@uch thatG?" is non-hamiltonian
for Yu € V(G) of a graphG.

Theorem 2.2.10 Let G be a graph. Foiu € V(G), ps(u) = d, there exists a splitting
operator of degree d on u such that’® is non-hamiltonian.

Proof For any positive integer, define a simple grap®; by V(©;) = {X, Vi, Z, U}
andE(®;) = {xyi, Xz, ¥iz, Yiu;, zu;}. For integers, j > 1, the point produo®; © ©; of ©;
ando; is defined by

V(©,00) = V(@) | JV(©)\{uj},
E© 00;) = E©)|_JE©)) Jixy;, %z} \ 1y, xi2).

Now letHy be a simple graph with

V(Hg) = V(010 0,0 - Oq,1) U{Vl, Vo, -+, Vdl,
E(Ha) = E(©10 0,0 -+ Og.) |_J{vath, Vau, -, Va).

Thend : G — G’ is a splitting operator of degrekas shown in Fig.2.7.

Vi Vo Vd

X1 Xd+1
Ug U Uqg

Fig 2.2.7

For any graptG andw € V(G), pc(w) = d, we prove thaG’™ is non-hamiltonian.
In fact, If G’™ is a hamiltonian graph, then there must be a hamiltonian Pathu;)
connecting two verticesi, u; for some integers, j,1 < i,j < d in the graphHq \
{v1,Vo,---,Vgq}. However, there are no hamiltonian path connecting vetice; in the
graphHg \ {v1,Vo,---,Vvq} for any integeri, j,1 < i,j < d. Therefore,G’™ is non-

hamiltonian. O
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§2.3 GRAPH OPERATIONS WITH SEMI-ARC AUTOMORPHISMS

For two given graph&; = (V1.E1; 11) andG, = (V,, E; 1), there are a number of ways
to produce new graphs fro@; andG,. Some of them are introduced in the following.

2.3.1 Union. A union G, |J G, of graphsG; with G, is defined by

V(Gy U Gy) =Vi U Vo, E(Gy U Gy) = E4 U Ez, 1(E1 U E2) = 11(E1) U 12(E2).

A graph consists ok disjoint copies of a graphl, k > 1 is denoted by = kH. As an

5
Ke = U Sy
-1

for graphs shown in Fig.3.1 following

3 3 4 4
4
5 Léi/ﬁ ;Z;/ﬁ ////5
1 62 6 3 6 4
815 514 513 S12

Fig. 2.3.1

example, we find that

S1.1

and generallyK,, = U Sii. Notice thatkG is a multigraph with edge multiple for any
integerk, k > 2 and a S|mple grapB.

C3 C4 C3 + C4

Fig 2.3.2

2.3.2 Complement and Join. A complemen6 of a graphG is a graph with vertex set
V(G) such that vertices are adjacen@rif and only if these are not adjacent® A join
G; + G, of G, with G, is defined by

V(Gl + Gz) = V(Gl) U V(Gz),
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E(G1 + Gy) = E(G1) U E(Gz) U{(U V)lu € V(Gy), v € V(Gy)}
1(G1 + G2) = 1(G1) U H(G2) Ut (U, V) = (U, V)lu € V(Gy), v € V(Gy)}.

Applying the join operation, we know th#&t(m, n) ~ K, + K,. The join graph of circuits
Cs andC, is given in Fig.23.2.

2.3.3 Cartesian Product. A Cartesian product Gx G, of graphsG; with G, is defined
by V(G; x Gy) = V(G;) x V(G;) and two vertices|y, uy) and {,V,) of G; x G, are
adjacent if and only if eithew; = v; and (y, v») € E(G;) or u, = v, and (g, v1) € E(Gy).
For exampleK; x Pg is shown in Fig.23.3 following.

u
K 1 2 3 4 5 6
2
v Pe
Ug U Uz Uy Us Us
Vi1 Vo V3 Vg Vg Vg
K2 X P6
Fig.2.3.3

2.3.4 Semi-Arc Automorphism. For a simple grapl& with n vertices, it is easy to
verify that AuG < S,,, the symmetry group action on thaseertices ofG.

G AutG order
P Z, 2
Cn D, 2n
Kn S, n!
Kmn(m # n) SmX Sy min!
Knn So[Sh] 2n!?
Table 2.3.1

But in general, the situation is more complex. In Tabhl@ P2, we present automorphism
groups of some graphs. For generalizing the conceptiontofarphism, the semi-arc
automorphism of a graph is introduced in the following.
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Definition 2.3.1 A one-to-one mappingon x%(G) is called a semi-arc automorphism of
a graph G ifé(e,) and£(f,) are wincident or e-incident if g and f, are v-incident or
e-incident forve,, f, € X% G).

All semi-arc automorphisms of a graph also form a group, tezhby Aut%G.The
Table 23.2 following lists semi-arc automorphism groups of a few walbwn graphs.

G Aut%G order
Kn Sh n!
Knn S,[Sh] 2n!?
Bn Sh[S,] 2"n!
Dono S, X Sy 2n!
Drxi(K # 1) | Sa[Sk] X Snx So[S] | 2¢'niK!I!
Dnkk S, % Sp % (So[Sk])? | 2%+ niki?

Table 2.3.2

In this table,Dg, is a dipole graph with 2 verticesy multiple edges and,, is a
generalized dipole graph with 2 verticesnultiple edges, and one vertex wklibouquets
and another] bouquets. This table also enables us to find some usefuhiatton for
semi-arc automorphism groups. For example,%Kut: AutK, = S, Aut% B, = Si[S)]
but AutB, = S,,, i.e., Aut% B, # AutB, for any integemn > 1.

For Vg € AutG, there is an induced acticgh% Xy G) - Xy (G) defined by

Ve, € X1(G),  9(e) = 9(&gw-

All such induced actions 0)(% (G) by elements in AU are denoted by AG]?.
The graphB,, shows that AulztG may be not the same as AJt. However, we geta
result in the following.

Theorem 2.3.1 For a graph G without loops,
Aut; G = AutG|?.

Proof By the definition, we only need to prove that Mf% € Aut%G, & = §%|G €
AUtG and¢; = £Z. In fact, Lete®, f2 € X1 (G) with o, e € {+, -}, wheree = uv € E(G),
f = xy e E(G). Now if

§1(e) = 17,
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by definition, we know tha§% () = 1. Whenceg% (e) = f. That is,§%|G € AutG.
By assumption, there are no loopsGn Whence, we know thq’c%k; = lauc If and
only if §1 = laut, G- Sogé is induced b)gf% lc on X% (G). Thus,

Aut; G = AUtG|Z. O

We have know that Al;zlan # AutB, for any integen > 1. Combining this fact with
Theorem 21.3, we know the following.

Theorem2.3.2 AutyG = AutGl? if and only if G is a loopless graph.

§2.4 DECOMPOSITIONS

2.4.1 Decomposition. A graphG can be really represented as a graph multi-space
by decomposing it into subgraphs. for example, the comgeiphKg with vertex set
{1,2,3,4,5,6} has two families of subgrapH€s, C3, C3, P}, P3, P3} and{Ss, S14, S13,
S15,S11}, such as those shown in Figd2l and Fig.24.2.

1 2 1 2 3 1 2
5 3 »3  6¢
5 4 4 5 6 5 4
Co LR P C c
Fig 2.4.1
3 4 3 4 5 6
4 5
2
5 5
1 6 > 6 3 6 4 6 3
S1.5 S1.4 81.3 Sl.Z Sl.l

Fig 2.4.2
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Whence, we know that

E(Ke) = E(Ce) |JECH | JECH | JEPD | JEPD | JEP),
E(Ke) = E(S1s) | J E(S14) | JE(S19) | JE(S12) | J E(S1a).
These formulae imply the conception of decomposition opgsa
Generally, letG be a graph. Adecompositiorof G is a collection{H;}<i<s of sub-

graphs ofG such that for any integerl < i < s, H; = (E;) for some subsets; of E(G)
and{E;j}i<i<s Is a partition ofE(G), denoted by

G=HPHP - PHs

By definition, we easily get decompositions for some welbkn graphs such as

n k m n
B ={_JB1(0), Dimn=(_JB:(O) | J(_JK) [ J()Br(O2)).
i=1 i=1 i=1 i=1

whereV(B,)(0,) = {04}, V(B1)(0,) = {O,} andV(K;) = {O4, O,}. The following result
is obvious.

Theorem2.4.1 Any graph G can be decomposed to bouquets and dipoles, irWhés
seen as a dipole § o.

Theorem 2.4.2 For every positive integer n, the complete graph.Kcan be decomposed
to n hamiltonian circuits.

Proof Forn = 1, K3 is just a hamiltonian circuit. Now let > 2 andV(Kzn,1) =
{Vo, V1, V2, - - -, Von}. Arrange these vertices, v, - - -, Vo, On vertices of a regularr2gon
and placev, in a convenient position not in theayon. Fori = 1,2, ---, n, we define the
edge set oH; to be consisted ofyV;, VoV:i and edges parallel tgv;,, or edges parallel
tovi_1Vi;1, Where the subscripts are expressed moduolorhen we get that

Kot = Hi EP H - €D H
with eachH;, 1 < i < n being a hamiltonian circuit
VOViVit1Vic1Vis1Vi—2 * * * Vinti—1Vnti+1Vi+i Vo O
Theorem 24.2 implies thatK,,,; = iLnJl H; with

Hi = VoViViz1Vi1Vie1Viz2 - * * Vinsi—1Vinsi+1Vin+i Vo-
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2.4.2 Factorization of Cayley Graph. Generally, every Cayley graph of a finite group
I" can be decomposed into 1-factors or 2-factors in a natunakivawn in the following.

Theorem 2.4.3 Let G be a vertex-transitive graph and let H be a regular solgr of
AutG. Then for any chosen vertexxxe V(G), there is a factorization

D wy @[ s w),

YeNG (X).[H(xy) =1 yeNG (X).[H(xy)|=2

G =

for G such tha(x,y)" is a2-factor if |Hy| = 1 and al-factor if |[Hy| = 2.

Proof We prove the following claims.

Claim 1. ¥x € V(G), x" = V(G) and H, = 1.

Claim 2. For Y(x,Y), (u,w) € E(G), (x,Y)" N(u,w)"' = 0 or (x,y)™ = (u, w)".
Claims 1 and 2 are holden by definition.

Claim 3. ForV¥(x,y) € E(G),[Hxyl=1 or 2.

Assume thatHy)| # 1. Since we know that(y)" = (x,y), i.e., X", y") = (x,y) for
any elemenh € H,). Thereby we get that" = x andy" = y or X" = y andy" = x. For
the first case we knoW = 1, by Claim 1. For the second, we get thét = x. Therefore,
h? =1y .

Now if there exists an elemet € H,)\{14,h}, then we getx = y = x" and
y? = x = y". Thereby we geg = h by Claim 1, a contradiction. So we get thiiy,,| = 2.

Claim 4. For any(x,y) € E(G), if [Hxy!| = 1, then(x, y)" is a 2-factor.

Becausex! = V(G) c V(<(x,y)”>) c V(G), soV(<(x, y)H>) = V(G). Therefore,
(x,y)" is a spanning subgraph Gf

SinceH acting onV(G) is transitive, there exists an elemérg H such thak" = y. It
is obvious thab(h) is finite ando(h) # 2. Otherwise, we havél ()| > 2, a contradiction.
Now (%, y)™ = xx¥'x"...x™"'x is a circuit in the graptG. Consider the right coset
decomposition oH on ¢h). SupposeH = sz (ha, (hyaN<hya; =0, if i # j, and
= 14. =

Now let X = {a;, @, ...,as}. We know that for anyg,b € X, (<hya) "(Khyb) = 0
if a # b. Since &y)™ = ((x,y)™?2 and & y)™* = ((x,y)™)" are also circuits, if
V(<(x, y)<h>a>) ﬂV(((x, y)<“>b>) # 0 for somea,b € X,a # b, then there must be two
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elementsf, g € (h) such thatx’® = x3 . According to Claim 1, we get thdta = gb, that
isab™ € (hy. So¢hya = (h)b anda = b, contradicts to the assumption tlaag b.
Thereafter we know thatx(y)" = | (x,y)™? is a disjoint union of circuits. So
aeX

(x,y)" is a 2-factor of the grapB.

Claim 5. Forany(x,y) € E(G), (x,y)" is an1-factor if |[H()| = 2
Similar to the proof of Claim 4, we know thM(((x, y)H>) = V(G) and & y)"is a
spanning subgraph of the gra@n
Let Hxy = {1u,h}, wherex" = y andy" = x. Notice that & y)? = (x y) for
Ya € Hy). Consider the coset decompositiortbbnHyy,), we know thaH = U Hxy) b
, WhereHy )b N Hxyb; = 0if i # j,1<i,j <t. NowletL = {Hyybi, 1 < < t}. We
get a decomposition

Y=oy

bel

for (x,y)"'. Notice that ifb = Hxybi € L, (x,y)? is an edge of. Now if there exist two
elementg,d € L, c = Hyy f andd = H)0, f # gsuch that/({((x, y)*)) N V(<(x, y)d>) #
0, there must ba’ = x9 orx" = y9. If x" = x9, we getf = gby Claim 1, contradicts to the
assumption that # g. If X' = y9 = x"9, whereh € Hy,, we getf = hgandfg™ € Hy),
SoHxy) f = Hxyd. According to the definition of, we getf = g, also contradicts to the
assumption that # g. Therefore, %, y)! is an 1-factor of the grap®.

Now we can prove the assertion in this theorem. AccordingainC1- Claim 4, we
get that

G=

D (quaa( ) (qu.

YeNG(X),[H(xy) =1 YeNG (X),[H(xy) =2

for any chosen vertex, x € V(G). By Claims 5 and 6, we know thaxk,(y)" is a 2-factor
if [Hxyl = 1 and is a 1-factor ifH«,)| = 2. Whence, the desired factorization f8ris
obtained. O

For a Cayley graph Cal(: S), by Theorem 2.2 we can always choose the vertex
X = 1r andH the right regular transformation group bnAfter then, Theorem 2.3 can
be restated as follows.

Theorem 2.4.4 LetT be a finite group with a subset S™* = S,1 ¢ S and H is the
right transformation group of. Then there is a factorization
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G=( P @ 9"P( P @9

seS,?+1r seS,2=1r
for the Cayley graplCay( : S) such that(1r, s)" is a 2-factor if & # 1 and 1-factor if
52 = 11".

Proof For anyh € Hp, g, if h # 1r, then we get that/h = sandsh = 1, that
is s = 1. According to Theorem 2.3, we get the factorization for the Cayley graph
Cay( :9). O

§2.5 SMARANDACHE SEQUENCES ON SYMMETRIC GRAPHS

2.5.1 Smarandache Sequence with Symmetry.Let Z* be the set of non-negative
integers and” a group. We consider sequende€®)|n € Z*} and{g, € I'ln € Z*} in
this paper. There are many interesting sequences appedrestature. For example, the
sequences presented by Prof.Smarandache in referendétdbe [Sma6] following:

(1) Consecutive sequence

1,12,123 1234 12345123456123456712345678- - ;
(2) Digital sequence
1,11,11111111111111111111121111121111173.- -

(3) Circular sequence

1, 1221 123231, 312 12342341 34124123 -

(4) Symmetric sequence

1,11121 1221,12321123321123432112344321123454321123455432]: - ;

(5) Divisor product sequence

1,2,3,8,5,36,7,64,27,100 11,1728 13,196 225 1024 17,5832 19, - - -;

(6) Cube-free sieve

2,3,4,5,6,7,9,10,11,12,13 14,15,17,18,19, 20, 21, 22,23, 25, 26, 28,29, 30, - - -.

Smarandache found the following nice symmetries for thetger sequences.
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1x1=1

11x11=121

111x111=12321

1111x 1111= 1234321

11111x11111= 12345431

111111x 111111= 12345654321

1111111 1111111= 1234567654321
11111111x 11111111= 13456787654321
111111111x 111111111= 12345678987654321

2.5.2 Smarandache Sequence on Symmetric GraphLet I3 : V(G) — {1,11,111
1112,121222111111222222322222213111221113be a vertex labeling of a grapgh
with edge labelindZ (u, v) induced byl (u)IZ(v) for (u,v) € E(G) such thal3(E(G)) =
{1,121,12321123432112345432112345654321123456765432123456787654321
12345678987654321i.e.,13(V(G)UE(G)) contains all numbers appeared in the Smaran-
dache’s symmetry. Denote all graphs wghabeling by.#=. Then itis easily find a graph
with a labelingl2 in Fig.25.1 following.

R —
11— 121 11
111 12321 111
1111 1234321 1111
11111 123454321 11111

111111 12345654321 111111
1111111 1234567654321 1111111

11111111 123456787654321 11111111
111111111 12345678987654321 111111111

Fig.2.5.1

We know the following result.

n
Theorem 25.1 Let G € .#S. Then G= |J H; for an integer n> 9, where each His
i=1
a connected graph. Furthermore, if G is vertex-transitivapl, then G= nH for an
integer n> 9, where H is a vertex-transitive graph.

Proof Let C(i) be the connected component with a lab&br a vertexu, where
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1€(1,11,112212111122111112122211122311222111711122111% Then all vertices
v in C(i) must be with label3(v) = i. Otherwise, if there is a vertexwith 13(v) =
j€41,11,111,12111121221112211112227211121223122211113)\ {i}, let P(u, V) be
a path connecting verticesandv. Then there must be an edgey{) on P(u, v) such that
1I2(x) =i, 13(y) = j. By definition,i x j ¢ I3(E(G)), a contradiction. So there are at least
9 components iG.

Now if G is vertex-transitive, we are easily know that each conmectanponent
C(i) must be vertex-transitive and all components are isomorph O

The smallest graph it)° is the graph &, shown in Fig.25.1. It should be noted
that each graph it} is not connected. For finding a connected one, we construeidng
Q following on the digital sequence

1111112 1111,111113---,12-- -1,
k

by

V(Q) ={1,11---,11.-- 1) U{l’, 17,---,11--- 1),
k k

E(QJ) = {(1,11---1), (x, X), (X, Y)Ix, y € V(Q) differ in precisely one 1
K

Now labelx € V(Q) by Is(X) = lg(X) = xand {1, v) € E(Q) by Ig(u)lg(v). Then we have
the following result for the grapfy.

Theorem 2.5.2 For any integer m> 3, the graphQn is a connected vertex-transitive
graph of order2m with edge labels

I6(E(Q)) = (1,11, 121, 1221 12321 12332112343211234432112345431. - -},

i.e., the Smarandache symmetric sequence.

Proof Clearly, Qn is connected. We prove it is a vertex-transitive graph. Hor s
plicity, denote 1;- -1, 11-.- -1’ by i andi, respectively. TheW(Qy) = {1,2,---,m}. We

| |
define an operation onV(Qy) by

kK+1=11---1 and K +1' =k+1, K =Kk
-
k+l(modk)

for integers 1< k,| < m. Then an elementnaturally induces a mapping

i1 X—> x+1, for Xe V(Qm).
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It should be noted that is an automorphism o®,, because tuple® andy differ in
precisely one 1 if and only & + i andy + i differ in precisely one 1 by definition. On the
other hand, the mapping: X — X for ¥X € is clearly an automorphism @,,. Whence,

¢ =(1,i*|1<i<m) < AutQn,

which acts transitively o(Q) becausey{= X)*(X) = y for X,y € V(Q) andr : X - X.
Calculation shows easily that

I6(E(Qm)) = {1,11,121,1221, 12321 123321 12343211234432112345431. - },

i.e., the Smarandache symmetric sequence. This comphetgsdof. O

By the definition of graprﬁm, w consequently get the following result by Theorem
25.2.

Corollary 2.5.1 For any integer n® 3, Qm ~ Cm X Ps.

The smallest graph containing the third symmetr@isshown in Fig.2.2 follow-
ing,

1234321 G5
123454321 G 1)
Cs 12345654321 S\ 197111
Co 1234567654321
123456787654321
12345678987654321

11111111%

Fig.2.5.2

wherec; = 11 ¢, = 1221 c; = 123321 ¢, = 12344321,cs = 12344321,cs =
1234554321¢s = 123456654321¢; = 12345677654321cs = 1234567887654321,
Co = 123456789987654321.

2.5.3 Group on Symmetric Graph. In fact, the Smarandache digital or symmetric se-
qguences are subsequenceZpé special infinite Abelian group. We consider generalized
labelings on vertex-transitive graphs following.
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Problem 2.5.1 Let(I"; o) be an Abelian group generated by, % -, X,. Thusl' = (X, X,

-+, X|Wy, - - -). Find connected vertex-transitive graphs G with a labeliag V(G) —
{1r, X1, X2, - - -, Xa} @nd induced edge labeling(u, v) = Ig(u) o lg(V) for (u,v) € E(G) such
that

I(E(G)) = {11, X, X1 © X2, X5, X2 © Xg, -+, X1 © X, Xa}.
Similar to that of Theorem.3.2, we know the following result.
Theorem 2.5.3 Let (I'; o) be an Abelian group generated by, X, - - -, X, for an inte-

ger n > 1. Then there are vertex-transitive graphs G with a labeligg:1V(G) —
{1r, X1, X2, - - -, Xa} SUCh that the induced edge labeling B, v) = Ig(u) o Ig(Vv) with

|G(E(G)) = {1F’ XE, Xl o X23 X§3 X2 o X3’ Y Xn—l o Xn, Xr2‘|}

Proof For any integem > 1, define a grap@mn’k by

m-1 m-1 m-1
V(Qnnk) = [U u<‘>[x]) g (U vv“’[y]) U [U u“’[z])
i=0 i=0 i=0

where[{UO[x], v®[y], - - -, WO[Z]}| = k and

U(i)[x] Xg) x('), xg), . -',xﬂ)},

VO] = {(70) 2y, y0, -y,
WO[Z = ()0, 2,2, -, 4

forintegers0<i <m-1, and

E@Qnn) = E1|_JE2| JEs,

WhereEl = 10Oy, @@ x0T <sn-1 0<icm=1}, B = { (X, xD),
(y(", (;(') 21(?1) |_O <l < n- 1 0<i<m-1, wherel +1 = (mod)} and

E, = ( (I) I+1)), (y<'),y|('+1)), . ..,(zf'),;('*l))lO <l<n-1,0<i<m-1, wherei+1=
(modm)}. Then is clear thaﬁmn,k is connected. We prove this graph is vertex-transitive.
In fact, by defining three mappings

m(" = X W = W2 = 2,
XD 5y KO,
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o Xl(i) R X|(i+1)’ yl(i) R y|(i+1)’ ' “’Z|(i) R Z|(i+1)’
where 1< | <n, 1 <i <m,i+1(modn), | +1(moch). Thenitis easily to check that ~
ando are automorphisms of the graﬁjhn’k and the subgroug, r, o) acts transitively

on V(@mn,k)-
Now we define a labelintg on vertices 0Qmn by

1508 = 1508) =+ = 15(@) = 1r.,
g0 =150 = =15@") =x, 1<i<m1l<l<n
Then we know thalg(E(G)) = {1, X1, X2, - - -, X} @and

I6(E(G)) = {1r, X§, X1 © Xp, X5, X2 © X, * * *, Xn_1 © Xn, X} O
Particularly, le” be a subgroup of4;111111111 X) generated by
{1,11,1111111111111111111111117111111113111111113

andm = 1. We get the symmetric sequence on a symmetric graph shoWwig.a5.2
again. Letm= 5,n = 3 andk = 2, i.e., the grapl@-,,g,z with a labelinglg : V(Q\5,3,2) -
{1r, X1, X2, X3, X4} is shown in Fig.25.3 following.

1 1r
I 1
1 1
1 1 Xl
/I/XZ Xg X2
L .
Xo 2 Xa
X3 X4 X3 X4
X4
Xq
Fig.4.1

Denote byNg[X] all vertices in a graplG labeled by an element € I'. Then we
immediately get results following by the proof of TheorerB.2.

Corollary 2.5.2 Forintegers mn > 1, @nn’k ~ Cpx Chx Cy.

Corollary 2.5.3 |N§m’n‘k[x]| = mk forVx € {1r, X, - - -, X} and integers nn,k > 1.
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§2.6 RESEARCH PROBLEMS

2.6.1 For catering to the need of computer science, graphs weref gaimes and turned
into a theory for dealing with objects with relations in lagintury. There are many
excellent monographs for its theoretical results with eggpions, such as these references
[BoM1], [ChL1], [GoR1] and [Whil] for graphs with structusend [GrT1], [MoT1] and
[Liul]-[Liu3] for graphs on surfaces.

2.6.2 A graph property P iSmarandachelif it behaves in at least two flerent ways on

agraph, i.e., validated and invalided, or only invalidetibumultiple distinct ways. Such
a graph with at least one Smarandachely graph propertylesic@®marandachely graph

Whence, one can generalizes conceptions in graphs by trasaBalache notion. We list
such conceptions with open problems following.

Smarandachelyk-Constrained Labeling. A Smarandachely k-constrained label-
ing of a graphG(V, E) is a bijective mapping : VUE — {1,2,..,|V| + |E|} with the
additional conditions thatf (u) — f(v)] > k wheneveruv € E, |f(u) — f(uv) > k and
|f(uv) — f(vw)| > kwhenevewu # w, for an integek > 2. A graphG which admits a such
labeling is called a Smarandaché&kgonstrained total graph, abbreviateckasCTG. An
example forkk = 5 onP5 is shown in Fig.%.1.

6 12,2 2.5 8 14 o 4 o 10
w013 (9196

Fig.2.6.1

The minimum positive integar such that the grapB U K,, is ak — CTGis called
k-constrained numbenf the graphG and denoted bt (G).

Problem 2.6.1 Determine {(G) for a graph G.

Smarandachely Superm-Mean Labeling. Let G be a graph and : V(G) —
{1,2,3,---,|V| + |E(G)|} be an injection. For each edge- uvand an integem > 2, the
inducedSmarandachely edge m-labelingi$ defined by

2(e) = {f(u)+ f(v)w.

m

Then f is called aSmarandachely super m-mean labelifgf (V(G)) U {f*(e) : e €
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E(G)} ={1,2,3,---,|V|+ |E(G)|}. A graph that admits a Smarandachely super nmean
labeling is called Smarandachely supemean graph. Particularly, ih = 2, we know
that
M if f(u)+ f(v)iseven;
@ =) fwsfw+1
2

if f(u)+ f(v)is odd.

A Smarandache super 2-mean labelingR3ris shown in Fig.%.2.
4 6 12

1 2 3 5 7 8 9 11 13 14 15

Fig.2.6.2

Problem 2.6.2 Determine which graph G possesses a Smarandachely supexam-m
labeling.

SmarandachelyA-Coloring. Let A be a subgraph of a grafih A Smarandachely
A-coloring of a graphG by colors in% is a mappinge, : 4 — V(G) U E(G) such that
e(u) # ¢(v) if uandv are elements of a subgraph isomorphicAton G. Similarly, a
Smarandachely-coloringpslve) : € — V(G) orpalee) : € — E(G) is called avertex
Smarandachelyj-coloring or anedge Smarandachely-coloring.

Problem 2.6.3 For a graph G andA < G, determine the numbey2(G) and 4 (G).

Smarandachely (¢2,, ¢%;)-Decomposition. Let &7, and &, be graphical prop-
erties. ASmarandachely%?;, &#%,)-decompositiorof a graphG is a decomposition 0B
into subgraph&;, G,, - - -, G, € & suchthats; € &2, orG; ¢ &, forintegers 1< i < I. If
P, or &, = {all graph$, a Smarandachely®,, %%,)-decomposition of a grap@8 is said
to be aSmarandachely”-decomposition The minimum cardinality of Smarandachely
(1, &,)-decomposition are denoted bly, »,(G).

Problem 2.6.4 For a graph G and properties?, &', determind14(G) andIl4 4 (G).
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2.6.3 Smarandache also found the following two symmetries ongigi

1x8+1=9 1x9+2=11

12x8+2=098 12x9+3 =111

123x 8+ 3 =987 123x9+4=1111

1234x 8+ 4 = 9876 12349+ 5=11111

12345x 8+ 5= 98765 1234% 9+ 6 =111111
123456x 8 + 6 = 987654 12345& 9+ 7 = 1111111
1234567x 8 + 7 = 9876543 123456¥%9+8=11111111
12345678« 8 + 8 = 98765432 123456789+9=111111111

12345678% 8 + 9 = 987654321 1234567899 + 10= 1111111111

Thus we can also label vertickge) : V(G) — ¢ of a graph by consecutive sequeri€e
with an induced edge labelidgg)(uv) = clyg)(u) + I for Yuv € E(G), wherec is a
chosen digit. For example, l&tg) = {1,2,3,4,5,6,7,8,9,12 123 1234 12345123456
123456712345678123456789,c =8 orlyg) =1{1,2,3,4,5,6,7,8,9,10,12 123 1234
12345123456123456712345678123456789, ¢ = 9, we can extend these previous

digital symmetries on symmetric graphs with digits. Gelgrthere is an open problem
following.

Problem 2.6.5 Let(«; +, -) be an algebraic system with operations-. Find graphs G
with vertex labelingJg) : V(G) — « and edge labelinggg)(uv) = ¢; - lyg)(u) + C2 -
lve)(V) (or lg)(uv) = (€1 + lye) (W) - (C2 + v (V))) for i, ¢, € o7, Yuv e E(G) such that
they are both symmetric in graph and element.

Particularly, let 7 be a set of symmetric elementsdn For example,7 = { a-
b,b-alab e < }. Find symmetric graphs with vertex labelingd, : V(G) —» 7
and edge labelingelg)(uv) = lv(g)(U) + lv(g)(V) (or lgg)(UY) = lv(g)(U) - lv(e)(V)) such that
vy (U) + lve) (V) (or lge)(uv) = lve)(u) - lvg)(V)) is itself a symmetric element i for
Yuv e E(G), for example, the labeled graph shown in Ri§.2.



CHAPTER 3.

Algebraic Multi-Spaces

Accompanied with humanity into the 21st century, a highiityand for de-

veloping a science is its overlap and hybrid, and harmohyouish other sci-

ences. Algebraic systems, such as those of operation sysgeaups, rings,
fields, vector spaces and modules characterize algebraitiigtes on sets,
which are discrete representations for phenomena in theatatorld. The

notion of multi-space enables one to construct algebraiti4stnuctures and
discusses multi-systems, multi-groups, multi-rings, tirfiglds, vector multi-

spaces and multi-modules in this chapter, maybe completaedtdan cases.
These algebraic multi-spaces also show us that a theorenatimematics is
truth under conditions, i.e., a lateral feature on matharabsystems. Cer-
tainly, more consideration should be done on these algebmaiti-spaces,
especially, by an analogous thinking as those in classigabaa. For this
objective, a few open problems on algebraic multi-spacdsedaund in final

section of this chapter.
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§3.1 ALGEBRAIC MULTI-STRUCTURES

3.1.1 Algebraic Multi-Structure. Algebraic systems, such as those of group, ring,
field, linear algebra, etc. enable one to construct algelnailti-structures and raise the
following definition by Smarandache’s notion.

—_ —_ n
Definition 3.1.1 An algebraic multi-system is a pzﬁA; 6) with a setA = |J A and an
i=1
operation set |

O={o|1<i<n
on A such that each paifA;; o;) is an algebraic system.

A multi-system(ﬂ; 6) is associativéf for Ya, b, c € A, Yoy, 0, € O, there is
(aol b) o, C=aog (b02 C).

Such a system is called associative multi-system

Let (A; O) be a multi-system anB c A, Q c O. If (B; Q) is itself a multi-system,
we call(ﬁ; (5) amulti-subsystem c(ﬁ; 6) denoted b)(ﬁ; (5) < (K; 6)

Assume(ﬁ; 6) < (K; 6) ForVa e A ando; € O, where 1< i < |, define a coset
ao; Bhy

ao,B={ao;b|forVvbe B},

and let
A= | acB
acR,0ePcO
Then the set
Q:{ao§|ae R,oef’c@]

is called aquotient set oB in A with a representation pai(R, P), denoted byA/B| g5

Two multi-systemiﬂl; 51) and(Kz; 52) are callechomomorphidf there is a map-
pingw : Ay — A, with w : O; — O, such that fory, b; € A; ando; € Oy, there exists an
operatione, = w(o;) € O, enables that

w(dy o1 by) = w(ay) o2 w(by).

Similarly, if wis a bijection,(ﬂl; 51) and(ﬂg; 62) are calledsomorphicand ifA; = A, =
A, w is called arautomorphism or.
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For a binary operatiorto” , if there exists an elemen} {or 1) such that
1 oca=aoraol =a

for va € A,1 < i < n, then 1 (1) is called aleft (right) unit If 1! and T exist
simultaneously, then there must be

1 =101 =1"=1..
Call 1, aunit of A;.

Remark 3.1.1 In Definition 31.1, the following three cases are permitted:
Q) AL = A, =---=A,, i.e.,noperations on one set.
(2) oy = 0p =--- = oy, i.e.,n set with one law.

3.1.2 Example. Some examples for multi-system are present in the following

Example 3.1.1 Taken disjoint two by two cyclic group£,,Cy, - - -, C,, n > 2 with
Ci=(@);+1),.Co=(b); +2),- -+, Cn = ({C); +n),

—_ n
where “+1,+,, -+, +,” aren binary operations. Then their uni@ = | J C; is a multi-
i=1

space. In this multi-space, foix,y € C, if x,y € Cy for some integek, then we know
X+k Y € Ck. Butif x e Cg, y € C; ands # t, then we do not know which binary operation
between them and what is the resulting element correspgndithem.

Example 3.1.2 Let (G; o) be a group with a binary operatiofio” . Choosen different
elementdy, hy, - - -, hy, N > 2 and make the extension of the gro@ ¢) by hy, hy, - - -, hy
respectively as follows:

(GUthy}; x1), where the binary operatioty = o for elements irG, otherwise, new
operation;

(G Uthy}; x2), where the binary operatioty, = o for elements irG, otherwise, new
operation;

(G U{hy}; xn), where the binary operatiox, = o for elements irG, otherwise, new
operation.
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Define

n
G= U (G U{hi}; Xi) :
i=1

ThenG is a multi-space with binary operatioris,, X, - - -, X, ” . In this multi-space, for
Vx,y € G, we know the binary operation betwegny and the resulting element unless
the exception cases= h;,y = h; with i # |.

Forn = 3, such a multi-space is shown in Fid.d, in where the central circle
represents the group and each angle field the extension@f Whence, this kind of
multi-space is called &an multi-space

Fig.3.1.1

Similarly, we can also use a rirfigto get fan multi-spaces. For example, Bt €, o)
be aring and lety, 1o, - - -, rs be two by two diferent elements. Make these extensions of
(R; +,0) byry,r,, - -+, rsrespectively as follows:

(RUIr1}; +1, X1), where binary operations; = +, x; = o for elements irR, other-
wise, new operation;

(RUIr2}; +2, %2), where binary operations, = +, X, = o for elements inR,
otherwise, new operation;

(RU{rs}; +s, Xs), Where binary operationss = +, Xs = o for elements irR, other-
wise, new operation.

Define

ﬁz O(RU{I'J'}; +j,>(j).

=1
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ThenRis a fan multi-space with ring-like structure. Also we cafiile a fan multi-space
with field-like, vector-like, semigroup-like,-, etc. multi-structures.

These multi-spaces constructed in Exampldsl3and 31.2 are notcompletedli.e.,
there exist some elements in this space have not binarytopeksetween them. In alge-
bra, we wish to construct@mpleted multi-spacee., there is a binary operation between
any two elements at least and their resulting is still in Hpace. The following examples
constructed by applyingatin squaresare such multi-spaces.

Example 3.1.3 LetS be a finite set withS| = n > 2. Construct am x n Latin square
by elements ir5, i.e., every element just appears one time on its each rovcaloenn.
n
Choosek Latin squaredviy, My, - - -, My, K < [T gl
s=1

n
By a result in reference [Rys1], there are at legs$! distinctn x n Latin squares.
s=1

Whence, we can always chookt, M,, - - -, My distinct two by two. For a Latin square
M;i, 1 <i <k, define an operatiorfx;” by

Xi: (s, f)eSxS — (M)ss.

For example, ih = 3, thenS = {1, 2, 3} and there are 2 Latin squarksg L, with

L]_: L2:

w N P
= W N
N P W
N W
W P DN
= N W

Therefore, we get operation$x;” and “x,” in Table 31.1 by Latin squares, L,

following.
x| 1 2 3 x| 1 2 3
171 2 3 171 2 3
212 3 1 213 1 2
313 1 2 312 3 1
Table 1.3.1

Generally, forvx,y, z € S and two operations‘'x;” and “x;”, 1<, j < kdefine

XX YXjZ=(XXiy)X;zZ
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For example, ih = 3, then
1X12X23: (1)(2))(23: 2X23: 2

and
2X13X22:(2X13)X22:1X23:3.

ThusS is a completed multi-space withoperations.
Notice that Aug, ~ Z;, whereZ; is the group of reduced residue class madder

the multiply operation. It is known thafutZ,| = ¢(n), wherep(n) is the Euler function.
Thus the automorphism group of the multi-sp&cimn Example 31.1 is

AutC = S,[Z7].

Whence)AutC| = ¢(n)™n!. For determining the automorphism groups of multi-spaces
Example 31.3 is an interesting problem for combinatorial design. THi®fang example
also constructs completed multi-spaces by algebraicssste

Example 3.1.4 For constructing a completed multi-space, 8t;() be an algebraic
system, i.e.ao b e SforVa,be S. Whence, we can takg, C C S being a cyclic group.
Now consider a partition o

k=1
with m > 2 such thaG; " Gj =Cfor Vi, j,1<i,j<m.

For an integek,1 < k < m, assume>y = {Q, Gk2, - - -» O} Define an operation
“xk” on G as follows, which enable$s; x) to be a cyclic group.

Okt Xk Okt = Gko»

Ok2 Xk Gkt = Gk,

Ok(1-1) Xk Gk1 = Yi»
and
Okny Xk Okt = Ok1.

m
ThenS = |J G is a completed multi-space with+ 1 operations. The approach enables
k=1

—_ n
one to construct complete multi-spades: ) with k operations fok > n + 1.
i=1



Sec.3.1 Algebraic Multi-Structures 75

3.1.3 Elementary Property. First, we introduce the following definition.

Definition 3.1.2 A mapping f on a set X is called faithful i{X) = x for ¥x € X, then
f = 1y, the unit mapping on X fixing each element in X.

Notice that if f is faithful andf;(x) = f(x) for ¥x € X, thenf *f = 14, i.e., f, = f.
—_ n

For each operatiornt‘x” and a chosen elemegtin a subspacé, Ai c A = [J A,
i=1

there is deft-mapping § : A — A defined by
fyra—gxa acA.
Similarly, we can define theght-mapping §.

—_ —_ n
Convention3.1.1 Each operation“x” in a subset AA, c A with A = [J A is faithful,
i=1

e, forvge A,¢:g— fy( orr:g— fj)is faithful.

Define the kerneKerg of a mapping; by

Kers = {glg € A andg(g) = 14}
Then Convention 3.1 is equivalent to the following.

Convention3.1.2 Foreachs : g — fg' (org:g— fg)induced by an operatiorfix” has
kernel

Kerg = {1}
if 1!, exists. OtherwiseKers = 0.

We get results following on multi-spacés

—_— —_ n
Theorem 3.1.1 Fora muIti-space(A; 6) with A = [ J A and an operation“x” , the left
i=1
unit 1!, and right unit1’, are unique if they exist.

Proof If there are two left units'L, 1! in a subset of a multi-spaceA, then for
¥x € A, their induced Ieft-mappingfs'll and f|'| satisfy

fll;(x) =1 xx=x f|I'X(X) =1l xx=x

Therefore, we get thaf, = f| . Since the mappings : 1, — f} andg, : I, — f| are

faithful, we know that i = 1!, . Similarly, we can also prove that the right unitis also
unique. O
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For two elements, b in multi-spaceA, if ax b = 1!, thenb is called aleft-inverse
of a. If ax b = 1{, thenais called aright-inverseof b. Certainly, ifa x b = 1, thenais
called aninverseof b andb aninverseof a.

—_— —_ n
Theorem 3.1.2 For a muIti-space(A; 6) with A = J A, a € 47, the left-inverse and
i=1
right-inverse of a are unique if they exist.

Proof Notice thatk, : x — axis faithful, i.e., Kek = {1.} for 1|, existing now.

If there exist two left-inverseby, b, in 27 such thatax by = 1! andax b, = 1!,
then we know thab; = b, = 1. Similarly, we can also prove that the right-inverseaof
is also unique. O

Corollary 3.1.1 If “x”is an operation of a multi-spac&” with unit1,, then the equation
ax X = b has at most one solution for the indeterminate x.

Proof According to Theorem 3.2, there is at most one left-inveragof a such that
a; x a= 1,. Whence, we know that=a; xax Xx=a; x b. O

We also get a consequence for solutions of an equation int&spalce by this result.

Corollary 3.1.2 Let(A; O) be a multi-space. Then the equationa = b has at mosiO|
solutions, where € O.

§3.2 MULTI-GROUPS

3.2.1 Multi-Group. LetG be a set with binary operatio@® By definition(G; O) is an
algebraic multi-systerif for Ya,b € G ando € O, ao b € G provideda o b existing.

Definition 3.2.1 For an integer n> 1, an algebraic multi-systefG; O) is an n-multi-
group for an integer r= 1if there are G, Gy, -+, G, ¢ G, O = {0, 1 <i < n} with
—_— n
1)G= U1 G;;
i=
(2) (Gj; o) isagroupforl <i <n.
For Yo € O, denoted byG, the group G; o) andG™* themaximal group(G; o), i.e.,
(G, o) is a group bufGM™ U {x}; o) is not forvx € G \ GM™in (G; O).

A distributed multi-group is such a multi-group with diswitive laws hold for some
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operations, formally defined in the following.

Definition 3.2.2 LetG = U Gi be a complete multi-space with an operation sé@)—
i=1

{xi,1 <i<n}. If (G is agroup for any integer,il < i < nand for¥x,y,ze G and
Vx, 0 € O(G), x # o, there is one operation, for example the operatiot” satisfying the
distribution law to the operatiort‘c” provided all of these operating results exist , i.e.,

XX (yo2) = (xxy)e(xx2),
(Yo) xx=(yxX) o (zxXx),

thenG is called a distributed multi-group.

Remark 3.2.1 The following special cases for= 2 convince us that distributed multi-
groups are a generalization of groups, skew fields, fieldsetc..

(1) If G, = G, = G are groups, the® is a skew field.

(2) If (Gy; x1) and G,; X,) are commutative groups, th&is a field.

Definition 3.2.3 Let (%, Ol) and(%, 02) be multi-groups. The(%, Ol) is isomorphic
to (%, Oz) denoted by(#,:) : (%, Ol) (%, 02) if there are bijections? : % — %
and. : O, — O, such that for ab € ¢, ando € Oy, PHaob) = ¥a)(c)d(b) provided a b
existing m(%, Ol) Such isomorphic multi-groups are denoteo(@y Ol) (%, 02)
Clearly, |f(%; Ol) is ann-multi-group with (?, ¢) an isomorphism, the image af,()

—_~ — —_— — —_~ n —_
is also ann-multi-group. Now let ¢, () : (%; Ol) - (%;Oz) with ¢4, = U%, Gy =
U %, Oy = {oy, 1 <i <nandO, = {oy, 1 <i < n}, then foro € O, @M is jsomorphic
to ﬁ(%)“(“j;x by definition. The following result shows that its conversaliso true.

Theorem3.2.1 Let (??1 01) and(é%; 0) be n-multi-groups with

@, = O%i, G, = O%i,
i-1 i-1

Or={oir, 1<i<n},Op={op, 1<i<n} If¢: % — % is anisomorphism for each
integer i 1 <i < nwith ¢ulyyng = Pilwmng for integersl < kI < n, then(gz; 61) is
isomorphic to(é%; 62).

Proof Define mapping# : 521 — gz andc: O; — Oy by
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9(a) = ¢i(a) if a € % c 4 andu(oy;) = oy for each integer ki < n.

Notice thatduly, e, = dilene, for integers 1< k.1 < n. We know that, ¢ both are

bijections. Leta, b € ¢4, for an integers, 1 < s<n. Then

@ o1s b) = ps(@o1sb) = ¢5(a) 025 ps(b) = F(@)e(015)3().
Whence, 1) : (%Nl 51) - (%Nl 51). n

3.2.2 Multi-Subgroup. Let (é? 6) be a multi-group,%7c 4 andO c O. If (%7 O) is
multi-group itself, ther(’; O) is called a multi-subgroup, denoted pg’; O) < (¥; O).
Then the following criterion is clear for multi-subgroups.

Theorem3.2.2 An multi-subsyste@% 0) of a multi-group(%; O) is a multi-subgroup
if and only if. 77 N &, < 4™ for Vo € O.

Proof By definition, if (j‘?; O) is a multi-group, then fovo € O, A NY, isa group.
Whence, Z N ¥, < Ggmax,

Conversely, it N, < @gm& for Yo € O, then.# N %, is a group. Therefore,
(%’7 O) is a multi-group by definition. O

Applying Theorem 2.2, we get conclusions following.

Corollary 3.2.1 An multi-subsystel(n%?; O) ofa multi-group(?; 6) is a multi-subgroup
if and only if aoc b € AN @gm&Xfor Yo € O and gb € j‘?provided ao b existing in
(473 0).
Particularly, ifO = {o}, we get a conclusion following.

Corollary 3.2.2 Leto € O. Then(2#; o) is multi-subgroup of a multi-grou(f?; 6) for
# c ¢ if and only if(#; o) is a group, i.e., @bl e # fora,be 7.

—_ n
Corollary 3.2.3 For a distributed multi-groups = |J G; with an operation set (G) =

i=1

(x|l < i < n}, asubseG; c G is a distributed multi-subgroup & if and only if
((?1 NG xk) is a subgroup ofGy; xx) or G; " Gk = 0 for any integer k1 < k < n.

Proof Clearly, G; is a multi-subgroup of5 by Theorem 2.2. Furthermore, the
distribute laws are true fag; becaus&; c G andO(Gl) c O(é) O

For finite multi-subgroups, we get a criterion following.

Theorem3.2.3 LetG be a finite multi-group with an operation se(é) ={xj|l<i<n}
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A subseG; of G is a multi-subgroup under an operation subse@) ¢ O(G) if and
only if (Gy; x) is closed for each operatiofix” in O(G;).

Proof Notice that for a multi-grous, its each multi-subgrou@; is complete. Now
if G, is a complete set under each operatitg ” in O((?l) we know tha((?l NGi; xi)
is a group or an empty set. Whence, we get that

n
G = J(G(G).
i=1
ThereforeG; is a multi-subgroup o6 under the operation s€(G;). O

For a multi-subgroupd of multi-groupG, g € G, define
gH = {gx hlh € H, x € O(H)}

Then forvx,y € G,
XH(|yH =0 or xH = yH.

In fact, if xH\yH # 0, let z € xH N yH, then there exist elements,h, € H and
operations“x;” and “x;” such that

z=xX;hy =yx;h,.

SinceH is a multi-subgroup,H N Gi; xi) is a subgroup. Whence, there exists an inverse
element; in (HN Gi; x;). We get that

x xi hy x; it =y x; hy x; hit.

ie.,
x=yx;hyx; hit.
Whence,
xH c yH.
Similarly, we can also get that
xH 2 yH
Therefore,
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Denote the union of two sé&t andB by AEH Bif A B = 0. The following result is
implied in the previous discussion.

Theorem 3.2.4 For any muIti-subgrou;ﬂ ofa muIti-groupCNS, there is a representation
setT, Tc G, such that
G-= @ xH.

xeT

For the case of finite group, since there is only one binaryatjmn “x” and|xH| =
lyH| for anyx, y € G, We get a consequence following, which is just the Lagrahgerem
for finite groups.

Corollary 3.2.4(Lagrange theoremlfor any finite group G, if H is a subgroup of G, then
|H| is a divisor of|G|.
A multi-group (5!7 O) is said to be @ymmetric n-multi-grouff there are
tyl’tyZ"“ﬂEﬂnC‘(;:
O = {o;, 1 <i < n}with
—_ n
1) = _U1<5ﬂi;
1=
(2) (A; oi) is a symmetric groupg, for 1 < i < n. We call then-tuple (Q4], [Q2],
.-+, |Qnl|) thedegree of the symmetric n-multi-grocfa; 0).

Now let multi-group ¢; O) be an-multi-group with%, %, - - -, % c 4,0 = {o;, 1 <
i < n}. Foranyinteger, 1 <i <n,let¥, ={an = 1g,, a2, -, an,}. FOrvax € 4,

define
a1 ai2 s Ain a
Oay = = >
droak dz0ak -+ @n, ©ak ao ai

_ a1 a2 Ain,, _ a
Ta = 1o aloas ... aloa | oat
e 01 {y oA B © Gin,, G ca

Denote byRy, = {0, 0aps ", Ty, } @Nd Ly = {74y, Tay, +5 o, } @NA X] OF X; the
induced multiplication irR; or Ly. Then we get two sets of permutations

n

n
R7 = U{O'amo'aaz""’o'amoi} and Ly = U{Tail’Taiz’“.’Tainoi}'

i=1 i=1
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We sayR7, L theright or left regular representationf 9, respectively. Similar to the
Cayleytheorem, we get the following representation result fortrgrioups.

Theorem 3.2.5 Every multi-group is isomorphic to a multi-subgroup of syetnie multi-
group.

Proof Let muIti:group(é?; O) be an-multi=group with%,,%,---,%, c 4,0 =
{oj, 1 <i < n}. Forany integer, 1 <i < n. ThenRy andLy both are subgroups of the
symmetric grouS for any integer 1< i < n. Whence, R; O') and (; O') both are
multi-subgroup of symmetric multi-group by definition, we®" = {x{|1 < i < n} and
O ={x]l1<i<n}.

We only need to prove the(f?; 6) is isomorphic to R;; O). For this objective,
define a mappingf(<) : (¢;0) — (R O") by

f(ak) = 05, and (o)) = X!
for integers 1< i < n. Such a mapping is one-to-one by definition. It is easily ®tbat
f(aii oj &) = Tajoiax = Oq ><ir Oay = f(aii)L(oi)f(aik)

for integers 1< i,k,| < n. Whence, {,¢) is an isomorphism froméé O) to (R O").
Similarly, we can also prove th@ 6) ~ (L O). O

3.2.3 Normal Multi-Subgroup. A multi- subgroup(ff O) of (¢; O) isnormal denoted
by(%” O) (% 6) if for Vg € ¢ andVo € O, go%” %og, Wherego%ﬂ {gohlhe
Vi providedg o h existing and.# o gis similarly defined. We get a criterion for normal
multi-subgroups of a multi-group following.
Theorem 3.2.6 Let (%7 O) < (é? 6) Then(j?; O) < (é? 6) if and only if

A NG o gmax
for Vo € O.

Proof If 7 N gmax g @M for Yo € O, theng o H = A o g for Yg € ¢4 py
definition, i.e., all suclg € ¢ andh € 7 with gohandhogdefined. Sc(%? O)q(?; 6)
Now if (%7 O) < (é? 6) it is clear that’Z N Gmax q@gmaXfor Yo € O.

—_— n
Corollary 325 LetG = |J G; be a multi-group with an operation set(G) = {xi1 <
i=1

i < n}. Then a multi-subgroupl of G is normal if and only i{H N G;; x;) is a normal
subgroup ofG;; x;) or HN G; = 0 for any integerj1 <i < n.
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For a normal muIti-subgrou(nﬁ? O) of (f? 6) we know that
(a0 #)(V(o-#) =0 or ao# =b- 7.
In fact, ifc € (ao 3‘7) N (b- J?) then there exists,, h, € .7 such that
aohy=c=Db-h,.
Soa ! andb™ exist in¥M* and¥™, respectively. Thus,
btl.aohy=bt-b-h,=h,

Whence,
bl.a=hyohle 7.

We find that
ao# =b-(hpohy)o# =b- 7.

This fact enables one to find a partition@ffollowing
g = U go .
gei?,oef)-

Choose an elemehtfrom eachg o # and denoted byi all such elements, called
therepresentatiorof a partition of¥, i.e.,

g = U ho /7.

heH,oeO

Define thequotient sebf ¢ by 7 to be
G| A ={ho#heH,oecO)
Notice that# is normal. We find that
(a0 ) (be.#)=H oa-be s =(a-b)os e =(a b)or

in Q/j‘?for o,e -€0,ie., @/%’7; O) is an algebraic system. It is easily to check that
(é?/i?; O) is a multi-group by definition, called thguuotient multi-groupof é?by Y

Now let(%y; O1) and(%;; Oz) be multi-groups. A mapping pain(:) with ¢ : % —
4, andt : O; - O, is ahomomorphisnif ¢(a o b) = ¢(a)(o)¢(b) for Ya,b € ¢ and



Sec.3.1 Multi-Groups 83

o € O, provideda o b existing in(f%; 51). Define themagelm(¢, () andkernelKer(¢, ¢)
respectively by

Im(¢,0) = { ¢(@) g€ % |,
Ker(@,)) = {914(3) = 1., g€ % ,0 € Opf.

Then we get the following isomorphism theorem for multigps.

Theorem3.2.7 Let(g, 1) : (@i 61) N (é% 62) be a homomorphism. Then
G, /Ker(g, 1) ~ Im(a, ).

Proof Notice that Kerg, () is a normal multi-subgroup céf% 61). We prove that the
induced mappingd, w) determined by, w) : X o Ker(g,t) — ¢(X) is an isomorphism
from Q{/Ker(qb, t) to Im(g, o).

Now if (o, w) (1) = (07, w)(X2), then we get thaif, w)(x0X;1) = 1y, providedx;ox;*
existing in @i; O4), i.e., X o X1 € Ker(g, ). Thusx, o Ker(g, ) = X o Ker(, 1), i.e., the
mapping {, w) is one-to-one. Whence it is a bijection frci%/Ker@, t) to Im(g, ¢).

ForVao Ker(g, ), b o Ker(g, 1) € % /Ker(g, ) and- € O;, we get that

(o, w)[ao Ker(p, 1) - b e Ker(a, t)]
= (0, w)l(a- b) o Ker(g, )] = ¢(a- b) = ¢(a)u(-)¢(b)
= (0, w)[ao Ker(@, )]«(-)(c, w)[b o Ker(g, )].

Whence, ¢, w) is an isomorphism frorEfZ/Ker(¢, t) to Im(g, ¢). O

Particularly, Iet(?%; 62) be a group in Theorem3&7, we get a generalization of the
fundamental homomorphism theorem following.

Corollary 3.2.6 Let(%;0O) be a multi-group andw, ) : (¢;0) — («/; ) an epimor-
phism fron(f?; (3) to a group(«/; o). Then

G IKer(w,1) =~ (<;0).

3.2.4 Multi-Subgroup Series. For a multi-groupé with an operation seO(é) =
{xjl 1 < 1 < n}, an order of operations i@(é) is said to be aroriented operation

sequencedenoted b)&_)) (é) For example, ifO (é) = {Xq, X2X3}, thenx; > X5 > X3 is
an oriented operation sequence and- x; > X3 is also an oriented operation sequence.
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For a given oriented operation sequeﬁi@, we construct a series of normal multi-
subgroups

§>61>62>"'>Gm:{1xn}

by the following programming.

STEP 1: Construct a serie€ > Gy;> Gi2» - - - > Gy, under the operatiortx;” .

STEP2: If aseriesGy_1y,>Gi>Gier - »Gy, has be constructed under the operation
“xi” andGy, # {1x,}, then construct a serieBy, > G 11> G2 > - - - > Geray,., Under
the operation“x,1” .

This programming is terminated until the ser@g_1y, > Gu > G2> - - -» Gny, = {1}
has be constructed under the operatiér,” .

The numbem is called thelength of the series of normal multi-subgroug3all a
series of normal multi-subgroug@s> G, > G, » - - - » G, = {1,,.} maximalif there exists
a normal multi-subgroupd for any integerk,s,1 < k < n,1 < s < |, such thatGys >
H > Gysi1) thenH = Gys or H = Gys,1). For a maximal series of finite normal multi-
subgroup, we get a result in the following.

—_— n
Theorem 3.2.8 For a finite multi-groupG = |J G; and an oriented operation sequence
i=1

fe (é) the length of the maximal series of normal multi-subgreu@ is a constant, only
dependent o itself.

Proof The proof is by the induction principle on the integer Forn = 1, the
maximal series of normal multi-subgroups @fis just a composition series of a finite
group. By Jordan-Holder theorem (see [NiD1] for detailsg know the length of a
composition series is a constant, only dependerBoiVhence, the assertion is true in
the case oh = 1.

Assume that the assertion is true for all cases gfk. We prove it is also true in the
case ofn = k+ 1. Not loss of generality, assume the order of those binaeyaipns in
6(5) beingx; > X, > - -- > X, and the composition series of the gro@ (x;) being

Gl‘>GZ>"">Gs:{1><1}-

By Jordan-Holder theorem, we know the length of this contpmsseries is a constant,
dependent only onQ3;; x;). According to Corollary 2.5, we know a maximal series of
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normal multi-subgroups dB gotten by STEP 1 under the operatiéx,” is
G>G\(G1\Gy)> G\ (G1\Ga)>---> G\ (G1\ {L,)).

Notice thatG \ (G; \ {14,}) is still a multi-group with less or equal tooperations. By
the induction assumption, we know the length of the maxineales of normal multi-
subgroups iIG\ (G1\{1,,}) is aconstant only dependentér\ (Gi1\{1,}). Therefore, the
length of a maximal series of normal multi-subgroups is algonstant, only dependent
onG.

Applying the induction principle, we know that the lengthaimaximal series of
normal multi-subgroups oB is a constant under an oriented operatiﬁ))(é), only de-
pendent orG itself. O

As a special case of Theoren23B, we get a consequence following.

Corollary 3.2.7(Jordan-Holder theoremfjor a finite group G, the length of its composi-
tion series is a constant, only dependent on G.

§3.3 MULTI-RINGS

3.3.1 Multi-Ring. It should be noted that these multi-spaces constructedogroLe.,
distributed muIti-groups(@; O(G)) generalize rings. Similarly, we can also construct
multi-spaces by rings or fields.

Definition 3.3.1 LetR = Lnj R be a complete multi-space with a double operation set
i=1

O(ﬁ) = 010, whereO; = {,1 <i <m0, = {+,1 < i <m. Iffor any integers

i,1<i<m,(R;+,) is aring, thenr is called a multi-ring, denoted t(ﬁ 0, — 02)

and (+i, -j) a double operation for any integer i. (R; +, -) is a skew field or a field for

integersl <i <m, then(ﬁ; 0, — 02) is called a skew multi-field or a multi-field.
—_ —_ m —_ —_ —
For a muIti-ring(R; 0, — 02) with R = [JR, letS ¢ RandO; (S) C Ol(f{),
i1
0 (§) cO, (R) if S is a multi-ring with a double operation s(ét(g) =0, (§) O, (§)
such aS is called amulti-subringof R.
Theorem 331 For a multi-ring (R 0y — 0,) with R = (JR, a subse ¢ R with
i=1

O(g) C O(F?) is a multi-subring ofR if and only if(gﬂ R +k, -k) is a subring of
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(Re; +k, k) OF SR = 0 for any integer k1 < k < m.
Proof For any integek, 1 < k < m, if (§m Re; +i .k) is a subring of Ry; +, ) OF
SN R =0, thenS = C‘J (SNR) is a multi-subring by definition.
i=1

—_ S —_
Now if S = |J S;; is a multi-subring 01(R; 0, — 02) with a double operation set
j=1

01(§) ={q,1<j<s and02(§) = {+i,1< ] < 8}, then G ; +i,,) is a subring of
(R +ij»+i;)- ThereforeS;; = R; NS for any integerj,1 < j < s. ButSNS, = 0 for
otherintegef e {i;1<i<m}\{ij;;1<j<s}. O

Applying the criterions for subrings of a ring, we get a résaf multi-subrings by
Theorem 3.1 following.

Theorem 3.3.2 For a multi-ring (ﬁ; 0 — 02) with R = iL_rlei, a subsefS ¢ R with
0(S) c O(R) is a multi-subring oR if and only if(S Rj; +;) < (R;; +)) and(S; ) is
complete for any double operatigaj. ;) € O(S).

Proof According to Theorem 3.1, we know thatS is a multi-subring if and only
if (gﬂ R: +i,-i) is a subring of R; +i,-) or SNR = 0 for any integeri,1 < i < m.
By a well known criterion for subrings of a ring (see [NiD1]rfdetails), we know that
(SN R +i.+i) is asubring of R; +, ) if and only if (S Ry; +;) < (Rj; +)) and(S; ) i
a complete set for any double operatien.(;) € O(S). O

A multi-ring (R; Oy < Oz) with Oy = { -1 < i <1}, 0, = {+|1 < i < |} isintegralif
for Va,be 77 and aninteger, 1<i<l,a;b=Db-a 1 # 0, anda- b= 0,, implies
thata = 0,, orb = 0,,. If | = 1, an integral-ring is the integral ring by definition. For the
case of multi-rings with finite elements, an integral multig is nothing but a multi-field,
such as those shown in the next result.

Theorem 3.3.3 A finitely integral multi-ring is a multi-field.

Proof Let (ﬁ; 0 = 02) be a finitely integral multi-ring wittR = {as,a-- -, aq},
whereO; = { |1 <i <1}, 0, = {+i|1 < i < I}. Forany integer,1 <i < |, choose an

elementa € Randa # 0,,. Then
a-jag, dsjag, -+, a+ay

aren elements. Ifa- as = a- a, i.e.,a- (as + &) = 0,,. By definition, we know that
as + 't = 0+, namely,as = a. That s, thes@ - a;, a-j ap, - - -, a- a, are diferent two
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by two. Whence,

R:{a'i a;, dsjap, -, alaﬂ}

Now assume - as = 1, thena™! = a, i.e., each element @® has an inverse in
(R;-), which implies it is a commutative group. Therefo(é +i, -i) is a field for any
integeri,1 <i <. O

Corollary 3.3.1 Any finitely integral domain is a field.

3.3.2 Multi-Ideal. A multi-ideall of multi-ring (R, O1 < O») is such a multi-subring
of (ﬁ; 01— 02) satisfying conditions following:

(1) 1'is a multi-subgroup with an operation s{ell+ €O, (T)}
(2) Foranyr e RaeTandx € O;(I),r xaeTandaxr eI provided all of these
operating results exist.

Theorem3.3.4 A subset with O, (T) cO, (R) 0, (T) c Oz(ﬁ) ofamulti-ring(ﬁ; 0, — 02)

with R = URa, Ol(ﬁ) ={x|1<i<mand Oz(ﬁ) = {+| 1 <i < m}is a multi-ideal
o1

if and only if(I R, +i, ;) is an ideal of ring(R, +, x;) or TR = 0 for any integer

Lb1<i<m,

Proof By the definition of multi-ideal, the necessity of these dtinds is obvious.

For the stiiciency, denote bRR(+, X) the set of elements iRwith binary operations
“+» and “x” . If there exists an integérsuch thal R, # 0 and(Tﬂ R, +i, xi) is an
ideal of R, +i, Xi), then forvae | N R, Vr; € R, we know that

r X aerﬂ R: axr erﬂ R.
Notice thaﬂ?i(+i, %) = R.. Therefore, we get that
rx; aeTﬂRi and ax;r eTﬂRi,
for Vr € Rprovided all of these operating results exist. Whemds a multi-ideal ofR. [J

3.3.3 Multi-ldeal Chain. A multi-ideal I of a muIti-ring(ﬁ; 0y — 02) is said to be
maximalif for any multi-ideall’, R2 I’ 2 | implies thatl” = Ror |’ = |. For an order
of the double operations i@ (R) of a multi-ring (R; 01 < 05), not loss of generality,
let it to be G1,x1) > (+2,%2) > -+ > (+m Xm), We can define anulti-ideal chainof
(ﬁ; 01— 02) by the following programming.
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(1) Construct a multi-ideal chaiR > Ry; > Riz D --- D Ry under the double
operation ¢4, x1), whereRy; is a maximal multi-ideal oR and in generalRy,y is a
maximal multi-ideal ofRy; for any integefi, 1 <i<m-1.

Ri> - >Ry
i < m-1, then

(2) If a multi-ideal chainR > Ry D Rz D - D Ryg, D -+- D
has been constructed forq(, x1) > (+2,%X2) > -+ > (+i,X%j), 1 <
construct a multi-ideal chain dRs, by Rg O R O Rz O -+ D Rysps under
the double operation+, 1, Xi,1), Whereﬁ(m)l is a maximal multi-ideal oﬁisi and in
general,ﬁ(iﬂ)(m) is a maximal multi-ideal oﬁmm for any integerj,1 < j < s - 1.
Define a multi-ideal chain oR under b1, X1) > (+2,%2) > -+ > (+is1, Xij41) tO be
ROR;1D- DRigD--dR1D-->Rg D Rirayn 2 -+ D Risnys-

We get a result on multi-ideal chains of multi-rings followi

Theorem 3.3.5 For a multi-ring (R 0, — 02) with R = U R, its multi-ideal chain has
finite terms if and only if the ideal chain of rif(&;; +i, %) has finite terms, i.e., each ring
(R;; +i, Xi) is an Artin ring for any integer,il <i <m.

Proof Let
(+1, X1) > (+2,%2) > -+ > (+ms Xm)

be the order of these double operation@i(ﬁ) and let
R1> R11> s > thl

be a maximal ideal chain in ringR(; +1, ;). Calculation shows that

Ri1 = R\ {Ri\ Ru} = Ry U(U R),
=2

m
Riy = Ry \ {Rag 1) \ Ry} = R [_J(JR).
i=2
According to Theorem 3.4, we know that
ﬁD §113§123 "'Dﬁltl

is a maximal multi-ideal chain dR under the double operation{, x;). In general, for
any integefi,1 <i <m- 1, we assume that

Ri>Ry>->Ry
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is a maximal ideal chain in ringx;_1y; ,; +i. ;). Calculation shows that
m
Rk = RikU(U RikﬂRi)-
j=i+1
Then we know that
Ri-ms DR1DR22 - DRy
is a maximal multi-ideal chain cﬁ(i_l)ti_l under the double operatior;( x;) by Theorem
3.3.4. Whence, if the ideal chain of rindr( +i, x;) has finite terms for any integerl <
i < m, then the multi-ideal chain of multi-ring only has finite terms. Now if there exists

an integelip such that the ideal chain of ringr(, +i,, xi,) has infinite terms, then there
must also be infinite terms in a multi-ideal chain of multig(ﬁ; 01 — 02). O

A multi-ring is called arArtin multi-ring if its each multi-ideal chain only has finite

terms. We get a consequence following by Theore®b3
~ —_ m
Corollary 3.3.2 A multi-ring (R; 0, — 02) with R = |JR and a double operation set
i=1

O(F?) = {(+i,x)| 1 < i < m}is an Artin multi-ring if and only if each rindR;; +i, x;) is
an Artin ring for integers,il <i < m.

For a muIti-ring(ﬁ; 0, — 02) with R = G R and double operation sel(f{) =

i=1

{(+i, x| L <i < m}, an elemeneis anidempotentlement ife2 = e x e = efor a double
binary operation, x) € O(F?) Define thedirected sum of two multi-idealsly, I, by

MT=1Ul;
(2)1: N 12 = {0}, or ;12 = 0, where Q denotes the unit under the operatien

Such a directed sum of, 1, is usually denote by

-

Now if I = 1, @1, for any 1,1, implies thatl; = 1 or I, = I, thenl is called
non-reducible We get the following result for Artin multi-rings.

Theorem 3.3.6 Every Artin multi-ring(ﬁ; 01— 02) withR = U R and a double opera-
i=1

tion set qﬁ) = {(+i, %)l 1 < i < m}is a directed sum of finite non-reducible multi-ideals,
and if (R; +;, x;) has unitl,, for any integer j1 <i < m, then

m S
R=(DUDR x &) e x R)).
i=1  j=1
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where g, 1 < | < s are orthogonal idempotent elements of riffiy;, +i, x;).

Proof Denote byM the set of multi-ideals which can not be represented by aide
sum of finite multi-ideals irR. According to Theorem.3.5, there is a minimal multi-
ideally in M. It is obvious thaty is reducible.

Assume thal, = I; + I,. Thenl; ¢ M andl, ¢ M. Therefore,l; andl, can be
represented by a directed sum of finite multi-ideals. Theflglzan be also represented
by a directed sum of finite multi-ideals, contradicts to that M.

R- P,
i=1

where each;, 1 < i < sis non-reducible. Notice that for a double operatienx), each

Now let

non-reducible multi-ideal oR has the form

@xR@»LﬁR@)x@,eeR@)

Whence, there is a sétc R such that

R= P ExRx)|JRx) xe)

ecT, xeO(R)
Now let 1, be the unit for an operatiox € O(ﬁ). Assume that
Li=e®oed -0, 6T, 1<i<s

Then
exli=(exe)e(exe)d --a(exa).

Therefore, we get that
e=exe=¢€ ande xe =0 fori#j

Thatis,e,1 < i < | are orthogonal idempotent elementsRgk). Notice thatR(x) = R,
for some integeh. We know thate, 1 < i < | are orthogonal idempotent elements of the
ring (R, +n, Xn). Denote bye, for g, 1 < i < |. Consider all units iR, we get that

m S
R= EB(@(R Xi €j) U(Gj xi R)).
=1 =1

This completes the proof. O



Sec.3.4 Vector Multi-Spaces 91

Corollary 3.3.3 Every Artin ring (R; +, x) is a directed sum of finite ideals, and if

R:@Ra,

where ¢ 1 <i < s are orthogonal idempotent elements of r{Ry+, x).

(R; +, x) has unitl,, then

§3.4 VECTOR MULTI-SPACES

— k
3.4.1 Vector Multi-Space. LetV = |JV, be a complete multi-space with an operation
i=1

setO (V) ={(+1,-)|1<i<miand letF = iCJl F: be a multi-filed with a double operation
setO(lE) = {(+i, %) | 1 < i < k). If for any integers, 1 <i <k, (V;; F;) is a vector space
on F; with vector additive “+;” and scalar multiplicatiort-;” , thenV is called a vector
multi-space on the multi-file&, denoted b)(V; ’)

For subsetd/; c V andF; c F, if (\71; El) is also a vector multi-space, then we
call (\71; I?l) a vector multi-subspacef (V; If) Similar to the linear spaces, we get the

following criterion for vector multi-subspaces.

Theorem 3.4.1 For a vector multi-spac(;\\~/; IE) V, cV andF; c F, (\71; El) is a vector
multi-subspace ofV; F) if and only if for any vector additives+” , scalar multiplication
“.”in (Vl; El) andva,b € V,Va € F,

a-a+be Vl

provided these operating results exist.

— k — k — k —
Proof Denote by = |JV,, F = |J F;. Notice thatv; = | J (Vl mvi). By definition,
i=1 i=1 i=1
we know that(vl; El) is a vector multi-subspace ()V; IE) if and only if for any integer
il <i<Kk (\71mvi; Jri,-i) is a vector subspace o¥/( +i, ) and Fy is a multi-filed
subspace of or ViV, = 0.
By Theorem 14.1, we know tha(vl N Vi; +i, -i) is a vector subspace ofi( +;, -;) for

any integeii, 1 <i < kifand only if forVa,b € ViNVi, a€F,
a a-'l-ib € Vlﬂvi.

That is, for any vector additive+” , scalar multiplicatiort-” in (Vy; F1) and¥a, b € V,
Va € F, if a - atb exists, theny - a+b € V;. O
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Corollary 3.4.1 Let (U; El),(\TV; Ez) be two vector multi-subspaces of a vector multi-
space(V; F). Then(U N\W; F, N F) is a vector multi-space.

3.4.2 Basis. For a vector multi-spac(af/; If) vectorsay, ay, -+, a, € V, if there are
scalarsyy, as, - - -, a, € F such that

11+ 2 At - +p1@n nan = 0,

where0 € V is the unit under an operatioft+” in V and+, - € O(\7), then these vectors
a, a, -+, a, are said to béinearly dependentOtherwise, vectora,, a, - - -, a, are said
to belinearly independent

Notice that there are two cases for linearly independentovea, a, - - -, a, in a
vector multi-space:

(1) For scalarsy, as, - -, an € F, if
a1 1 al'i‘la’z 2 a2‘.i‘2 T ‘."n—la'n nan =0,

whereQis the unit ofV under an operatiofi+”in O(V), thena; = 0,,,a2 =0,,,- -+, an =
0,,, where Q, is the unit under the operatiof;” in F for integeri,1 <i <n.
(2) The operating result @f; -1a;+1a2-28+5 - - - +n_1n n @, dOES NOt exist n@v; B)

Now for a subse® c V, define itsinearly spanning se¢§> by
<§> ={ala=ao '1a1-‘|-1a’2'23.2-.i-2"' Gv,aj Eg,ai € E,l > 1}

For a vector multi-spacfV; F), if there exists a subs& S c V such thatv = (S),
then we says is alinearly spanning sebf the vector multi-spac¥. If these vectors in a
linearly spanning se&$ of vector multi-spac® are linearly independent, th&his said to
be abasisof (V; F).

— K ok
Theorem 3.4.2 A vector multi-spac(av; If) withV = | V;,F = | F; has a basis if each
i=1 i=1
vector spacéV;; Fi) has a basis for integers<i < n.
Proof Let A; = {a1, a2, -, an)} be a basis of vector spac¥{F;) for 1 <i < k.
Define )
A = UAi.

i=1

ThenAis a linearly spanning set faf by definition.
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If these vectors im are linearly independent, thenis a basis ofV. Otherwise,
choose a vectds; € A and define\; = A \ {by).

If we have obtained a s&s, s > 1 and it is not a basis, choose a vedbgr; € KS
and defineg,; = As \ {Dg.1).

If these vectors iﬁ&sﬂ are linearly independent, th&gﬂ is a basis o¥/. Otherwise,
we can define a séﬁsﬂ again. Continue this process. Notice that all vectora;iare
linearly independent for any integiel < i < k. Thus we finally get a basis &f. O

A multi-vector spac¥ is finite-dimensionaif it has a finite basis. By Theorem42,
if the vector space\(; F) is finite-dimensional for any integerl < i < k, then(v; IE)
is finite-dimensional. On the other hand, if there is an iateg 1 < iy < k such that the
vector space\(,; Fi,) is infinite-dimensional, the(1\7; If) must be infinite-dimensional.
This fact enables one to get a consequence following.
Corollary 3.4.2 Let (V IE) be a vector multi-space withl = U V,,F = U Fi;. Then

i=1
(V, If) is finite-dimensional if and only (V;; +i, +) Is finite- dlmen3|onal for any integer

I, 1<i<k.
Furthermore, we know the following result on finite-dimergl multi-spaces.

Theorem 3.4.3 For a finite-dimensional multi-vector spa¥; F), any two bases have
the same number of vectors.

Proof LetV = UV andF = U Fi. The proof is by the induction ok Fork = 1,
the assertion is true by Corollary4]_’L

If k = 2, let W, W, be two subspaces of a finite-dimensional vector space. By
Theorem 14.5 if the basis oW, YW, is{ay, a, - - -, &}, then the basis dV, [ JW: is

{al? g, -, a, bt+1’ bt+2’ ) bdile, Ci+1, Cy2, - 7 7 Cdim\/\é},

where{ay, ay, - -+, &, bry1, By, -+, Baimw; } IS @ basis oW, and{ay, ap, - - -, &, Cii1, Gy,
-+, Cgimw,} @ basis of,.
Whence, ifV = W; [JW, andF = F; | F,, then the basis oF is

{al? g, -, a, bt+1’ bt+2’ ) bdile, Ci+1, Cy2, - - 7 Cdim\/\é}'

Now assume the assertion is true kot |,| > 2. We consider the case bf= 1 + 1.
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Notice that

V= (Ul vi) Vi, F= (Q Fi) JFia

By the induction assumption, we know that any two bases ofntldi-vector space
| | |

(U Vi; U Fi) have the same numberof vectors. If the basis c(fU Vi) N Vi1 is {e, e,
i=1 =1 i

i=1
.-, &y}, then the basis of is

{el’ €, -, 6, fn+l, fﬂ+23 ) fp, gﬂ+1’ gﬂ+2’ ) gdim\/|+1},

| |
where{e, &, - - -, €n, fni1, frio, -+, fp} is @ basis 0(_U1Vi; Ul Fi) and{e, e, -, €, Ons1,
1= 1=
On+2, - *» Odimvi,,} IS @ basis olV,;. Whence, the number of vectors in a basisVois
p+dim\{,; — nforthe casen =1 + 1.

Therefore, the assertion is true for any intelgéy the induction principle. OJ

3.4.3 Dimension. By Theorem 34.3, the cardinal number in a basis of a finite dimen-
sional vector multi-spac¥ is defined to be itsimensiorand denoted by dil.

— — K
Theorem 3.4.4(dimensional formulpa For a vector multi-spac(av; IE) withV = (J V; and
i=1

F = | F;, the dimensiomimV of(\7; F)is

LC=

|
k
dimv =>'(-1* > dim(Via[ Ve[ )--[ Vi)

i=1 {iLi2,,ii}c{1,2,-,k}

Proof The proof is by induction ok. If k = 1, the formula is turn to a trivial case
dimV = dimV;. If k = 2, the formula is

dimV = dimVy + dimV - dim (Vy [~ dimVa),

which is true by Theorem.4.5.
Now assume that the formula is true for= n. Consider the case &f = n + 1.
According to Theorem 3.3, we know that

dim[o vi) +dimVp,; - dim([o vi) M vn+1)

i=1 i=1

dim [U vi) + dimVp,1 — dim (U (Vi) vm)J

i=1 i=1

dimV
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dimV,1 + Zn:(—1)i-l Z dim (Vig ﬂ Vi ﬂ - ﬂ Vi)
i=1 {iLi2,,ii}c{1,2,--,n}

St Y dma (Ve () % [(Vars)
i=1 (iLi2,,ii}c{1,2,--,n}

Z(—l)i_l dim(VilﬂVizﬂ“'ﬂVii)-

i=1 }

By the induction principle, the formula is true for any inéeg. U

+

{iLi2,-i}c{1,2,-k

As a consequence, we get the following formula.

Corollary 3.4.3(additive formuld For any two vector multi-spacég, V,,

dim(V; U V) = dimV; + dimV, — dim (V ﬂ Va).

§3.5 MULTI-MODULES

3.5.1 Multi-Module. The multi-modules are generalization of vector multi-gsad_ et
O={+]1<i<m},O0;={il<i<mand0, = {+1 <i < m} be operation sets,
(«# ; O) a commutativen-group with units Q and (#; O; — O,) a multi-ring with a unit
1 for V- € O;. For any integer, 1 <i < m, define a binary operatiox, : Z x .# — .#
by ax; xfora € Z, x € .# such that foiva,b € #Z, VX, y € .#, conditions following
hold:

(1) axi(X+iy)=axi x+axy,

(2) (a+ib) xj x = ax; X+ bx; X;

(3) @-i b) xi x = ax; (bx; x);

4) 1L xx = x
Then (/; O) is said aralgebraic multi-module oveZ; O, — O,) abbreviated to am-
moduleand denoted bivlod(.Z (O) : #(0, — 05)). In the case ofn = 1, It is obvious
thatMod(.Z (0) : Z(01, — 0,)) is amodule particularly, if (Z; 0, — O,) is a field,
thenMod (.7 (O) : Z(01 — O,)) is alinear spacen classical algebra.

For any integek, a, € # andx; € .#, where 1< i, k < s, equalities following are
hold by induction on the definition afrmodules.
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a Xy (X1 +x Xo +i -+ +k Xs) = @ Xk Xg +x & Xk Xo +g - -+ +k Qs Xk X,
(Ag+k@o+k - - - +K@s) Xk X = @1 Xy X +x A Xk X+« -+ +k As Xk X,
(A1 k@2 k" 'k As) Xk X = 3y Xk (@2 Xk + -+ X (As Xk X) * +*)
and
1., Xip (L, Xi, -+ Xig, (L Xig¥)-+1) = X
forintegerdy,ip,---,is€{1,2,---, m}.
Notice that forva,xe .Z,1<i <m,
axix=ax;(x+0,)=ax;x+ ax;0,,
we find thata x; 0,, = 0,,. Similarly, 0;, x; a = 0,,. Applying this fact, we know that
ax X+ a, X X = (a+ag) xi X = 0 xi X = 0
and

axi X+ ax;x;, =ax;(x+x;)=ax;0, =0,.

We know that
(@xi X, =a; X Xx=ax;X,.

Notice thata x; x = 0,, does not always meaa = 0;, or x = 0,, in anm-module
Mod(.#(0) : Z(01 — O)) unlessa;_ is existing in (7 +i, ) if X # 0.

Now chooseMod(.#:1(01) : %:1(0} — 03)) anmmodule with operation set8; =
{+1<i<m,Ot={H1<i<m},OL={+]1l<i<m andMod(Z(0,) : Z0? —
05)) an n-module with operation set9, = { +/ |1 <i < n}, 07 = {41 <i < n},
05 = {+?1 < i < n}. They are saithomomorphidf there is a mapping : .#1 — .#>»
such that for any integerl <i <m,

(1) «X+y) =uX) +" u(y) for VX, y € 1, wherew(+]) = +" € Oq;
(2) waxi X) = ax;ux) for Vx € ;.

If ¢ is a bijection, these modulégod(.#:1(0,) : Z1(0] — 03)) andMod (.#5(0,) :
H#>(07 — 03)) are said to bésomorphic denoted by

MOd(%l(Ol) . L@l(()i — O%)) ~ MOd(%g(Og) . %2(0% — Og))

Let Mod (.7 (O) : Z(01 — O,)) be anm-module. For a multi-subgroup/’; O) of
(A ;0), if for any integeri, 1 < i <m,ax; x € .4 forYa e # andx € .4/, then by
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definition it is itself anm-module, called a multi-submodule bfod (.7 (O) : Z(0; —

0,)).

Now if Mod (4 (0) : Z(0, — O,)) is amulti-submodule dflod(.# (0) : Z#(0, —
0>)), by Theorem &B.2, we can get a quotient multi-groqﬁkaﬁ) with a representation
pair (R, P) under operations

@+ A)+ b+ A)=(@+b)+ A

for Va,b € R + € O. For convenience, we denote elemexts ./ in %(Rﬁ) by x®. For
an integeii,1 <i < mandVvVa e Z, define

ax; X0 = (ax; X)0.

Then it can be shown immediately that

(1) axi OO+ y0) = ax; x0 + ax; yo;

(2) (at+ib) xi X = ax; x® +; b x; x;

(3) @-1 b) xi X0 = ax; (bx; XO);

@) 1, x X0 = X0,
i.e.,(%(ms) : Z) is also airm-module, called a quotient moduleldiod (.# (O) : Z(01 —
0,)) to Mod(4(0) : Z(0, — 0,)). Denoted byMod(.#Z /./).

The result on homomorphisms ofmodules following is an immediately conse-
quence of Theorem.37.

Theorem 3.5.1 LetMod(.#1(01) : Z1(0r — 03)), Mod(#5(0) : %#,(0? — 03)) be
multi-modules wittO; = {+/ |1 <i<m}, O, ={+/|1<i<n}, 01 ={H1<i<m

O =(+Hl1<i<m,O?={2L<i<n},0%={+1<i<njandc: Mod(.#(0) :
F1(0; — 03)) = Mod(#>(0,) : %.(0? — 03)) be a onto homomorphism with
(Z(0,); O2) a multi-group, wheref (O3) denotes all units in the commutative multi-group
(.45, 0,). Then there exist representation pafR;, P1), (R, P,) such that

Mod (A | N g5y = MOU(A2(02)/1(02))|g, 5>

where.#” = Ker is the kernel of. Particularly, if (Z(0,); 0,) is trivial, i.e., |7(0,)| = 1,
then
Mod (A /N g5y = MOA(A5(02) : Z2(0F = O3))lr, -
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Proof Notice that £(0-); O,) is a commutative multi-group. We can certainly con-
struct a quotient modulklod (.#5(0,)/1(0-)). Applying Theorem 2.7, we find that

Mod (A | A g5y = MO(A2(02)/1(02))|g, 5y-

Notice thatMod(.#,(0,)/1(0,)) = Mod(.#,(0-) : %#.(03 — 02)) in the case of
|7(0,)| = 1. We get the isomorphism as desired. O

Corollary 3.5.1 LetMod(.Z(O) : Z(01 — 0,)) be an m-module witlh = { +; | 1 <
i<m,Or={il<i<m,O0,={+1l<i<m}, Mamodule on arindR; +,-) and
¢ 1 Mod(#1(0,) : #.(07 — 03)) — M a onto homomorphism witker. = .4". Then
there exists a representation pgR’, P) such that

MOd(%/e/VN(R/’ﬁ) = M’
particularly, if Mod(.# (O) : #(0, — 0)) is a module#, then
M|N =

3.5.2 Finite Dimensional Multi-Module. For constructing multi-submodules of an
moduleMod(.Z (0) : Z(0O1 — O))withO = {+ |1 <i<m}, 01 = {1 <i < m},
0, = {+i|1 <i < m}, a general way is described in the following.

LetS c . with [S| = n. Define itslinearly spanning se{S|#) in Mod(.#(O) :
(0, — 0,)) to be

(51%) - {@@a.,x.x,m,em,es}
I

where
@@a,, Xij Xi = Q11 X1 Xg1 +1 -+ +1 A1n X1 Xin
i=1 =
+(1)a21 X2 X21 +2 -+« +2 Ao X2 Xon
4@ +®
Amt Xm Xm1 +m - +m Amn Xm Xmn
m
with +@®, +@ +8) ¢ O and particularly, if+; = 4, = --- = +p, it is denoted by} x
i=1

as usual. It can be checked easily tl(@;%) is a multi-submodule oMod(.Z (O) :
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Z(01 — 0y)), call it generated bys inMod(.7Z(0) : Z(01 — 05)). If Sis finite, we
also say tha(§|%> is finitely generated Particularly, ifS = {x}, then<§|,9?> is called a
cyclic multi-submodule d¥lod (.7 (O) : Z(0, — 0-)), denoted byZx. Notice that

m
RBX :{@aixixlaie%’}
i=1

by definition. For any finite se$, if for any integers, 1 < s< m,
m S
D Dawxix 0.,
i=1  j=1

implies thate;; = 0;, for 1 <i <m, 1< j<n,thenwe say thatx;|1 <i<m1l<j<n}
is independent an8 a basis of the multi-modulklod (.7 (0) : Z(0, — 0-)), denoted
by (S|) = Mod(.#(0) : Z(01 — 02)).

For a multi-ring #Z; O, — O,) with a unit 1 for V- € O, whereO; = {-|1 <i < m}
andO; = {+|1 <i <mj, let

B = {(X1, X, -+, %) % € Z, 1< i <n).
Define operations
(X1, X25 *++» Xn) +i (Y1, Y2 -+ 5 Yn) = (Ka+iYa, Xo+iY2, -+ -5 XaFiYn)s

axi (Xp, Xz, - -+, Xn) = (@« Xg, @ X, -+, @ Xn)

for Va € #Z and integers k i < m. Then it can be immediately known tha@™ is a multi-
moduleMod(Z™ : Z(0, — 0-)). We construct a basis of this special multi-module in
the following.

For any integek,1 <k < n, let

€ = (1'k’ O4’k’ ) O+k)y
& = (O+k’ 1‘k’ ) O+k)y

€, = (O-‘H(’ B O-'l—k’ 1k)
Notice that

(X1, X, +, Xn) = X1 Xk €1 +k X2 Xk € +k * - * +k Xn Xk €n.
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We find that each element i#" is generated bg;, &, - - -, &,. Now since

(Xl, X2yt o, Xn) = (O-'i—k, O+k’ ey, O+k)
implies thatx, = 0;, for any integeri,1 < i < n. Whence,e;,e,,---,€&,} is a basis of

Mod(Z™ : (01 — 0,)).

Theorem 3.5.2 LetMod(.# (O) : Z(01 — Oy)) = <§|92> be a finitely generated multi-
module withS = {uy, Uy, - - -, Uy}. Then

Mod (.# (0) : Z(01 — O)) = Mod(Z" : Z(01 — 05)).

Proof Define a mapping : .#(0) —» #™ by 9(u) = e, ¥(ax; u) = ax; e and
J(u +« Uj) = & + g for any integers, j, k, where 1<, j,k < n. Then we know that

ﬂ(éé}&j Xi U) = é;é;aij Xi 6.
=1 =1 -1 =1

Whence ¥ is a homomorphism. Notice that it is alse-11 and onto. We know that is
an isomorphism betweeviod (.# (0) : Z(01 — 0,)) andMod(Z" : Z(0, — 0,)).0

§3.6 RESEARCH PROBLEMS

3.6.1 The conceptions of bi-group and bi-subgroup were first aygoea [Magl] and
[MaK1]. Certainly, they are special cases of multi-group anulti-subgroup. More
results on bi-groups can be found in [Kan1]. We list some gpeblems in the following.

Problem 3.6.1 Establish a decomposition theory for multi-groups.
In group theory, we know the following decomposition resaftgroups.

Theorem 3.6.1([Rob1]) Let G be a finite2-group. Then G can be uniquely decomposed
as a direct product of finite non-decomposit@rsubgroups.

Theorem 3.6.2(|Wanl]) Each finite Abelian group is a direct product of its Sylow p-
subgroups.

Then Problem 3.1 can be restated as follows.

Problem 3.6.2 Whether can we establish a decomposition theory for mubtitgs similar
to the above two results in group theory, especially, fotdimulti-groups?
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Problem 3.6.2 Define the conception of simple multi-groups. For finite rghbups,
whether can we find all simple multi-groups?

We have known that there are four simple group classes foip{gXHLL1]):
Classl1: The cyclic groups of prime order;
Class2: The alternating groupA,,n > 5;

Class3: The 16 groups of Lie types;

Class4: The 26 sporadic simple groups.

Problem 3.6.3 Determine the structure properties of multi-groups getedlaby finite
elements.

For a subsef of a multi-groupG, define its spanning set by
(A) = {aobla,be Aando € OG)} .

If there exists a subsét c G such thaiG = (A), then callG is generated byA. Call G
finitely generatedf there exist a finite sef such thaG = (A). Then Problem %.3 can
be restated as follows:

Problem 3.6.4 Can we establish a finite generated multi-group theory sinid that of
finite generated groups?

Problem 3.6.5 Determine the structure of a Noether multi-ring.

3.6.2 Aring Ris called to be &oether ringif its every ideal chain only has finite terms.
Similarly, for a multi-ringR, if its every multi-ideal chain only has finite terms, it idleal
to be aNoether multi-ring

Problem 3.6.6 Can we find the structures of Noether multi-rings likewisa tf Corol-
lary 3.3.3 and Theoren3.3.6?

Problem 3.6.7 Define a Jacobson or Brown-McCoy radical for multi-rings ganto
that in rings, and determine their contribution to multigs.

3.6.3 Notice that Theorems.22 and 34.3 imply that we can establish a linear theory for
multi-vector spaces, but the situation is complex than datassical linear spaces. The
following problems are interesting.
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Problem 3.6.8 Similar to that of linear spaces, define linear transforroas on vector
multi-spaces. Can we establish a matrix theory for thosesdlirtransformations?

Problem 3.6.9 Whether a vector multi-space must be a linear space?
Conjecture 3.6.1 There exists non-linear vector multi-spaces in vector Rggaces.

If Conjecture 36.1 is true, there is a fundamental problem on vector multcepa
should be considered following.
Problem 3.6.10 Can we apply vector multi-spaces to those non-linear spaces

3.6.4 For a complete multi-spadd; O (A)), we can get anulti-operation systen. For
—_~ —_ n
example, ifAis a multi-fieldF = | J F; with a double operation sél(lf) ={(+, %) 1<

i=1
i <nj, then(f; +1, 42, +n), (E; X1, X2, xn) and(f; (+1, X1), (+2, X2), - =, (+n, xn))
are multi-operation systems. By this view, the classicarapon systemRK ; +) and
(R ; x) are systems with one operation. For a multi-operationesys, we can de-
fine these conceptions of equality and inequality, etc.. For example, in the multi-

operation syster(l?; +1,+2, 0, +n), we define the equalities,, =», - - -, =, such as those
in sole operation systen(:?; +1),(|?; +2),---, (E; +n), for example, 2=; 2,14 =,
1.4,---, V3 =, V3 which is the same as the usual meaning and similarly, foctme
ceptions>y, >, -+, >pand<y, <p, - - -, <p.

In the classical operation systeR (), the equation system

X+2+4+6 = 15
X+1+3+6 = 12
Xx+1+4+7 = 13

can not has a solution. But (rﬁ'f; T +n), the equation system

X+12+14+16 =1 15
X4+214,3+,6 =, 12

X+31+34+37 =3 13

has a solutiorx if

15+1 (1) +1(-4) +1(-16) = 12+;(-1)+2(-3) +2(-6)

13+3(=1) +3(-4) +3 (=7).
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in (F;+1,+42,---, +n). Whence, an element maybe hav@etient disguises in a multi-
operation system.

Problem 3.6.11 Find necessary and gicient conditions for a multi-operation system
with more thar operations to be the rational number field Q, the real numbedd iR or
the complex number field C.

For a multi-operation systemN(; (+1, X1), (+2, X2), - - -, (+n, Xn)) @nd integers, b, c €
N, if a = b x; cfor an integeii, 1 < i < n, thenb andc are calledactorsof a. An integer
pis called gorimeif there exist integera;, n, andi, 1 < i < nsuch thatp = n; x; n,, then
p = ng or p = n,. Two problems for primes of a multi-operation systelh;((+1, X1),
(+2,%X2), - -, (+n, Xn)) are presented in the following.

Problem 3.6.12 For a positive real number x, denote hby(X) the number of primes x
in (N ; (+1, X1), (+2, X2), - - -, (+n, Xn)). Determine or estimateq,(X).

Notice that for the positive integer system, by a well-knathvaorem, i.e.Gauss
prime theoremwe have known that

X

7T(X) ~ @(
Problem 3.6.13 Find the additive number properties f¥ ; (+1, X1), (+2, X2), - - -, (+n, Xn)),
for example, we have weakly forms for Goldbach’s conjechme Fermat’s problem as

follows.

Conjecture 3.6.2 For any even integer,m > 4, there exist odd primes;pp, and an
integer i1 <i < nsuchthat n= p; +i po.

Conjecture 3.6.3 For any positive integer g, the Diophantine equatidntxy® = 2 has
non-trivial integer solutiongx, y, z) at least for an operation‘+;” with 1 <i < n.

3.6.5 A Smarandache n-structure on a sein&ans a weak structufe/(0)} on S such
that there exists a chain of proper subggis— 1) c P(n—2) c --- c P(1) c S whose
corresponding structures verify the inverse cHaitn— 1)} > {w(n—2)} > --- > {w(1)} D
{w(0)}, i.e., structures satisfying more axioms.

Problem 3.6.14 For Smarandache multi-structures, solves Probl&mfsl — 3.6.10.



CHAPTER 4.

Multi-Voltage Graphs

There is a convenient way for constructing regular covesipares of a graph
G in topological graph theory, i.e., by a voltage assignmentG — I" on
G, first introduced by Gustin in 1963 and then generalized lys&in 1974,
where (; o) is a finite group. Youngs extensively used voltage graplpsou-
ing Heawood map coloring theorem. Today, this approach bas blso ap-
plied for finding regular maps on surface. However, theref@aneattentions
on irregular coverings of graphs. We generalize such gr&phg a voltage
assignmentr : G - I'toa : G — T, i.e., multi-voltage graphs, where
(f; O) is a finite multi-group. By applying results in last chaptero kind of
multi-voltage graphs are introduced for finding irregulaverings of graphs.
Elementary properties and results on these multi-voltagplt are obtained
in Sections £-4.3. Furthermore, we also construct graph models for alge-
braic multi-systems, including Cayley graphs on multitgys in Section 4
and get results on structural properties of algebraic systiey such graph
models.
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§4.1 VOLTAGE GRAPHS

4.1.1 Voltage Graph. Let G be a connected graph and; ¢) a group. For each edge
e € E(G),e = uv, anorientationon e is such an orientation oafrom u to v, denoted
by e = (u, V), called theplus orientationand itsminus orientationfrom v to u, denoted
by el = (v, u). For a given grapl® with plus and minus orientation on edgesjaitage
assignmenbn G is a mappingo- from the plus-edges 0B into a groupI” satisfying
o(e?) = c7Y(e), e € E(G). These elemenis(e), e € E(G) are called voltages, an®(o)
avoltage graphwith a voltage assignment: G — I

For a voltage graphQ, o) with a voltage assignment : G — T, its lifting G” =
(V(G"), E(G); 1(G7)) is defined by

V(G”) = V(G) xT, and Y(u,a) € V(G) x I' is abbreviated tai,,
E(G”) = {(Ua, Vaob)l€" = (U,V) € E(G), o(€") = b}

and
1(G”) = {(Ua. Vaob)I1 () = (Ua. Va) if € = (U, Vaop) € E(G7)).
For example, leG = Kz andI” = Z,. Then the voltage grapiKg, o) with o : K3 — Z;

and its lifting are shown in Fig.4.1.

Uo

G, 00) G

Fig.6.1.1
Let (G; o) be a voltage graph with a voltage assignment G — I'. Then for
Yv e V(G) ande € E(G), the sets
M'={valael), [€' ={elacl}

are defined the fibers overor e, respectively angh : G — G determined byp: v, —
v and e, — eforv e V(G), e € E(G) anda € I' thenatural projectionof (G; o). Clearly,
p is a|G|-sheet covering for any pointe G.
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4.1.2 Lifted Walk. For a walkW = €*, €72, ---, &" with o € {+, -}, define itsnet
voltageby

(W) = o(er)o(&) - - - o(n).

For example, the net voltage on the walk, vw",wv_ in Fig.41.1is1+0+0=1. A
lifting of such a walkw is determined by = e, g2, .-+, &" such thap(€) € [e]
for integers 1< i < n. For instance, the liftings of the walk/*, vw", wv™ in Fig.4.1.1 are
UoVy, ViW; , Wivy andusV{, oWy, WoV, . Particularly, lee* = (u,v) € E(G) with o(e*) = b,
o(b) = n, we get am-circuit starting au,, i.e.,

Ua, e;, Uaob, e;—ob’ Ugaob2, e;obz’ 5 Ugobn-1, egobn—l, Uaobn = Ua
in the lifting G”.

Theorem 4.1.1 If W is a walk in a voltage grapliG; o) with a voltage assignment
o . G — I such that the initial vertex of W is u, then for each vertgxnuthe fiber[u]
there is a unique lifting of W that starts af.u

Proof AssumeW = u, €', vy, €7 vy, --. If o1 = +, then, since there is only one
plus-directed edge, i.e., the edgein the fiber f]" starts at vertex,, the edge must be
the first edge in the lifting o¥V starting atu,. If o = —, similarly, since there is only one

minus-directed edge, i.eg{ in the fiber p;]' starts au,, it follows the edge must

z;orr(e‘)
be the first edge in the lifting oV starting atu,. Similarly, there is only one possible
choice of the second edgg? in the lifting of W because its initial vertex must be the
terminal vertex of the first edge and its lifting must in theefilje,]'. Continuing this

process, the uniqueness of lifting walk starting atu, holds. O

Theorem 4.1.2 If W is a walk from u to v in a voltage grap{G; o) with a voltage
assignmentr : G — I' ando (W) = b, then the lifting W starting at y, terminates at the
vertex Yop.

Proof Letby, by, -- -, by be the successive voltage encountered on a traversal of walk
W. Then it is clear that these subscripts of the successitvie®sion the liftingV” of W,
area,sobj,aobyob,, ---,aobjobyo---0b =aob. Thus the terminal vertex of/”
starts au, IS Vaop. O

Corollary 4.1.1 Let F(u, V) be a path from u to v in a voltage grag@; ) with a voltage
assignmentr : G — I' ando(P(u, v)) = b. then the lifting of Ru, v) is a path Rua, Va.p)-
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Furthermore, ilW is a circuit in G; o), we get the following result.

Theorem 4.1.3 Let C be a circuit of length m in a voltage gragB; o) with a voltage
assignmentr : G —» I' and c(a(C)In: n. Then each connected componentd{@) is a

circuit of length mn, and there a%— such components.

Proof Let C be the walkW = u,€/*,v,€7?,---, €&, u, oj € {+,-}, o(W) = band
Uy € [U]". Applying Theorem 41.2, we know that the component pf}(C) containingu,
is formed by edges in walks
Wa, Wacp, -+, Waepn-1,

which form a circuit of lengthmn by edges in these walk attached end-by-end. Notice

that there are('%l> left cosets of the cyclic groufb) in (T'; o) and each of them uniquely

: I .. L
determine a component pf'. Thus there an.%l lifted circuits of lengthC. O

4.1.3 Group Action. Let G be a graph and( o) a group. If for each elememngf e T,
there is an automorphisey of G such that the following two conditions hold:

(1) ¢4, is the identity automorphism @3;
(2) ¢g- ¢n=¢gon forg,h e T,
then the groupl(; o) is said toact on the graph GFor Vv € V(G), e € E(G), the sets

V={VW|geTl} and € ={€&¥|geTl}

are called the vertex orbit or edge orbit under the actiompf). The sets of vertex orbits
and edge orbits are respectively denotedW¥y andE/I". Moreover, if the additional
condition

(3) For each element-1# g € I, there are no vertex € V(G) such thaipy(v) = v
and no edge € E(G) such thaipy(e) = e

holds, then[; o) is said toact freelyonG.

Theregular quotient GI" is such a graph with vertex s€tI”" and edge seE/I" such
that a vertex orbit" is an end-vertex of the orbé if any vertexvin V' is an end-vertex
of an edge ire". There are easily to verify that such a gr&ph" is well-defined, i.e.eis
an edge with an end-vertaxf and only if € with an end-vertex'.

Now let (G; o) be a voltage graph with a voltage assignmentG — I'. There is a
natural action ofI(, o) onG” by rules¢gy(va) = v, ONn vertices angg(€,) = €5 ON €dges
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for g € I'. Such an actiom, is an automorphism d&' by verifying thatdg - ¢n = dgon.
Then the following result is clear by definition.

Theorem4.1.4 Let(G; o) be a voltage graph with a voltage assignmentG — I" and
Va € V(GY), &, € E(G7). Then { = p~}(v) and & = p~i(e).

Proof Forv, € V(G”), by definition we know that
Va={dg(Va) = Vgea | g €T} = {Vh | h € T} = pi(v).

Similarly, we gete}, = p7(e). O

4.1.4 Lifted Graph. For a voltage graphQ; o) with a voltage assignment: G — T,
we know that [[; o) is act-free orG” because ifpy(Va) = Va OF ¢g(€:) = €, theng = 1.
This fact enables Gross and Tucker found a necessary #intlesut condition for a graph
being that lifting of a voltage graph following.

Theorem4.1.5(Gross and Tucker, 1974)et (T'; o) be a group acting freely on a gragh
and G= G/I'. Then there is a voltage assignment G — I" and a labeling of vertices
on G by elements of (@) x I such thatG = G” and the action is the natural action of
([;0)on G

Proof First, we choose positive directions for edges in the gi@@EndG so that
the quotient mamr : G — G is direction-preserving and that the action bf §) on G
preserves directions. Second, for € V(G), label one vertex of the orbji(v) in G as
vy, and for every elemerg e I', g # 1, label the vertex,(V}) asv.. Now if the edgee of
G runs fromu to w, we assigns the labe}, to the edge of the orbpp~(e) that originates
at the vertex,. Since ;o) acts freely orG, there are jusf] edges in the orbip=1(e),
one originating at each of the vertices in the vertex opb(v). Thus, the choice of an
edge to be labelled, is unique. Finally, if the terminal vertex of the edgg is wy,, one
assigns a voltage to the edgee in graphG. Thuso(e*) = b. To show that this labelling
of edges inp~%(€) and the choice of voltagdsfor the edgee really yields an isomorphism
9 : G — G, one needs to show that fga € T that the edge, terminates at the vertex
Waop. HOWever, since, = ¢a(ey,), the terminal vertex of the edgg must be the terminal
vertex of the edgéa(ey,.), i.e.,

Pa(Wo) = ¢a - dp(Wi.) = ¢@c b)(Wy.) = Waop.
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Under this labelling process, the isomorphism G — G identifies orbits inG with
fibers ofG”. Moreover, it is defined precisely so that the actionlgh) onG is consistent
with the natural action on the lifted gra@t. This completes the proof. O

§4.2 MULTI-VOLTAGE GRAPHS-TYPE |

4.2.1 Multi-Voltage Graph of Type I. The first type of multi-voltage graph is labeling
edges in a graph by elements in a finite muIti-gr()ﬁrD). Formally, it is defined in the
following.

Definition 4.2.1 Let(T; O) be a finite multi-group with" = O, O(f) = foll <i <n)
=1

and G a graph. If there is a mapping : X;(G) — T such thaty(e ) = (y(e"))* for
Vet e X% (G), then the 2-tupléG, y) is called a multi-voltage graph of type I.

Geometrically, a multi-voltage graph is nothing but a weégghgraph with weights
in a multi-group. Similar to voltage graphs, the importanta multi-voltage graph is in
its lifting defined in the definition following.

Definition 4.2.2 For a multi-voltage graphG, y) of type |, its lifting graph G = (V(GY),
E(GY); I(GY)) is defined by

V(GY) = V(G) xT,
E(G) = {(Ua Vaob)I€" = (U,V) € X1(G), y(€") = b,acb T}

and
|(G¢) = {(Ua, Vaob)“ (e) = (Ua, Vaob) ife= (ua, Vaob) € E(Gw)}'

For abbreviation, a vertex(g) in G” is also denoted by,. Now for Vv € V(G),
vxT = {vyg € T} is called afiber over v denoted byF,. Similarly, forver = (u,V) €
Xy (G) with y(e") = b, all edged(ug, Vgeb)l0,go b € T} is called thefiber over e denoted
by Fe.

For a multi-voltage graphQ, ¢) and its liftingG¥, there is also aatural projection
p: GY — G defined byp(F,) = v for Yv € V(G). It can be verified easily thai(F) = e
for Ve € E(G).

Foe example, choode= Ty T, with T, = {1,a,a2}, I, = {1, b,b? anda # b. A
multi-voltage graph and its lifting are shown in Fi4.
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Fig4.2.1
Let (F O) be a finite multi-group witl™ = UF,, = {o; 1 < i < n}. We know

the liftings of walks in multi-voltage graphs of type | similto that of voltage graphs
following.

Theorem4.2.1 Let W= e'€?- - - € be a walk in a multi-voltage grap{G, ) with initial
vertex u. Then there exists a lifting/AVgtart at u, in G” if and only if there are integers
i1,10, -+, ik such that

aoj, Y(ey) o, ---0i, w(e+) eI, andy(e +1) eli,,
for any integer j1< j <k

Proof Consider the first semi-arc in the walk, i.e.,ef. Each lifting ofe; must be
(Ua, uaow(ep). Whence, there is a lifting o, in G” if and only if there exists an integér
such thab = o;, anda, ao;, y(e]) € I7,.

Now if we have proved there is a lifting of a sub-wak = e;e,---g in G¥ if and
only if there are integens, i, - - -, i;, 1 < | < ksuch that

aoj, y(ef) o, ---oi, w(e+) eli,,, vw(e J+1) eli,,
for any integerj,1 < j <1, we consider the semi-ag, ;. By definition, there is a lifting
of &, in G¥ with initial VerteXUao, y(ep)r, =i, ,u(g) If and only if there exists an integer,
such that

aoj, lﬁ(eI) Oip * " Oijy W(@) €l and'vb(e]t.l) € [41.

Whence, by the induction principle, there exists a liftilWj start atu, in G if and only
if there are integers, i,, - - -, ik such that

aoj, Y(€]) o, -0, w(e+) el andw(eHl) eli,,
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for any integerj,1 < j < k. O

— k
For two elementg, h € T, if there existintegers, i, - - -, ix such thag, h € (" I, but
j=1

k+1
for Vie1 € {1,2,---,n}\ {ig,ip, - -+, ik}, @, h & N [, we callk = I1[g, h] the joint number
j=1

of g and h Denote byO(g,h) = {0;;;1 < j < k} and defindl[g, h] = Y. M[g,goh,

on(F)
wherell[g, goh] = I1[goh, h] = 0 if goh does not exist i, According to Theorem.2.1,

we get an upper bound for the number of lifting€gt for a walk W in (G, v) following.

Corollary 4.2.1 If those conditions in Theoredh?2.1 hold, the number of liftings of W
with initial vertex i in G¥ is not excess

I [, y(e})] x

k
1—[ Z . Z T [a oy y(€}) oz - o w(e), y(e1)],

i=1 0jc0@u(e]))  oicO@o).u(e)) 1sj<i-1)
where Qa; o}, y(€]). 1< | <i—1)=O@oy y(e]) oz - o1 Y(e). U(€)).

The natural projection of a multi-voltage graph is not reguh general. For finding
a regular covering of a graph, a typical class of multi-vgétgraphs is the case Bf=T'
for any integeii, 1 < i < nin these multi-group$ = LnJ I. In this case, we can find the
exact number of liftings iG¥ for a walk in G, ¥) foII(;/%/ing.

— —_ n
Theorem4.2.2 Let (F; O) be a finite multi-group with" = (JT'and O= {o;;1 < i < n}
i=1

and let W= e'é?- - - & be a walk in a multi-voltage grap{®, v), ¢ : Xy (G) - T of type |
with initial vertex u. Then there are‘tiftings of W in G with initial vertex  for Va € T.

Proof The existence of lifting ofV in G” is obvious by Theorem.2.1. Consider
the semi-are;. Sincel; = I' for 1 <i < n, we know that there ameliftings of e, in GY
with initial vertexu, for anya e f, each with a form,, uaow(ep), 0eO (f)

Now if we have gottem®, 1 < s < k— 1 liftings in G” for a sub-walkW; = e'e?- - - €°.
Consider the semi-a®, ;. By definition we know that there are alsdiftings of s,1 in
G with initial Vertex s, y(e)s, -owu(e), Whereo; € O(T),1 < i < s. Whence, there are
ns*tL liftings in G¥ for a sub-walkWs = ete? - - -1 in (G; y).

By the induction principle, we know the assertion is true. O

Particularly, if(F; O) is nothing but a group, i.ee; = o for integers 1< i < n, we
get Theorem 4.1 again.
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Corollary 4.2.2 Let W be a walk in a voltage grapi®, v), ¢ : X% (G) — I with initial
vertex u. Then there is an unique lifting of W iti ®ith initial vertex @ for vaeT.

If a lifting WY of a multi-voltage graphG, v) is the same as the lifting of a voltage
graph G, a),a : Xy (G) — T, then this lifting is ahomogeneous lifting df;. For lifting a
circuit in a multi-voltage graph, we get the following resul

— —_ n
Theorem 4.2.3 Let (F; O) be a finite multi-group witi" = (JI"'and O= {o;; 1 <i < n},

i=1
C = uUz---UyUy a circuit in a multi-voltage grapiG, ¢) andy : X%(G) — TI. Then
r - . .
there areL homogenous liftings of lengtliy(C, o;))m in G’ of C for any integer
o((C, oi))

i, 1 < I < n! Wherelﬁ(c’ oi) = lﬁ(ul, UZ) Oj w(UZ’ u3) Oj +++ 0 w(um—l, Um) Oj W(Um, ul) and
there are

n

I
Z o(¥(C, o1))

i=1
homogenous liftings of C in‘Galtogether.

Proof According to Theorem 2.2, there are liftings with initial vertexu), of C in
G for Ya € T. Whence, for any integérl < i < n, walks
W, = (Ul)a(uz)aoiw(m,uz) e (um)aOil//(Ul,Uz)Oi~~~°il//(um-1,um)(ul)aOiw(C,Oi)’
Wasy(Con) = (Un)aoiu(Coon) (U2)aoiu(C.on)or(ur.ie)
+ (Um)ao(C.o)oiw(un.u)or-oi(u-1.m) (UL 2oy y2(C.0n)
Waoiowieon-ic.o) = (Un)asyovcan-ic.o) (U2)aoov@o-1(c.oop(ur.ue)
T (Um)aOill/O("’(C"’i))’1(C,°i)°il//(U1,U2)°i---Oiw(uwl,um)(ul)a

are attached end-to-end to form a circuit of leng{l#(C, o;))m. Notice that there are
I

o (C,o)) _ L
each of them is correspondent with a homogenous lifting of G¥. Therefore, we get

left cosets of the cyclic group generated L, o;) in the group [, o;) and

: T
Z o(y(C, 7))

i=1
homogenous liftings of in G’. O

Corollary 4.2.3 Let C be a k-circuit in a voltage grap{G, y) such that the order of
Y(C,0) is min the voltagelgrou(f; o). Then each component of the preimagé(@) is
a km-circuit, and there arérﬁl such components.
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The lifting G¢ of a multi-voltage graph@, /) of type | has a natural decomposition
described in the following.

Theorem 4.2.4 Let(G,?),¢ : Xi(G) » T = Lnjl“i, be a multi-voltage graph of type I.
2 i=1

Then ]
G = (PHi,
i=1

where His an induced subgrap{E;) of G¢ for an integerj1 < i < n with
Ei = {(ua, Vaoib)la, b € Fi and (u’ V) € E(G)’ g(u’ V) = b}

— —_ n
4.2.2 Subaction of Multi-Group. For a finite multi-grour(l‘; O) withT = (JTIj, O =
i=1

n

{oi,1 < i < n} and a graplG, if there exists a decompositidd = €P H; and we can
j=1

associate each elemegt € I a homeomorphisnpg on the vertex seV(H;) for any

integeri, 1 < i < nsuch that

(1) @goin = @g X ¢n, for all gi, hy € T, where “x ” is an operation between homeo-
morphisms;

(2) ¢q is the identity homeomorphism if and onlygf is the identity element of the
group (i; i),
then we say this association to bstbaction of multi-grou on graph G If there exists
a subaction of on G such thatp, (u) = uonly if g = 11, for any integeii,1 <i < n,
g €I andu € V;, we call it to be dixed-free subactian

A left subaction 12of T on G is defined by

For any integer j1 < i < n, let V{ = {ua|ueV(G),aef} and g € T;. Define
IA(Gi)(Ua) = Ugea if @ € Vi. Otherwise, gu,) = U,.

Then the following result holds.

Theorem 4.2.5 Let (G, ) be a multi-voltage graph witly : X:(G) —» T = Lnjl"i and
2 i=1

n

G = @ H; with H = (E), 1< i < n, where E= {(ua,vaoib)la,b e T and (U,V) €
j=1

E(G), Z(u,v) = b}. Then for any integer,L <i <n,

(1) For Vg € Tj, the left subaction I4y;) is a fixed-free subaction of an automor-
phism of H;
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(2) T is an automorphism group ofiH

Proof Notice thatlA(g;) is a one-to-one mapping &N(H;) for any integeli,1 <i <
n, Vg € I';. By the definition of a lifting, an edge iH; has the form,, va.) if @ b € T;.
Whence,
(IA(9) (Ua), IA(G1) (Vaoib)) = (Ugoias Vgioaeib) € E(H).

As aresult]A(g;) is an automorphism of the graph.

Notice thatlA : T, — AutH; is an injection fronT; to AutG”. SincelA(g) # IA(h)
for Vgi,hy € Ti,g # h,1 < i < n. Otherwise, iflA(g) = IA(h) for Ya € Tj, then
g oi a = hj oja. Whenceg; = h;, a contradiction. Therefor€; is an automorphism group
of Hi. Now for any integer, 1 <i < n, g € I§, itis implied by definition thatA(g;) is a
fixed-free subaction 0&”. This completes the proof. O

Corollary 4.24 Let (G,a) be a voltage graph witl : X%(G) — I'. ThenI is an
automorphism group of G
For a finite multi-group(f; O) with T = Lnjl"i action on a grapks, the vertex orbit
i=1

orb(v) of a vertexv € V(G) and the edge orbirb(e) of an edgee € E(G) are respectively
defined by
orb(v) = {g(V)lge T} and orb(e) = {g(e)|g € T}.

Then thequotient graptG/T of G under the action df is defined by

V(G/T) = { orb(v) [ve V (G) }
E(G/T) ={ orb(e) |ec E(G)},
I (orb(e)) = (orb(u), orb(v)) if there exists ¢, v) € E(G).

For example, a quotient graph is shown in Fig.2, where[ = Z.

Fig 4.2.2
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Then we get a necessary andimient condition for the lifting of a multi-voltage
graph following.

Theorem4.2.6 If the subactionA of a finite multi-groug(T; O) with T = /T, on a graph
i=1

G= QHE H is fixed-free, then there is a multi-voltage gra{@yT, ¢), £ : X3 (G/T) —» T
of typ;zll such that
G ~ (G/T).

Proof First, we choose positive directions for edge§gF andG so that the quotient
map o : G — G/I is direction-preserving and that the actiéhof I on G preserves
directions. Next, for any integérl < i < nandVv € V(G/f), label one vertex of the
orbit q%l(v) in G asvy. and for every group elemegt € I, g # 1r, label the vertex
A(Gi)(v1y,) asvg. Now if the edgee of G/I" runs fromu to w, we assigns the labe);
to the edge of the orb'q;il(e) that originates at the vertey,. Sincel; acts freely orH;,
there are jusfl’j| edges in the orbitq;il(e) for each integer,1 < i < n, one originating at
each of the vertices in the vertex orb|11i1(v). Thus the choice of an edge to be labeled
& is unique for any integeit 1 < i < n. Finally, if the terminal vertex of the edgg,. is
W, One assigns a voltade to the edges in the quotienG/T, which enables us to get a
multi-voltage grapf(é/ﬁ g). To show that this labeling of edgesqpil(e) and the choice
of voltagesh;, 1 < i < n for the edgee really yields an isomorphisi : G — (CNS/f){, one
needs to show that fofg; € I, 1 <i < nthat the edgey terminates at the vertex .
However, sincee; = A(gi)(ey,), the terminal vertex of the edgg must be the terminal
vertex of the edgeA(gi)(ey,, ), which is

A(G)(Wh) = A(G)AN) Wy, ) = A(Gi oi i)W, ) = Wgorn-

Under this labeling process, the isomorphi8mG — (G/ﬂg identifies orbits inG with
fibers of G¢. Moreover, it is defined precisely so that the actiof'afn G is consistent
with the left subactiohA on the lifting graphG¢. U

Particularly, if(T'; O) is a finite group, we get Theoremi4 as a corollary.

Corollary 4.2.5 Let(T; o) be a group acting freely on a gragh and let G be the resulting
guotient graph. Then there is a voltage assignmentG — I' and a labeling of the
verticesG by the elements of(@) x I" such thatG = G* and the given action df’; o) on
G is the natural action ofT"; o) on G".



116 Chap.4 Multi-Voltage Graphs
§4.3 MULTI-VOLTAGE GRAPHS-TYPE Il

4.3.1 Multi-Voltage Graph of Type Il. The multi-voltage graphs of type | are globally
labeling edges by elements in finite multi-groups. Ceryaivk can locally label edges in
a graph by elements in groups. Thus the multi-voltage graptygpe I, formally defined
in the following.

Definition 4.3.1 Let(T, O) be a finite multi-group with = Lnjl"- O={o; 1<i<n}and

let G be a graph with vertices partition(&) = U V;. For any integers,ij,1 < i, <n,

if there is a mapping : X; (<EG(V.,VJ)>) - T, ﬂF andg : V; - T; such thatr(e™?) =
(r(e*)) for Vet € Xy (G) and the vertex subset M associated with the groupj, o;) for
any integerjl1l <i < n, then(G, 7, ¢) is called a multi-voltage graph of type Il.

The lifting of a multi-voltage graphQ, , ¢) of type Il is defined in the following.

Definition 4.3.2 For a multi-voltage graph(G, 7, ¢) of type Il, the lifting graph G*) =
(V(G"9), E(G9);1(G)) of (G, . ) is defined by

n
G(“) U Vi x T},
i=1

E (G(T’g)) = {(Ua, Vaob)|e = (U, V) € X% (G)’ l//(e+) = b’ aobe i:} ’
1(GT9) = {(Ua. Vaco)1 (€) = (Ua. Vaot) I € = (U, V) € E(G)}.

0
0
L, i
1 U 7
(@) Vo
Uo
0
R L
u
1
Up
Vo
(b)

Fig 4.3.1
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Two multi-voltage graphs of type Il with their lifting are eWwn in (a) and (b) of
Fig.43.1, wherel = Z, | Zs, V1 = {u}, V> = (v} ands : Vi — Z5, ¢ : V, — Zs.

Theorem4.3.1 Let(G, 7, ¢) be a multi-voltage graph of type Il and let\ u,u, - - - ux be
awalk in G. Then there exists a lifting of W with an initial vertex(u,)., a € ¢~ *(u) in
G if and only if ae ¢71(uy) N s~1(up) and for any integer Sl < s < K, ao;, T(Usly) oj,
7(UaUsg) oj, -+ - 0i, T(Us2Us1) € ¢ H(Us-1) N s (Us), where “o;” is an operation in the
groups*(u;.1) for any integer j1< j <s.

Proof By the definition of the lifting of a multi-voltage graph ofig I, there exists
a lifting of the edgeu;u, in G&9) if and only if a o, T(u1Uy) € ¢71(Up), where “o; ” is
an operation in the group™(u,). Sincet(uiw) € ¢ (u) N s (W), we get thata €
¢ Hu) N ¢~ Y(uy). Similarly, there exists a lifting of the subwall, = u;uous in G&) if
and only ifa € ¢™*(uy) N s7*(Uz) anda oj, 7(uyUz) € s~ (Uz) M s (Ua).

Now assume there exists a lifting of the subwdlk = uiU,u3 - - - U in G&9) if and
only if aoj, T(UUp) oi, - - - 0j,_, T(_2U_1) € ¢ (1) N s7H(w) for any integet, 1 <t <1,
where“o;, ” is an operation in the group*(uj.1) for any integerj, 1 < j < |. We consider
the lifting of the subwalkM, 1 = u;UUs - - - U.1. Notice that if there exists a lifting of the
subwalkW, in G, then the terminal vertex of\j in G&9) is (U)o, ~(untz)oi, o1,y (ur-sun)-
We only need to find a necessary andfisient condition for existing a lifting otyu, 1

with an initial vertex (n)aoilf(uluZ)oiz... 7(u_14)). By definition, there exists such a lifting

Cij_1
of the edgeuu,, if and only if (@ oj, 7(Uslp) o, - - - oj_)T(U_1U)) o T(UUis1) € ¢ (Uisa).
Sincer(uu,1) € ¢ X(u,1) by the definition of multi-voltage graphs of type II, we know
thata o, T(UiUp) oj, - - - 0, , T(U_1Uy) € ¢7H(Upy1).

Continuing this process, we get the assertion by the indgrinciple. U

Corollary 4.3.1 Let G a graph with vertices partition (&) = U Vi and let(T; o) be a
finite group,I; < I" for any integerj1 <i <n. If (G, 7,¢)isa muIt| -voltage graph with
T: X%(G) — I'andg : V; — T for any integer j1 < i < n, then for a walk W in G with
an initial vertex u, there exists a lifting W in G with the initial vertex y, a € ¢~(u)
if and only if a€ Nyeyw s7(V).

Similarly, if Iy = " andV; = V(G) for any integeii, 1 < i < n, the number of liftings
of a walk in a multi-voltage graph of type Il can be determined

Theorem4.3.2 Let(T; O) be a finite multi-group witfi" = UF O={o;1<i<n}jand
=1
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let W = e'€?--- € be a walk with an initial vertex u in a multi-voltage grag, 7, ),
n

7: X1(G) - NT andg : V(G) — T, of type IIl. Then there are*diftings of W in G
2 i=1

with an initial vertex y for va e T.

Proof The proof is similar to that of Theorem243. OJ
~ —_ n
Theorem4.3.3 Let(I"; O) be a finite multi-group witl' = |JT', O = {0;; 1 <1 < n}and let
i=1
n
C = uU,---uyu, be acircuitin a multi-voltage graplG, 7, ), wherer : X% G ->NTr
i=1

andgs : V(G) — I'. Then there are— —— =) liftings of length @tau(C, o;))m in G=5) of
C for any integer,il <i <n, Wherer(E’ .5 = 7(Ug, Up) oj T(Up, U3) 0j - - - 0 T(Um-1, Um) ©j

7(Um, U1), and there are
n

T
Z o(t(C, o)

liftings of C in %% altogether.

Proof The proof is similar to that of Theorem243. O

4.3.2 Subgraph Isomorphism. Let G;, G, be graph andd a subgraph o6, andG.,.
We introduce the conception éf-isomorphism of graph following.

Definition 4.3.3 Let G, G, be two graphs and H a subgraph of @nd G,. A one-to-
one mapping between @ and G is called an H-isomorphism if for any subgraph J
isomorphic to H in G, £(J) is also a subgraph isomorphic to H in,G

If Gy = G, = G, then an H-isomorphism between @nd G is called an H-
automorphism of G. Certainly, all H-automorphisms form awgy under the composition
operation, denoted bgutyG andAut,G = AutG if we take H= K.

For example, leH = (E(X, Ng(X))) for ¥x € V(G). Then theH-automorphism group
of a complete bipartite grapk(n, m) is AutyK(n, m) = S,[Sy] = AutK(n, m). ThereH-
automorphisms are calledar-automorphisms

n
Theorem4.3.4 Let G be a graph. If there is a decomposition-GPH H; with H; ~ H for
i=1

m
1<i<nandH=& Jjwith Jj =~ Jforl< j<m,then
j=1

(1) <4, Hy —> Hi, anisomorphisml <i <n) =S, < AutyG, and particularly,
S, < AutyKonq if H = C, a hamiltonian circuit in K.
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(2) Aut;G < AutyG, and particularly AutG < Aut,G for a simple graph G.

Proof (1) For any integer,1 < i < n, we prove there is a sudd-automorphism
tonGthaty : Hy — Hi. Infact, sinceH; ~ H, 1 < i < n, there is an isomorphism

6 : H; — H;. We defing; as follows:

L€ =

| e ifee(V(G)\V(H))UEG)\ E(Hy)).
Theny; is a one-to-one mapping on the grapland is also amd-isomorphism by defini-
tion. Whence,

(ti,4i * Hy — H;, anisomorphisml <i < n) < AutyG.

Since(i, 1 <i<ny={(1,i),1<i<n)y=S,, thereby we get thed, < AutyG.
n

For a complete grapKz,, 1, we know its a decompositiof,n.; = € C; with
i=1

Ci = VoViViz1Vic1Viz2 - * * Vinsi—1 Vi1 Vinsi Vo
for any integeli, 1 < i < nby Theorem 2.2. Whence, we get that
Sh < Auty Ko

if we choose a hamiltonian circuit in Ko, .
(2) Chooser € Aut;G. By definition, for any subgraph of G, if A = J, then
m

o(A) ~ J. Notice thatH = €p J; with J; ~ Jfor 1 < j < m. Therefore, for any subgraph
j=1

m
B,B~ H of G, 0(B) ~ (p o(J;) = H. This fact implies thatr € Aut,G.
=1
Notice that for a simple grapB®, we have a decompositi@ = f K, and Auk,G =
i=1
AutG. Whence, AuB < AutyG. | O

The equality in Theorem.3.4(2) does not always hold. For example, a one-to-one
mappingo on the lifting graph of Fig.8.2(@): o(ug) = U, o(Uy) = Uy, o(Vo) = Vv,
o (V1) = v, ando(v,) = Vp is not an automorphism, but it is &h-automorphism witH
being a sta6; ,.

For automorphisms of the liftinG™) of a multi-voltage graph@, 7, ¢) of type II,
we get a result following.
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n
Theorem 4.3.5 Let (G, 7, ¢) be a multi-voltage graph of type Il with: X% G - NT;

i=1
andg : V, — I. Then for any integersj,1<i,j <n,

(1) for Vg € I}, the left action 14g;) on(V;)™¢) is a fixed-free action of an automor-
phism of(V;)™);
(2) for ¥g; € Iy (T}, the left action 14g;;) on(Ec(Vi, V)

(r.5)

of (Ea(Vi. V) .

(rs) . .
)" is a star-automorphism

Proof The proof of (1) is similar to that of Theorem244. We prove the asser-
tion (2). A star with a central verten,, u € V,,a € I (I is the graphSg, =
({(Uas Vaoyp) if (V) € Eg(Vi, V), 7(u.v) = b}). By definition, the left actiorlA(g;) is a
one-to-one mapping ofEG(Vi,V,-)>(T’§). Now for any elementy;;, g € I (I}, the left
actionlA(gij) of gj; on a stalSety is

A9 (Sstar) = ({(Ug e Vg eiaropo) if (V) € Eg(Vi, V). 7(u,V) = bl) = S
Whence)A(g;j) is a star-automorphism «éEG(Vi, VJ-)>(T’§). O
~ — —_ n
LetG be a graph and I¢T; O) be a finite multi-group witli™ = | J I} andO = {o;; 1 <
i=1
i < n}. If there is a partition for the vertex th(é) = Lnj V, such that the action df on
i=1
G consists off; action on(V;) andTI; N\ T; on <EG(Vi,v,-)> for1 <i,j < n, we call such
an action to be aartially-action A partially-action is calledixed-freeif T’ is fixed-free
on(V;) and the action of each elementlin\ I'; is a star-automorphism and fixed-free on
<EG(Vi, V,-)> for any integers, j, 1 < i, ] < n. These orbits of a partially-action are defined
to be
orbi(v) = {g(Wlg € I, v € i}
for any integeii, 1 <i <nand

orb(e) = {g(e)le € E(G).g € f}.

A partially-quotient graphG/ pf is defined by
n
V(G/oh) = Jtorbiv) Ive i},  E(G/el) = {orb(e)e € E(G))
i=1

and! (G/,I') = {I(€) = (orbi(u), orb;(v)) if u € Vi,ve V;and (V) € E(G),1<i,j < n).
For example, a partially-quotient graph is shown in Fig2l whereV; = {ug, Uy, Uy, Uz},
Vo = {Vo, V1, Vo) andl’y = Z4, T, = Zs.
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Uo
Vo Uy
1 Uy
Vo
Us
Fig 4.3.2

We get a necessary and®Bcient condition for the lifting of a multi-voltage graph of
type Il following.

—~ —_ n
Theorem 4.3.6 If the partially-action?, of a finite muIti-group(F; O) withT' = JT;
i=1

and O= {o;;1 < i < n} on a graphG with V(é) = Lnjvi is fixed-free, then there is a
i=1
multi-voltage grapf(@/pf, T, g), 7:X3(G/T) - T,¢:V;, > T of type Il such that

G ~ (G/pD)™.

Proof Similar to the proof of Theorem.2.6, we also choose positive directions on
these edges @/ ,I' andG so that the partially-quotient mag : G — G/, I'is direction-
preserving and the partially-action Bfon G preserves directions.

For any integef, 1 < i < nandvVv € V;, we can label/ asv; and for every group
elementy € I, g # 1r,, label the vertexPa(gi)((vi)1,) asv"gi. Now Iif the edgee of G/pf
runs fromu to w, we assign the labe}, to the edge of the orbjp~'(e) that originates at
the vertex, and terminates art/ﬂ]j.

Sincel; acts freely onV;), there are judl’j| edges in the orbip;il(e) for each integer
I,1 <i < n,one originating at each of the vertices in the vertex qnp’i(v). Thus for any
integeri, 1 < i < n, the choice of an edge ip(e) to be labeled, is unique. Finally, if
the terminal vertex of the edggg is Wﬂ]j, one assigns voltagg* o; h; to the edgesin the
partially-quotient grapls/,I" if gi,h; e [T forl<i,j<n.

Under this labeling process, the isomorphigmG — (é'/pf)(T’G) identifies orbits in
G with fibers of G, O

The multi-voltage graphs defined in Section® dnd 43 enables us to enlarge the
application field of voltage graphs. For example, a compbgtartite graphK(n, m) is a
lifting of a multi-voltage graph, but it is not a lifting of aoltage graph in generaliif = m.
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§4.4 MULTI-SPACES ON GRAPHS

4.4.1 Graph Model. A graph is called alirected graphf there is an orientation on its
every edge. A directed gra@ is called anEuler graphif we can travel all edges &
alone orientations on its edges with no repeat startingyavartexu e V(@) and come
back tou. For a directed grapﬁ, we use the convention that the orientation on the edge
eisu — vforve= (uv) € E(@) and say thae is incident from uandincident to v For

ue V(@), theoutdegreep%(u) of u is the number of edges 1@ incident fromu and the

indegreep_, (u) of u is the number of edgesﬁ incident tou. Whence, we know that

[€]
pié(u) + p;G>(U) =pg).

It is well-known that a grapﬁ is Eulerian if and only ifc%(u) = p;G)(u) forvueV (@)
seeing examples in [11] for details. For a multiple 2-edagdy if two orientations on
edges are both ta or both tob, then we say it to be parallel multiple2-edge If one
orientation is taa and another is tb, then we say it to be aopposite multiple-edge

Now let (A; o) be an algebraic system with operatién” . We associate aeighted
graph GA|] for (A; o) defined as in the next definition.

Definition 4.4.1 Let (A; o) be an algebraic system. Define a weighted grapA]@&sso-
ciated with(A; o) by

V(G[A]) = A

and
E(G[A]) = {(a,c) with weightob|if aob=c forVa,b,ce A}
as shown irFig.44.1.

ob

Fig.4.4.1

For example, the associated gra@fZ,] for commutative groupZ, is shown in
Fig.44.2.
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4.4.2 Graph Model Property. The advantage of Definition.4.1 is that for any edge
with end-vertices, ¢ in G[A], if its weight is ob, then @b = c and vice versa. Further-
more, ifacb = c, then there is one and only one edg&im\] with verticesa, c and weight
ob. This property enables us to find some structure properfi€3 A] for an algebraic
system A; o).

P1. G[A] is connected if and only if there are no partition=AA; | J A, such that for
Ya; € A, Yap € Ay, there are no definition for@e a, in (A; o).

If G[A] is disconnected, we choose one compor@rand letA; = V(C). Define
A = V(G[A]) \ V(C). Then we get a partitioA = A, [ JA; and forVa; € Ay, Ya, € Ay,
there are no definition fax, o a, in (A; o), a contradiction and vice versa.

P2. If there is a unitl, in (A; o), then there exists a vertdx in G[A] such that the
weight on the edgéla, X) is ox if 15 o X is defined i(A; o) and vice versa.

P3. For Ya € A, if a! exists, then there is an opposite multigkedge(14, a) in
G[A] with weightsoa andoa™?, respectively and vice versa.

P4. ForVYa,b e Aifaob = bo a, then there are edgds, x) and (b, X), x € A in
(A; o) with weights Wa, X) = ob and Wb, X) = oa, respectively and vice versa.

P5. If the cancellation law holds ifA; o), i.e., forVa,b,c € A, ifao b = ao c then
b = c, then there are no parallel multip2edges in GA] and vice versa.
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The properties P2,P3,P4 and P5 are gotten by definition inatedg Each of these
cases is shown in Fig4t3(1), (2), (3) and (4), respectively.

a b a
oa op
oa ogl ob oa ob oC
1A
1a a b
) (2)

a
(1 2 (3) 4)

Fig.4.4.3

Definition 4.4.2 An algebraic systerfA; o) is called to be a one-way system if there exists
amappingw : A —» Asuchthatifab € A, then there exists a uniquescA, cow(b) € A.
w is called a one-way function g, o).

We have the following results for an algebraic systelno] with its associated
weighted grapl&[A].

Theorem4.4.1 Let(A; o) be an algebraic system with a associated weighted grd@$).G
Then

(1) If there is a one-way functiotr on (A; o), then GA] is an Euler graph, and vice
versa, if GA] is an Euler graph, then there exist a one-way funct®on (A; o).

(2) If (A;0) is a complete algebraic system, then the outdegree of ewstgxvin
G[A] is |Al; in addition, if the cancellation law holds i(A; o), then GA] is a complete
multiple2-graph with a loop attaching at each of its vertices such #sath edge between
two vertices in GA] is an opposite multipl@-edge, and vice versa.

Proof Let (A; o) be an algebraic system with a associated weighted ge§fh

(1) Assumew is a one-way functionrs on (A; o). By definition there exists € A,
cow(b) € AforYa e A, aocb € A. Thereby there is a one-to-one correspondence between
edges froma with edges ta. That is,pg[A](a) = Pan (a) for Ya € V(G[A]). Therefore,
G[A] is an Euler graph.

Now if G[A] is an Euler graph, then there is a one-to-one correspordastveen
edgesirE™ = {e7;1 <i <k} from a vertexawith edgesE* = {€"; 1 < i < Kk} to the vertex
a. For any integer, 1 <i <k, definew : w(e") — w(e"). Thereforew is a well-defined
one-way function onA; o).
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(2) If (A;0) is complete, then foka € AandVb € A, aob € A. Therefore,
p%(a) = |A| for any vertexa € V(G[A]).
If the cancellation law holds inA o), by P5 there are no parallel multiple 2-edges
in G[A]. Whence, each edge between two vertices is an oppositg-atl weights on

loops arec1,.

By definition, if G[A] is a complete multiple 2-graph with a loop attaching at each
of its vertices such that each edge between two vertic€ A is an opposite multiple
2-edge, we know thatA( o) is a complete algebraic system with the cancellation law
holding by the definition oG[A]. O

Corollary 4.4.1 LetI be a semigroup. Then[@] is a complete multipl@-graph with a
loop attaching at each of its vertices such that each edgedsi two vertices in [ is
an opposite multipl@-edge.

Notice that in a groug’, Vg € T, if g?> # 1r, theng™ # g. Whence, all elements
of order- 2 inT" can be classified into pairs. This fact enables us to knowdheing
result.

Corollary 4.4.2 LetI be a group of even order. Then there are opposite mulfigdges
in G[I'] such that weights on i directed edges are the same.

4.4.3 Multi-Space on Graph. Let (T;O) be an algebraic multi-space. Its associated
weighted graph is defined in the following.

ob
+ e
o2
" a
+1 -a .
0 Ox 41 [*2 oa b NeYe
+2 oa a
2 o
+0 "1
Fig.4.4.4

—_ n
Definition 4.4.3 LetI’ = | I'; be an algebraic multi-space wiflii;; o;) being an algebraic
i=1
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system for any integerl < i < n. Define a weighted graph @ associated with" by

n
o(f) = | Jerr
i=1
where Gr7] is the associated weighted graph(bf; o;) for 1L <i < n.

For example, the weighted graph shown in Fig4lis correspondent with a multi-
spacél: =T UL UTs, where (1 +) = (Zs, +), o = {e,a, b}, '3 = {1, 2,4, b} and these
operations“-” onI'; and “o” onI'; are shown in tables.4.1 and 44.2.

e a b
ele a b
ala b e
bl b e a
table 4.4.1
ol 1 2 a b
1]* a b *
2| b * * a
a * * * l
b|* * 2
table 4.4.2

Notice that the correspondence between the multi-spaaed the weighted graph
G [F] is one-to-one. We immediately get the following result.

Theorem4.4.2 The mappings : T — G|T'| andx* : G|T| - T are all one-to-one.

According to Theorems.4.1 and 44.2, we get some consequences in the following.

Corollary 4.4.3 LetT = Lnj I; be a multi-space with an algebraic systéli o;) for any
integeril <i<n. If forlzalny integerjl < i < n, Tj] is a complete multipl@-graph
with a loop attaching at each of its vertices such that eadjedaetween two vertices in
G[I] is an opposite multiple-edge, the is a complete multi-space.

~ n
Corollary 4.4.4 LetI’ = |J I'; be a multi-group with an operation set(@) ={o;1<i<
i=1

n
n}. Then there is a partition ([ﬂ = |J Gj such that each Gbeing a complete multiple
i=1
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2-graph attaching with a loop at each of its vertices such thath edge between two
vertices in \(G;) is an opposite multipl@-edge for any integer L <i < n.

Corollary 4.4.5 Let F be a body. Then[E] is a union of two graphs KF) and K2(F*),
where K(F) or K2(F*) is a complete multipl@-graph with vertex set F or F= F \ {0}
and with a loop attaching at each of its vertices such thahestge between twojfrent
vertices is an opposite multipeedge.

4.4.4 Cayley Graph of Multi-Group. Similar to that of Cayley graphs of a finite
generated group, we can also defl@ayley graphs of a finite generated multi-group

where a multi- grouﬂ" U I is said to befinite generatedf the groupT; is finite
i=1

generated for any integeyl < i < n, i.e, I = (X,Vi,---,Z). We denote by =

(X,¥i,--,Zs; 1 <i < n)if Tis finite generated b, yi, -+, z5; 1 < i < n}.

Definition 4.4.4 Letl = (X.Vi,---.Z;1<i < n) be a finite generated multi-group, =
n —_ —_ —_—

USi, wherel ¢ S;, S = {a‘lla € S} =S and(S;) = T for any integerjl <i <n. A
i=1

Cayley graph CafT : §) is defined by
V(Cay(T:S))=T
and
E(Cay(T": S)) = {(g.h)| if there exists an integerg™ o;h € S;, 1< i < n}.

By Definition 44.4, we immediately get the following result for Cayley grais
finite generated multi-group.

Theorem 4.4.3 For a Cayley graph Ca(/i: : ) S)withT = U I; andS = U Si,

i=1
Cay(T : S) UCay(l“ S).

It is well-known thatevery Cayley graph of order3 is 2-connectedBut in general,
a Cayley graph of a multi-group is not connected. For the eotatdness of Cayley graphs
of multi-groups, we get the following result.

Theorem 4.4.4 A Cayley graph Ca@ : ) S)withT = U I; andS = U Si is connected if
and only if for any integer,il < i < n, there exists an mteger]; < J < nand j# i such
thatI'; N I #0.
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Proof According to Theorem 4.3, if there is an integer,1 < i < n such that
NI = 0 for any integerj,1 < j < n, j # i, then there are no edges with the form
(@.h), g €I}, he T\ T ThusCay(T : S)is not connected.

Notice thatCay(T : S) = iCJ1Ca),(l"i © S;). Not loss of generality, we assume that
g € I'c andh € T, where 1< k, | < n for any two elementg, h € T. If k = |, then there
must exists a path connectiggandh in Cay(f : §)

Now if k # | and for any integer,1 < i < n, thereisanintegey, 1< j<nandj # i
such thal’; N I'; # 0, then we can find integerg iz, - - -, s, 1 <iy,ip,---,is < nsuch that

N[ )T, # 0,
L, () # 0,

I, ﬂn 0.

Therefore, we can find a path connectipgndh in Cay(T : S) passing through these
vertices inCay(I';, : S;,), CayTI;, : Si,), ---, Ca\Ii, : Si.). Thus the Cayley graph
Cay(T : S) is connected. O

The following theorem is gotten by the definition of Cayleyagin and Theorem
444,

Theorem4.4.5 If T = | J T with || > 3, then the Cayley graph C4y : S)
i=1
(1) is an|S|-regular graph;
(2) its edge connectivity(Cay(T : S)) > 2n.

Proof The assertion (1) is gotten by the definitiormiy(i: : §) For (2) since every
Cayley graph of order 3 is 2-connected, for any two verticgsh in Cay(f : §) there
are at least 2 edge disjoint paths connectimgandh. Whence, the edge connectivity
k(Cay(I':S)) = 2n. O

Applying multi-voltage graphs, we get a structure resuliGayley graphs of a finite
multi-group similar to that of Cayley graphs of a finite group

Theorem 4.4.6 For a Cayley graph CaQIN“: §) of a finite multi-groupl’ = LnJI‘i with
i=1

= N . . = =~ = S
S = S, there is a multi-voltage bouquet Bg — S such that Caff : S) ~ (Bg)'.

i=1
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Proof LetS = {s;1<i<|S|} andE(Bg) = {Li;1<i<[S|}. Define a multi-
voltage graph on a bouquBg, by

s:Li—os, 1<i<|[s].

Then we know that there is an isomorphisrinetweer(Blgl)g andCay(T : S) by defining
7(0g) = gfor Vg € T, whereV(Bg) = {O}. O

Corollary 4.4.6 For a Cayley graph Cay : S) of a finite groud’, there exists a voltage
bouquetr : Bg — S suchthatCa¥ : S) ~ (Bg)*.

§4.5 RESEARCH PROBLEMS

4.5.1 As an dficient way for finding regular covering spaces of a graph,agdtgraphs
have been gotten more attentions in the past half-centuriméhematicians. Unless
elementary results on voltage graphs discussed in thigehdprther works for regular
covering spaces of graphs can be found in [GrT1], partibyler finding genus of graphs
with more symmetries on surfaces. However, few works carobed in publication for
irregular covering spaces of graphs. These multi-voltagelyof type | or type Il with
multi-groups defined in Sections244.3 are candidate for further research on irregular
covering spaces of graphs.

Problem 4.5.1 Applying multi-voltage graphs to get the genus of a grapim\ass sym-
metries.

Problem 4.5.2 Find new actions of a multi-group on graph, such as the leftastion
and its contribution to topological graph theory. What cae gay for automorphisms of
the lifting of a multi-voltage graph?

There is a famous conjecture for Cayley graphs of a finite giowlgebraic graph
theory, i.e.every connected Cayley graph of ordeB is hamiltonian Similarly, we can
also present a conjecture for Cayley graphs of a multi-group

Conjecture 4.5.1 Every Cayley graph of a finite multi-grotip= Lnj I'; with order> 3and
i=1

n

T

i=1

> 2 is hamiltonian.
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4.5.2 As pointed out in [Mao10], for applying combinatorics to ettsciences, a good
idea is pullback measures on combinatorial objects, Ihitignored by the classical
combinatorics and reconstructed or make a combinatoriargdization for the classi-
cal mathematics. Thus is the CC conjecture following.

Conjecture 4.5.1(CC Conjecture)The mathematical science can be reconstructed from
or made by combinatorialization.

Remark 4.5.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite catdial rulers and ax-
ioms to reconstruct or make generalization for classicdaheraatics.

(2) The classical mathematics is a particular case in thebawatorialization of
mathematics, i.e., the later is a combinatorial generadinaf the former.

(3) We can make one combinatorialization offelient branches in mathematics and
find new theorems after then.

More discussions on CC conjecture can be found in referejidas19] [Mao37]-
[Mao38].

4.5.3 The central idea in Section4is that a graph is equivalent to multi-spaces. Ap-
plying infinite graph theory (see [Thol] for details), we @so define infinite graphs for
infinite multi-spaces similar to that Definition43.

Problem 4.5.3 Find the structural properties of infinite graphs of infiniteulti-spaces.



CHAPTER 5.

Multi-Embeddings of Graphs

A geometrical grapls is in fact the graph phase &. Besides to find combi-
natorial properties of graphs, a more important thing isrid the behaviors
of graphs in spaces, i.e., embedding a graph in space tosggédametrical
graph. In last century, many mathematicians concentréieid attention to
embedding graphs on surfaces. They have gotten many chiaséics of sur-
faces by combinatorics. Such a way can be also applied toex@espace for
finding combinatorial behaviors of spaces. Whence, we dengjraphs in
spaces in this chapter. For this objective, we introduceltapcal spaces in
Section 51, multi-surface embeddings, particularly, multi-sphengedding

of graphs with empty overlapping and including multi-emébed on sphere
are characterized in Sectior2fand 2-cell embeddings of graphs on surface in
Section 53. A general discussion on multi-surface embeddings offggand

a classification on manifold graphs with enumeration candusd in Sec-
tion 5.4. Section % concentrates on the behavior of geometrical graphs, i.e.,
graph phases in spaces with transformations. All of thegenmaés show how

to generalize a classical problem in mathematics by mpHess.
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§5.1 SURFACES

5.1.1 Topological Space.Let .7 be a set. Aopologyon a set7 is a collectioné’ of
subsets of7, calledopen setsatisfying properties following:

(THO e % and.T € €,
(T2)if U, Uy € €, thenU; NnU, € €,
(T3) the union of any collection of open sets is open.

Forexample, lety’ = {a, b, c} and% = {0, {b}, {a, b}, {b, ¢}, 7}. Then? is atopology
on .7 . Usually, such a topology on a discrete set is calleltsarete topologyotherwise,
a continuous topologyA pair (&, %) consisting of a setV and a topologys on .7 is
called atopological spacand each element ifr is called gpointof .7. Usually, we also
use.7 to indicate a topological space if its topology is clear ia tontext. For example,
the Euclidean spade" for an integemn > 1 is a topological space.

For a pointu in a topological space”, its anopen neighborhoo@ an open sety
such thatu € U in .7 and aneighborhoodn .7 is a set containing some of its open
neighborhoods. Similarly, for a subsatof .7, a setU is anopen neighborhooar
neighborhoodf A if U is open itself or a set containing some open neighborhoods of
that set in7. A basisin .7 is a collection% of subsets of7 such that7 = Ug.4#B and
B, B, € 4, x € B; N B, implies thatdB; € 4 with x € Bs ¢ B; N B; hold.

Let .7 be a topological space and= [0,1] c R. Anarc ain .7 is defined to be a
continuous mapping : | —» 7. We calla(0), a(1) the initial point and end point o,
respectively. A topological spac# is connectedf there are no open subspackandB
such thatS = AU B with A, B # 0 and calledarcwise-connected every two pointsu, v
in .7 can be joined by an ain .7, i.e.,a(0) = uanda(l) = v. Anarca: | - Jis
aloopbased apif a(0) = a(1) = pe 7. A —it degenerated loop, : | — x€ S, i.e.,
mapping each element Into a pointx, usually called goint loop

A topological space” is calledHausdoyf if each two distinct points have disjoint
neighborhoods anfirst countablef for eachp € .7 there is a sequendé),)} of neigh-
borhoods ofp such that for any neighborhoad#lof p, there is am such thaty, c U. The
topology is calledsecond countabligit has a countable basis.

Let {x,} be a point sequence in a topological spacelf there is a poink € .7 such
that for every neighborhodd of u, there is an integed such than > N impliesx, € U,
then{u,} is saidconvergedo u or u is alimit point of {u,} in the topological spacg’.
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5.1.2 Continuous Mapping. For two topological space$; and.%, and a poinu € .77,
a mappingy : % — % is calledcontinuous at uf for every neighborhood of ¢(u),
there is a neighborhodd of u such thatp(U) c V. Furthermore, ifp is continuous at
each poinuin .73, theng is called acontinuous mappingn .7;.

For examples, the polynomial functidn: R — R determined byf(x) = a,x" +
a1 X1 + ... + a;X + @ and the linear mapping : R" — R" for an integem > 1 are
continuous mapping. The following result presents progedf continuous mapping.

Theorem5.1.1 LetZ, . and.7 be topological spaces. Then

(1) A constant mapping t#Z — .¥ is continuous;

(2) The identity mapping ld #Z — Z is continuous;

Q) If f : # — .7 is continuous, then so is the restrictiofy, of f to an open subset
U of #Z;

@it : 22— < andg: .¥ - 7 are continuous at x Z and f(x) € ., then so
is their composition mapping gf# — 7 at x.

Proof The results of (1)-(3) is clear by definition. For (4), notibat f andg are
respective continuous ate R and f(x) € .. For any open neighborhodlf of point
a(f(x) € .7, g} (W) is opened neighborhood d{x) in .. Whence,f1(g~%(W)) is an
opened neighborhood afin # by definition. Thereforeg(f) is continuous axk. O

A refinement of Theorem.5.1(3) enables us to know the following criterion for
continuity of a mapping.

Theorem 5.1.2 Let# and.¥ be topological spaces. Then a mapping ## — . is
continuous if and only if each point & has a neighborhood on which f is continuous.

Proof By Theorem 51.1(3), we only need to prove theféigiency of condition. Let
f : % — . be continuous in a neighborhood of each pointdéndU c .. We show
that f~1(U) is open. In fact, any point € f~1(U) has a neighborhood(x) on which f
is continuous by assumption. The continuityfaf implies that lv) *(U) is open in
V(X). Whence it is also open i#Z. By definition, we are easily find that

(Flv) (V) = (xe ZIf(x) € U} = FHU) [ V(¥),

in f~1(U) and containx. Notice thatf~1(U) is a union of all such open sets asanges
over f~1(U). Thusf-1(U) is open followed by this fact. O
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For constructing continuous mapping on a union of topolaigspaces?’, the fol-
lowing result is a very useful tool, called ti&uing Lemma

Theorem 5.1.3 Assume that a topological spac¥ is a finite union of closed subsets:
n

Z = X. If for some topological spac#’, there are continuous maps:fX; — # that
i=1

agree on overlaps, i.e.ilf nx, = fjlx nx foralli, j, then there exists a unique continuous

f: 2 — % with fly, = fi foralli.
Proof Obviously, the mapping defined by
f() = fi(¥), xeX

is the unique well defined mapping frofti’ to % with restrictionsf|y, = f; hold for alli.
So we only need to establish the continuityfobn 2. In fact, if U is an open set i/,
then

n

X[ V) = (U xi]ﬂ (V)

i=1

I(®)

n

j (% () )) = _U(xi N 1W)) = Q 1)

i=1

|
By assumption, each is continuous. We know thdt*(U) is open inX;. Whence,
f-1(U) is openin2". Thusf is continuous onZ’". O

Let 2 be atopological space. A collectichc &2(%2") is called to be @overof 2~

Jc=2.

CeC
If each set inC is open, therC is called anopened coveand if |C| is finite, it is called

a finite coverof 2". A topological space isompactif there exists a finite cover in its
any opened cover aridcally compactf it is Hausdoftf with a compact neighborhood for
its each point. As a consequence of Theorein35 we can apply the gluing lemma to
ascertain continuous mappings shown in the next.

Corollary 5.1.1 Let Let. 2" and ¢ be topological spaces and\, A, -- -, Ay} be a fi-
nite opened cover of a topological spage. If a mapping f: 2~ — % is continuous
constrained on each;AL < i < n, then f is a continuous mapping.

5.1.3 Homeomorphic Space. Let . and .7 be two topological spaces. They are
homeomorphidf there is a 1- 1 continuous mapping : . — .7 such that the inverse
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mapinge™! : .7 — .7 is also continuous. Such a mappiags called ahomeomorphic
or topologicalmapping. A few examples of homeomorphic spaces can be fautitki
following.

Example5.1.1 Each of the following topological space pairs are homegumior

(1) A Euclidean spacR" and an opened unitball B" = { (X1, Xp, - -, o) | X5 + X5 +
(2) A Euclidean plan®™*! and a unit spher8” = { (X, Xp, - -+, Xns1) | X6+ X5 + - - - +
X2, = 1} with one pointp = (0,0, - - -, 0, 1) on it removed.

In fact, define a mapping from B" to R" for (1) by
(Xl? X2’ T, Xl"l)
1- \/x§+x§+---+xﬁ

f(Xl’XZ?""Xn) =

for V(xq, X0, - - -, X) € B". Then its inverse is
(X1, X2, + 5 Xn)
1+ \/x§+x§+---+xﬁ

fH (e, Xo, o+, Xn) =

for V(Xq, Xo, - - -, X,) € R™. Clearly, bothf andf~* are continuous. SB" is homeomorphic
to R". For (2), define a mappinfjfrom S" — p to R™*! by

f(Xl’ X23 Tt Xﬂ+1) = (Xl’ X23 Tt Xﬂ)

1- +1

Its inversef 1 : R™! — S" — pis determined by
f_l(xl’ X, v, Xl"l+1) = (t(X)Xl, Tt t(x)xn, 1- t(X)),

where
2

2 2 2
I+ X +X5+--+ X,

t(x) =

Notice that bothf and f~* are continuous. Thu8" — p is homeomorphic t&R"*.

5.1.4 Surface. For an integen > 1, ann-dimensional topological manifoid a second
countable Hausdfirspace such that each point has an open neighborhood hon@amor
to an opem-dimensional balB" = {(X1, Xp, - - - , X)X +35+- - -+X2 < 1} in R". We assume
all manifolds is connected considered in this book. A 2-rfiddiis usually callecdsurface

in literature. Several examples of surfaces are shown ifoll@ving.
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Example5.1.1 These 2-manifolds shown in the FidLA are surfaces with boundary.

plane torus rectangle cylinder

Fig.5.1.1

Example5.1.2 These 2-manifolds shown in the FidL2 are surfaces without boundary.

o &

sphere torus

Fig.5.1.2

By definition, we can always distinguish the right-side agftt$ide when one object
moves along an arc on a surfase Now letN be a unit normal vector of the surfae
Consider the result of a normal vector moves along a loop surfaces in Fig.5.1 and
Fig.5.1.2. We find the direction oN is unchanged as it come back at the original paint
For example, it moves on the sphere and torus shown in thg.Eigyfollowing.

& &

sphere torus

Fig.5.1.3



Sec.5.2 Graphs in Spaces 137

Such loop4. in Fig.5.1.3 are calledrientation-preservingHowever, there are also loops
L in surfaces which are not orientation-preserving. In suatec we get the opposite
direction ofN as it come back at the original poimt Such a loop is calledrientation-
reversing For example, the process (1)-(3) for getting the famousiM&strip shown in
Fig.5.1.4, in where the loofk is an orientation-reversing loop.

A B’ A A
N
\ , El
v E
B A B B’
1 2
1) A (2)
L
B
3
Fig.4.1.4

A surfaceS is defined to berientableif every loop onS is orientation-preserving.
Otherwise hon-orientabldf there at least one orientation-reversing loopSnwhence,
the surfaces in Examplesl5l-5.1.2 are orientable and the Mobius strip are non-orientable.
It should be noted that the boundary of a Mobius strip is aetioarc formed byAB and
A’B. Gluing the boundary of a Mobius strip by a 2-dimensiondl B3, we get a non-
orientable surface without boundary, which is usuallyeirosscagin literature.

§5.2 GRAPHS IN SPACES

5.2.1 Graph Embedding. Let&; and&, be two topological spaces. An embeddingef

in &, is a one-to-one continuous mappihg &, — &,. Certainly, the same problem can
be also considered fd@, being a metric space. By topological view, a graph is nothing
but a 1-complex, we consider the embedding problem for gréiplspaces. The same
problem had been considered by Grimbaum in [Grul]-[GraBpfaphs in spaces, and
references [GrT1], [Liul]-[Liu4], [MoT1] and [Whil] for giphs on surfaces.
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5.2.2 Graph in Manifold. Let G be a connected graph. Fév € V(G), aspace permu-
tation P(v) of vis a permutation ofMNg(V) = {us, U, - - -, U,5y} @nd all space permutation
of a vertexv is denoted byP4(v). A space permutation JfG) of a graph Gis defined to
be

Ps(G) = {P(V)|YV € V(G), P(v) € Ps(V)}

and apermutation systerfs(G) of Gto be all space permutation G Then we know the
following characteristic for an embedded graph imamanifoldM" with n > 3.

Theorem5.2.1 For an integer n> 3, every space permutation(®) of a graph G defines
a unique embedding of G> M". Conversely, every embedding of a graph-& M"
defines a space permutation of G.

Proof AssumeG is embedded in an-manifold M". For Yv € V(G), define an
(n = 1)-ball B**(v) to bex? + x5 + - -- + X2 = r? with center atv and radiug as small
as needed. Notice that all auto-homeomorphism®A&ditv) of B"(v) is a group under
the composition operation and two poimfts= (Xq, Xo, - -+, X,) andB = (Y1, Y2, -+, Yn) IN
B"%(v) are said to be combinatorially equivalent if there existaato-homeomorphism
¢ € AutB™1(v) such that;(A) = B. Consider intersection points of edgesgg(v, Ng(Vv))
with B™(v). We get a permutatioR(v) on these points, or equivalently dyi(v) by
(A, B,---,C,D) being a cycle oP(v) if and only if there existg € AutB"}(v) such that
¢'(A) =B, -, ¢I(C) = Dand¢'(D) = A, wherei, - - -, j,| are integers. Thereby we get a
space permutatioRy(G) of G.

Conversely, for a space permutatiBg(G), we can embe in M" by embedding
each vertex € V(G) to a pointX of M" and arranging vertices in one cyclef(G) of
Ns(v) as the same orbit gfr) action on points ofNg (V) for o € AutB™*(X). Whence we
get an embedding @& in the manifoldM". O

Theorem 32.1 establishes a relation for an embedded graph im-dimensional
manifold with a permutation, which enables one combinattyrdefining graphs embed-
ded inn-dimensional manifolds.

Corollary 5.2.1 For a graph G, the number of embeddings of A, n > 3is

[ ] pet.
veV(G)

For applying graphs in spaces to theoretical physics, weidenan embedding of
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graph in an manifold with additional conditions, which elesus to find good behavior
of a graph in spaces. On the first, we consider the rectiliapdyeddings of graphs in a
Euclid space.

Definition 5.2.1 For a given graph G and a Euclid spa&g a rectilinear embedding of
G inE is a one-to-one continuous mapping G — E such that

(1) For Ve e E(G), n(e) is a segment of a straight line i&;
(2) Forany two edges.e= (u,V), & = (x,y) in E(G), ((ey) \ {z(u), 7(V)}) N (m(e2) \
{7(x), 7(y)}) = 0.

In R3, a rectilinear embedding &€, and a cub&); are shown in Fig.2.1 following.

(0,0,1) (0,0,1) (0,1,1)
' (1,0, S
(0,0,0)
/- -\ L 71,0)
(1,0,0) (0,1,0) (1,0,0) (1L1,0)
Fig 5.2.1

In general, we know the following result for rectilinear emaloling of graph<s in
Euclid spaceR", n > 3.

Theorem 5.2.2 For any simple graph G of order n, there is a rectilinear emtiied of G
in R"withn> 3.

Proof Notice that this assertion is true for any integer 3 if it is hold forn = 3.
In R3, choosen points (1, t3, t3), (t2, t5, t3), - - -, (tn, t2, t3), wherety, tp, - - -, t, aren different
real numbers. For integersj, k, 1,1 < i, j,k | < n, if a straight line passing through ver-
tices ¢, t7,t7) and ¢;, t?, t?) intersects with a straight line passing through vertige(t?)
and §, t?, t%), then there must be

bo—t t—t ot -t
2 2 42 2 12 2 | =

3 3 ¢3 3 43 3
g-t -t -t
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which implies that there exist integessf € {k, 1,1, j}, s # f such thats = t;, a contra-
diction.

Now letV(G) = {vi, Vs, - - -, Vp,}. We embed the grap@ in R® by a mappingr : G —
R3 with n(v) = (4, t2,t%) for 1 < i < nand ifviv; € E(G), definer(v,v;) being the segment

between pointst( t’, t’) and ¢;,t?,t) of a straight line passing through points , t}

and ¢;, t7,t%). Thenr is a rectilinear embedding of the gra@hin R>. O
5.2.3 Multi-Surface Embedding. For a graphG and a surfacé, animmersion: of
G on S is a one-to-one continuous mapping G — S such that forve € E(G), if
e = (u, V), then(e) is a curve connectingu) and:(v) on S. The following two definitions
are generalization of embedding of graph on surface.

Definition 5.2.2 Let G be a graph and S a surface in a metric sp&ceA pseudo-
embedding of G on S is a one-to-one continuous mapping — & such that there
exists vertices Vc V(G), 7|, is an immersion on S with each component qfrVs))
isomorphic to an ope@-disk.

Definition 5.2.3 Let G be a graph with a vertex set partitiof®) = ij Vi, ViV, =0
forl<i,j<kandletS,S,,:--,Skbe surfaces in a metric spaé?evviirll k> 1. A multi-
embedding of G on SS,, - - -, Sk is a one-to-one continuous mapping G — & such
that for any integer.il < i <k, 7|, is an immersion with each component of &(V))
isomorphic to an ope@-disk.

Notice that if 7(G) N(S1USz---JSk) = n(V(G)), then everyr : G — R%is a
multi-embedding of5. We say it to be drivial multi-embeddingpf Gon S, Sy, - - -, Sk.
If k = 1, then every trivial multi-embedding is a trivial pseudoieedding ofc onS;. The
main object of this section is to find nontrivial multi-emlolag of G on S,, Sy, - - -, Sk
with k > 1. The existence pseudo-embedding of a gi@pk obvious by definition. We
concentrate our attention on characteristics of multi-edaings of a graph.

For a graphG, let G,,G,, - - -, Gk be all vertex-induced subgraphs @f For any
integersi, j,1 < i,] < k, if V(G)NV(G;) = 0, such a set consisting of subgraphs

k
G1, Gy, - -+, Gk are called alock decompositioof G and denoted by = [+ G;. The
i=1

planar block number §(G) of G is defined by

i=1

k
Ny(G) = min{k|G = U G, for any integei, 1 <i < k,Gj is plana}.
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Then we get a result for the planar black number of a gapinthe following.

Theorem 5.2.3 A graph G has a nontrivial multi-embedding on s sphergd®, - - -, Ps
with empty overlapping if and only if,(G) < s < |G|.

Proof AssumeG has a nontrivial multi-embedding on spheRasP,, - - -, Ps. Since
[V(G) N Pi| = 1 for any integer,1 < i < s, we know that

|Gp:§Hv«n()R'zs
i=1

By definition, if 7 : G — R?is a nontrivial multi-embedding & on Py, Py, - - -, Ps,
then for any integer, 1 < i < s, #~}(P;) is a planar induced graph. Therefore,
s
G = [+ (P,
i=1
and we get thas > ny(G).

Now if ny(G) < s < |G, there is a block decompositi@s = @ Gs of G such thaG;
is a planar graph for any integed < i < s. Whence we can taklééphere?l, Py, .-, Ps
and define an embedding : G; — P; of G; on sphereP; for any integefi,1 < i < s.
Define an immersion : G — R® of G onR3 by

S

n(G) = (U ﬂ(Gi)) U {(Vi,Vj)lvi € V(Gi),vj € V(G)), (vi,V)) e E(G),1 <1, ] < s}.

i=1
Thenr : G — R3is a multi-embedding of on sphere®,, Py, - - -, Ps. O

For example, a multi-embedding K§ on two spheres is shown in Fig232, where,
{X,y, z}) is on one spher8; and{{u, v, w}) on anothelS,.

Fig 5.2.2
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For a complete or a complete bipartite graph, the numpE) is determined in the
following result.

Theorem 5.2.4 For any integers nm > 1, the numbers g(K,) and n,(K(m,n)) are
respectively

no(Ky) = m and ny(K(mn)) = 2,
if m > 3,n > 3, otherwisel, respectively.

Proof Notice that every vertex-induced subgraph of a completplogkg is also a
complete graph. By Theorem1216, we know thakKs is non-planar. Thereby we get that

o<1

by definition ofny(K,). Now for a complete bipartite graph K(m,n), any vertextined
subgraph by choosingand| vertices from its two partite vertex sets is still a complete
bipartite graph. According to Theoren%, K(3, 3) is non-planar an& (2, k) is planar.
If m< 2orn< 2, we getthah,(K(m n)) = 1. OtherwiseK(m, n) is non-planar. Thereby
we know thamny(K(m, n)) > 2.
Let V(K(m,n)) = V1 V2, whereVy, V, are its partite vertex sets. th > 3 and
n > 3, we choose verticeg,v € V; andx,y € V,. Then the vertex-induced sub-
graphs{u, v} [ V2 \ {x,y}) and{{x, y} U V2 \ {u, v}) in K(m, n) are planar graphs. Whence,
ny(K(m, n)) = 2 by definition. O
The position of surfaceS;, S,, - - -, Sk in a topological spacé& also influences the
existence of multi-embeddings of a graph. Among these cagasteresting case is there
exists an arrangemest,, S;,, - - -, Sy for S1, Sy, - - -, Sk such that ir€, S;, is a subspace of
Si,., for any integerj, 1 < j < k. In this case, the multi-embedding is callediacluding
multi-embeddingf G on surfaces;, S,, - - -, Sk.

Theorem 5.2.5 A graph G has a nontrivial including multi-embedding on sese?, >
S

P, o --- D Psif and only if there is a block decomposition£+) G; of G such that for
i=1

any integerjl<i<s, |

(1) Gjis planar; _
(2) for Yv e V(G,), No(X) C ( ] V(G,-)).
i-1

j=i-
Proof Notice that in the case of spheres, if the radius of a spheteniding to
infinite, an embedding of a graph on this sphere is tendingpia@ar embedding. From
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this observation, we get the necessity of these conditions.

S
Now if there is a block decompositidd = |+ G; of G such that5; is planar for any
i=1

i+1
integeri,1 < i < sandNg(X) C ( U V(Gj)) for Vv € V(G;), we can so placs spheres
L

j=i-
Py, Py, ---,Psin R®thatP, > P, > --- D Ps. For any integer, 1 < i < s, we define an

embeddingr; : G; — P; of G; on spheréP;.
i+1
SinceNg(X) < (IEJ V(Gj)) for Vv € V(G)), define an immersion : G —» R®of G

j=i-1
onR3 by
S

2(G) = (U ﬂ(Gi)) J{twli=i-Lii+1fori<i<sandv.v) € E@G)}.

i=1

Thenr : G — R3is a multi-embedding of on sphere®,, Py, - - -, Ps. O

Corollary 5.2.2 If a graph G has a nontrivial including multi-embedding orhepes
P; > P, > --- > Pg, then the diameter {B) > s— 1.

§5.3 GRAPHS ON SURFACES

5.3.1 2-Cell Embedding. For a graphG = (V(G), E(G), (G)) and a surfaces, an
embedding of5 on S is the case ok = 1 in Definition 52.3, which is also an embedding
of graph in a 2-manifold. It can be shown immediately thahdre exists an embedding
of G on S, thenG is connected. Otherwise, we can get a compone& inr(G) not
isomorphic to an open 2-disk. Thus all graphs considerdusrstibsection are connected.

Let G be a graph. Fov € V(G), denote all of edges incident with the verteky
NE(V) = (e, &, -, €4y} A permutationC(v) one;, e, ---, €,y IS said to be gure
rotation of v. All such pure rotations incident with a vertexs denoted by(v). A pure
rotation systenof G is defined by

p(G) = {CMIC(V) € o(v) for Vv € V(G)}

and all pure rotation systems Gfis denoted by(G).

Notice that in the case of embedded graphs on surfaces, rmdndional ball is just
a circle. By Theorem 2.1, we get a useful characteristic for embedding of graphs on
orientable surfaces, first found by fter in 1891 and then formulated by Edmonds in
1962. It can be restated as follows.
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Theorem5.3.1 Every pure rotation system for a graph G induces a unique elatibg of
G into an orientable surface. Conversely, every embeddiagyeaph G into an orientable
surface induces a unique pure rotation system of G.

According to this theorem, we know that the number of all edaliegs of a grapie
on orientable surfaces [§ .y ) (ec(V) — 1)

By topological view, an embedded vertex or face can be viesged disk, and an
embedded edge can be viewed as a 1-band which is defined aslagiopl spaceB
together with a homeomorphistm: | x | — B, wherel = [0, 1], the unit interval.
Whence, an edge in an embedded graph has two sides. Onel¥i@ex3), x € |. Another
ish((1,x)),xel.

For an embedded graghon a surface, the two sides of an edge E(G) may lie in
two different faced; andf,, or in one facef without a twist ,or in one facé with a twist
such as those cases (a), or (b), or (c) shown in Bd.5

" @
fy f f

7N &)

(@) (b) ()

Do) |

Fig 5.3.1

Now we define a rotation systesh(G) to be a pair {, 1), whereJ is a pure rotation
system ofG, andA : E(G) — Z,. The edge witm(e) = 0 or A(e) = 1 is calledtypeO or
type ledge, respectively. Thetation systena'(G) of a graphG are defined by

0"(G) = (T, DVIT € 0(G), 1: E(G) - Z}.

By Theorem 2.1 we know the following characteristic for embedding graphdocally
orientable surfaces.
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Theorem 5.3.2 Every rotation system on a graph G defines a unique locallgniable
embedding of G» S. Conversely, every embedding of a grapkG defines a rotation
system for G.

Notice that in any embedding of a gra@@h there exists a spanning tréesuch that
every edge on this tree is type 0 (See also [GrT1] for detald)ence, the number of all
embeddings of a grap® on locally orientable surfaces is

2O | ] (o) - 1)
veV(G)
and the number of all embedding @fon non-orientable surfaces is
@9 -1) [ (ev) - 1.
veV(G)

The following result is the famousuler-Poincaréformula for embedding a graph
on a surface.

Theorem5.3.3 If a graph G can be embedded into a surface S, then

V(G) - &(G) + ¢(G) = x(S),

wherev(G), ¢(G) and ¢(G) are the order, size and the number of faces of G on S, and
x(S) is the Euler characteristic of S, i.e.,

2-2p, if S is orientable
X(S) = {

2-¢q, ifS isnon- orientable

For a given grapl& and a surfac&, whetherG embeddable o is uncertain. We
use the notatio® — S denoting thats can be embeddable @& Define theorientable
genus range GRG) and thenon-orientable genus range GF5) of a graphG by

2-— . .
GRP(G) = { )2((8) |G — S, S is an orientable surfa(}e

GRY(G) = {2- ¥(S)|G — S, S is a non- orientable surfackg,

respectively and the orientable or non-orientable get@3, y(G) by
¥(G) = min{plp € GR(G)}. ym(G) = max{plp € GR(G)}.

7(G) = min{alq € GRY(G)}, Fu(G) = max{alq € GRP(G)}.
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Theorem5.3.4 Let G be a connected graph. Then
GRO(G) = [¥(G), ym(G)]-

Proof Notice that if we delete an edgeand its adjacent faces from an embedded
graphG on surfaces, we get two holes at most, see Fig.25 also. This implies#(&) —
#(G-¢) < 1.

Now assum& has been embedded on a surface of gef@sandV(G) = {u,v, - - -, w}.
Consider those of edges adjacent with Not loss of generality, we assume the ro-
tation of G at vertexv is (e, e, -, €,.w). Construct an embedded graph sequence
G, Gz, -+, Gy bY

0(G1) = 0(G);
0(G2) = (0(G) \ {o(u)}) Ul(e2, €r. €3, -, B w)};
0(Gpe-1) = (2(G) \ {o(U)}) U{(E2, €3, - - -, €sgu) €L}
0(Gpsw) = (0(G) \ {e(U)}) Ui(Es, &, - -, €, €1)};
0(Gps) = (0(G) \ {e(U)}) Ut (&re(w -+ €2, €1,)}-
For any integer, 1 < i < pg(u)!, sincel¢(G) —¢(G—€)| < 1 for Ve € E(G), we know
that|¢(Gi.1) — ¢(Gi)l < 1. Whencely(Gi.1) - x(Gi)l < 1.
Continuing the above process for every vertexciwe finally get an embedding of
G with the maximum genugy (G). Since in this sequence of embedding&othe genus
of two successive surfacedfdirs by at most one, thiBRO(G) = [y(G), ym(G)]. O

The genus problem, i.etp determine the minimum orientable or non-orientable
genus of a graphs NP-complete (See [GrT1] for details). Ringel and Youngsthe
genus ofK, completely bycurrent graphqa dual form of voltage graphs) as follows.

Theorem 5.3.5 For a complete graph Kand a complete bipartite graph (K, n) with
integers mn > 3,

(n-3)(n-4)

Y(Kpn) = { 12

andy(K(m, n)) = {ww

4

Outline proofs fory(K,) in Theorem 23.10 can be found in [GrT1], [Liul] and
[MoT1], and a complete proof is contained in [Rin1]. A proof #(K(m, n)) in Theorem
5.3.5 can be also found in [GrT1], [Liul] and [MoOT1].
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For the maximum genusgy(G) of a graph, the time needed for computation is
bounded by a polynomial function on the numben{®) ([GrT1]). In 1979, Xuong
got the following result.

Theorem5.3.6 Let G be a connected graph with n vertices and q edges. Then
1 1 .
ym(G) = z(q -n+1)- > min Coad(G \ E(T)),
where the minimum is taken over all spanning trees T of G gagl&\ E(T)) denotes the

number of components of (E(T) with an odd number of edges.

In 1981, Nebesky derived another important formula for eximum genus of a
graph. For a connected graghand A c E(G), let ¢(A) be the number of connected
component of5 \ A and letb(A) be the number of connected componexitsf G \ A such
that|E(X)| = |[V(X)|(mod2). With these notations, his formula can be restated asen th
next theorem.

Theorem5.3.7 Let G be a connected graph with n vertices and q edges. Then
1
yu(G) = 5(a-n+2)~ maxic(A) + b(A) - |A].

Corollary 5.3.1 The maximum genus of,land K(m, n) are given by

(n-1)(h-2) (m-1)(n- 1)|

ym(Kn) = { 4 2

andy(K(m ) = {

respectively.

Now we turn to non-orientable embedding of a gr&hFor Ve € E(G), we define
anedge-twisting surgerg(e) to be given the band @& an extra twist such as that shown
in Fig.5.3.2.

Fig 5.3.2
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Notice that for an embedded gra@on a surface, e € E(G), if two sides ofe are
in two different faces, thes(e) will make these faces into one and if two sidesaire
in one face®(e) will divide the one face into two. This property e{e) enables us to get
the following result for the crosscap range of a graph.

Theorem 5.3.8 Let G be a connected graph. Then

GRY(G) = [7(G).8(G)]

whereB(G) = &(G) — v(G) + 1is called the Betti number of G.

Proof It can be checked immediately thalG) = yu(G) = 0 for a treeG. If G is not
a tree, we have known there exists a spanningTreach that every edge on this tree is
type 0O for any embedding @3.

Let E(G) \ E(T) = {e1, &, -, €30} Adding the edge, to T, we get a two faces
embedding ofTf + e;. Now make edge-twisting surgery @. Then we get a one face
embedding off + e, on a surface. If we have get a one face embedding-efe; + e; +
---+8),1<i<pB(G),addingthe edge 1 toT + (e, + & + - - - + ) and makex(e,1) on
the edgees,;. We also get a one face embeddingiof (e; + & + --- + €,1) on a surface
again.

Continuing this process until all edgesHitG) \ E(T) have a twist, we finally get a
one face embedding df + (E(G) \ E(T)) = G on a surface. Since the number of twists
in each circuit of this embedding & is 1(mod?), this embedding is non-orientable with
only one face. By the Euler-Poincaré formula, we know itsugg)(G)

9(G) =2-(v(G) - &(G) +1) = B(G).

For a minimum non-orientable embeddifg of G, i.e., ¥(Es) = Y(G), one can
selects an edgethat lies in two faces of the embeddifig and make(e). Thus in at
mostyu(G)—7y(G) steps, one has obtained all of embeddings oh every non-orientable
surfaceNs with s € [y(G), yu(G)]. Therefore,

GRY(G) = [¥(G). B(G)] O
Corollary 5.3.2 Let G be a connected graph with p vertices and g edges. Then

ym(G)=q-p+1
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Theorem5.3.9 For a complete grapk, and a complete bipartite grapt{m,n), m,n > 3,

7k = | P20
with an exception valug(K;) = 3and
FK(m ) = {W}

A complete proof of this theorem is contained in [Rin1], Gnelproofs of Theorem
5.3.9 can be found in [Liul].

5.3.2 Combinatorial Map. Geometrically, an embedded graph®fon a surface is
called a combinatorial map and sayG underlyingM. Tutte [Tut2] found an alge-
braic representation for an embedded graph on a locallptatde surface in 1973, which
transfers a geometrical partition of a surface to a pernautan algebra.

A combinatorial map M= (X, 4, ) is defined to be a permutatighacting onX, 4
of a disjoint union of quadricellKx of x € X, whereX is a finite set an& = {1, a, 3, a5}
is Klein 4-group with conditions following hold:

(1) Vx € X, 4, there does not exist an intedesuch thatP*x = ax;

(2) aP = Plo;

(3) The group?; = (a, B, P) is transitive onX, 4.

Theverticesof a combinatorial map are defined to be pairs of conjugatisoob?
action onX, 5, edgedo be orbits oK on X, ; andfacesto be pairs of conjugate orbits of
Paf action onX, . For determining a mapX{, s, #) is orientable or not, the following
condition is needed.

(4) If the group¥, = (aB, P) is transitive onX, 4, then M is non-orientable. Other-
wise, orientable.

For example, the grapDg 4 (a dipole with 4 multiple edges ) on Klein bottle shown
in Fig.5.3.3 can be algebraic represented by a combinatorial khap(X, s, ) with
Xos= | ) leaepeape,

e<{xy.zw}

P = (XY, Z W)(aBX, apy, Bz W)(a X, aW, azZ, ay)(BX, W, afz BY).

This map has 2 verticeg = {(X,y,Z W), (aX, aw, az ay)}, Vo = {(aBX, aBY, Bz, fW), (BX,
apw, afz By)}, 4 edgese; = {X, ax,BX afx}, & = {y,ay,By,apy}, & = {Z az Z ofzZ},



150 Chap.5 Multi-Embeddings of Graphs
e = {W, aw, Sw, afw} and 2 faced, = {(x, aBy, Z BY, aX, apw), (BX, aw, aBX, Y, BZ, ay)},
f, = {(Bw, @2), (W, B2)}. Its Euler characteristic is

YyM)=2-4+2=0

and¥, = (af, P) is transitive onX, z. Thereby it is a map dDg 4 on a Klein bottle with
2 faces accordant with its geometry.

Fig.5.3.3

The following result was gotten by Tutte in [Tut2], which a&slishes a relation for
embedded graphs with that of combinatorial maps.

Theorem5.3.10 For an embedded graph G on a locally orientable surface Sretagists
one combinatorial map M= (X, g, £) with an underlying graph G and for a combinato-
rial map M = (X, 4, ), there is an embedded graph G underlying M on S.

Similar to the definition of a multi-voltage graph, we can defa multi-voltage
P n
map and its lifting by applying a multi-group = |J I; with I} = T'j for any integers

. . i=1
L1, )<n.

Definition 5.3.1 Let(": O) be a finite multi-group witli = ) T, wherel = {g1, &, - - -, G}
i=1

and an operation set (ﬁ) = {ojlL <i < n}andlet M= (X, 4, P) be a combinatorial map.
If there is a mapping : X, — I such that

(1) for Vx € Xop, Yo € K = {1 a,8, o}, y(aX) = ¢(X), ¢(BX) = Y(aBx) = y(x) 4

(2) for any face f= (xy,---,2(Bz -, BY. BX), ¥(f,1) = ¥(X) oi Y(y) oi - - - 0i Y(2),
whereo; € O(I), 1 < i < nand(y(f,i)|f € F(v)) = G for Yv € V(G), where Rv) denotes
all faces incident with v,

then the2-tuple (M, ¥) is called a multi-voltage map.

Thelifting of a multi-voltage mays defined by the next definition.
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Definition 5.3.2 For a multi-voltage magM, ¢), the lifting map M = (XZMWSD*”) is
defined by
XZ‘#,B‘# = {Xng € Xa,ﬂ’ g € F},

P =] [ (XYoo > Z9)(@Zg, - -+, @Y, Xy),

gel” (XY, D(azay.aX)eV(M)

where

o = l_l (Xg> Xg), ﬁw = l—[ l—[ (Xg> (BX)giow(x)

X€X, 5,9l i=1 xeXap

with a convention tha@BX)q .y = Yy for some quadricells ¥ X,, 4.

Notice that the liftingM” is connected ant¥} = (a’g”,#") is transitive onX?, _, if

and only if'¥| = (e, P) is transitive onX, 5. We get a result in the following.

Theorem5.3.11 The Euler characteristig(M¥) of the lifting map M of a multi-voltage

map(M,T) is
. 1 1
W03 3 (s ﬁ))

i=1 feF(M)

x(M¥) =T

where HM) and dy(f, o)) denote the set of faces in M and the ordey€f, o;) in (T; o;),
respectively.

Proof By definition the lifting mapM? has|I'jv(M) vertices|I'le(M) edges. Notice
that each lifting of the boundary walk of a face is a homogeanidting by definition of
n

BY. Similar to the proof of Theorem.23, we know thatM? hasy 3 -1 faces.
(=1 tefm) QW)

By the Eular-Poincaré formula we get that

v(M?) = &(M”) + $(M")

n

|F|V(M)—|F|8(M)+Z Z %
i—1 feF(M) !

x(MY)

n 1
= [[T{x(M) — (M) + ; feFZ(M) m]
n 1 1
= |Gl X(M)+;f;(w(m_ﬁ))' )

Recently, more and more papers concentrated on finigigiar mapson surface,
which are related witldiscrete groups, discrete geometigd crystal physics For this
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objective, an important way is by the voltage assignmeritriiggie on maps. See refer-
ences [Mall], [MNS1] and [NeS1]-[NeS1] for details. It isalan interesting problem
to apply multi-voltage maps for finding non-regular or oth&ps with some constraint
conditions.

Motivated by the Four Color Conjecture, Tait conjectureatévery simple 3-polytope
is hamiltonianin 1880. By Steinitz's a famous result (See [Grul] for defaithis con-
jecture is equivalent to tha&very 3-connected cubic planar graph is hamiltonidiutte
disproved this conjecture by giving a 3-connected non-haman cubic planar graph
with 46 vertices in 1946 and proved thatery4-connected planar graph is hamiltonian
[Tutl] in 1956. In [Gru3], Grinbaum conjectured thetch4-connected graph embed-
dable in the torus or in the projective plane is hamiltoniahhis conjecture had been
solved for the projective plane case by Thomas and Yu [Th¥i1]1994. Notice that
the splitting operatot) constructed in the proof of Theoren22.0 is a planar operator.
Applying Theorem 2.10 on surfaces we know thédr every map M on a surface, ‘M
is non-hamiltonian In fact, we can further get an interesting result relateth wait’'s
conjecture.

Theorem 5.3.12 There exist infinit8—connected non-hamiltonian cubic maps on each
locally orientable surface.

Proof Notice that there exist 3-connected triangulations onyelarally orientable
surfaceS. Each dual of them is a 3-connected cubic magsohow we define a splitting
operatofo- as shown in Fig.3.4.

X1

Fig.5.3.4

For a 3-connected cubic may, we prove thatM’™ is non-hamiltonian foiv €
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V(M). According to Theorem.2.7, we only need to prove that there areyac- y,, or
Y1 — Y3, OrY» — y3 hamiltonian path in the nucled(o(v)) of operatoto.

Let H(z) be a component dfl(o-(V))\{Zz, Yi_1Ui.1, Yi-1Vi_1} Which contains the ver-
texz,1 < i < 3(all these indices mod 3). If there existy;a y, hamiltonian patHP in
N(o(v)), we prove that there must beua— v; hamiltonian path in the subgrapi(z) for
anintegei,1<i < 3.

SinceP is a hamiltonian path iMN(o"(v)), there must be that;ysu, or uyysv; is a
subpath ofP. Now letE; = {y,Us, 2z, Y2V3}, we know thatE(P) (N E1| = 2. SincePis a
y1 — Y» hamiltonian path in the grapl(o(v)), we must have;us ¢ E(P) ory,v; ¢ E(P).
Otherwise, by E(P) N Si| = 2 we get thatzyzz ¢ E(P). But in this caseP can not be a
y1 — Y» hamiltonian path ifN(o-(v)), a contradiction.

Assumey,vs ¢ E(P). Theny,u; € E(P). Let E; = {uYs, 17, V1Y3}. We also know
that|E(P) N Ez| = 2 by the assumption th& is a hamiltonian path iftN(o-(v)). Hence
Zz; ¢ E(P) and thev,; — u; subpath inP is av; — u; hamiltonian path in the subgraph
H(z).

Similarly, if y;us ¢ E(P), theny,v, € E(P). Let E3 = {y1V», 202, y3Up}. We can also
get thatE(P) N Es| = 2 and av, — u, hamiltonian path in the subgraph(z,).

Now if there is av;—u; hamiltonian path in the subgrapt(z,), then the graphi(z,)+
u;v; must be hamiltonian. According to the Grinberg’s criterfon planar hamiltonian
graphs, we know that

¢3 = ¢"3+2(p) — ¢"4) + 3(¢5 — ¢"5) + 6(¢ — ¢"5) = 0, (5-1)

whereg or ¢”; is the number of-gons in the interior or exterior of a chosen hamiltonian
circuit C passing through, v, in the graphH(z;) + u;v;. Since it is obvious that

p3=¢"s=1 ¢"3=¢3=0,
we get that
2(¢, — ¢"4) + 3(¢s — ¢"s) = 5, (5-2)

by (5-1). Because, +¢"4 = 2, s0¢, —¢"4 = 0,2 or —2. Now the valency of; in H(z,) is
2, so the 4-gon containing the vertexmust be in the interior of, that is¢), — ¢”4 # -2.
If ¢, —¢"2=00r¢,—¢"s =2, we get 3¢, — ¢"s) = 5 or 3(p, — ¢”"s) = 1, a contradiction.
Notice thatH(z;) ~ H(z) ~ H(z). If there exists &, —u, hamiltonian path iH(z,),
a contradiction can be also gotten. So there does not existw hamiltonian path in the
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graphN(o(v)). Similarly , there are ng; — y; or y, — y3 hamiltonian paths in the graph
N(o(v)). Whence M“™ is non-hamiltonian.
Now letn be an integem > 1. We get that

My = (M@, ueV(M);
M, = (Ml)N("(V))(V), Ve V(|V|1);
M, = (Mn—l)N((T(V»(W), W e V(Mn—l);

All of these maps are 3-connected non-hamiltonian cubicsnwepthe surfac&. This
completes the proof. O

Corollary 5.3.3 There is not a locally orientable surface on which every Bferted
cubic map is hamiltonian.

§5.4 MULTI-EMBEDDINGS OF GRAPHS

5.4.1 Multi-Surface Genus Range.LetS,,S,, - -, Sk bek locally orientable surfaces
andG a connected graph. Define numbers

K K
¥(G;S1, Sz, -+, S) = min{Zy(Gi) G= UGi,Gi - §;,1<i< k},
= -1

kK
Ym(G; Sy, Sp, -+, Si) = maX{Z 7(G)

i=1

k
G:UGi,GHSi,lsisk}

i=1

and themulti-genus range G@&; S;, S,, - - -, Sk) by

K K
GRG;S1, Sz, -+, Sk) = {Zg(Gi) G= UGi,Gi — S,1<i< k},
=) izl

whereG; is embeddable on a surface of geilgiS;). Then we get the following result.

Theorem5.4.1 Let G be a connected graph and let,S,, - - -, Sk be locally orientable
surfaces with empty overlapping. Then

GRG; S1, Sy, -+, Sk) = [v(G; S1, S2, - - -, Sk), Ym(G; S1, S, - - -, SK)]-
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Proof LetG = UG.,G, — Si,1 < i < k. We prove that there are no gap in
the multi-genus range from(Gy) + y(Gy) + -+ + v(Gy) to ym(Gy) + ym(G2) + ---
ym(Gk). According to Theorems.2.8 and 23.12, we know that the genus ran@(Ro(Gi)
or GRY(G) is [y(G)), ym(G))] or [¥(G)),7um(G))] for any integeri,1 < i < k. Whence,
there exists a multi-embedding & on k locally orientable surfaceB,, P,, - - -, P¢ with
d(P1) = v(Gy), 9(P,) = v(Gy), -+, 9(Px) = y(Gk). Consider the grap,, thenG,, and
thenGs, --- to get multi-embedding o6 on k locally orientable surfaces step by step.
We get a multi-embedding @& onk surfaces with genus sum at least being an unbroken
interval y(Gy) + v(Gz) + - - - + Y(Gk), ym(G1) + ym(G2) + - - - + ym(Gy)] of integers.

By definitions ofy(G; S1, Sy, - - - Sk) andywu(G; S1, Sy, - - - Sk), we assume th&@ =
UG(,G’ — Si,1 <i < kandG = UG(’,G” — S;,1 < i < k attain the extremal
valueSy(G S1,S,, -+, Sy) andyw(G; Sl, So, -+, Sy, respectlvely. Then we know that
the multi-embedding o6 on k surfaces with genus sum is at least an unbroken intervals

[ﬁl 7(G), il ym(G))| and ﬁl Y@ ﬁl yM(G;')] of integers.
" Since R B
k k K K K
PSR yM(G;)] AIRICHDR(EH
=t =1 i=1 i=1 i1
we get that

GR(G; S1, Sy, -+, Sk) = [v(G; S1, Sz, - - -, Sk), ym(G; S1, Sa, - - -, SK)].

This completes the proof. U

Furthermore, we get the following result for multi-surfamabeddings of complete
graphs.

Theorem5.4.2 Let P, Py, ---,Pcrand Q, Q», - - -, Qk be respective k orientable and non-
orientable surfaces of genysl. A complete graph Kis multi-surface embeddable in
Py, P,, - - -, P with empty overlapping if and only if

3 [3+ VIR T e L

i=1

k

<ns ),

i=1

and is multi-surface embeddable in,@-, - - -, Qx with empty overlapping if and only if

7+ +/249(Q) + 1
2

k

k
Zl+\/@£ SZ
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Proof According to Theorems.8.4-5.3.9, we know that the genugP) of an ori-
entable surfac® on which a complete graph, is embeddable satisfies

{(n— 3)(n—4)} <g(P) < {(n— 1)4(n— 2)|’

12
e (=30-4) _ p  (-D0-2)
o =99s= 4
If g(P) > 1, we get that
3+ 4/16g(P) + 1 e 7+ /489(P) + 1
2 - 2 ‘

Similarly, if K, is embeddable on a non-orientable surf@;ehen

— — _ 2
{(n 3)6(n 4) sg(Q)s{(n 21) |

[1+ V20(Q] <n< [ '2429(Q)+1 :

Now if K, is multi-surface embeddable iy, Py, - - -, Py with empty overlapping,
then there must exists a partition= n; + np, +---+ n,, N > 1,1 < i < k. Since each
vertex-induced subgraph of a complete graph is still a cetegdraph, we know that for

any integefi,1 <i <k,

3+ VIGPI+T|

2 -

7+ VAP + 1

2

Whence, we know that
Zk: 3+ {/16g(P) + 1
i=1 2
On the other hand, if the inequality (5-3) holds, we can findifdee integersny, n,,
mnewithn=n+nm+---+ncand

3+ VIBP) 71| _

2

k

<ns),

i=1

7+\/W

(5-3)

|7+ VAsg(P) + 1

2

for any integeri,1 < i < k. This enables us to establish a partitign = U K, for K,
and embed eacK,, onP; for 1 < i < k. Therefore, we get a multi- embeddlnglo,f in
P, P,, - - -, P with empty overlapping.
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Similarly, if K, is multi-surface embeddable @, Q,, - - - Q¢ with empty overlap-
ping, there must exists a partition=m, + My +---+m, m > 1,1 <i < kand

7+ /249(Q) +1
2

1+ V29(Q)] < m <

for any integei, 1 < i < k. Whence, we get that

7+ 249(Q) +1

2

k

Z[1+ m1snsi

i=1

. (5-4)

Now if the inequality (5-4) holds, we can also find positiveegersmy, mp, - - -, My
withn=m + m +--- + mg and

1+ V29(Q)] < m <

7+ 249(Q) + 1
2

for any integeini, 1 < i < k. Similar to those of orientable cases, we get a multi-sedac
embedding oK, in Q, Qy, - - -, Qx with empty overlapping. O

Corollary 5.4.1 A complete graph Kis multi-surface embeddable ink> 1 orientable
surfaces of genus, p > 1 with empty overlapping if and only if

3+ 1l6p+1

2

and is multi-surface embeddable ih & 1 non-orientable surfaces of genusyg> 1 with
empty overlapping if and only if

[1+@]s£s —_—

Corollary 5.4.2 A complete graph Kis multi-surface embeddable ins> 1 tori with
empty overlapping if and only if
4s<n<7s

and is multi-surface embeddable ist & 1 projective planes with empty overlapping if
and only if
3t<n<6t

Similarly, the following result holds for complete bipaetigraphK(n, n), n > 1.
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Theorem 5.4.3 Let P, P,,---,Pcand Q, Q.,---, Qx be respective k orientable and k
non-orientable surfaces of genud. A complete bipartite graph (Q, n) is multi-surface
embeddable in BP,,- - -, P« with empty overlapping if and only if

k

Zk:1+ V2g(P)| <n< ) [2+2o(P))]

i=1 i=1
and is multi-surface embeddable in,@-, - - -, Qx with empty overlapping if and only if

k

k
Zl+ a@)]<n=< > [2+ v29(Q)]

i=1
Proof Similar to the proof of Theorem.%.2, we get the result. 0J

5.4.2 Classification of Manifold Graph. By Theorem 52.1, we can give a combina-
torial definition for a graph embedded in armanifold, i.e., ananifold graphsimilar to
that the Tutte’s definition for combinatorial maps.

Definition 5.4.1 For any integer nn > 2, an n-dimensional manifold gragli is a pair
"G = (&r, £) in where a permutatiod acting on&r of a disjoint union'x = {o-X|o- € T’}
for Vx € E, where E is a finite set and = {u, oju® = 0" = 1, 40 = ou} is a commutative
group of order2n with the following conditions hold:

(1) Vx e &, there does not exist an integer k such thfik = o'x for Vi, 1 < i <
n-1,

(2) uL =Ly

(3) The group?¥; = {(u, 0, L) is transitive onSr.

According to conditions (1) and (2),\eertex v of an n-dimensional manifold graph
is defined to be an-tuple

{(0'%1, 0%, - -+, 0'Xg ) (Y1, 02, - -+, 0'Yy) -+ (021,022, - -+, 025 y); L < T < )

of permutations of£ action on&r, edges to be these orbits bfaction on&r. The
numbers;(v) + (V) + - -+ + S (V) is called thevalency of y denoted by ™% (v).
The condition {ji) is used to ensure that ardimensional manifold graph is connected.
Comparing definitions of a map with that wfdimensional manifold graph, the following
result holds.
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Theorem 5.4.4 For any integer nn > 2, every n-dimensional manifold grapl¢ =
(&r, L) is correspondent to a unique map M (&, 4, P) in which each vertex v ifG is
converted to (V) vertices vy, Vv, - - -, Vi) of M. Conversely, a map M (E,4,P) is also
correspondent to an n-dimensional manifold grdish = (Er, £) in which (v) vertices

U, U, - - -, Uy Of M are converted to one vertex u'g.

Two n-dimensional manifold grapig, = (811,131) and"G, = (822,132) are said to
beisomorphidf there exists a one-to-one mapping 8%1 - 8%2 such thaku = ux, ko =
ok andkL; = Lok. If 8%1 = 81"12 = &randL, = L, = £, anisomorphism betweég, and
"G, is called an automorphism 8¢ = (&r, £). It is immediately that all automorphisms
of "G form a group under the composition operation. We denotegtioisp by Autg.

It is clear that for two isomorphin-dimensional manifold grapHg7; and"G,, their
underlying graphs; and G, are isomorphic. For an embeddifig = (Er, £) in an
n-dimensional manifold and/ € Aut%G, an induced action of on & is defined by
Z(gX) = g¢(x) for Yx € & andV¥g € I'. Then the following result holds.

Theorem5.45 Aut'G < Aut%G X ().

Proof First we prove that twa-dimensional manifold graphyz; = (811,131)
and'Gg, = (822,£2) are isomorphic if and only if there is an elementk Aut I such
that L5 = £, or £;%.

If there is an element € Aut%l" such that[ji = L5, then then-dimensional manifold
graph"G; is isomorphic t0"G, by definition. IfL‘i = L% thenLi" = L. Then-
dimensional manifold graphg; is also isomorphic t8G..

By the definition of isomorphisii betweem-dimensional manifold grapHg; and
"G», we know that

HE(X) = £u(¥), 0£(X) = £o(x) and L3(x) = La(X)
for Vx € &r. By definition these conditions
0£(x) = £0(x) and L5(X) = L2(X)

are just the condition of an automorphignar a£ on Xy (). Whence, the assertion is true.
Now let&f = & = &rand Ly = L, = L. We know that

Aut"G < Aut; G x () . O
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Similarly, the action of an automorphism of manifold grapt€p is fixed-free shown
in the following.

Theorem5.4.6 Let"G = (&r, L) be an n-dimensional manifold graph. Thegkut"G), is
trivial for Yx € &r.

Proof ForVvg € (Aut"G)y, we prove thag(y) = y for Yy € &r. In fact, since the
group¥; = (u, 0, L) is transitive or€r, there exists an element ¥, such thay = 7(X).
By definition we know that every element ¥, is commutative with automorphisms of
"G. Whence, we get that

aly) = 9(=(x) = 7(9(x)) = 7(x) =,
i.e., (Aut'G)y is trivial. O

Corollary 5.4.3 Let M = (X, 5, P) be amap. Then forx € X, 5, (AutM), is trivial.

For ann-dimensional manifold graptg = (&r, £), anx € &r is said aroot of "G.
If we have chosen a roston ann-dimensional manifold grapfg, then"G is called a
rooted n-dimensional manifold graptlenoted by'G". Two rootedn-dimensional mani-
fold graphs'g™ and"G" are said to bésomorphicf there is an isomorphism between
them such thag(r,) = r,. Applying Theorem 5.6 and Corollary 3.1, we get an enu-
meration result fon-dimensional manifold graphs underlying a gra&pffollowing.

Theorem 5.4.7 For any integer nn > 3, the number ¥(G) of rooted n-dimensional
manifold graphs underlying a graph G is
ns(G) [1 po(V)!

veV(G)

S
G) =
m(G) AULG

Proof Denote the set of all non-isomorphiedimensional manifold graphs under-
lying a graphG by G5(G). For ann-dimensional graphG = (&Er, £) € G°(G), denote
the number of non-isomorphic rooteedimensional manifold graphs underlyifig by
r("G). By aresult in permutation groups theory, fx € & we know that

IAUt"G| = [(AUt"G)LIX*9).

According to Theorem 3.23,|(Aut"G),| = 1. Whence|x*""¢| = |Aut"G|. However there
are|&r| = 2ng(G) roots in"G by definition. Therefore, the number of non-isomorphic
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rootedn-dimensional manifold graphs underlying eaimensional graphgG is

&l 2ne(G)
IAUt"G|  |Aut"Gl’

r('6) =

Whence, the number of non-isomorphic rootedimensional manifold graphs underly-
ing a graphG is ©)
2ne(G
G = > o
"GeGS(G) AUtG]
According to Theorem 8.5, Aut'G < AutyG x (u). Whencer € Aut"G for "G € G5(G)
if and only if r € (Aut%G X {(u))ng. Therefore, we know that Allg = (Aut%G X () )ng-

Because ofAut;G x (u) | = [(AUt; G x ()sgll"6" "2~ "’|, we get that

Aut 1 Gx(u)
2

2|Aut%G|
| —

g ~Autgl

Therefore,

rﬁ(G) _ Z 2n8(G)

Aut”
nGeGS(G) | gl

B 2ne(G)
~AUGG X ()| Z

"GeGS(G)
2n8(G) Z
= Te "G
AULG x| o)
ne(G) 1 po(V)!
veV(G)

|Aut%G|

AU, G x ()|
AUCG]

Aut 1 Gx{(u)
2

by applying Corollary 2.1. O

Notice the fact that an embedded graph in 2-dimensional foldnis just a map
and Definition 54.1 turn to Tutte’s definition for combinatorial map. We cancatget
an enumeration result for rooted maps on surfaces undgrlyigraphG by applying
Theorems 3.2 and 54.6 following.

Theorem5.4.8([MaL4]) The number'r(I') of rooted maps on locally orientable surfaces
underlying a connected graph G is
2Oe(G) 1 (o(v) - 1)!

veV(G)

L
G) = ,
r(G) AULG
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wherep(G) = &(G) — v(G) + 1is the Betti number of G.

| 1
Similarly, for a graphG = €p G; and a multi-manifoldV = U M'i, choosd com-

i= i=1
mutative group$'y, I, - - -, 17, Whérel“i = </1i,0i|/1i2 =0 = 1> for any integeii,1 <i <.
Consider permutations acting leari, where for any integar 1 <i <, &, is a disjoint
unionTix = {oiXo; € T’} for VXlzlE(Gi). Similar to Definition 4.1, we can also get a
multi-embedding of5 in M = iLljl MM,

§5.5 GRAPH PHASE SPACES

5.5.1 Graph Phase. For convenience, we first introduce some notations usedisn th
section in the following.

—~ —_~ n
M — A multi-manifoldM = [ M", where eactM" is ann;-manifold,n; > 2.
i=1

Te M — A pointTof M.
G — A graphG embedded iM.
C(M) — The set of dierentiable mappings : M — M at each pointiin M.

Now we define the phase of graph in a multi-space following.

Definition 5.5.1 LetG be a graph embedded in a multi-manifoitl A phase of7 in
M is a triple (G; w, A) with an operatione on C(M), wherew : V(G) — C(M) and
A E@G) — C(M) such thatn@.v) = Y@M o va@v) e E@), where|| T |

fu—v]l
denotes the norm af.

For examples, the complete grapgh embedded irR® has a phase as shown in
Fig.55.1, whereg € C(R®) andh € C(R3®).

u

Fig.5.5.1
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Similar to the adjacent matrix of graph, we can also defineirest on graph phases.

Definition 5.5.2 Let (G; w,A) be a phase and [&] = [a&j],«p the adjacent matrix of
a graph G with (G) = {vi, Vo, ---,V,}. Define matrixes \G] = [Vijlpxp and A[G] =
[Aij]pxp by

w(Vi)

— if a;; # 0; otherwiseV;; =0

i =
Vi =V |

and ~ ~
w(Vj) o w(Vj) . .
ij = (_')—_(21) if aj; # 0; otherwiseA;; =0,
Vi =Vl
where “o” is an operation on QW).

For example, for the phase &, in Fig.55.1, if choiceg(u) = (X1, X2, X3), g(V) =

(Y1, Y2, ¥3), 9(W) = (z1, 2, z3), g(0) = (1, 1o, t3) ando = x, the multiplication of vectors in
R3, then we get that

0 g(u) g(u) g(u)
p(uy)  pluw)  p(u,0)
gv) 0 gv) av)

— | pu) pvw)  p(v.t)
V@) =| faw o 0o 9w |
p(w,u)  p(w,v) p(w,0)

9(0) 9(0) 9(0) 0
p(ou)  pV)  p(ow)

where,
p(U.V) = p(v. U) = V(X — y1)? + (X — ¥2)? + (X — ¥3)2,
p(U,W) = p(W, U) = V(X = 22)2 + (X2 — 2)? + (X5 — Z5)2,
p(U,0) = p(0,u) = V(X4 —1r)? + (% — t2)2 + (Xs — t3)?,
PV, W) = p(W, V) = V(Y1 = 22)2 + (Y2 — 22)? + (V3 — 25)%,
p(v,0) = p(0,V) = V(Y1 —tr)? + (Yo — t2)2 + (Ya — ts)?2,
p(W,0) = p(0.W) = V(zr — )% + (22 — o) + (25 — ta)?
and
0 guxgM)  guxgWw)  g(u)xg(o)
p2(uv) p2(uw) p?(u,0)
9(v)xg(u) 0 gv)xgw)  glvxg(o)
AG) = pA(V.U) PA(VW) p?(v,0)
gwxg(u)  gWwW)xg(v) 0 gwxg(@) |’
p2(w,u) P2(W,v) p?(W,0)

go)xg(u)  gO)xg(v)  g(o)xgw) 0
p2(o,u) p?(0V) p2(ow)
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where,

g(u) X g(v) = (XaYs — XaY2, XaY1 — X1Y3, X1Y2 — XeY1),
9(u) X g(W) = (X223 — XaZz, XsZ1 — X123, XaZ2 — XpZ1),
g(u) X g(0) = (Xatz — Xata, Xats — Xats, X1tz — Xoty),
g(v) X g(u) = (Y2Xs — YaXa, YaX1 — Y1Xa, Y1Xo — Y2X1),
g(v) X g(W) = (Y22 — YaZo, Y3z1 — Y123, Y122 — Y221),
9(v) X 9(0) = (Yats — Ystz, Yats — Yats, itz — yot),
gW) x g(u) = (ZoXs — Z3Xo, X1 — Z1X3, Z1 X2 — Z2X1),
g(w) X g(v) = (Y3 — ZY2, ZY1 — Z1Ys, 21Y2 — ZY1),
a(w) x g(0) = (zts — Zato, z3ty — zit3, 21tr — 21y),
9(0) X g(u) = (t2Xg — t3Xp, t3X1 — t1X3, 11Xz — t2X1),
9(0) x g(v) = (toys — tay. tayr — taya, t1y2 — toyn),
9(0) x g(W) = (tozz — t322, t3z1 — t123, 1125 — tp21).
For two given matrixe\ = [&]oxp and B = [bjj] pxp, thestar product “+” on an

operation“o” is defined byA x B = [a;; o bjj] pxp- We get the following result for matrixes
Vigl andA[gG].

Theorem5.5.1 V[G] = V[G] = A[G].

Proof Calculation shows that each |) entry inV[G] = VY[G] is

o@) o) _e@ow®)
1=Vl Y=Vl V=7 ? .
where 1< i, j < p. Therefore, we get that
VI[G] = V'[G] = A[G]. O

An operation on graph phases calkeitlitionis defined in the following.

Definition 5.5.3 For two phase spacd$r:; w1, A1), (G2; w2, Ay) of graphs G, G; in M
and two operations‘e” and “o” on C(M), their addition is defined by

(G1;, w1, A1) @(Qz; w2, A7) = (G1 @ G2, w1 e wy, A1 e Ay),

wherew; o w; : V(G1 | G2) — C(M) satisfying
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w1(U) e wo(U), if UeV(G1) NV(G2),

w1 e wa(U) = ¢ wy(U), if UeV(G1) \V(G2),

wo(U), if UeV(G,)\ V(G).
and _ _
Ay e Ax(T.V) = w1 @ w(U) o w1 @ w(V)

UG-V
for (U, V) € E(G1) U E(G2).

The following result is immediately gotten by Definitiorb53.

Theorem 5.5.2 For two given operations<e” and “o” on C(M), all graph phases itM
form a linear space on the field #ith a phase for any graph phase&s:; wi, A1) and
(G2; w3, A2) in M.

5.5.2 Graph Phase Transformation. The transformation of graph phase is defined in
the following.

Definition 5.5.4 Let (G1; w1, A1) and (G,; w,, A,) be graph phases of graphs,;@nd
G, in a muIti-spaceI\W with operations “oq, 0,” , respectively. If there exists a smooth
mappingr € C(M) such that

7 (G1 w1, A1) = (Go; w2, Ay),

i.e., forvu € V(Gy), Y(U,V) € E(G1), 7(G1) = G2, T(w1(U)) = w2(7(T)) and (A1(U, V) =
Ao(7(U, V), then we sayG:; w1, A1) and(Gz; w,, A) are transformable and a transform
mapping.

For examples, a projectiop transforming an embedding &f, in R® on the plane
R? is shown in Fig.%.2

Fig.5.5.2
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Theorem 55.3 Let (G1; w1, A1) and (G»; w,, A,) be transformable graph phases with
transform mapping-. If 7 is one-to-one o7, andG,, theng, is isomorphic taz,.

Proof By definitions, ifr is one-to-one org, and G,, thent is an isomorphism
betweeng, andG.. O

A useful case in transformable graph phases is that one chpdnameters, tp, - - -, tg,
g > 1 such that each vertex of a graph phase is a smooth mapping.of- -, t, i.e., for
VT € M, we consider it ai(ty, t, - - -,1g). In this case, we introduce two conceptions on
graph phases.

Definition 5.5.5 For a graph phaség; w, A), define its capacity Q& ; w, A) and entropy
ENnG; w, A) by
CaGw,A) = ), w(D

TeV(G)
and

ENG; w, A) = Iog( [] re@ ||].

TeVv(G)
Then we know the following result.

Theorem5.5.4 For a graph phaség; w, A), its capacity Cé&G; w, A) and entropy E(G; w, A)
satisfy the following dferential equations

oCaG, w,A) : _9EnG w.A)
8—uidu' and dENG; w, A) = ou

where we use the Einstein summation convention, i.e., asawver i if it is appearing

dCa(G; w,A) = du,

both in upper and lower indices.

Proof Not loss of generality, we assurie= (uy, U, - - -, Up) for VU € M. According
to the invariance of dierential form, we know that

ow
dw = —du.
w u u;

By the definition of the capacit€a(G; w, A) and entropyEn(G; w, A) of a graph phase,
we get that

dcCagivn) = Y dw@ =Yy D
TeV(G) wevE
o
_ (Ue%g)w(u)) du = 204G @A)y

oy, o,
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Similarly, we also obtain that

_ dlog|w(u
EnGiwA) = Y dlogle@i= Y, 9Dy,
TUeV(G) UeV(G) '
0 lo u
. (Ug(g) gl o )Il)du. _ENGion)
B o, ' oy, "
This completes the proof. U

For the 3-dimensional Euclid space, we get some formulagrégh phasegf; w, A)
by choicel = (X1, %, X3) andV = (Y1, Y2, Va),
w(U) = (X1, %o, X3) for YU € V(G),

XoY3 — X3Y2, X3Y1 — X1Y3, X1Y2 — XoY1
(X1 = Y1)? + (X2 = ¥2)? + (X3 — ¥3)?

A@Y) = for Y(U,V) € E(G),

CaGw,N) =| D, a@. D) %@ ), %)

TeV(G) TeV(G) TeV(Q)
and

ENG;w,A) = 1og0&(m) +3(T) + X3(D).
ueV(G)

§5.6 RESEARCH PROBLEMS

5.6.1 Besides to embed a graph irkdlifferent surfaceS,, S,, - - -, Sk for an integek >

1, such as those of discussed in this chapter, we can alsmleoagyraplG embedded in

a multi-surface. A multi-surfac8 is introduced for characterizing hierarchical structures
of topological space. Besides this structure, its baselljpés common and the same as
that of standard surfad®, or N,. Since all genus of surface in a multi-surfe®és the
same, we define the geng€S) of S to be the genus of its surface. Define its orientable
or non-orientable genug,(G), Y\(G) on multi-surfaceS consisting ofn surfacesS by

¥O(G) = min{ 9(S) | G is 2 - cell embeddable on orinetable multisurf@e

¥m(G) = min{ g(S) | G is 2 - cell embeddable on orinetable multisurfagle

Then we are easily knowing tha®(G) = y(G) andy}(G) = ¥(G) by definition. The
problems for embedded graphs following are particulargnesting for researchers.
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Problem 5.6.1 Let nm > 1 be integers. Determingo(G) andy"(G) for a connected
graph G, particularly, the complete graph,kind the complete bipartite graph, k.

Problem 5.6.2 Let G be a connected graph. Characterize the embedding mehahG
on multi-surfaceS , particularly, those embeddings whose every facial wak dircuit,
i.e, a strong embedding of G &.

The enumeration of non-isomorphic objects is an importaoblem in combina-
torics, particular for maps on surface. See [Liu2] and [[Liiof details. Similar problems
for multi-surface are as follows.

Problem 5.6.3 LetS be a multi-surface. Enumerate embeddings or mapS dy pa-
rameters, such as those of order, size, valency of rootadwer rooted face,- -.

Problem 5.6.4 Enumerate embeddings on multi-surfaces for a connectgehgéa

For a connected grag, its orientable, non-orientable genus polynongidllG](x),
Tm[G](X) is defined to be

amlGI(¥ = > g2(G)X and Tu[Gl(X) = > (G,
i>0 i>0
whereg?.(G), g.(G) are the numbers d@ on orientable or non-orientable multi-surface
S consisting ofn surfaces of gentis

Problem5.6.5 Let m> 1be aninteger. Determing{G](Xx) andgn[G](X) for a connected
graph G, particularly, for the complete or complete biptetgraph, the cube, the ladder,
the bouquet;- -.

5.6.2 A graphical property?(G) is called to besubgraph hereditaryf for any subgraph
H C G, H posse$(G) whenevels posses the properB(G). For example, the properties:
G is completandthe vertex coloring numbet(G) < k both are subgraph hereditary. The
hereditary property of a graph can be generalized by theviatig way.

Finding the behavior of a graph in space is an interestirgg mhportant objective
for application. There are many open problems on this olgcbnnecting with classical
mathematics. LeB andH be two graphs in a spad@. If there is a smooth mappingin
C(M) such that(G) = H, then we says andH areequivalent inM. Many conceptions
in graph theory can be included in this definition, suclyegph homomorphism, graph
equivalent- - -, etc.
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Problem 5.6.6 Applying dfferent smooth mappings in a space such as smooth mappings
in R® or R* to classify graphs and to find their invariants.

Problem 5.6.7 Find which parameters already known in graph theory for apgiras
invariant or to find the smooth mapping in a space on whichphimameter is invariant.

Problem 5.6.8 Find which parameters for a graph can be used to a graph in aspa
Determine combinatorial properties of a graph in a space.

Consider a graph in a Euclid space of dimension 3. All of itgesdare seen as a
structural member, such as steel bars or rods and its vedrechinged points. Then we
raise the following problem.

Problem 5.6.9 Applying structural mechanics to classify what kind of dragpructures
are stable or unstable. Whether can we discover structusdhanics of dimensign4
by this idea?

We have known the orbit of a point under an action of a groupekample, a torus
is an orbit ofZ x Z action on a point irR®. Similarly, we can also define asrbit of a
graph in a spaceinder an action on this space.
LetG be a graph in a multi-spack! andII a family of actions oM. Define an orbit
Or(g) by
Or(G) = {n(G)| ¥r € T}

Problem 5.6.10 Given an actionr, continuous or discontinuous on a spade for ex-
ampleR? and a graphg in M, find the orbit ofg under the action of. When can we get
a closed geometrical object by this action?

Problem 5.6.11 Given a familyA of actions, continuous or discontinuous on a space
M and a graphg in M, find the orbit ofg under these actions ifl. Find the orbit of a
vertex or an edge @ under the action of, and when are they closed?

5.6.3 There is an alternative way for defining transformable gnaipdses, i.e., by homo-
topy groups in a topological space stated as follows:

Let (G1; w1, A1) and Go; w-, A,) be two graph phases. If there is a continuous map-
pingH : C(M) x| — C(M)x I, I = [0,1] such thatH (C(M).0) = (G1; wi. Ay)
andH (C(M).1) = (Gz; wa. Az), then G1; w1, A1) and Gz; wo. A) are said twarans-
formable graph phases
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Similar to topology, we can also introduce product on hompgptequivalence classes
and prove that all homotopy equivalence classes form a grdinss group is called a
fundamental grouand denote it byr(G; w, A). In topology there is a famous theorem,
called theSeifert and Van Kampen theordar characterizing fundamental groupg.A)
of topological spacedd restated as follows (See [Stil] for details).

Suppose is a space which can be expressed as the union of path-cathepen
setsA, B such thatA ) B is path-connected and,(A) and (B) have respective pre-
sentations

@g, - amre .y, (b bms, -, s,

while (A (M B) is finitely generated. Then (E) has a presentation

<a1"",am,b1,"',bm;rl,"',rn,stl.,"',sn,ul:V1,"',ut:Vt>a

where y v;,i = 1,---,t are expressions for the generatorsm{A ) B) in terms of the
generators ofr,((A) andnr,(B) respectively.

Similarly, there is a problem for the fundamental graw{@; w, A) of a graph phase
(G; w, A) following.

Problem 5.6.12 Find results similar to that of Seifert and Van Kampen theofer the
fundamental group of a graph phase and characterize it.

5.6.4 In Euclid spacedR", ann-ball of radius ris determined by

B™(r) = {(X1, X2, -+, Xo)XE + X5 + -+ + 3 < ).

Now we choosen n-ballsB(r1), B)(r2), - - -, By(rm), where for any integens j, 1 < i, j <
m, Bl(ri) M Bj(rj) = or not andr; = r; or not. Ann-multi-ballis a union

Then ann-multi-manifoldis a Hausddf space with each point in this space has a neigh-
borhood homeomorphic to aamulti-ball.

Problem 5.6.13 For an integer nn > 2, classifies n-multi-manifolds. Especially, classi-
fies2-multi-manifolds.



CHAPTER 6.

Map Geometry

A Smarandache geometry is nothing but a Smarandcahe rpaktesconsist-
ing of just two geometrical spacés andA,, associated with an axiomsuch
thatL holds inA; but not holds inA,, or only hold not in bottA; andA; but in
distinct ways, a miniature of multi-space introduced by 8andache in 1969.
The points in such a geometry can be classified into thresedase., elliptic,
Euclidean and hyperbolic types. For the case only with fipatiets of elliptic
and hyperbolic types, such a geometry can be charactenzedmbinatorial
map. Thus is the geometry on Smarandache manifolds of diore@si.e.,
map geometry. We introduce Smarandache geometry inclypdiragloxist ge-
ometry, non-geometry, counter-projective geometry-gatimetry and Iseri’'s
s-manifolds in Section.&. These map geometry with or without boundary are
discussed and paradoxist geometry, non-geometry, copragsctive geom-
etry and anti-geometry are constructed on such map geome®gctions &
and 63. The curvature of agline is defined in Section.8, where a condition
for a map on map geometri¥k, ) being Smarandachely is found. Sectioh 6
presents the enumeration result for non-equivalent mamgea@s underly-
ing a simple grapli”. All of these decision consist the fundamental of the
following chapters.
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§6.1 SMARANDACHE GEOMETRY

6.1.1 Geometrical Introspection. As we known, mathematics is a powerful tool of
sciences for its unity and neatness, without any shade okimén On the other hand,
it is also a kind of aesthetics deep down in one’s mind. Thewefamous proverb says
that only the beautiful things can be handed down to tqdalich is also true for the
mathematics.

Here, the termsinity andneatnessre relative and local, maybe also have various
conditions. For obtaining a good result, many unimportaattens are abandoned in
the research process. Whether are those matters still oniamp in another time? It is
not true. That is why we need to think a queer questiwhat are lost in the classical
mathematics?

For example, a compact surface is topological equivalert pmlygon with even
number of edges by identifying each pairs of edges alonggtgem direction ((Mas1] or
[Stil]). If label each pair of edges by a lettere € &, a surfaceS is also identified to
a cyclic permutation such that each edge € & just appears two times i8, one ise
and another is! (orientable) oe (non-orientable). Lea, b, c, - - - denote letters ik and
A, B,C,- - the sections of successive letters in a linear order on aseff(or a string of
letters onS). Then, an orientable surface can be represented by

S:(“"AvaoB’a_l’C"“)’

wherg a € & andA, B, C denote strings of letter. Three elementary transformatae
defined as follows:
(0)) (A aalB) e (AB)
(0,) (i) (AabB,b?ta?l) e (AcB,c?);
(i) (A,a,b,B,a,b) = (A cB,c),
(Os) (i) (AaB,Ca'D)e (B,aAD,alC)
(i) (A,a,B,C,a,D) & (B,a,A,CtaD™).
If a surfaceSy can be obtained by these elementary transformatard; from a surface

S, itis said thafS is elementary equivalentith Sy, denoted bys ~g; So.
We have known the following formulae from [Liul]:

(1) (A, ae B, b, C, a_l, D’ b_l’ E) ~EI (A, D’ C, B’ E, as b, a_l’ b_l);
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(2) (A.c,B,0) ~e (A B™,C,c,0);
(3)(Ac.c,abat,b?t) ~g (A c.coaab,b).

Then we can get the classification theorem of compact swwfaséollows [Masl]:
Any compact surface is homeomorphic to one of the followtsagdsard surfaces:

(Py) The sphere: ad;
(Pn) The connected sum ofm> 1, tori:

aybya;thrtash,ay Myt - - - agbyan ot

(Qn) The connected sum ofm> 1, projective planes:

2138z - + - Anah.

As we have discussed in Chapter 2, a combinatorial map isjkistd of decompo-
sition of a surface. Notice that all the standard surfacesae face map underlying an
one vertex graph, i.e., a bougugtwith n > 1. By a combinatorial viewa combinatorial
map is nothing but a surfacd his assertion is needed clarifying. For example, let &s se
the left grapHhl, in Fig.31.1, which is a tetrahedron.

1 1

2 3
4 v
2 3

Fig.6.1.1

Whether can we sayl, is a sphere? Certainly NOT. Since any painbn a sphere
has a neighborhoodtli(u) homeomorphic to an open disc, thereby all angles incident
with the point 1 must be 120degree on a sphere. But Iy, those are only 60de-
gree. For making them same in a topological sense, i.e., biwoghism, we must
blow up thell, and make it become a sphere. This physical processing isrsimthe
Fig.31. Whence, for getting the classification theorem of compadiaces, we lose the
angle,area, volume,distance,curvature etc. which are also lost in combinatorial maps.
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By geometrical view, th&lein Erlanger Progransays thaany geometry is nothing
but find invariants under a transformation group of this getrmy This is essentially the
group action idea and widely used in mathematics today. eyimyg topics appearing in
publications for combinatorial maps, we know the followprgblems are applications of
Klein Erlanger Program

(1) to determine isomorphism maps or rooted maps;
(2) to determine equivalent embeddings of a graph;
(3) to determine an embedding whether exists or not;
(4) to enumerate maps or rooted maps on a surface;
(5) to enumerate embeddings of a graph on a surface;
(6) ---, etc.

All the problems are extensively investigated by resea¢hehe last century and
papers related those problems are still frequently appganijournals today. Then,

what are their importance to classical mathematics?
and
what are their contributions to sciences?

Today, we have found that combinatorial maps can contriantanderlying frame
for applying mathematics to sciences, i.e., through by megreetries or by graphs in
spaces.

6.1.2 Smarandache Geometry.The Smarandache geometwas proposed by Smaran-
dache [Smal] in 1969, which is a generalization of clasgjeametries, i.e., thegauclid,
Lobachevshy-Bolyai-Gaussid Riemann geometrignay be united altogether in a same
space, by some Smarandache geometries. Such geometryaitlrebeartially Euclidean
and partially Non-Euclidean, or Non-Euclidean. Smarahdageometries are also con-
nected with theRelativity Theorybecause they include Riemann geometry in a subspace
and with theParallel Universedecause they combine separate spaces into one space too.
For a detall illustration, we need to consider classicahgetoy first.

As we known, the axiom system Eluclid geometrgonsists of 5 axioms following:

(Al) There is a straight line between any two points.
(A2) Afinite straight line can produce a infinite straight line ¢imously.
(A3) Any point and a distance can describe a circle.



Sec.6.1 Smarandache Geometry 175

(A4) Allright angles are equal to one another.

(A5) If a straight line falling on two straight lines make the inte angles on the
same side less than two right angles, then the two straighsliif produced indefinitely,
meet on that side on which are the angles less than the twoaitgies.

The axiom (A5) can be also replaced by:

(A5’) given aline and a point exterior this line, there is one liregadlel to this line.

The Lobachevshy-Bolyai-Gauss geometigo callechyperbolic geometryis a ge-
ometry with axioms A1) — (A4) and the following axiomlL(5):

(L5) there are infinitely many lines parallel to a given line pagsthrough an exte-
rior point.
and theRiemann geometralso callecelliptic geometryis a geometry with axiom#\(1)—
(A4) and the following axiomR5):

there is no parallel to a given line passing through an extepoint.

By a thought of anti-mathematicsot in a nihilistic way, but in a positive one, i.e.,
banish the old concepts by some new ones: their oppoStearandache [Smal] in-
troduced theparadoxist geometry, non-geometry, counter-projecteengetryand anti-
geometryby contradicts respectively to axiom&1)— (A5) in Euclid geometry following.

Paradoxist Geometry. In this geometry, its axioms consist &&X) — (A4) and one
of the following as the axiomRb):

(1) There are at least a straight line and a point exterior to itlms space for which
any line that passes through the point intersect the iniired.

(2) There are at least a straight line and a point exterior to itlms space for which
only one line passes through the point and does not intetkeghnitial line.

(3) There are at least a straight line and a point exterior to itlms space for which
only a finite number of lineg I, - - -, Iy, kK > 2 pass through the point and do not intersect
the initial line.

(4) There are at least a straight line and a point exterior to ithis space for which
an infinite number of lines pass through the point (but nobathem) and do not intersect
the initial line.

(5) There are at least a straight line and a point exterior to itlis space for which
any line that passes through the point and does not intetbednitial line.
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Non-Geometry. The non-geometry is a geometry by denial some axiomabf{
(A5), such as:

(A17) Itis not always possible to draw a line from an arbitrary poto another
arbitrary point.

(A27) Itis not always possible to extend by continuity a finite tman infinite line.

(A37) Itis not always possible to draw a circle from an arbitraryipband of an
arbitrary interval.

(A47) Not all the right angles are congruent.

(A57) If aline, cutting two other lines, forms the interior anglefsthe same side of
it strictly less than two right angle, then not always the tiwes extended towards infinite
cut each other in the side where the angles are strictly lleas two right angle

Counter-Projective Geometry. Denoted byP the point setL the line set andR
a relation included irP x L. A counter-projective geometry is a geometry with these
counter-axioms@;) — (Cs):

(C1) there exist: either at least two lines, or no line, that cansatwo given distinct
points.

(C2) let p, p2, p3 be three non-collinear points, and,@j, two distinct points. Sup-
pose that p;.q:, ps} and{p,, 0z, ps} are collinear triples. Then the line containing,p.
and the line containing gq, do not intersect.

(C3) every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms of
Euclidean geometry. As shown in [KuA1l], there are at led5t-21 such anti-geometries.

In general, a Smarandache geometry is defined as follows.

Definition 6.1.1 An axiom is said to be Smarandachely denied if the axiom leshisv
at least two dfferent ways within the same space, i.e., validated and idedli or only
invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least camSdachely de-
nied axiom (1969).

In the Smarandache geometry, points, lines, planes, spai@@gles,---, etc are
calleds-points,s-lines, s-planes,s-spacess-triangles; - -, respectively in order to distin-
guish them from classical geometries.
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An example of Smarandache geometry in the classical gemalesense is shown
in the following.

Example6.1.1 Let us consider a Euclidean plaRé and three non-collinear points B
andC. Defines-points as all usual Euclidean points BA ands-lines any Euclidean line
that passes through one and only one of pot8 andC. Then such a geometry is a
Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points theresexi
one line passing through them is now replaced daye s-lineandno s-line Notice that
through any two distincs-points D, E collinear with one ofA, B andC, there is one
s-line passing through them and through any two distgpbintsF, G lying on AB or
non-collinear with one ofA, B andC, there is nos-line passing through them such as
those shown in Fig.2.1(a).

Observation 2. The axiom (E5) that through a point exterior to a given lineréhis
only one parallel passing through it is now replaced by tvateshentsone paralleland
no parallel LetL be ans-line passes throug@ and is parallel in the Euclidean sense to
AB. Notice that through ang-point not lying onAB there is ones-line parallel toL and
through any othes-point lying onABthere is ncs-lines parallel td- such as those shown
in Fig.9.1.1(b).

Fig.6.1.1

6.1.3 Smarandache Manifold. A Smarandache manifold ann-dimensional mani-
fold that support a Smarandache geometry. frer 2, a nice model for Smarandache
geometries called-manifoldsvas found by Iseri in [Isel]-[Ise2] defined as follows:

An s-manifold is any collectio@(T, n) of these equilateral triangular disks,TL <
I < n satisfying the following conditions:
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(i) each edge e is the identification of at most two edges & two distinct trian-
gulardisks T, Tj,1<i,j<nandi# j;

(i) each vertex v is the identification of one vertex in each ofsixeor seven distinct
triangular disks.

The vertices are classified by the number of the disks ardugmd t A vertex around
five, six or seven triangular disks is called altiptic vertex a Euclidean verte>or a
hyperbolic vertexrespectively.

In the plane, an elliptic verte®, a Euclidean vertelR and a hyperbolic verte® and
ans-line Ly, L, or L passes through poin@, P or Q are shown in Fig.4.2(a), (b), (c),
respectively.

VAVANEVAVASAY
SR S

L1 2

Ls
(@) (b) (c)

Fig.6.1.2

Smarandache paradoxist geometries and non-geometribs cealized by-manifolds,
but other Smarandache geometries can be only partly rddbgéhis kind of manifolds.
Readers are inferred to Iseri’'s book [Isel] for those gedeset

An ssmanifold is called closed if each edge is shared exactlymttiangular disks.
An elementary classification for closesimanifolds by planar triangulation were intro-
duced in [Mao010]. They are classified into 7 classes. Eachadd classes is defined in
the following.

Classical Type

(1) A1 = {5-regular planar triangular mapglliptic);
(2) A, = {6 - regular planar triangular majgsuclidean,
(3) Az = {7 —regular planar triangular majgbyperbolig.

Smarandache Type

(4) A4 = {planar triangular maps with vertex valency 5 andeiiclid-elliptio);
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(5) As = {planar triangular maps with vertex valency 5 andeéfliptic-hyperbolig;
(6) Ae = {planar triangular maps with vertex valency 6 andetclid-hyperbolig;
(7) A7 = {planar triangular maps with vertex valencyssand 7 (mixed.

It is proved in [Maol0] thatA,| = 2, |As| > 2 and|Aj|,i = 2,3,4,6,7 are infinite
(See also [Mao37] for details). Iseri proposed a questidisgil]: Do the other closed
2-manifolds correspond to s-manifolds with only hyperbeigctices? Since there are
infinite Hurwitz maps, i.e|As| is infinite, the answer isfArmative.

§6.2 MAP GEOMETRY WITHOUT BOUNDARY

6.2.1 Map Geometry Without Boundary. A combinatorial mapVl can be also used
for a model of constructing Smarandache geometry. By a gemaleview, this model

is a generalizations of Isier's model for Smarandache gégmeéor a given map on a
locally orientable surface, map geometries without bouyndee defined in the following
definition.

Definition 6.2.1 For a combinatorial map M with each vertex valercy, associates
a real numbenu(u),0 < u(u) < 4—ﬂu to each vertex w € V(M). Call (M,u) a
map geometry without boundavy(u)l\gn angle factor of the vertex u and orientablle or
non-orientable if M is orientable or not.

A vertexu € V(M) with py (u)u(u) < 27, = 27 or > 2r can be realized in a Euclidean
spaceR?, such as those shown in Figdl, respectively.

pm(Wu(u) < 2t pm(Wu(u) = 21 pm(Uu(u) > 21

Fig.6.2.1

As we have pointed out in Sectionl6 this kind of realization is not a surface, but
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it is homeomorphic to a locally orientable surface by a vidwopological equivalence.
Similar tos-manifolds, we also classify points in a map geomelfy) without boundary
into elliptic points Euclidean pointandhyperbolic pointsdefined in the next definition.

Definition 6.2.2 A point u in a map geometi§M, u) is said to be elliptic, Euclidean or
hyperbolic ifom(Uu(u) < 27, pm(U)p(u) = 27 or pw(U)u(u) > 2.

Then we get the following results.

Theorem 6.2.1 Let M be a map witlpy(v) > 3 for Vv € V(M). Then forYu € V(M),
there is a map geometi§M, ) without boundary such that u is elliptic, Euclidean or
hyperbolic.

Proof Sinceoy(u) > 3, we can choose an angle fagigu) such thaj(u)ou(u) < 2x,
u(Upm(u) = 27 or u(u)pm(u) > 2. Notice that

2r 4

0 < e) ) pm(u)’

A
pm(u)’
Theorem 6.2.2 Let M be a map of order 3 andpy(v) > 3 for Yv € V(M),. Then
there exists a map geomettiyl, 1) without boundary in which elliptic, Euclidean and

Thereby we can always chooggu) satisfying that O< u(u) < O

hyperbolic points appear simultaneously.

Proof According to Theorem .1, we can always choose an angle fagtasuch
that a vertexu, u € V(M) to be elliptic, or Euclidean, or hyperbolic. SindgM)| > 3, we
can even choose the angle fagtsuch that any two dlierent vertices, w € V(M)\{u} to
be elliptic, or Euclidean, or hyperbolic as we wish. Thenrttep geometry N1, 1) makes
the assertion hold. O

A geodesidn a manifold is a curve as straight as possible. Applyingceptions
such as angles and straight lines in a Euclid geometry, waalefines ands-points in a
map geometry in the next definition.

Definition 6.2.3 Let (M, u) be a map geometry without boundary and |€Vg be the
locally orientable surface represented by a plane polygomwbich M is embedded. A
point P on §M) is called an s-point. A line L on@®1) is called an s-line if it is straight

V)u(v)

in each face of M and each angle on L has mea when it passes through a

vertex von M.
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Two examples fos-lines on the torus are shown in the Fig.@(a) and (), where
M = M(B,), u(u) = g for the vertexu in (a) and

135- arctan(2)
360

for the vertexu in (b), i.e.,uis Euclidean in ) but elliptic in (b). Notice that in b), the

p(u) =

s-line L, is self-intersected.

(a) (b)
Fig.6.2.2
If an s-line passes through an elliptic point or a hyperbolic poinit must has an
angle’LM with the entering line, not 18Qvhich are explained in Fig.B.3.

T

() (b)

_ #Wpm() _ _ #(Wpm(u)
= /s @x=—""2>T
2 2
Fig.6.2.3

6.2.2 Paradoxist Map Geometry. In the Euclid geometry, a right angle is an angle with
measureg, half of a straight angle and parallel lines are straighgdinever intersecting.
They are very important research objects. Many theorentacteize properties of them
in classical Euclid geometry. Similarly, in a map geomeirg,can also define a straight

angle, a right angle and parallelines by Definition 62.2. Now astraight angleis an
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i i : . u)u(u
angle with measure for points not being vertices d¥l andp—M( JAC)

for Yu € V(M).
A right angleis an angle with a half measure of a straight angle. Bdines are said
parallel if they are never intersecting. The following result assénat there exists map

paradoxist geometry without boundary.

Theorem6.2.3 Let M be a map on a locally orientable surface with| > 3 andpy(u) >
3for Yu € V(M). Then there exists an angle factor. V(M) — [0, 4r) such that(M, )
is a Smarandache geometry by denial the axiom (E5) with ax{&®%),(L5) and (R5).

Proof By the assumptiopy(u) > 3, we can always choose an angle fagt@uch
thatu(u)om(u) < 21, u(V)om(u) = 27 or u(w)owm (u) > 2 for three verticesi, v,w € V(M),
i.e., there elliptic, or Euclidean, or hyperbolic pointsstxn (M, 1) simultaneously. The
proof is divided into three cases.

Casel. M is a planar map.

Choosd. being a line under the may, not intersection with ity € (M, x). Then ifu
is Euclidean, there is one and only one line passing througit intersecting with., and
if uis elliptic, there are infinite many lines passing throwgtot intersecting with., but
if uis hyperbolic, then each line passing throughill intersect withL. See for example,
Fig.6.2.4 in where the planar graph is a complete gr&plon a sphere and points2are
elliptic, 3 is Euclidean but the point 4 is hyperbolic. Thdhliaes in the fieldA do not
intersect withL, but each line passing through the point 4 will intersechwiite lineL.
Therefore, M, 1) is a Smarandache geometry by denial the axiom (E5) witrethg®ms
(E5), (L5) and (R5).




Sec.6.2 Map Geometry without Boundary 183

Case2. M is an orientable map.

According to the classifying theorem of surfaces, We onlgchtd prove this asser-
tion on a torus. In this case, lines on a torus has the follgyiroperty (see [NiS1] for
details):

if the slopeg of a line L is a rational number, then L is a closed line on theuto
Otherwise, L is infinite, and moreover L passes arbitrarilyse to every point on the
torus.

Whence, ifL; is a line on a torus with an irrational slope not passing tghoan elliptic
or a hyperbolic point, then for any pointexterior toL, if u is a Euclidean point, then
there is only one line passing througmot intersecting with_;, and ifu is elliptic or
hyperbolic, anys-line passing through will intersect withL;.

Now letL, be a line on the torus with a rational slope not passing thraurgelliptic
or a hyperbolic point, such as the the lineshown in Fig.&.5, in wherev is a Euclidean
point. If uis a Euclidean point, then each lihepassing through with rational slope in
the areaA will not intersect withL,, but each line passing througtwith irrational slope
in the areaA will intersect withL,.

Fig.6.2.5

Therefore, M, 1) is a Smarandache geometry by denial the axiom (E5) withnaio
(E5), (L5) and (R5) in the orientable case.

Case3. M is a non-orientable map.

Similar to Case 2, we only need to prove this result for thegatose plane. A line
in a projective plane is shown in Figd6(a), (b) or (c), in where case (a) is a line passing
through a Euclidean point, (b) passing through an elliptimpand (c) passing through a
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hyperbolic point.

1 2 2’ 2 2 1 o
2 1 2 2’ o2
(a) (b) (c)
Fig.6.2.6

LetL be aline passing through the center of the circle. Thangfa Euclidean point,
there is only one line passing througlsuch as the case)(in Fig.6.2.7. If vis an elliptic
point then there is ag-line passing through it and intersecting witlsuch as the case)(
in Fig.6.2.7. We assume the point 1 is a point such that there exists pdisging through
1 and 0, then any line in the shade of Fig.8(b) passing througk will intersect withL.

2 1 ) ﬁ
- ? 5
0 L 0 k 0 L 0
L W
g " J e
(@) (b) (c)
Fig.6.2.7

If wis a Euclidean point and there is a line passing through iinmetsecting with_
such as the case)(in Fig.6.2.7, then any line in the shade of FigR&/(c) passing through
w will not intersect withL. Since the position of the vertices of a misfoon a projective
plane can be choose as our wish, we kndlyy) is a Smarandache geometry by denial
the axiom (E5) with axioms (E5),(L5) and (R5).

Combining discussions of Case2land 3, the proof is complete. O

6.2.3 Map Non-Geometry. Similar to those of Iseri’ssmanifolds, there are non-
geometry, anti-geometry and counter-projective geometryn map geometry without
boundary.

Theorem 6.2.4 There exists a non-geometry in map geometries without keoyynd
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Proof We prove there are map geometries without boundary satggspioms A7) -
(A7). Let (M, u) be such a map geometry with elliptic or hyperbolic points.

(1) Assumaeuis a Euclidean point andis an elliptic or hyperbolic point on\, u).
Let L be ans-line passing through pointsandv in a Euclid plane. Choose a pointin L
after but nearly enough towhen we travel o from uto v. Then there does not exist a
line fromu to win the map geometryM, u) sincev is an elliptic or hyperbolic point. So
the axiom A7) is true in (M, u).

(2) In a map geometryM, 1), an s-line maybe closed such as we have illustrated
in the proof of Theorem .2.3. Choose any two points, B on a closeds-line L in a map
geometry. Then the-line betweenA andB can not continuously extend to indefinite in
(M, ). Whence the axiomA;) is true in (M, ).

(3) An m-circle in a map geometry is defined to be a set of continuoustpmn
which all points have a given distance to a given point. Cdie am-circle in a Euclid
plane. Choose an elliptic or a hyperbolic pokin C which enables us to get a map
geometry M, ). ThenC has a gap irA by definition of an elliptic or hyperbolic point.
So the axiomA;) is true in a map geometry without boundary.

(4) By the definition of a right angle, we know that a right angh an elliptic point
can not equal to a right angle on a hyperbolic point. So therax®;) is held in a map
geometry with elliptic or hyperbolic points.

(5) The axiom A;) is true by Theorem .@.3.

Combining these discussions 0j-(v), we know that there are non-geometries in
map geometries. This completes the proof. O

6.2.4 Map Anti-Geometry. The Hilbert's axiom systenfior a Euclid plane geometry
consists five group axioms stated in the following, where waale each group by a
capitalRomamumeral.

[. Incidence

| — 1. For every two points A and B, there exists a line L that corg&ach of the
points A and B.

| — 2. For every two points A and B, there exists no more than ondtiaecontains
each of the points A and B.

| — 3. There are at least two points on a line. There are at leastdlp@ints not on
aline.
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Il. Betweenness

[l — 1. If a point B lies between points A and C, then the pointB And C are
distinct points of a line, and B also lies between C and A.

Il — 2. For two points A and C, there always exists at least one poioh Bhe line
AC such that C lies between A and B.

Il — 3. Of any three points on a line, there exists no more than ondigsbetween
the other two.

Il —4. Let A B and C be three points that do not lie on a line, and let L be a lin
which does not meet any of the point8fand C. If the line L passes through a point of
the segment AB, it also passes through a point of the segn@znirAhrough a point of
the segment BC.

[Il. Congruence

[ — 1. If Ay and B, are two points on aline {, and A is a point on a line kL then
it is always possible to find a pointbB®n a given side of the line;lthrough A such that
the segment M, is congruent to the segmeni 2.

11 — 2. If a segment AB; and a segment M, are congruent to the segment AB,
then the segment; B, is also congruent to the segmeniBA.

11 —3. Ontheline L, let AB and BC be two segments which except forvB ha
point in common. Furthermore, on the same or on another lindet A,B, and B,C, be
two segments, which except for @so have no point in common. In that case, if AB is
congruent to AB; and BC is congruent to £, then AC is congruent to.£;.

11 — 4. Every angle can be copied on a given side of a given ray in ausyg
determined way.

[l — 5 If for two triangles ABC and M,C,, AB is congruent to 8;, AC is
congruent to AC; and ZBAC is congruent ta/B;A;C;, then ZABC is congruent to
/AB:Cy.

IV. Parallels

IV — 1. There is at most one line passes through a point P exterionalli that is
parallel to L.

V. Continuity
V — 1(Archimedes)Let AB and CD be two line segments wiitB| > |CD|. Then
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there is an integer m such that
mMICD| < |AB < (m+ 1)CD|.
V — 2(Cantor) LetA;B;, AsBy, -+, AB,, - - - be a segment sequence on a lindf
ABiD2AB,>---2AB, D,

then there exists a common point X on each line segmgditfAr any integer nn > 1.

Smarandache defined an anti-geometry by denial some axioHikbert axiom sys-
tem for Euclid geometry. Similar to the discussion in theerehce [Isel], We obtain the
following result for anti-geometry in map geometry withdaatundary.

Theorem6.2.5 Unless axioms+3, I1 -3, IIl -2, V-1 and V-2, an anti-geometry can
be gotten from map geometry without boundary by denial cdixems in Hilbert axiom
system.

Proof The axioml — 1 has been denied in the proof of Theorera4 Since there
maybe exists more than one line passing through two pdirtsdB in a map geometry
with elliptic or hyperbolic pointai such as those shown in Fig@8. So the axioml — 2
can be Smarandachely denied.

Fig.6.2.8

Notice that ars-line maybe has self-intersection points in a map geometityourt
boundary. So the axiol — 1 can be denied. By the proof of Theorern2.8, we know
that for two pointsA and B, an s-line passing through and B may not exist. Whence,
the axiomll — 2 can be denied. For the axioth — 4, see Fig.2.9, in wherev is a
non-Euclidean point such thag,(V)u(v) > 2(r + ZACB) in a map geometry.
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Fig.6.2.9

Soll — 4 can be also denied. Notice that sifine maybe has self-intersection points.
There are maybe more than osénes passing through two given poisB. Therefore,
the axiomdll —1 andlll — 3 are deniable. For denial the axidhh — 4, since an elliptic

u)u(u)

pointu can be measured at most by a num < m, i.e., there is a limitation

for an elliptic pointu. Whence, an angle with measure bigger t%w can not be
copied on an elliptic point on a given ray.

Because there are maybe more than sfiees passing through two given poimis
and B in a map geometry without boundary, the axioth — 5 can be Smarandachely
denied in general such as those shown in F&j1®(a) and @) whereu is an elliptic point.

B B
A C A U Cy
(@) (b)
Fig.6.2.10

For the parallel axiomtV — 1, it has been denied by the proofs of Theoren2s36
and 62.4.

Notice that axiom$ — 3,11 —31ll —2,V — 1 andV - 2 can not be denied in a map
geometry without boundary. This completes the proof. 0J

6.2.5 Counter-Projective Map Geometry. For counter-projective geometry, we know
a result following.
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Theorem6.2.6 Unless the axionC3), a counter-projective geometry can be gotten from
map geometry without boundary by denial axiqi@$) and(C2).

Proof Notice that axioms@1) and C2) have been denied in the proof of Theorem
6.2.5. Since a map is embedded on a locally orientable surfaegy edine in a map
geometry without boundary may contains infinite points. réfme the axiom@3) can
not be Smarandachely denied. O

§6.3 MAP GEOMETRY WITH BOUNDARY

6.3.1 Map Geometry With Boundary. A Poincaré’s modefor a hyperbolic geometry
is an upper half-plane in which lines are upper half-circlath center on thex-axis or
upper straight lines perpendicular to tkexis such as those shown in Fig4.

Ly L,

L3

Fig.6.3.2

If we think that all infinite points are the same, then a Pai@samodel for a hyperbolic
geometry is turned to Klein modelfor a hyperbolic geometry which uses a boundary
circle and lines are straight line segment in this circlehsas those shown in Fig32.
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By a combinatorial map view, a Klein's model is nothing butreedace map geometry.
This fact hints one to introduce map geometries with boundafined in the following
definition.

Definition 6.3.1 For a map geometryM, u) without boundary and faces,ff,,-- -, f|

€ F(M),1 < | < ¢(M) = 1, if S(M) \ {fy, fo,---, fi} is connected, then ca(M, )™ =
(S(M) \ {fy, o, -+, i}, u) @ map geometry with boundary, f,, - - -, f; and orientable or
not if (M, ) is orientable or not, where /) denotes the locally orientable surface on

which M is embedded.

Fig.6.3.4

Fig.6.3.5

Theses-points ands-lines in a map geometryM, u)~' are defined as same as Def-
inition 3.2.3 by adding ars-line terminated at the boundary of this map geometry. Two
m--lines on the torus and projective plane are shown in thegeé.Bi4 and Fig.63.5,
where the shade field denotes the boundary.

6.3.2 Smarandachely Map Geometry With Boundary. Indeed, there exists Smaran-
dache geometry in map geometry with boundary convinced suyltsefollowing.

Theorem 6.3.1 For a map M on a locally orientable surface with order3, vertex
valency 3 and a face fe F(M), there is an angle factor such that(M, )t is a
Smarandache geometry by denial the axiom (A5) with theserasx{A5),(L5) and (R5).

Proof Similar to the proof of Theorem.8.3, we consider a map being a planar
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map, an orientable map on a torus or a non-orientable map avjecpve plane, respec-
tively. We can get the assertion. In fact, by applying thepprty thats-lines in a map
geometry with boundary are terminated at the boundary, wgeaan more simpler proof
for this theorem. O

N /

(b)

(d)

Fig.6.3.6

Notice that a one face map geometh, (x)-* with boundary is just a Klein’s model
for hyperbolic geometry if we choose all points being Euefid. Similar to that of map
geometry without boundary, we can also get non-geomettixgaoemetry and counter-
projective geometry from that of map geometry with boundahpwing.

Theorem 6.3.2 There are non-geometries in map geometries with boundary.

Proof The proof is similar to the proof of Theoren?64 for map geometries without
boundary. Each of axiom#\() — (A;) is hold, for example, casea)(- (€) in Fig.6.3.6, in
where there are no awline from pointsA to Bin (a), the lineAB can not be continuously
extended to indefinite inbf, the circle has gap ircj, a right angle at a Euclidean point
v is not equal to a right angle at an elliptic poiin (d) and there are infinite-lines
passing through a poirR not intersecting with thes-line L in (€). Whence, there are
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non-geometries in map geometries with boundary. 0J

Theorem6.3.3 Unless axioms+ 3, II =311l —2,V—-1and V- 2in the Hilbert's axiom
system for a Euclid geometry, an anti-geometry can be gétbem map geometries with
boundary by denial other axioms in this axiom system.

Theorem 6.3.4 Unless the axionfC3), a counter-projective geometry can be gotten from
map geometries with boundary by denial axiqi@$) and(C2).

Proof The proofs of Theorems&3 and 63.4 are similar to the proofs of Theorems
6.2.5 and 62.6. The reader can easily completes the proof. O

§6.4 CURVATURE EQUATIONS ON MAP GEOMETRY

6.4.1 Curvature on s-Line. Let (M, u) be a map geometry with or without boundary.
All points of elliptic or hyperbolic types inNl, 1) are callechon-Euclidean pointsNow
let L be an s-line onil, 1) with non-Euclisedn pointéy, A,, - - -, A, for an integemn > 0.

Its curvature RL) is defined by

R(L) = >~ u(A)).
i=1

An s-linelL is calledEuclideanor non-Euclideanf R(L) = +2r or # +2. Then following
result characterizes s-lines ol (u).

Theorem6.4.1 An s-line without self-intersections is closed if and ohlyis Euclidean.

Proof Let L be a closed s-line without self-intersections o, () with vertices
A, Ao, -+, Ay. From the Euclid geometry on plane, we know that the angle cluam
n-polygon is 6 — 2)r. Whence, the curvatui(L) of s-lineL is +2r by definition, i.e. L
is Euclidean.

Now if an s-lineL is Euclidean, themR(L) = +2x by definition. Thus there exist
non-Euclidean pointB,, By, - - -, B, such that

D = u(B)) = £2n.
i=1

Whence L is nothing but am-polygon with vertices8,, By, - - -, B, on R?. Therefore L
is closed without self-intersection. O
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Furthermore, we find conditions for an s-line to be that ofuteg polygon onR?
following.

Corollary 6.4.1 An s-line without self-intersection passing through narcli€lean points
A, A, -+, Ay is aregular polygon if and only if all points:AA,, - - -, A, are elliptic with

2
8) = (1- 2}
orall A, A, - - -, A, are hyperbolic with
u(A) = (1+ %)n

forintegersl <i < n.

Proof If an s-lineL without self-intersection passing through non-Euclidpaimts
A, Ay, - -+, A, is a regular polygon, then all poings, A,, - - -, A, must be elliptic (hyper-
bolic) and calculation easily shows that

8) = (1= 2] or ua) = (14 2]

for integers 1< i < n by Theorem ®B.5. On the other hand, if is an s-line passing
through elliptic (hyperbolic) pointéy, Ay, - - -, A, with

(A = (1— %)n or u(A) = (1+ ,—f)n

for integers 1< i < n, then it is closed by Theorem®5. Clearly,L is a regular polygon
with verticesAq, Ao, - - -, An. O

6.4.2 Curvature Equation on Map Geometry. A map M = (Z,4, &) is called
Smarandachelyf all of its vertices are elliptic (hyperbolic). Notice thidnese pendent ver-
tices is not important because it can be always Euclideamiuclidean. We concen-
trate our attention to non-separated maps. Such maps adwesgsircuit-decompositions.
The following result characterizes Smarandachely maps.

Theorem 6.4.2 A non-separated planar map M is Smarandachely if and onliefe
exist a directed circuit-decomposition

S

00 - ()

i=1
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of M such that one of the linear systems of equations

Z (mr—x)=2r, 1l<i<s
veV(a)
or
Z (t-x)=-2r, 1<i<s
veV(a)

is solvable, where iE(M) denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertex V(M) is non-Euclidean, i.e.,
u(v) # n. Whence, there exists a directed circuit-decomposition

S

s = DE(@)

i=1
of semi-arcs iVl such that each of them is an s-line R?(u). Applying Theorem 3.5,
we know that

D, @-p)=2ror ) (r-u(v) = -2

wv(C) wv(C)

for each circuitCj, 1 <i < s. Thus one of the linear systems of equations

Z (mr—-%x,)=21, 1<i<s or Z (m—%x)=-21, 1<i<s
vev(éi) VGV(éi)

is solvable.
Conversely, if one of the linear systems of equations

Z (r-x)=21, 1<i<s or Z (r-x)=-2r, 1<i<s
veV@i) veV@i)

is solvable, define a mapping: R? — [0, 4r) by

| x ifx=veV(M),
“(X)_{n if X ¢ V(M).

ThenM is a Smarandachely map (JIRZ,u). This completes the proof. O

In Fig.6.4.1, we present an example of a Smarandachely planar mapg défined
by numbers on vertices.
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n il il
2 2 2
il il
2 4 2

2
x i x
2 2 2
Fig.6.4.1

Let wg € (0, 7). An s-lineL is callednon-Euclidean of typey if R(L) = +27 + wy.
Similar to Theorem @11, we can get the following result.

Theorem 6.4.2 A non-separated map M is Smarandachely if and only if theigt ex
S
directed circuit-decomposition M) = D E(E)i) of M into s-lines of typevy, wo €

i=1
(O, ) for integersl < i < s such that the linear systems of equations

Z (t-%)=2r—wy, 1<i<s

(S

or Z (t-%)=-21-wo, 1<i<s
veV@i)

or Z (m=—X)=2r+wg, 1<i<s
veV@i)

or Z (m=—X%X,)=-21+wg, 1<i<s

w[C)

is solvable.

§6.5 THE ENUMERATION OF MAP GEOMETRIES

6.5.1 Isomorphic Map Geometry. For classifying map geometries, the following defi-
nition on isomorphic map geometries is needed.
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Definition 6.5.1 Two map geometrigdvy, i1) and (Ma, i) or (My, 1)~ and (Mo, 1)
are said to be equivalent each other if there is a bijection M; — M, such that for
Yu € V(M), 6(u) is euclidean, elliptic or hyperbolic if and only if u is eusddian, elliptic
or hyperbolic.

6.5.2 Enumerating Map Geometries. A relation for the numbers of non-equivalent
map geometries with that of unrooted maps is establishdtkifollowing.

Theorem 6.5.1 Let M be a set of non-isomorphic maps of order n and with m faces.
Then the number of map geometries without boundaB}|i%1| and the number of map
geometries with one face being its boundargisiM|.

Proof By the definition of equivalent map geometries, for a givempidlac M, there
are 3 map geometries without boundary arftiB3nap geometries with one face being its
boundary by Theorem.B.1. Whence, we get"BM| map geometries without boundary
and 3m M| map geometries with one face being its boundary fretn O

We get an enumeration result for non-equivalent map geaesetithout boundary
following.

Theorem6.5.2 The numbers®(T, g) and (T, g) of non-equivalent orientable and non-
orientable map geometries without boundary underlyingnapée graphl” by denial the
axiom (A5) by (A5), (L5) or (R5) are

3" 11 (o(v) - 1)!

veV(I)

(@]
I =
n-(', g) SIAUTT] ,

and
(20 -1)3" 1 (p(v) - 1)!
veV(I)

N _
(I, Q) = 2/Autr]| ’
wherep(I') = (') — v(I') + 1is the Betti number of the gragdh

Proof Denote the set of non-isomorphic maps underlying the gfap locally

orientable surfaces by!(I") and the set of embeddings of the grdjptn locally orientable
M|

3 : .
surfaces byg(I'). For a mapM, M € M(T'), there arelAu—tl\/H different map geometries
without boundary by choice the angle facfoon a vertexu such thatu is Euclidean,

elliptic or hyperbolic. From permutation groups, we knowtth

AULT X (@) | = |(AULD) | IMAYTD] = [AutMMALT@),
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Therefore, we get that

3IMI
MeM(T) |AUt M |

3r |JAutl” X (@) |
|AUtl X (@) | |JAutM|

3l
|Autl” X {(a) |
3

_ O
B |Autr><<a>||8 (1)

3" T1 (p(v) - 1)!

veV(I)

2|Autl’|

n°(r,g) =

MeM(I')
| M Autl'x{(a) |

MeM(I')

Similarly, we can also get that

S

AUt X (@) |

(20 -1)37 T (o(v) - 1)

veV(I)
2|Autl’|

This completes the proof. U

n"(T', g)

By classifying map geometries with boundary, we get a rasuhe following.

Theorem 6.5.3 The numbers I, —g), "N(T', —g) of non-equivalent orientable, non-
orientable map geometries with one face being its boundadetlying a simple graph
by denial the axiom (A5) by (A5), (L5) or (R5) are respectivel

g 2d(g[I(x)
W@r@—amﬂ|WD+DLL@M—DP——ET—M4
and
(20 -1)3" 2d(q[T1(%)
Wcrm:—aﬁﬁr—WD+DL£@M—m———5¢4m,

m(l)
where ¢I'](x) is the genus polynomial of the graphi.e., dI'](X) = yz g[T]x¢ with
k=y(I)
ok[I'] being the number of embeddingdadn the orientable surface of genus k.

Proof Notice thatv(M) — (M) + ¢(M) = 2 - 2g(M) for an orientable maM by the
Euler-Poincaeformula. Similar to the proof of Theorem432 with the same meaning for
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M(T), we know that

D ¢(M)3™
WSy AU

D (2+ () — ¥(I)) — 2g(M))3™"
ot IAUM|

B Z (2 + &) — v(I))3M ~ Z 2g(M)3M
M) |AutM| MaAAD) |AutM|
(2 + () — w(I))3M Z |Autl” X (@) |
JAUtT” X (@) | MaAAD) |AutM|
_2x 3 Z g(M)JAUT x (@) |
AUt x (@) | |AUtM|

_ BI) + 1)3" AutDx(a)
~ JAutl x ()| %(FW |

(Tl

~JAULT]

nO (r’ _g)

MeM(I')

Z g(M)| MAutFx(a)l

MeM(T)

(B(I) + 1)3" 3
- 2AuUtl| l—[(p( ) - - |AULT]|

ym(T)

kadI]
veV(I) k=y(I)
3" 2d(g[I'](x))

= SAuT ww»+ni}¥mw—1»———7ﬁf—«ﬂ

by Theorem &.1.

Notice thatn“(I", —g) = n°(", —g) + nN(I", —g) and the number of re-embeddings an
orientable magVl on surfaces is# (See also [Mao10] or [Mao34] for details). We
know that

26M) 5 IMIg(M)

nL(F’ _g)

MeM(T) |AUtM|
22Mno(r, -g).
Whence, we get that
NI -g) = @™ - 1)n°(r, -g)
(2™ - 1)3" 2d(g[T1(¥))
—aﬂﬁr—wm+nllmm—nu——5¢am

This completes the proof. O
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§6.6 RESEARCH PROBLEMS

6.6.1 A complete Hilbert axiom system for a Euclid geometry comaxiomd —i,1 <
<81l —j,1<j<4 0l -k 1<k<5;IV-1landV-1,1<I| <2, whichcan be also
applied to the geometry of space. Unléssi,4 < i < 8, other axioms are presented in
Section 62. Each of axioms$ —i,4 <i < 8 is described in the following.

| — 4 For three non-collinear points B and C, there is one and only one plane
passing through them.

| — 5 Each plane has at least one point.

| — 6 If two points A and B of a line L are in a plarg, then every point of L is in
the plane}..

| — 7 If two planes}}; and >, have a common point A, then they have another
common point B.

| — 8 There are at least four points not in one plane.

By the Hilbert’s axiom system, the following result for pketaplanes can be ob-
tained.

(T) Passing through a given point A exterior to a given plgnehere is one and
only one plane parallel tQ'.

This result seems like the Euclid’s fifth axiom. Similar t@tBmarandache’s notion,
we present problems by denial this result for geometry otspallowing.

Problem 6.6.1 Construct a geometry of space by denial the parallel theasépianes
with

(T]) there are at least a plang and a point A exterior to the plang such that no
parallel plane to} passing through the point A.

(T;) there are at least a plang, and a point A exterior to the plang such that
there are finite parallel planes t®, passing through the point A.

(T3) there are at least a plang, and a point A exterior to the plang such that
there are infinite parallel planes tp, passing through the point A.

Problem 6.6.2 Similar to that of Iseri’s idea, define points of elliptic, &idean, or hyper-
bolic type inR® and apply these Plato polyhedrons to construct Smarandgebeetry
of spaceR®.
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Problem 6.6.3 Similar to that of map geometry and apply graphsR# to construct
Smarandache geometry of spde

Problem 6.6.4 For an integer nn > 4, define Smarandache geometryRA by denial
some axioms for an Euclid geometryRA and construct them.

6.6.2 The terminology ofnap geometryas first appeared in [Mao9], which enables one
to find non-homogenous spaces from already known homogespaces and is also a
typical example for application combinatorial maps to neegeometries. Among them
there are many problems not solved yet until today. Here wadhvde to describe some
of them.

Problem 6.6.5 For a given graph G, determine non-equivalent map geoneetmelerly-
ing a graph G, particularly, underlying graphs,kor K(m,n), m,n > 4 and enumerate
them.

Problem 6.6.6 For a given locally orientable surface S, determine noniegjent map
geometries on S, such as a sphere, a torus or a projectiveplarand enumerate them.

Problem 6.6.7 Find characteristics for equivalent map geometries or Bksh new ways
for classifying map geometries.

Problem 6.6.8 Whether can we rebuilt an intrinsic geometry on surfaceshsas a
sphere, a torus or a projective plane,, etc. by map geometry?



CHAPTER 7.

Planar Map Geometry

As we seen, a map geometiy(u) is nothing but a map1 associate vertices
with an angle facton. This means that there are finite non-Euclidean points
in map geometryNl, ). However, a map is a graph on surface, i.e., a geomet-
rical graph. We can also generalize the angle factor to edgesassociate
points in edges of map with an angle function and then find #teabior of
points, straight lines, polygons and circles, i.e., fundamental elements in
Euclid geometry on plane. In this case, the situation is ncoraplex since

a point maybe an elliptic, Euclidean or hyperbolic and a golymaybe an
sline, ---, etc.. We introduce such map geometry on plane, discussspoin
with a classification of edges in Sectiorl/lines with curvature in Section
7.2. The polygons, including the number of sides, internall@esgm, area
and circles on planar map geometry are discussed in Se@®asd 74. For
finding the behavior o&-lines, we introduce line bundles, motivated by the
Euclid’ sfifth postulate and determine their behavior on planar nesogptry

in Section 75. All of these materials will be used for establishing nelas of

an integral curve with a élierential equation system in a pseudo-plane geom-
etry and continuous phenomena with that of discrete phenanmefollowing
chapters.
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§7.1 POINTS IN PLANAR MAP GEOMETRY

7.1.1 Angle Function on Edge. The points in a map geometry are classified into three
classes: elliptic, Euclideanand hyperbolic There are only finite non-Euclidean points
considered in Chapter 6 because we had only defined ang|kpiclidean or a hyperbolic
point on vertices of map. In planar map geometry, we can present an even more deli-
cate consideration for Euclidean or non-Euclidean pointsfand infinite non-Euclidean
points in a plane.

Let (M,u) be a planar map geometry on plafie Choose vertices,v € V(M).
A mapping is called amngle function between u andifvthere is a smooth monotone

[M and f(v) = [M. Not loss of

mappingf : Y — > such thatf(u) =
generality, we can assume that there is an angle functioracom edge in a planar map

geometry. Then we know a result following.

Theorem 7.1.1 A planar map geometr¢M, u) has infinite non-Euclidean points if and
only if there is an edge e (u,Vv) € E(M) such thatoy(Wu(u) # pm(V)u(v), or pp(Wu(u)

is a constant bug 2 for Yu € V(M), or a loop(u, u) € E(M) attaching a non-Euclidean
point u.

Proof If there is an edge = (u, V) € E(M) such thapy (uu(u) # pom(V)u(Vv), then at
least one of verticeg andv in (M, ) is non-Euclidean. Not loss of generality, we assume
the vertexu is non-Euclidean.

If uandv are elliptic oru s elliptic butv is Euclidean, then by the definition of angle
functions, the edgeu(v) is correspondent with an angle functiéon >, — 3, such that
f(u) = [M andf(v) = [M, each points is non-Euclidean in, ) \ {v}. If u
is elliptic butv is hyperbolic, i.e.pm(U)u(u) < 27 andpy(V)u(v) > 2r, sincef is smooth
and monotone oru(V), there is one and only one poixkt in (u, V) such thatf (x*) = .
Thereby there are infinite non-Euclidean points ayvy).

Similar discussion can be gotten for the casesuratdv are both hyperbolic, an
is hyperbolic butv is Euclidean, ou is hyperbolic but is elliptic.

If pm(Wu(u) is a constant bug 27 for Yu € V(M), then each point on an edges is a
non-Euclidean point. Consequently, there are infinite Banlidean points inlil, w).

Now if there is a loop§, u) € E(M) andu is non-Euclidean, then by definition, each
pointv on the loop g, u) satisfying thatf (v) > or < 7 according tqy(u)u(u) > 7 or < .
Therefore there are also infinite non-Euclidean points erdbp (, u).
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On the other hand, if there are no an edge (u,Vv) € E(M) such thajoy (u)u(u) #
om(WVu(v), i.e., om(Wu(u) = pm(Vu(v) for ¥(u,v) € E(M), or there are no verticas
V(M) such thatoy (u)u(u) is a constant bug 2 for V, or there are no loopsufu) €
E(M) with a non-Euclidean poini, then all angle functions on these edgedvbare an
constantr. Therefore there are no non-Euclidean points in the map gagrM, ). This
completes the proof. O

Characterizing Euclidean points in planar map geométky, we get the following
result.

Theorem7.1.2 Let(M, u) be a planar map geometry on plade Then

(1) Every pointin}, \E(M) is a Euclidean point;
(2) There are infinite Euclidean points on M if and only if therésexan edge
(u,v) € E(M) (u=voru=v)such that u and v are both Euclidean.

Proof By the definition of angle functions, we know that every pasnEuclidean if
itis not onM. So the assertion (1) is true.

According to the proof of TheoremI/1, there are only finite Euclidean points unless
there is an edgeu(v) € E(M) with py(Uu(u) = pm(V)u(v) = 2x. In this case, there are
infinite Euclidean points on the edge ¢). Thereby the assertion (2) is also holds. [J

7.1.2 Edge Classification.According to Theorems.Z.1 and 71.2, we classify edges in
a planar map geometry, u) into six classes.

C: (Euclidean-elliptic edges) edges(u,v) € E(M) with pu(u)u(u) = 27 but
pm(Vu(v) < 2r.
CZ (Euclidean-Euclidean edges) edges(u,v) € E(M) with py(u)u(u) = 27 and

pm(Vu(v) = 2r.

C2 (Euclidean-hyperbolic edges) edges(u,v) € E(M) with py(U)u(u) = 2r but
pm(Vu(v) > 2.

Ct (elliptic-elliptic edges) edgegu, V) € E(M) with oy (U)u(U) < 27 andpw (V)u(v) <
2n.

C2 (elliptic-hyperbolic edges) edges(u,v) € E(M) with pu(u)u(u) < 27 but
pm(Vu(v) > 2r.

CE (hyperbolic-hyperbolic edges) edgedu, V) € E(M) with py(u)u(u) > 27 and
pm(Vu(v) > 27
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In Fig.7.1.1(a) - (f), theses-lines passing through an edge in one of class€ eE2
are shown, whera is elliptic andv is Euclidean in &), u andv are both Euclidean irbj,
uis Euclidean buv is hyperbolic in €), u andv are both elliptic in (d)u is elliptic butv
is hyperbolic in €) andu andv are both hyperbolic inf(), respectively.

u u u
L Ly Ly
L, — L, —— Ly ——
S v S v S v
(a) (b) (c)
u u u
Ll +/ I—l +/ Ll *\
Ly — Ly — Lo~
3 Vv 3 \'/\‘ 3 \'/\‘
(d) (e) ®
Fig.7.1.1

Denote by (M), Vel(M) and V(M) the respective sets of elliptic, Euclidean and
hyperbolic points invV(M) in a planar map geometry, ). Then we get a result as in
the following.

Theorem 7.1.3 Let(M, u) be a planar map geometry. Then

6
DL @+ > e+ D puw) =2 ) ICH
i=1

ueVe(M) VEVey(M) WeVhy(M)

and
6

[Vel(M)| + Vel M)] + Vi (M)] + $(M) = > [CEl + 2.

i=1

whereg¢(M) denotes the number of faces of a map M.
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Proof Notice that
6 .
IV(M)] = [Vei(M)] + Ve M)] + Viy(M)] and|E(M)| = " Ci
i=1

for a planar map geometry/, 1). By two well-known results

2, pu¥) = 2E(M)| and V(M)] - [E(M)| + 6(M) = 2
veV(M)

for a planar mapM, we know that

6
Z om(U) + Z pm(V) + Z pm(W)=ZZICiEI
i=1

UeVe|(M) VEVey(M) WeVhy(M)

and

6
IVei(M)] + Vel M)] + V(M| + $(M) = > CEl + 2. O
i=1

§7.2 LINES IN PLANAR MAP GEOMETRY

The situation ofs-lines in a planar map geometril(u) is more complex. Here astline
maybe open or closed, with or without self-intersectiona iplane. We discuss all of
theses-lines and their behaviors in this section, .

7.2.1 Lines in Planar Map Geometry. As we have seen in Chapterslines in a planar
map geometryN|, u) can be classified into three classes.

C{ (opened lines without self-intersections) s-lines in(M, 1) have an infinite num-
ber of continuous s-points without self-intersections andpoints and may be extended
indefinitely in both directions.

C? (opened lines with self-intersections) s-lines in(M, i) have an infinite number
of continuous s-points and self-intersections but witrendpoints and may be extended
indefinitely in both directions.

C3(closed lines) s-lines in(M, 1) have an infinite number of continuous s-points
and will come back to the initial point as we travel along amgmf these s-lines starting
at an initial point.
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By this classification, a straight line in a Euclid plane isimiog but an openedline
without non-Euclidean points. Certainlstlines in a planar map geometriyl(u) maybe
contain non-Euclidean points. In Fig27l, theses-lines shown in &), (b) and €) are
openeds-line without self-intersections, openedine with a self-intersection and closed
s-line with A, B, C, D andE non-Euclidean points, respectively.

A
E
> 5 C E B
AN/
& Al D C
(@) (b) (€)
Fig.7.2.1

Notice that a closedline in a planar map geometry maybe also has self-inteosext
A closeds-line is said to besimply closedf it has no self-intersections, such as tkne
in Fig.7.2.1(c). For simply closed-lines, we know the following result.

Theorem 7.2.1 Let (M, u) be a planar map geometry. An s-line L (M, u) passing
through n non-Euclidean pointg ¢, - - -, X, is simply closed if and only if

n

2, f) = (-2

i=1
where f(x) denotes the angle function value at an s-poinLx i < n.

Proof By results in Euclid geometry of plane, we know that the arsgisn of an
n-polygon is (i — 2)x. In a planar map geometri, 1), a simply closed-line L passing
throughn non-Euclidean pointgy, X, - - -, X, iS nothing but am-polygon with vertices
X1, X2, - -+, Xn. Whence, we get that

n

2, f0)=(n-2nr

i—1
Now if a simply s-line L passing through non-Euclidean pointg,, X, - - -, X, with

n

D ) = (-2

i=1
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held, therL_ is nothing but am-polygon with verticex,, X, - - -, X,. ThereforelL is simply
closed. m

By applying Theorem 2.1, we can also find conditions for an operselihe with or
without self-intersections.

Theorem 7.2.2 Let (M, u) be a planar map geometry. An s-line L (M, u) passing
through n non-Euclidean pointg xo, - - -, X, iS opened without self-intersections if and
only if s-line segmentsx,;, 1 < i < n-1are not intersect two by two and

n
f(x) > (n— 1)
i—1

Proof By the Euclid’s fifth postulate for a plane geometry, two igfina lines will
meet on the side on which the angles less than two right arnigles extend them to
indefinitely. Now for ans-line L in a planar map geometry, u), if it is opened without
self-intersections, then for any integell < i < n -1, sline segments;x;,; will not
intersect two by two and theline L will also not intersect before it entexs or leavesx,.

X2 X3

Fig.7.2.2

Now look at Fig.72.2, in where line segmeng X, is an added auxiliarg-line seg-
ment. We know that

1+ /2= f(x) andZ3+ Z4 = f(X,).

According to Theorem.2.1 and the Euclid’s fifth postulate, we know that

n-1

L2+ 24+ f(x)=(n-2)r
i=2
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and
/1+/3>n

Therefore, we get that

Zn:f(xi):(n—2)7r+41+432(n—1)7r. O

i=1
For openeds-lines with self-intersections, we know a result in thedaling.

Theorem 7.2.3 Let (M,u) be a planar map geometry. Agline L in (M, u) passing
throughn non-Euclidean pointg;, X, - - -, X, iS opened only witH self-intersections if
and only if there exist integefsands;,1 < j <lwith 1 <ij, s; <nandi; #itif t # |

such that .

(s, =2 < > f() < (5, - D

h=1
Proof If an s-line L passing througts-points X1, X2, - - -, Xers ONly has one self-
intersection point, let us look at FigZ3 in wherex,; X IS an added auxiliarg-line

segment.
X1 X+2
~ 1;2 A
3
L N |
Xt+s Xt+s—1
Fig.7.2.3

We know that
L1+ 22 = f(X41) andL3 + £4 = f(Xirs)-

Similar to the proof of Theorem.2.2, by Theorem 2.1 and the Euclid’s fifth pos-

tulate, we know that
-1

/2+ 4+ Z f(Xe)) = (S — 2
=2

and
1+ /3 < .
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Whence, we get that

S
(s-2r < Y f(x)) < (s- D
=1
Therefore, ifL is opened only with self-intersection points, we can find integgrs
andsj,l < j<lwithl <ij,s; <nandij # i if t # | such thatL passing through
Xij+15 Xij+2, 75 Xij+s; only has one self-intersection point. By the previous disan, we
know that

Sij

(8, -2 < D () < (5,- D

h=1

This completes the proof. O

7.2.2 Curve Curvature. Notice that alls-lines considered in this section are consisted
of line segments or rays in Euclid plane geometry. If the {ermg each line segment tends
to zero, then we get a curve at the limitation in the usuallysse Whence, agline in a
planar map geometry can be also seen as a discretion of plaves c

Generally, the curvature at a point of a cu®@ds a measure of how quickly the
tangent vector changes direction with respect to the leofjirc, such as those of the
Gauss curvature, the Riemann curvature,etc.. In Fig.72.4 we present a smooth curve
and the changing of tangent vectors.

Vo Ve

V3 \¢E/ P

Vi

Fig.7.2.4

To measure the changing of vectarto v,, a simpler way is by the changing of
the angle between vectovg andv,. If a curveC = f(s) is smooth, then the changing
rate of the angle between two tangent vector with respettadeingth of arc, i'e'd_s is
continuous. For example, as we known in thfediential geometry, the Gauss curvature

. . I | .
at every point of a circle? + y? = r? of radiusr is x Whence, the changing of the angle
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from vectorsv; to v, is
B

1
f —ds
r
A
By results in Euclid plane geometry, we know tl#ais also the angle between vectors

1—- 1
—|AB = -rf = 6.
r r

v, andv,. As we illustrated in SubsectionZ/1, ans-line in a planar map geometry is
consisted by line segments or rays. Therefore, the charrgiegof the angle between
two tangent vector with respect to the length of arc is nottiooilwus. Similar to the
definition of the set curvature in the reference [AlZ1], weg®nt a discrete definition for
the curvature o&-lines in this case following.

Definition 7.2.1 Let L be an s-line in a planar map geomefiy, 1) with the set W of
non-Euclidean points. The curvatuigL) of L is defined by

w(L) = [ (m - @(p)),
I

wherew(p) = f(p) if pis on an edgéu, v) in map M embedded on plaRéwith an angle
function f: } — 3.

In differential geometry, thE@auss mappingnd theGauss curvaturen surfaces are
defined as follows:

LetS c R® be a surface with an orientatioN. The mapping N S — S? takes its
value in the unit sphere

S2={(xY,20) e R +y+Z =1}

along the orientatioN. The map N: S — S?, thus defined, is called a Gauss mapping
and the determinant of ¢0) = dN, a Gauss curvature.

We know that for a poinp € S such that the Gaussian curvatlép) # 0 and a
connected neighborhoadof p with K does not change sign,

o NA)
o) = Im =5~
whereA is the area of a regioB c V andN(A) is the area of the image &by the Gauss
mappingN : S — S2.

The well-knownGauss-Bonnet theorefar a compact surface says that

| fs Kdor = 2(S),
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for any orientable compact surfage
For a simply closed-line, we also have a result similar to the Gauss-Bonnetrémp
which can be also seen as a discrete Gauss-Bonnet theorepianmea

Theorem 7.2.4 Let L be a simply closed s-line passing through n non-Euahdeoints
X1, X2, + -+, Xn IN @ planar map geometr{M, u). Thenw(L) = 2r.
Proof According to Theorem.2.1, we know that

n

2, fx) = (-2,

i=1
where f(x) denotes the angle function value at spoint x,1 < i < n. Whence, by
Definition 7.2.1 we know that

w(L)

[ @160 = Y- 100
) i=1

{x;1<i<n
n
an— " f(x)=mn-(n-2)r = 2. O

i=1

Similarly, we also get the sum of curvatures on the planar Map (M, u) following.

Theorem 7.2.5 Let(M, i) be a planar map geometry. Then the sw(iM) of curvatures
on edges inamap M is(M) = 2rs(M), where $M) denotes the sum of length of edges
in M.

Proof Notice that the sum(u, v) of curvatures on an edga,{) of M is

u

w(u,v):f(n—f(s))ds:n|(/u,7)|—ff(s)ds

Vv

SinceM is a planar map, each of its edges appears just two times witdpposite
direction. Whence, we get that

w(M) = Z w(U, V) + Z w(V, U)
(u,v)eE(M) (v,u)eE(M)
- ) (|ﬁ7)|+(V,F))—[ff(s>ds+ff(s)ds]:zrs(wl) =
(uv)eE(M) v u

Notice that is(M) = 1, Theorem 2.5 turns to the Gauss-Bonnet theorem for sphere.
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§7.3 POLYGONS IN PLANAR MAP GEOMETRY

7.3.1 Polygon in Planar Map Geometry. In the Euclid plane geometry, we have en-
countered triangles, quadrilaterals;, and generallyp-polygons, i.e., these graphs on a
plane withn straight line segments not on the same line connected wélatiar another.
There are no 1 and 2-polygons in a Euclid plane geometry gwmesy point is Euclidean.
The definition ofn-polygons in planar map geometril(u) is similar to that of Euclid
plane geometry.

Definition 7.3.1 An n-polygon in a planar map geomeiiy, u) is defined to be a graph
in (M, u) with n s-line segments two by two without self-intersestemd connected with
one after another.

Although their definition is similar, the situation is morenaplex in a planar map
geometry M, u). We have found a necessary andtisient condition for 1-polygon in
Theorem 72.1, i.e., 1-polygons maybe exist in a planar map geometryefreal, we can
find n-polygons in a planar map geometry for any integer > 1.

Examples of polygon in a planar map geometk, () are shown in Fig.B.1, in
where @) is a 1-polygon withu, v, w andt being non-Euclidean pointdy)is a 2-polygon
with verticesA, B and non-Euclidean pointsv, () is a triangle with vertices, B, C and
a non-Euclidean poini and @) is a quadrilateral with vertice&, B, C andD.

u \' u A A B
A B
c U B
w t \Y C D
@ (b) (c) (d)
Fig.7.3.1

Theorem 7.3.1 There exists d-polygon in a planar map geomet(¥, u) if and only if
there are non-Euclidean pointg,wy, - - -, u; with | > 3 such that

D fw=0-2m

i=1

where f(u;) denotes the angle function value at the pointli i < I.
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Proof According to Theorem.2.1, ans-line passing throughnon-Euclidean points
Uy, Uy, - - -, Uy is simply closed if and only if

2, fw=0-2r

i=1
i.e., 1-polygon exists inNl, ) if and only if there are non-Euclidean points uy, - - -, U
with the above formula hold.
Whence, we only need to proVe= 3. Since there are no 1-polygons or 2-polygons
in a Euclid plane geometry, we must hdve 3 by the Hilbert's axiom — 2. In fact, for
| = 3 we can really find a planar map geometl, {«) with a 1-polygon passing through
three non-Euclidean pointsv andw. Look at Fig.73.2,

u

Fig.7.3.2

in where the angle function values afr@) = f(v) = f(w) = %n atu, vandw. O

Similarly, for 2-polygons we know the following result.

Theorem 7.3.2 There are2-polygons in a planar map geomettiyl, i) only if there are
at least one non-Euclidean point (M, u).

Proof In fact, if there is a non-Euclidean poiatin (M, i), then each straight line

. f f . . .
enteru will turn an angled = 7 — % or % — n from the initial straight line dependent

on thatu is elliptic or hyperbolic. Therefore, we can get a 2-polygoiiM, 1) by choice
a straight lineAB passing through Euclidean points ¥ (u), such as the graph shown in

Fig.7.3.3.
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This completes the proof. O
For the existence afi-polygons withn > 3, we have a general result as in the fol-

lowing.

Theorem 7.3.3 For any integer nn > 3, there are n-polygons in a planar map geometry
(M, ).

Proof Since in Euclid plane geometry, there arpolygons for any integem, n > 3.
Therefore, there are alsepolygons in a planar map geometryl(u) for any integer
n,n> 3. O

7.3.2 Internal Angle Sum. For the sum of the internal angles in mpolygon, we have
the following result.

Theorem7.3.4 Let[] be an n-polygon in a map geometry with its edges passingdgirou
non-Euclidean points;xxy, - - -, X. Then the sum of internal anglesjifiis

where f(x) denotes the value of the angle function f at the poift x i <.

Proof Denote byU, V the sets of elliptic points and hyperbolic pointsinX,, - - -, X
and|U| = p, |V| = q, respectively. If ars-line segment passes through an elliptic paint
add an auxiliary line segmeAB in the plane as shown in Fig34(1).

(1) (2)

Fig.7.3.4

Then we get that
Ja=/1+ /2 =n- f(u).

If an s-line passes through a hyperbolic pointalso add an auxiliary line segment
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ABin the plane as that shown in Fig3Z4(2). Then we get that

angleb = angle3+ angle4= f(v) — x.
Since the sum of internal angles of afpolygon in a plane isn— 2)r whenever it is a
convex or concave polygon, we know that the sum of the intemmgles in[] is

(n=2)r+ Y (r=F() = Y (Fy) - )

xeU yeVv

|
=(n+p+g-2m- > f(x)

i—1
|
=N+ —2)n—Z f(%).
i—1
This completes the proof. O
A triangle is calledEuclidean, ellipticor hyperbolicif its edges only pass through
one kind of Euclidean, elliptic or hyperbolic points. As ansequence of Theorem374,
we get the sum of the internal angles of a triangle in a map g&égrwhich is consistent
with these already known results.

Corollary 7.3.1 Let A be a triangle in a planar map geomettiyl, ). Then

(1) the sum of its internal angles is equalsitaf A is Euclidean;
(2) the sum of its internal angles is less thaif A is elliptic;
(3) the sum of its internal angles is more thaif A is hyperbolic.

Proof Notice that the sum of internal angles of a triangle is
|
m+ Y (r - £(x))
i—1

if it passes through non-Euclidean poimisx,, - - -, X. By definition, if theseq, 1 <i < |
are one kind of Euclidean, elliptic, or hyperbolic, then veeéthatf (x) = x, or f(x) < «,
or f(x) > nforany integer, 1 < i < |. Whence, the sum of internal angles of a Euclidean,
elliptic or hyperbolic triangle is equal to, or lees thanymore than. O

7.3.3 Polygon Area. As it is well-known, calculation for the are&(A) of a trianglea
with two sidesa, b and the value of their include angheor three sides, b andc in a
Euclid plane is simple. Formulae for its area are

A(r) = %absine or A(A) = ys(s— a)(s—b)(s-c),
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1 . : :
wheres = é(a+ b+c). Butin a planar map geometry, calculation for the area abagle
is complex since each of its edge maybe contains non-Eaeligeints. Where, we only
present a programming for calculation the area of a triaimgéeplanar map geometry.

STEP 1. Divide a triangle into triangles in a Euclid plane such thab edges
contain non-Euclidean points unless their endpoints;

STEP 2. Calculate the area of each triangle;

STEP 3. Sum up all of areas of these triangles to get the area of thengitiangle
in a planar map geometry.

The simplest cases for triangle is the cases with only onefnaridean point such
as those shown in Fig.3.5(1) and (2) with an elliptic pointi or with a hyperbolic point
V.

Fig.7.3.5

Add an auxiliary line segmemB in Fig.7.3.5. Then by formulae in the plane trigonom-
etry, we know that

A(AABC) = si(st — a)(s1— b)(s1 — 1) + V(S — ©)(S2 — d)(S2 — t)

for case (1) and

A(AABC) = si(st — a)(s1— b)(s1 — 1) = Vso(S2 — ©)(S2 — d)(S2 — t)

for case (2) in Fig.B.5, where

t = \/02 +d?2 - chcosg

with X = uorvand
1 1
S = E(a+b+t), S = E(c+d+t).
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Generally, letAABC be a triangle with its edg&B passing througlp elliptic or p
hyperbolic points¢, X, - - -, X, Simultaneously, as those shown in Fi§.8(1) and (2).

(1)

Fig.7.3.6

Where|AC| = a, IBC| = b and|Ax| = €1, [XaXo| = Ca, -+ -, [Xp-1Xp| = Cp aNd[XpB| = Cpy1.
Adding auxiliary line segment8x, Axs, - - -, AX,, AB in Fig.7.3.6, then we can find its

area by the programming STEP 1 to STEP 3. By formulae in theepidgonometry, we
get that

f
|AX| = \/ci + €3 — 2C,C, COS (;1),

@ - - |Ax]?
/Axx; = cost 1 2 ,
@ 26A%]
f f
LAYoXs = (;(2) — ZAXX, or 2r — (;(2) — LAXoXq,
f(x
|AX3| = \/ |AX|? + 5 — 2|AX|C3 COS( (22) - ZAX%X3),
|AXl? — 5 — |AXg|?
ZAXgX, = coS? ,
X3Xo = COS 2C3|AX3|
f(x f(x
LAXoXs = (23) — ZAX3Xo Or 2r — (Xs) — LAX3Xo,
and generally, we get that
IAB| = \/|Axp|2 + 2., — 21AX|Cpr1 COSLAXB.

Then the area of the triangleABC s

AABO) = [sy(sp— 8)(So — b)(sp — IAB)

p
+ Z Vs(s = IAXI)(S — C1)(S — |A%.1])

i=1
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for case (1) and

ABABO) = [sy(s, - a)(s, — b)(s, — IAB)

p
> Vs(s — 1AXD(S — cea)(s - IA%.a)
i=1

for case (2) in Fig..B.6, where

1
S = §(|A>q| + Cis1 + |[AX41])

for any integel, 1 <i < p-1and
1
Sp = E(a+ b+ |AB]).

Certainly, this programming can be also applied to caleutla¢ area of an-polygon in
planar map geometry in general.

§7.4 CIRCLES IN PLANAR MAP GEOMETRY

The length of ars-line segment in planar map geometry is defined in the folguwi

Definition 7.4.1 The length/AB| of an s-line segment AB consisted by k straight line
segments ACC,C,, C,Cs, - - -,Cy_1B in planar map geometrfM, u) is defined by

|IAB| = |AC,| + |C1Cy| + |CC3] + - - - + |C-1 B

As that shown in Chapter 6, there are not always exist a cwitle any center and
a given radius in planar map geometry in the usual sense did&udefinition. Since
we have introduced angle function on planar map geometrgandikewise the Euclid’s
definition to define ars-circle in planar map geometry.

Definition 7.4.2 A closed curve C without self-intersection in planar map rgetry
(M, u) is called an s-circle if there exists an s-point O(iM, ) and a real number r
such thatOP| = r for each s-point P on C.

Two Examples fos-circles in a planar map geometiyl(u) are shown in Fig..4.1(1)
and (2). Thes-circle in Fig.74.1(1) is a circle in the Euclid’s sense, but (2) is not. Notice
that in Fig.74.1(2), s-pointsu andv are elliptic and the lengtl©Q = |Oul + [uQ| = r for
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an s-point Q on thes-circle C, which seems likely an ellipse but it is not. Theircle
Cin Fig.7.4.1(2) also implied thas-circles are more complex than those in Euclid plane
geometry.

(1) (2)

Fig.7.4.1

We know a necessary andBaient condition for the existence of artircle in planar
map geometry following.

Theorem 7.4.1 Let(M, u) be a planar map geometry on a plajeand O an s-point on
(M, u). For a real number r, there is an s-circle of radius r with cen© if and only if O

is in the non-outer face or in the outer face of M but for any > € > 0, the initial and

final intersection points of a circle of radiuswith M in a Euclid plane}; are Euclidean
points.

Proof If there is a solitary non-Euclidean poiAt with |OA < r, then by those
materials in Chapter 3, there are sagircles in (M, ) of radiusr with centerO.

Fig.7.4.2

If Ois in the outer face oM but there exists a numbeyr > € > 0 such that one of
the initial and final intersection points of a circle of rasléiwith M on Y’ is non-Euclidean



220 Chap.7 Planar Map Geometry

point, then points with distanageto O in (M, i) at least has a gap in a circle with a Euclid
sense. See Fig&2 for details, in wherel is a non-Euclidean point and the shade field
denotes the mapl. Therefore there are r®circles in (M, u) of radiusr with centerO.

Now if O in the outer face oM but for anye,r > € > 0, the initial and final
intersection points of a circle of radigswith M on )’ are Euclidean points dD is in a
non-outer face oM, then by the definition of angle functions, we know that alint®
with distance to O is a closed smooth curve ¢n, for example, see Fig.Z.3(1) and (2).

u
r r
s r
M N
C C
v
(1) (2)
Fig.7.4.3

Whence it is ars-circle. O

We construct a polar axidX with centerO in planar map geometry as that in Euclid
geometry. Then eackpoint A has a coordinatep(6), wherep is the length of thes-line
segmenOAandd is the angle betweed X and the straight line segment©fA containing
the pointA. We get an equation for ascircle of radiug which has the same form as that
in the analytic geometry of plane.

Theorem 7.4.2 In a planar geometryM, ) with a polar axis OX of center O, the equa-
tion of each s-circle of radius r with center O is

p=r.

Proof By the definition ofs-circle C of radiusr, everys-point onC has a distance
to its centelO. Whence, its equation js = r in a planar map geometry with a polar axis
OX of centerO. O
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§7.5 LINE BUNDLES IN PLANAR MAP GEOMETRY

7.5.1 Line Bundle. Among thoses-line bundles the most important is parallel bundles
defined in the next definition, motivated by the Euclid’s fiftbstulate.

Definition 7.5.1 A family £ of infinite s-lines not intersecting each other in planar ge-
ometry(M, u) is called a parallel bundle.

In Fig.7.5.1, we present all cases of parallel bundles passing throngidge in
planar geometries, where, (a) is the case with the same tipésp, v andpy (u)u(u) =
om(u(v) = 2, (b) and (c) are the same type cases with{uu(u) > pm(V)u(v) or
omUu() = ppy(Vu(v) > 27 or < 27 and (d) is the case with an elliptic pointbut a
hyperbolic point.

u u u u
%
L, — Ly L, — L1
L, L, L, —~—_ L, S
Vv Vv Vv V
(@) (b) (c) (d)

Fig.7.5.1
Here, we assume the angle at the intersection point is ikkelige, that is, a line passing
through an elliptic point will bend up and passing throughypdrbolic point will bend
down, such as those cases (b),(c) in the Fgl7 Generally, we define sign function
sign(f) of an angle function fs follows.

Definition 7.5.2 For a vector® on the Euclid plane called an orientation, a sign function
sign(f) of an angle function f at an s-point u is defined by

1, if uis elliptic,
sign(f)(u) =< 0O, if uis euclidean
-1, if uis hyperbolic

We classify parallel bundles in planar map geometry anngri:srntationB in this
section.
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7.5.2 Necessary and Sficient Condition for Parallel Bundle. We investigate the
behaviors of parallel bundles in planar map geomekfy.). Denote byf(x) the angle
function value at an intersectiampoint of ans-line L with an edge \{,v) of M and a
distancexto uon (u, v) as shown in Fig..b.1(a). Then

Theorem7.5.1 A family £ of parallel s-lines passing through an ed@ev) is a parallel
bundle if and only if

df
&+zo.

Proof If £ is a parallel bundle, then any twsslines L., L, will not intersect after
them passing through the edge. Therefore, if6,,0, are the angles ok,, L, at the
intersections-points of Ly, L, with (u,v) andL, is far fromu thanL;, then we know
6, > 6,. Thereby we know that(x + Ax) — f(x) > O for any point with distance from u
andAx > 0. Therefore, we get that

df
dx
As that shown in the Fig.3.1.
> 0, thenf(y) > f(x) if y > x. SinceZ is a family of parallels-lines

+

before meetinglv, any twos-lines in £ will not intersect each other after them passing

_ f(x+Ax)—f(x)Zo.
+  Ax—>+0 AX

L df
Now if ax

through (1, v). Therefore £ is a parallel bundle. O

A general condition for a family of paralletliines passing through a cut of a planar
map being a parallel bundle is the following.

Theorem 7.5.2 Let (M, i) be a planar map geometry, € {(uy, v1), (Uz, Vo), - - -, (U, i)}
a cut of the map M with ordefuy, 1), (Uz, Vo), - - -, (U, Vi) from the left to the right, b 1
and the angle functions on them arg f, - - -, f; (also seeing Fig..5.2), respectively.

Up U> Uk/
Ly ///
L,b———mm+—— ] .
[—
[
Ls — |
A Vo Vi

Fig.7.5.2
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Then a familyL of parallel s-lines passing through C is a parallel bundleifd only if
forany x x > 0,

sign(f)(x) f{, (¥) > 0,
sign(f1)(x) f1, (X) + sign(f2)(x) f,, (x) > O,
sign(f1)(X) f1, (X) + sign(f2)(X) f5, (X) + sign(f3)(X) f3, (X) > O,

Sign(f)() 17, (9 + Sig(E) () f2,. () + - + sign A . (x) > 0.

Proof According to Theorem 3.1, we know that-lines will not intersect after them
passing throughug, v1) and (., V) if and only if for YAx > 0 andx > 0,

sign(2)(X) f2(x + Ax) + sign(f1)(X) f1, (X)Ax > sign(f2)(X) f2(x),
seeing Fig.5.3 for an explanation.

Uy 37)

L, \<M/

L, AX

— P t(x+ 6% fa(x +

Vi Vo

Fig.7.5.3
That is,

sign(f1)(x) 1, (X) + sign(f2)(x) 5, (X) > 0.

Similarly, s-lines will not intersect after them passing through, ¥1), (u,, v») and
(us, v3) if and only if for YAx > 0 andx > 0O,

sign(fa)() fa(x + AX) +  sign(f2)(x) 5, ()AX
+sign(f) (X) 11, () A > sign(f5)(¥) fa(¥).
Namely,

Sign(f)() 11, (9 + Sign(f)(x) f2, (%) + sign(f:)(¥) 5, (%) = 0.
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Generally, thes-lines will not intersect after them passing through, (1), (U, V2), - - -,
(u_1,vi_1) and @, v) if and only if for YAXx > 0 andx > 0O,

sign(f)() fi(x+Ax) +  sign(fior)(¥) f_, (NAX+
-+ sign(f) () 7, (NAX > sign(fi)(X) f (%).

Whence, we get that

sign(f1)(3) f1, (X) + sign(f2)(x) f;, (X) + - - - + sign(f)(¥) f/,(x) > 0.

Therefore, a familyL of parallels-lines passing throug@ is a parallel bundle if and only
if for any x, x > 0, we have that

sign(f)(¥) f,(X) > 0,
sign(f1)(x) f1, (X) + sign(f2)(x) f5, (x) = 0,
sign(f1)(X) f1, (X) + sign(f2)(x) f5, (X) + sign(f1)(¥) f3,(X) > O,

sign(f1)(x) f1,(¥) + sign(fz)(X) f2, () + - - - + sign(f1)(x) f,(x) = 0.
This completes the proof. 0J

Corollary 7.5.1 Let(M, ) be a planar map geometry, € {(uy, v1), (Up, V2), - - -, (U, v)}
a cut of the map M with ordefuy, 1), (Uz, Vo), - - -, (U, Vi) from the left to the right, b 1
and the angle functions on them arg f, - - -, f|, respectively. Then a familg of parallel

lines passing through C is still parallel lines after thenaveng C if and only if for any
X, X >0,

sign(f)(¥) 1, (x) > 0,
sign(f1)(x) f1, (X) + sign(f2)(x) f5, (x) = 0,
sign(f1)(X) f1,.(X) + sign(f2)(X) f5, (X) + sign(f1)(¥) fz,.(X) > O,

Sign(f) (9 1, () + Sig ) () 3, () + - + Sig(F)(Y T, (%) = 0.

and

Sign(F2)(Q 7, (9 + Sig()(X) £5,(9 + - + sign F) (Y T, (x) = 0.
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Proof According to Theorem.%.2, we know the condition is a necessary anflisu
cient condition forL being a parallel bundle. Now since linesfhare parallel lines after
them leavingC if and only if for anyx > 0 andAx > 0, there must be that

sign(fi) fi(x + AX) + sign(fi-1) "1, (QAX + - - - + sign(fy) f1, (YAX = sign(fi) fi(X).

Therefore, we get that
sign(f1)(X) 7, (%) +sign(£2)(X) f5, (09 ++ - -+ sign(f) (%) /, () = 0. O

There is a natural question on parallel bundles in planargeametry. That isvhen
do some parallel s-lines parallel the initial parallel lis@after them passing through a cut
C in a planar map geometryPhe answer is the next result.

Theorem 7.5.3 Let (M, 1) be a planar map geometry, € {(uy, v1), (Uz, Vo), - - -, (U, )}

a cut of the map M with ordefuy, vy), (Uz, Vo), - - -, (U, Vi) from the left to the right, b 1
and the angle functions on them arg f, - - -, f|, respectively. Then the parallel s-lines
parallel the initial parallel lines after them passing thugh C if and only if forvx > 0,

sign(f1)() f1, (X) > 0,
sign(f1)(X) f1, (X) + sign(f2)(x) f5, (X) > O,
sign(f1)(X) f1, (X) + sign(f2)(X) f5, (X) + sign(f1)(¥) f3, (X) > O,

sign(f1)(X) f1, (X) + sign(f2)(X) f5, (X) + - - - + sign(f))(X) 1, (X) > 0.

and

sign(fy) f1(x) + sign(fz) fa(x) + - - - + sign(f1)(x) fi(x) = Iz

Proof According to Theorem.8.2 and Corollary 5.1, we know that these parallel
s-lines satisfying conditions of this theorem is a parali@htle.

We calculate the angle(i, X) of an s-line L passing through an edgev;, 1 <i < |
with the line before it meetin@ at the intersection df with the edge, v;), wherex is
the distance of the intersection pointutpon (U, v;1), see also Fig.48. By definition, we
know the anglex(1, X) = sign(f,) f(X) anda(2, X) = sign(f,) f2(X) — (7 — sign(fy) f1(X)) =
sign(f1) f1(X) + sign(fz) f2(x) — 7.
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Now if a(i, X) = sign(fy) fi(X) + sign(f,) fo(X) + - - - + sign(f) fi(x) — (i — 1)z, then
we know that(i + 1, X) = sign(fi.1) fi.1(X) — (7 — a(i, X)) = sign(fi,1) fia(X) + (i, X) — 7
similar to the case= 2. Thereby we get that
a(i + 1, X) = sign(fy) f(X) + sign(f,) fo(X) + - - - + sign(fizq) fir1(X) —in.
Notice that ans-line L parallel the initial parallel line after it passing throu@hif and

only if a(l, X) = x, i.e.,

sign(fy) f1(X) + sign(f,) fo(X) + - - - + sign(f) fi(X) = Ix.
This completes the proof. O

7.5.3 Linear Conditions for Parallel Bundle. For the simplicity, we can assume even
that the functionf (X) is linear and denoted it bfj(x). We calculatefi(x) in the first.

Theorem 7.5.4 The angle function,{x) of an s-line L passing through an ed@ev) at
a point with distance x to u is

B X\ p(Uu(v) X p(Vu(v)
f'(x)_(l_d(u,v)) 2 Tduv) 2

where, qu, v) is the length of the edde, v).

Proof Sincefi(x) is linear, we know thaf;(x) satisfies the following equation.

(Wp(u)
-5
p(Vuv)  pUu(u) ~ d(u,v)’

2 2

Calculation shows that
ﬁ(x):(l— X )p(u)u(v) L X pMuv) -

d(u, v) 2 d(u,v) 2

Corollary 7.5.2 Under the linear assumption, a familg of parallel s-lines passing
through an edgéu, v) is a parallel bundle if and only if
p(v) ~ p(u)
Proof According to Theorem 3.1, a family of parallels-lines passing through an
edge (i, V) is a parallel bundle if and only if’(x) > 0 for¥x, x > 0, i.e.,

p(Mu(v) — p(u)u(u)
2d(u,v)  2d(u,v) —
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Therefore, a familyL of parallels-lines passing through an edgeV) is a parallel bundle

if and only if
p(Vu(v) = p(U)u(u).
Whence,
pW) _ pv)
o) = (W) -

For a family of parallel-lines passing through a cut, we get the following result.

Theorem 7.5.5 Let (M, 1) be a planar map geometry, € {(uy, v1), (Uz, Vo), - - -, (U, )}

a cut of the map M with orde(uy, vy), (U, Vo), - - -, (U, V) from the left to the right, b 1.
Then under the linear assumption, a family L of parallelrees passing through C is a
parallel bundle if and only if the angle factar satisfies the following linear inequality
system

p(Vi)u(v1) = p(ur)u(uy),

pvu(va) | p(va)u(va) _ p(unp(us) | p(uz)u(us)
d(us, v1) d(uz,v2) — d(ug, vi) d(up, v2)

pviulvy) - p(V2)ulve) - p(viJu(vi)

d(uy, v1) d(u, v2) d(u, vi)
pluu(uy)  p(Uu(e)  p(uju(w)
d(uiv))  d(Wp, Vo) d(u, vi)

Proof Under the linear assumption, for any integer> 1 we know that

p(V)u(vi) = p(u)p(u)
2d(u;, vi)

f,(X) =

by Theorem 5.4. Thereby, according to Theorenb2, we get that a family. of parallel
s-lines passing throug@ is a parallel bundle if and only if the angle facjosatisfies the
following linear inequality system

p(Vi)u(v1) = p(u)u(uy),

p(v)u(vi) — p(V2)u(vz) S p(uu(u)  p(u)u(uy)
d(Ul, Vl) d(Ug,Vz) - d(Ul,Vl) d(Uz, V2) ’
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p(Vi)u(va) N p(V2)u(v2) N +P(V|),U(V|)

d(us, va) d(uz v d(u.w)
plugu(u) | p(Uue) - p(u)u(w)
d(us, vi) — d(uz, Vo) d(u,vi) -
This completes the proof. O

For planar maps underlying a regular graph, we have an sttegeconsequence for
parallel bundles in the following.

Corollary 7.5.3 Let(M, i) be a planar map geometry with M underlying a regular graph,
C = {(ug, va), (Up, Vo), - - -, (u, v)} a cut of the map M with ord€uy, v1), (U, Vo), - - -, (U1, V)
from the left to the right, B 1. Then under the linear assumption, a family L of parallel
lines passing through C is a parallel bundle if and only if #regle factoru satisfies the
following linear inequality system.

u(vi) > p(uy),

u(vi) pv2) o p(u) u(Up)
d(up, va)  d(up,vo) — d(ug,vi)  d(up, Vo)

plv)) o oplve) o M) p(u) o p(g) (W)
d(uz,vi)  d(up, \2) d(u, vi) — d(ug,vi)  d(up, Vo) d(u, vi)
and patrticularly, if assume that all the lengths of edges iar€the same, then

pu(vi) > p(ug)
u(ve) + p(v2) p(ug) + p(uz)

\%

pve) + (Vo) + -+ p(v) > p(un) + p(Up) + -+ p(w).

Certainly, by choice dierent angle factors we can also get combinatorial condition
for the existence of parallel bundles under the linear apsiom

Theorem7.5.6 Let(M, u) be a planar map geometry, € {(uy, v1), (U, Vo), - - -, (U, )} @
cut of the map M with ordefuy, v1), (U, V2), - - -, (U, vi) from the left to the right, & 1. If
pvi) — p(ui)
for any integer ji > 1, then a family L of parallel s-lines passing through C is aadba

bundle under the linear assumption.
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Proof Under the linear assumption we know that

p(V)uvi) — p(u)p(u)

500 = T o w)
for any integeii,i > 1 by Theorem 5.4. Therebyf/ (xX) > Ofori =1,2,---,1. We get
that
f/(x) >0

fl.(X) + f5,(x) >0
fl.(¥) + f5,() + f3,(x) = 0

f£+(X) + f2’+(X) oot f|’+(X) > 0.

By Theorem 75.2 we know that a famil\. of parallels-lines passing throug@ is still a
parallel bundle. O

§7.6 EXAMPLES OF PLANAR MAP GEOMETRY

By choice diterent planar maps and angle factors on their vertices, wegeawuarious
planar map geometries. In this section, we present somaatenexamples for planar
map geometry.

Example 7.6.1 A complete planar map K

We take a complete maf, embedded on the plar}é with verticesu, v, w andt and

angle factors
Vi 2n
p(u) = > p(v) = p(w) = 7 andu(t) = 3

such as shown in Fig.6.1 where each number on the side of a vertex denaj¢s)u(X)
for x = u,v,w andt. Assume the linear assumption is holds in this planar mameéy
(M, ). Then we get a classifications feipoints in M, u) as follows.

Ver = {points in (UA\ {A}) |_JuB\ (B[ Jaut\ (1)),

whereA andB are Euclidean points om(w) and {, v), respectively.

Veu={A Bt} |_J(P\ E(Ks)
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and

Vi = {points in WA\ (A} | Jowt\ () | Jwv [ v ) B\ B)).

u 15r

Fig.7.6.1

We assume that the linear assumption holds in this planageametry M, ). Then we
get a classifications fa-points in (M, i) as follows.

Ver = (points in (UA\ (A}) |_J(uB\ (B)[_(ut\ ),
whereA andB are Euclidean points om(w) and (, v), respectively.
Veu={AB,1t}[_J(P\ E(Ks)
Vi = {points in WA\ {A}) [ Jwt\ (1) | Jwv [ v\ @) o B))).

Edges inK, are classified intoy(t) € CL, (t,w), (t,v) € C2, (u,w), (u,v) € C2 and
(w, u) € CE. Variouss-lines in this planar map geometry are shown in FigZfollowing.

y 15—
Ly
L2
W 3 + + vV 3r
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There are no 1-polygons in this planar map geometry. Onel\&3po and various
triangles are shown in Figg.3.

C D K
MAN
E
A B
F P
J V /
G 0 Q

Fig.7.6.3

Example 7.6.2 A wheel planar map W\.

We take a wheélV, , embedded on a plarje with verticesO andu, v, w, t and angle

factors A
w(O) = 5. andu(u) = u(v) = u(w) = u(t) = -

such as shown in Fig.G.4.

(l{ 47 y) 4
<t/ 4 VDV 4

Fig.7.6.4

There are no elliptic points in this planar map geometriegliean and hyperbolic
pointsVe,, Vi are as follows.

Veu= P|_J\(EWA) \ {O})
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and
Vhy = E(Wh4) \ {O}.
Edges are classified int®(u), (O, v), (O, w), (O, t) € C2 and @, V), (v, W), (W, t), (t,u) €
CE. Variouss-lines and one 1-polygon are shown in Fi§.3 where eacls-line will turn

to its opposite direction after it meeting, 4 such as those-linesLy, L, andLy, Ls in
Fig.7.6.5.

u 4r V 4r

Fig.7.6.5

Example 7.6.3 A parallel bundle in a planar map geometry.

We choose a planar ladder and define its angle factor as shotig.i7.6.6 where
each number on the side of a vertexienotes the numberny, (Uu(u). Then we find a
parallel bundlgL;; 1 <i < 6} as those shown in Figg.6.

An 47r//
Ly — | P
| —>
Ly ——t+—
2n 2n
L3
Ls
2n 2n
Lg——-—+—
L6 \
\
I b

Fig.7.6.6
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§7.7 RESEARCH PROBLEMS

7.7.1. As a generalization of Euclid geometry of plane by Smarahdamotion, the pla-
nar map geometry was introduced in [Mao8] and discussed aoplt{{Maol1], [Maol7].
Similarly, a generalization can be also done for Euclid getrynof spaceR®. Some open
problems on this generalization are listed following.

Problem 7.7.1 Establish Smarandache geometry by embedded graphs in jaaed
classify their fundamental elements, such as those ofqdinés, polyhedrons; -, etc..

Problem 7.7.2 Determine various surfaces and convex polyhedrons in Smlache
geometry of spacR3, such as those of sphere, surface of cylinder, circular ctomis,
double torus, projective plane, Klein bottle and tetralmdrpentahedron, hexahedron,
.-, etc..

Problem 7.7.3 Define the conception of volume in Smarandache geometry acesp
R® and find formulae for volumes of convex polyhedrons, such@setof tetrahedron,
pentahedron or hexahedron,, etc..

Problem 7.7.4 Apply s-lines in Smarandache geometry of sgateo knots and find new
characteristics.

7.7.2 As pointed out in last chapter, we can also establish map g&gron locally
orientable surfaces and find its fundamental elements oftgolines, polyhedrons; -,
etc., particularly, on sphere, torus, double torus, ptojelane, Klein bottle; - -, i.e.,
to establish an intrinsic geometry on surface. For thisaihje, open problems for such
surfaces with small genus should be considered first.

Problem 7.7.5 Establish an intrinsic geometry by map geometry on spheteros and
find its fundamental elements.

Problem 7.7.6 Establish an intrinsic geometry on projective or Klein b®tnd find its
fundamental elements.

Problem 7.7.7 Define various measures of map geometry on a locally oriéatalnface
S and apply them to characterize the surface S.

Problem 7.7.8 Define the conception of curvature for map geoméiyu) on locally
orientable surfaces and calculate the suifiM) of curvatures on all edges in M.
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We have a conjecture following, which generalizes the G&mmet theorem.

Conjecture 7.7.1 w(M) = 2ry(M)s(M), where $M) denotes the sum of length of edges
in M.

7.7.3 It should be noted that nearly all branches of physics appilsliff spaceR® to a
spacetime for its concise and homogeneity unless Einsteatativity theory. This has
their own reason, also due to one’s observation because dkimgnof particle is more
likely that in Euclid spacéR®. However, as shown in relativity theory, this realizatien i
incorrect in general for the real world is hybridization am@t homogenous. That is why
a physical theory oRR? can only find unilateral behavior of particles.

Problem 7.7.9 Establish a suitable spacetime by spd&&in Smarandache geometry
with time axis t and find the global behaviors of particles.

Problem 7.7.10 Establish a unified theory of mechanics, thermodynamids;gpelec-
tricity, - - -, etc. by that of Smarandachely spacetime such that eaclesé tiheory is its a
case.



CHAPTER 8.

Pseudo-Euclidean Geometry

The essential idea in planar map geometry is associatirgpeact in a planar
map with an angle factor, which turns flatness of a plane tooois. When
the order of a planar map tends to infinite and its diameteaof éace tends
to zero (such planar maps naturally exist, for example,grlénmangulations),
we get a tortuous plane at the limiting point, i.e., a plang@oed with a vec-
tor and straight lines maybe not exist. Such a consideraaorbe applied to
Euclidean spaces and manifolds. We discuss them in thigehapections
8.1-8.3 concentrate on pseudo-planes with curve equations,raitegrves
and stability of diferential equations. The pseudo-Euclidean geometigon
for n > 3 is introduced in Section.8, in where conditions for a curve existed
in such a pseudo-Euclidean space and the representatiamdte function
by rotation matrix are found. Particularly, the finitely pse-Euclidean ge-
ometry is characterized by graphs embeddeR'In The Section & can be
viewed as an elementary introduction to smooth pseudofoidni.e., difer-
ential pseudo-manifolds. Further consideration on thsceowill establish
the application of pseudo-manifolds to physics (see [M&083Vao38] for
details).
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§8.1 PSEUDO-PLANES

8.1.1 Pseudo-Planeln the classical analytic geometry on plane, each pointigspon-
dent with a Descartes coordinatey), wherex andy are real numbers which ensures the
flatness of a plane. Motivated by the ideas in Chapters 6-7inslea new kind of plane,
calledpseudo-planewhich distort the flatness of a plane and can be applied emees.

Definition 8.1.1 Let ) be a Euclid plane. Fo¥u € }, if there is a continuous mapping
w : U — w(u) wherew(u) € R" for an integer nn > 1 such that for any chosen number
€ > 0, there exists a numbér> 0 and a pointve }, |lu—V]|| < 6 such thatjw(u) —w(V)|| <

€, then} is called a pseudo-plane, denoted @y, w), where||u — v|| denotes the norm
between points u and v iH.

An explanation for Definition 8.1 is shown in Fig.8L.1, in wheren = 1 andw(u)
is an angle functioWu € }.

Fig.8.1.1

We can also explaia(u), u € 3 to be the coordinatein u = (x,y, 2) € R® by taking
alson = 1. Thereby a pseudo-plane can be viewed as a projection oflaBpaceR™?
on a Euclid plane. This fact implies that some characteristithe geometry on space
may reflected by a pseudo-plane.

We only discuss the case of= 1 and explainu(u), u € Y being a periodic function
in this chapter, i.e., for any integky 4kr + w(u) = w(u)(mod4r). Not loss of generality,
we assume that @ w(u) < 4x for Yu € >.. Similar to map geometry, points in a pseudo-
plane are classified into three classes, e#iptic points 4, Euclidean points Yy, and
hyperbolic points \,, defined respectively by

Ve ={ue Z jw(u) <21},
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Veu={Vve Z w(v) =2
and
Vhy = {We Z lw(w) > 27r}
Then we get the following result.

Theorem 8.1.1 There is a straight line segment AB in a pseudo-plgngaw) if and only
if for Yu € AB,w(u) = 2r, i.e., every point on AB is Euclidean.

Proof Sincew(u) is an angle function fovu € >, we know thatAB s a straight line
segment if and only if fo¥u € AB, wTu) = . Thusw(u) = 2r anduis Euclidean. [

Theorem 8L.1 implies that there maybe no straight line segments in adusplane.

Corollary 8.1.1 If there are only finite Euclidean points in a pseudo-plépgw), then
there are no straight line segments(ifi, w).

Corollary 8.1.2 There are not always exist a straight line between two gi@ntp u and
v in a pseudo-plang’, w).

By the intermediate value theorem in calculus, we get thHeviahg result for points
in pseudo-planes.

Theorem8.1.2 In a pseudo-plan€}’, w), if Vg # 0 and \,, # 0, then \§, # 0.

Proof By these assumptions, we can choose paintsVe andv € Vy,. Consider
points on line segmentv in a Euclid plane}.. Sincew(u) < 2r andw(v) > 2r, there
exists at least a poin, w € uv such thatw(w) = 2r, i.e.,w € Vg, by the intermediate
value theorem in calculus. Whendg,, # 0. O

Corollary 8.1.3 In a pseudo-plan€y’, w), if Ve, = 0, then every point of}, w) is elliptic
or every point ofy’ is hyperbolic.

According to Corollary 8.3, we classify pseudo-planes into four classes following.

Ci(Euclideany. pseudo-planes whose each point is Euclidean.
CZ(elliptic): pseudo-planes whose each point is elliptic.
C3(hyperbolic): pseudo-planes whose each point is hyperbolic.

Ci(Smarandachely) pseudo-planes in which there are Euclidean, elliptic and hy
perbolic points simultaneously.
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8.1.2 Curve Equation. We define thesign functionsign{/) on point in a pseudo-plane
(2, w) by
1, if viselliptic,
signf) =: 0, if vis euclidean
-1, if vis hyperbolic
Then we get a criteria following for the existence of an algébcurveC in pseudo-plane

(2, w).

Theorem 8.1.3 There is an algebraic curve (X, y) = 0 passing throughxo, Yo) in
a domain D of pseudo-plan€., w) with Descartes coordinate system if and only if
F (X0, Yo) = 0and forVY(x,y) € D,

2
(71 - w()2<, y))(l + (%’() ) = sign(x, y).

Proof By the definition of pseudo-planes in the case of thdteing an angle func-

tion and the geometrical meaning ofiérential value, such as those shown in Fih3
following,

Fig.8.1.2

wheref = 7 - /2 + /1, Iimoe = w(X Yy) and ,y) is an elliptic point, we know that an
AX—
algebraic curvé=(x,y) = 0 exists in a domaib of (3, w) if and only if

d(arctanf)

(ﬂ _w(xy)
2 dx

) _ signix.y)

forV(x,y) € D, i.e.,

(ﬂ _ % y)) _ Signi.y)
2 dy.,’
1+ (&)2
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Therefore,

2
(n - w(;’ y)) (1 + (%/() ) = sign(x, y). OJ

A plane curveC is calledelliptic or hyperbolicif sign(x,y) = 1 or—1 for each point
(x,y) onC. We get a conclusion for the existence of elliptic or hypdéidoourves in a
pseudo-plane by Theoremi83 following.

Corollary 8.1.4 An elliptic curve Kx,y) = 0 exists in pseudo-plang., w) with the
Descartes coordinate system passing thro@ggyo) if and only if there is a domain
D c 3, such that KXo, yo) = 0 and forv(x,y) € D,

S

Similarly, there exists a hyperbolic curve(¥ly) = 0 in a pseudo-plané€}’, w) with

the Descartes coordinate system passing thraughy,) if and only if there is a domain
U c } such that for Hxo, Yo) = 0andV(x,y) € U,

5 )

Construct a polar axip(6) in pseudo-planeX, w). We get a result following.

Theorem 8.1.4 There is an algebraic curve($,0) = 0 passing throughpo, 6p) in a
domain F of pseudo-plan¢, w) with polar coordinate system if and only ifch, 6p) = O

and forV(p, 8) € F,
- w(p, 6)
2

Proof Similar to that proof of Theorem.83, we know that Iir(r)w = w(XxYy) and
AX—
0=n-/2+/1if(p,0)is elliptic,ord = n— L1+ /2 if (p, ) is hyperbolic in Fig.8L.2.
Consequently, we get that

= sign(, e)g—ﬁ.

w(p, )
2

= sign(, 9)3—2. O

Corollary 8.1.5 An elliptic curve Kp, 6) = 0 exists in pseudo-plan@;, w) with polar
coordinate system passing throu@h, 6o) if and only if there is a domain E ) such
that F(oo, 69) = 0 and forV(p, 0) € F,
w(p,0) do
T— _

2  do’
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and there exists a hyperbolic curvéxtly) = 0 in pseudo-plané}’, w) with polar coor-
dinate system passing throug@h, 6o) if and only if there is a domain W Y such that
h(po, 80) = 0 and forVY(p, 0) € U,

__wlp.6) __do

2  do
8.1.3 Planar Presented R We discuss a presentation for pointsRA by the Euclid
planeR? with characteristics.

Definition 8.1.2 For a point P = (x,y,2) € R3 with center O, let} be the angle of
vectorOP with the plane XOY. Define an angle function (x,y) — 2(r — 1), i.e., the
presentation of pointx, y, 2) in R? is a point(x, y) with w(x,y) = 2(r — 4(@, XQY)) in
pseudo-plané¢}’, w).

An explanation for Definition 8.1 is shown in Fig.8L.3, whered is an angle be-
tween the vectoDP and planexOY.

Z
Y
P(xy.2) 0.
] w y
iy (%)
0
S 3
0
(xY,0) © X
X
Fig.8.1.3

Theorem 8.1.5 Let (3, w) be a pseudo-plane and £ (x,y, 2) a point inR3. Then the
point(x,y) is elliptic, Euclidean or hyperbolic if and only if20,z=0or z< 0.

Proof By Definition 81.2, we know thatw(x,y) > 2, = 27 or < 2r if and only if
6 >0=00r<0by-3 <6< 3, which are equivalent to that- 0,= 0 or< 0. O
The following result brings light for the shape of pointsRA to that of points with

a constant angle function value in pseudo-plgiad).

Theorem 8.1.6 For a constant;,0 < n < 4, all points(x,y, 2) with w(x,y) = n in R3
consist an infinite circular cone with vertex O and an an;gleg between its generatrix
and the plane XOY.
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Proof Notice thatw (X, y1) = w(X2, y») for two pointsA, Bin R® with A = (X4, V1, 1)
andB = (X, Y», 2o) if and only if

/(OA XOVY) = /(OB,XOY) = 7 — g

thus pointsA andB are on a circular cone with vertéxand an angler — 7 betweerDA
or OB and the plan&XQY. Sincez — +co, We get an infinite circular cone iR® with
vertexO and an angler — g between its generatrix and the plaxey. U

§8.2 INTEGRAL CURVES

8.2.1 Integral Curve. An integral curvein Euclid plane is defined by the definition
following.

Definition 8.2.1 If the solution of a dferential equation

dy
ax f(xy)

with an initial condition ¥xo) = Yo exists, then all pointéx, y) consisted by their solutions
of this initial problem on Euclid plang, is called an integral curve.

In the theory of ordinary dierential equation, a well-known result for the unique
solution of an ordinary dierential equation is stated in the following.

Theorem 8.2.1 If the following conditions hold:

(1) f(xy)is continuousin a field F:
F:iXo—as<X<xX+a Yo—-b<y<y+h
(2) There exist a constagtsuch that fov(x,y), (x,y) € F,
1f(xy) = f(x ) < ¢ly -Vl
then there is an unique solutiony¢(X), ¢(Xo) = Yo for the djferential equation

dy
ax = [y

with an initial condition ¥xg) = Yo in the interval[ X, — ho, X+ ho], where i = min(a, %)
with M = max|f(x,y)|.
(xy)eR
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A complete proof of Theorem.81 can be found in textbook on ordinaryfidiren-
tial equations, such as the reference [Arnl]. It should dedthat conditions in Theo-
rem 62.1 are complex and can not be applied conveniently. As we haversin Sec-
tion 8.1.1, a pseudo-plane}], w) is related with diferential equations in Euclid plane
>.. Whence, by a geometrical view, to find an integral curve iaug®-plane X, w) is
equivalent to solve an initial problem for an ordinaryteiential equation. Thereby we
concentrate on to find integral curves in pseudo-plane ghdbction.

According to Theorem 8.3, we get the following result.

Theorem8.2.2 A curve C,

d
¢ = {9 = £0e9).0) =y}
exists in pseudo-plang’, w) if and only if there is an interval E [xg — h, X + h] and an
angle functiorw : }, — R such that

w(X, y(X) = 2(71 - M)

1+ f2(x,y)
for Vx € | with

__sign(x, y(X) )
1+ f2(x0, (%))

Proof According to Theorem 8.3, a curve passing through the poirg,(y(xo)) in

w(Xo, Y(X0)) = Z(ﬂ

pseudo-planeX, w) if and only if y(xo) = yo and forv¥x € I,
2
(n - W) (1 + (%/() ) = sign(x, y(X)).

Solvingw(X, y(X)) from this equation, we get that

signx, y(X)) | _ sign(x, y(x))
TP | T Ty ) =
1+ (&) ’
Now we consider curves with an constant angle function gt e&ds point follow-
ing.

w(x y(X) = 2[%

Theorem8.2.3 Let (3}, w) be a pseudo-plane arfa constant witl0 < 6 < 4n.

(1) A curve C passing through a poi(io, o) with w(x,y) = n for ¥(x,y) € C is
closed without self-intersections ¢p, w) if and only if there exists a real number s such
that

sy =2(s- 2)r.
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(2) A curve C passing through a poi(io, yo) with w(x,y) = 6 for ¥Y(x,y) € C is a

circle on(}, w) if and only if

2
—or- 2,
7 r

where r= /x5 +V3, i.e., C is a projection of a section circle passing throughaint
(X0, Yo) on the plane XOY.

Proof Similar to Theorem B.1, we know that a curv€ passing through a point
(X0, Yo) in pseudo-planeX, w) is closed if and only if

[ -2

Now by assumptio(X, y) = 7 is constant foi/(x,y) € C, we get that
F w9
_ YO gsz s Q)
f(ﬂ > )ds S(Tl' 5):
0

s@—g):b;L& 57 = 2(s— 2)r

Whence,

Now if C is a circle passing through poimty yo) with w(x,y) = 8 for Y(x,y) € C,
then by the Euclid plane geometry we know tkat 2xr, wherer = /xg +y5. Therefore,
there must be that )

=2n- 2,
1 r

This completes the proof. O

8.2.2 Spiral Curve. Two spiral curves without self-intersections are shownignd2.1,
in where @) is an input butlp) an output curve.

(@) (b)

Fig.8.2.1
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The curve in Fig.8.1(a) is called arelliptic in-spiral and that in Fig.&.1(b) anelliptic
out-spiral correspondent to the right hand rule. In a polar coordisgggem f, 9), a
spiral curve has equation

p =cé",

wherec, t are real numbers ard> 0. If t < 0, then the curve is an in-spiral as the curve
in Fig.82.1(a). If t > 0, then the curve is an out-spiral as shown in E@18b).

For the casé = 0, we get a circle = ¢ (or X* + y? = ¢2 in the Descartes coordinate
system).

Now in a pseudo-plane, we can easily find conditions for imasmr out-spiral
curves. That is the following theorem.

Theorem 8.2.4 Let (3, w) be a pseudo-plane and lgts be constants. Then an elliptic
in-spiral curve C withw(x,y) = n for Y(x,y) € C exists in(}., w) if and only if there exist
numbers §> s, > --->§ > ---, 5 > 0fori > 1 such that

sn<2(s-2)r

for any integer ji > 1 and an elliptic out-spiral curve C witly(x,y) = ¢ for V(x,y) € C
exists in(}, w) if and only if there exist numbergs s, > --->§ > ---, 5§ >0fori > 1
such that

S¢ > 2(s - 2)r
for any integer ji > 1.

Proof Let L be ans-line like an elliptic in-spiral shown in Fig.8.2, in wherex,,
X0, + , X, @re non-Euclidean points amxgxs is an auxiliary line segment.

X4 X3

. X1

Fig.8.2.2
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Then we know that

6
Dl f(x)) < 2,
i=1

12
D = f(x)) < 4,
i=1

Similarly, from any initial pointO to a pointP far sto O onC, the sum of lost angles

atPis
S

[fr-2Jos={r-2)s

0
Whence, the curv€ is an elliptic in-spiral if and only if there exist numbess> s, >
<o >9>---,5>0for> 1 such that

n

-1 2n,
(” 2)3’l <
( — g) S < 4,
(n - g) S3 < 6,
(7r - g) § <2n

Therefore,

sn < 2(s - 2)r

for any integet,i > 1.

Similarly, consider as-line like an elliptic out-spiral withy, X, - -, X, non-Euclidean
points. We can also find th&t is an elliptic out-spiral if and only if there exist numbers
> >--->9>---,5>0fori > 1such that

5)
_2 or,
=3 S >

¢

(
(ﬂ'—z)SQ>47T,
(
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(n - g) 5 > 2.
Consequently,
sn < 2(s — 2i)r.
for any integei, i > 1. O

Similar to elliptic in or out-spirals, we can also definéyperbolic in-spiralor hy-
perbolic out-spiralcorrespondent to the left hand rule, which are mirrors of/esirin
Fig.82.1. We get the following result for a hyperbolic in or out-gpiin pseudo-plane.

Theorem8.2.5 Let (3, w) be a pseudo-plane and gt/ be constants. Then a hyperbolic
in-spiral curve C withw(x,y) = n for Y(Xx,y) € C exists in(};, w) if and only if there exist
numbers §> s, >---> 5> ---, 5 > 0fori > 1such that

sn > 2(s - 2)r

for any integerji > 1 and a hyperbolic out-spiral curve C with(x, y) = £ for Y(x,y) € C
exists in(}}, w) if and only if there exist numberss s, > --->§ > .-, §>0fori>1

such that
S¢<2(s - 2)r
for any integer ji > 1.
Proof The proof is similar to that of the proof of Theoren24. O

§8.3 STABILITY OF DIFFERENTIAL EQUATIONS

8.3.1 Singular Point. For an ordinary dferential equation system

dx

gt - P(X.y),
dy
a - Q(X’ y)’ (8 - 1)

wheret is a time parameter, the Euclid plak®Y with the Descartes coordinate system
is called its aphase planend the orbit X(t), y(t)) of its a solutionx = x(t),y = y(t) is
called anorbit curve If there exists a pointg, o) on XOY such that

P(X0, Yo) = Q(Xo, Yo) = 0,
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then there is an obit curve which is only a poing,§/) on XOY. The point &, Yo) IS
called asingular point of(A*). Singular points of an ordinary filerential equation are
classified into four classe&not, saddle, focahndcentral points Each of these classes
are introduced in the following.

Class 1. Knot. A knot Oof a differential equation is shown in Fig381 where &)

denotes thaD is stable butlf) is unstable.
y

UMY
s

(@) (b)
Fig.8.3.1

A critical knot O of a differential equation is shown in Fig&2 where &) denotes
thatO is stable butlf) is unstable.

y y

() (b)
Fig.8.3.2

A degenerate knot ©f a differential equation is shown in Fig383, where &) de-
notes thao is stable butl) is unstable.
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o |

(@) (b)

Fig.8.3.3

Class 2: Saddle Point. A saddle point Oof a differential equation is shown in

I\
N7

Fig.8.3.4

X

Class 3: Focal Point. A focal point Oof a differential equation is shown in
Fig.83.5, where &) denotes thaD is stable butlf) is unstable.

y y

N
)
N

Ny

Fig.8.3.5
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Class 4: Central Point. A central point Oof a differential equation is shown in
Fig.8.3.6, which is just the center of a circle.

y

CIN
o

Fig.8.3.6

8.3.2 Singular Points in Pseudo-Plane. In a pseudo-plane}(, w), not all kinds of
singular points exist. We get a result for singular pointaipseudo-plane as in the
following.

Theorem 8.3.1 There are no saddle points and stable knots in a pseudo-éare

(Z, ).

Proof On a saddle point or a stable kri@tthere are two rays t0, seeing Fig.8.1(a)
and Fig.83.5 for details. Notice that if this kind of orbit curves in R&g3.1(a) or Fig.83.5
appears, then there must be that

w(O) = 4nr.

Now by Theorem 8.1, every poinu on those two rays should be Euclidean, &) =
27, unless the poin®. But thenw is not continuous at the poil@, which contradicts
Definition 81.1. O

If an ordinary diferential equation system (81) has a closed orbit curn but all
other orbit curves are not closed in a neighborhoo@ afearly enough t& and those
orbits curve tend t€ whent — +oo ort — —oo, thenC is called dimiting ring of (8 — 1)
andstableor unstablef t —» +o0 Ort — —oo.

Theorem 8.3.2 For two constant$o, 6, po > 0 and 8y # 0, there is a pseudo-plane
(3, w) with
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or

such that

is a limiting ring in (3, w).

Proof Notice that for two given constantsg, 6o, po > 0 andd, # 0, the equation
p(t) = poe”V
has a stable or unstable limiting ring
P =Po

if 9(t) —» 0 whent — +oo ort - —co. Whence, we know that

1 Po
o(t) = —In —.
® =" o0
Therefore,
% _ _Po
do  Gop(t)

According to Theorem 8.4, we get that
op.6) =2(x - sigrtp. ).
do
for any point p,0) € >, i.e.,

w(p,é)):Z(n—&) or w(p,@):Z(n+&). O
Bop op

§8.4 PSEUDO-EUCLIDEAN GEOMETRY

8.4.1 Pseudo-Euclidean Geometry.Let R" = {(x1, X, -, X,)} be a Euclidean space
of dimensionaln with a normal basig; = (1,0,---,0), ¢ = (0,1,---,0), ---, €, =
(0,0,---,1),xe R" andvy, 77 two vectors with end or initial point &, respectively. A
pseudo-Euclidean spa¢R", 1) is such a Euclidean spa&® associated with a mapping
u :77 — YV for X € R", such as those shown in Figdal,
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>2l

Vs

>2L
b

I
I

(@) (b)

Fig.8.4.1

Wherevy andyT/) are in the same orientation in casg, put not in casel). Such pointsin
case @) are callecEuclideanand in caself) non-Euclidean A pseudo-EuclidearR", u)
is finite if it only has finite non-Euclidean points, otherwigefinite.

A straight lineL passing through a poini{, x5, - - -, x3) with an orientation® =
(Xg, Xp, -+, X)) is defined to be a point seky( X, - - -, X,) determined by an equation
system

X1 = X0 +tXg
Xo = X+ tXp
Xp = X3 + tX,
for YVt € R in analytic geometry oR", or equivalently, by the equation system
X %o o X
X1 Xz Xo

Therefore, we can also determine its equation system famagyhkt linelL in a pseudo-
Euclidean spaceR", u). By definition, a straight lin& passing through a Euclidean point
X = (8,5, -+, X% e R" with an orientatior® = (X1, Xa, - - -, Xa) in (R", 12) is a point set
(X1, %o, « - -, Xn) determined by an equation system
X =3 + t(Xq + (X))
Xo = 39 + t(Xz + 2(X"))
Xn = X+ 10K, + ,Un()_(o))
for Vt € R, or equivalently,
TN X%tX o %X
Xo ta(F) Yot po(®) KXot (¥
where,u}@(io) = (u(X°), 12(3°), - - -, un(X°)). Notice that this equation system dependent
onp}B, it maybe not a linear equation system.
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Similarly, let© be an orientation. A poird € R" is said to beEuclideanon orien-
tation © if u%(ﬁ) = 0. Otherwise, Iemﬁ(ﬁ) = (ug(U), uo(U), - - -, un(0)). The pointu is
elliptic or hyperbolicdetermined by the following inductive programming.

STEP 1. Ifu;(U) < 0, thenu is elliptic; otherwise, hyperbolic if;(T) > 0;

STEP 2. Ifuy(U) = up(t) = --- = (U = 0, buty;,1(U < 0 thent is elliptic; otherwise,
hyperbolic ifui,1(U) > O for an integer,0 <i <n-1.

Denote these elliptic, Euclidean and hyperbolic point bgts
Veu ={Ue R"| U an Euclidean poinj,
Ve = {Vve R"|V an elliptic point}.
T/)hy ={ Ve R"| W a hyperbolic point.
Then we get a partition
R"=Ve UV thy

on points inR" with Veumve| =0, Veumvhy =0 and7e| mvhy = (. Points in7e| mvhy
are callechon-Euclidean points

Now we introduce a linear order on &' by the dictionary arrangement in the fol-
lowing.

For (Xi, o, -+, X)) and (X3, X5, -, X)) € O, if X1 = X, % = X,,---,% = X and
X1 < X, forany integer O < | < n- 1, then defingxy, Xo, - - -, X) < (X, X5, - - -, X))

By this definition, we know that
@ < utx (V) < ukzW)

for VU € Ve|,\‘/ € Veu, W e Vhy and a given orientatio®. This fact enables us to find an
interesting result following.

Theorem 8.4.1 For any orientation® € & in a pseudo-Euclidean spa%é&”,,u}(_j), if
Proof By assumptionVe| #0 andT/)hy # (0, we can choose poinise Ve| andw €

Vhy. Notice thath : R" — ¢'is a continuous and/A, <) a linear ordered set. Applying
thegeneralized intermediate value theoremcontinuous mappings in topology, i.e.,
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Let f : X - Y be a continuous mapping with X a connected space and Y a linea
ordered set in the order topology. Iflae X and ye Y lies between (k) and f(b), then
there exists x X such that {x) = .

we know that there is a poifte R" such that

5™ = 0,
l.e.,Vis a Euclidean point by definition. U
Corollary 8.4.1 For any orientation0 € & in a pseudo-Euclidean spaé@”,mﬁ), if
T/’eu = (), then either points iréR”,,u}Tj) is elliptic or hyperbolic.

A pseudo-Euclidean spaé@”,m@) is a Smarandache geometry sometimes.

Theorem 8.4.2 A pseudo-Euclidean spaé@”,,u}@) is a Smarandache geometrﬁfw,
Ve #0, orT/)eu,T/)hy # 0, 0r7e|,7hy + 0 for an orientationG in (R”,MB).

Proof Notice tha‘w}@(ﬁ) = 0 is an axiom irR", but a Smarandachely denied axiom
if Ve Ve # 0, orveu,vhy % 0, orT/)e|,T/)hy + 0 for an orientationd in (R”,m@) for
,u}(_j(U) = 0 or# 0 in the former two cases amﬂé(ﬁ) < 0 or> 0 both hold in the last
one. Whence, we know théﬁ?”,m@) is a Smarandache geometry by definition. [

Notice that there infinite points are on a straight line segme R". Whence, a
necessary for the existence of a straight line is there axistite Euclidean points in
(R”,,u%). Furthermore, we get conditions for a cu@existing in(R”,,u}B) following.

Theorem 8.4.2 A curve C= (fy(t), f2(t),-- -, fo(t)) exists in a pseudo-Euclidean space
(R”,,u%) for an orientationO if and only if

anw| [ 1
dt |y (,ul(U))z_
doe)) [ 1
at kb~ \ %)
an®| [ 1

at -\ @ -
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for Vu e C, wherema) = (ug, 42, -+ Un)-
Proof Let the angle betweqvl@ ande; beg;, 1 <6, <n.

€3
................... X
M3 0
01 02 M2 _
M1 - €2
------------------------------------------ !A .
€
Fig.8.4.2

Then we know that

cost =y, 1<i<n.

By geometrical implication of dierential at a pointi € R", seeing also Fig.8.2,
we know that

dfi(t) 1
—| =tgh = —)2-1
dt Ig H (Mi(U))
no for 1 < i < n. Therefore, if a curveC = (fy(t), f2(t), - - -, fa(t)) exists in a pseudo-
Euclidean spaceFx’(“,mB) for an orientatiorQ, then

df,(t) 1 ., )
—| = —)2—-1, 1<i<n
dt Ig (#2(U))
for Yu € C. On the other hand, if
dfi(t) 1 ., _
— = —)2 -1, 1<i1<n
at s~ \em’

hold for pointsv for ¥Vt € R, then all pointss, t € R consist of a curve€ in (R”,m@) for
the orientatiorO. O

Corollary 8.4.2 A straight line L exists ivéR”,,u%) if and only if,u}(_j(U) =0forVue L
andvO e 0.
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8.4.2 Rotation Matrix. Notice that a vectoW can be uniquely determined by the ba-
sis of R". ForX € R", there are infinite orthogonal frames at pokat Denoted byOx
the set of all normal bases at poixit Then apseudo-Euclidean spad®, i) is noth-
ing but a Euclidean spade" associated with a linear mapping: {€;,€, -, €} —
{(€,€, -, €} € Og such thatu(e;) = €, u(€) = &, -, u(€,) = €, at pointx € R".
Thus ifvy = C1€1 + Créx + - - - + Cnép, thenu (77) = Cyu(€q) + Cou(€r) + - - - + cru(en) =
C1€; + Co€y + -+ + + CrEpy

Without loss of generality, assume that

H(€1) = X11€1 + X12€2 + - - + Xin€n,

U(€2) = X21€1 + Xp2€2 + - - + Xonén,

Then we find that

p(xV) = (€1 G, C)u(Er) (&), - u(En))’

X11 X12 -+ Xin
= (Cl,CZ,"',Cn) X21 X22 in (El,gz,'“,gn)t-

Xn1 Xn2 o Xnn

Denoted by

X117 X12 -+ Xin (u(€r), € (u(€r). €2 --- (u(€1). €
%] = Xo1 X2 tc Yen | _ (u(€x), €1y (u(€x), €2y --- (u(e2), €n)
Xn1 X2 't Xan (u(€n), €1) (u(€n).€2) -+ (u(€n), €n)

called therotation matrixof X in (R", ). Thenu : Vg — yV is determined by(X) = [X]

for X € R". Furthermore, such an rotation matfi is orthogonal for pointxX € R" by
definition, i.e.,[X] [X]' = I Particularly, ifx is Euclidean, then such an orientation ma-
trix is nothing butu(X) = l«n. Summing up all these discussions, we know the following
result.

Theorem 8.4.3 If (R", 1) is a pseudo-Euclidean space, thg(x) = [X] is an nx n
orthogonal matrix fory X € R".
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8.4.3 Finitely Pseudo-Euclidean GeometryLetn > 2 be an integer. We can character-
ize finitely pseudo-Euclidean geometry by that of embeddegiginR". As we known,
an embedded graph onR" is a 1- 1 mappingr : G — R" such that foive, € € E(G),
7(€) has no self-intersection ange), r(¢') maybe only intersect at their end points. Such
an embedded graph in R" is denoted byGkn.

Likewise that the case oRG, 1), thecurvature RL) of an s-lineL passing through
non-Euclidean point&y, X, - - -, Xm € R" for m > 0 in (R", u) to be a matrix determined

by
RL) = [ [ (o)
i=1

andEuclideanif R(L) = I,«n, otherwisenon-Euclideanobviously, a pointin a Euclidean
spaceR" is indeed Euclidean by this definition. Furthermore, we irdrately get the
following result for Euclidean s-lines iR, u).

Theorem8.4.4 Let(R", u) be a pseudo-Euclidean space and L an s-lindR «) passing
through non-Euclidean point&;, X, ---,Xn € R". Then L is closed if and only if L is
Euclidean.

Proof If L is a closed s-line, theh is consisted of vecto® Xy, XoXs, - - -, XaXa. By

definition,

X1 _ Xi—1X;
7(i+1)_(i‘ 'X| 1X|‘

for integers 1< i < m, wherei + 1 = (modm). Consequently,
m
X% = Xo %o ]_[ u(X).
i=1

m
Thus]—[,u(ii) = |lxn, 1.€.,L is Euclidean.

i=1

u(x%)

Conversely, let. be Euclidean, i.e.ﬂ 1(%) = loxn. By definition, we know that
i=1

A S A
_+1_I = = 1_ /’L(Xl)’ 1., Xji1X =
Xi+1xi‘ ‘Xi—lxi'

)(|+1XI —

— I 0

'T(i—lxi‘

m
for integers 1< i < m, wherei + 1 = (modm). Whence, if]—[ 1(X) = loxn, then there
i=1



Sec.8.4 Pseudo-Euclidean Geometry 257

must be "
- - —
X% = X% | | u(X).
i=1
ThusL consisted of vectorg; X, XX, - - -, X, X1 IS a closed s-line inK", ). O

Similarly, an embedded grafbr- is calledSmarandachelif there exists a pseudo-
Euclidean spaceR(", 1) with a mappingu : X € R" — [X] such that all of its vertices
are non-Euclidean points irR(, u). It should be noted that these vertices of valency
1 is not important for Smarandachely embedded graphs. Wa getult on embedded
2-connected graphs similar to that of TheoredhBfollowing.

Theorem 8.4.5 An embedde@-connected graph g is Smarandachely if and only if
there is a mapping : X € R" — [X] and a directed circuit-decomposition

S

E, = DE(C)

i=1

such that these matrix equations

1_[ Xs=lpn 1<i1<S
YEV(_C)i)

are solvable.

Proof By definition, if Ggn is Smarandachely, then there exists a mapping
R" — [X] onR" such that all vertices dbgn are non-Euclidean irR", u). Notice there are
only two orientations on an edge E(Ggn). Traveling onGgr» beginning from any edge
with one orientation, we get a closed s-liBe i.e., a directed circuit. After we traveled
all edges inGgn with the possible orientations, we get a directed circeitamposition

S

E, = DE(C)

i=1

with an s-linea for integers 1< i < s. Applying Theorem 1.6, we get

[] #®=tnn 1<is<s
7eV(a)
Thus these equations
l_[ Xz =l 1<i<s
Yev(_c)i)
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have solutionx = u(X) for x e V (_C),)
Conversely, if these is a directed circuit-decomposition

S

- D)

i=1

E

NI=

such that these matrix equations

n XY = Inxn 1 S i S S
T(EV(E:)i)

are solvable, leXy = Ax be such a solution fox V(_C)i), 1 <i < s. Define a mapping
u:XeR" - [X] onR" by

— Ax if Xe V(GRn),
u(X) = -
lnn  if X & V(Grn).

Thus we get a Smarandachely embedded g@&plin the pseudo-Euclidean spad®'(u)
by Theorem 81.4. O

8.4.4 Metric Pseudo-Geometry. We can further generalize Definition18lL and get
Smarandache geometry on metric spaces following.

Definition 8.4.1 Let U and W be two metric spaces with megrjdV C U. For Yu € U, if
there is a continuous mappinrg: u — w(u), wherew(u) € R" for an integer nn > 1 such
that for any numbee > 0, there exists a number> 0 and a point ve W, p(u—V) < 6§
such thato(w(u) — w(v)) < €, then U is called a metric pseudo-space if£JW or a
bounded metric pseudo-space if there is a number Blsuch thatvw € W, p(w) < N,
denoted byU, w) or (U™, w), respectively.

By choice diferent metric spaces andW in this definition, we can get various
metric pseudo-spaces. Particularly, foe 1, we can also explain(u) being an angle
function with O< w(u) < 4n, i.e.,

{ w(u)(moddr), ifu e W,
w(u) = .
2n, ifueU\W.

The following result convinces us that there are Smararelgelometries in metric
pseudo-spaces.
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Theorem8.4.5 For any integer n> 1, there are infinite Smarandache geometries in metric
pseudo-spaces or bounded metric pseudo-spaces M.

Proof Let A andA be subset oR" or C" with A A = 0, W a bounded subspace of
M and letW;, W, ¢ W with Wy W, = 0. SinceM is a metric space and/; W, = 0,
AN A =0, we can always define a continuous mappingu — w(u) on W such that

w(wy) € A forw, € Wy, w(w,) € A forw, € Wa.

Therefore, the statemeniu) € A for any point ue M is Smarandachely denied by the
definition of w, i.e., w(wy) € A for w; € Wy, w(w,) € A for w, € W, and w(w) for
we M\ (W, UW,) or w(u) for u e (M \ W) can be defined as we wish sinég W, = 0
andW\ Wi UW,) # 0, M\ W # 0. By definition, we get a Smarandache geometry
(M, w) with or without boundary. O

§8.5 SMOOTH PSEUDO-MANIFOLDS

8.5.1 Dfferential Manifold. A differential n-manifold(M", A) is ann-manifold M",
whereM" = [ J U; endowed with &"-differential structureA = {(U,, ¢,)la € I} on M"

for an integelliI with following conditions hold.
(1) {U,; a € 1} is an open covering d1";

(2) ForVa,p €1, atlasesW,, ¢,) and Ug, ¢s) areequivalenti.e.,U, (1 Ugz = 0 or
U, N Ug # 0 but theoverlap maps

%‘Pﬁl L p(Uanu,) = ©(Ug) and gse," 1 05(Usnu,) = @a(U,) are C';
(3) Aismaximal, i.e., if U, ¢) is an atlas oM" equivalent with one atlas i, then
(U, ) € A.
An n-manifold is called to bemoothif it is endowed with a&C*-differential structure.
It has been known that the base of a tangent spalt' of differentiain-manifold (M", A)

consisting of%, 1<i<nforVYpe (M" A).

8.5.2 Pseudo-Manifold. An n-dimensional pseudo-manifo{1", A*) is a Hausdat
space such that each poimthas an open neighborhoat, homomorphic to a pseudo-
Euclidean spacéR”,,u%), whereA = {(Up, ¢p)lp € M"} is its atlas with a homomor-

phismgl, : Up — (R”,,u}B) and a chartW,, ¢p).
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Theorem8.5.1 For a point pe (M", A*) with a local chart(U,, ¢;), ¢ = ¢p if and only

if k5 (p) = 0.
Proof ForVp € (M", A*), if ¢5(p) = ¢p(p), thenu(ep(p)) = ¢p(p). By the definition
of pseudo-Euclidean spadér(,u}@), this can only happens whilgp) = 0. O

A point p € (M", A*) is elliptic, Euclideanor hyperbolicif u(ep(p)) € (R”,,u%) is
elliptic, Euclideanor hyperbolig respectively. These elliptic and hyperbolic points also
callednon-Euclidean pointsWe get a consequence by Theorem B

Corollary 85.1 Let(M", A*) be a pseudo-manifold. Thet} = ¢, if and only if every
pointin M" is Euclidean.

Theorem8.5.2 Let(M", A*) be an n-dimensional pseudo-manifolds M". If there are
Euclidean and non-Euclidean points simultaneously or tipte or hyperbolic points
on an orientatiord in (Up, ¢p), then(M", A*) is a paradoxist n-manifold.

Proof Notice that two lined.,, L, are saidocally parallelin a neighborhoodd,, ¢)
of a pointp € (M", A*) if (L) andgy(Ly) are parallel ir(R”,m@). If these conditions
hold for (M", A*), the axiom thathere is exactly one line passing through a point locally
parallel a given lineis Smarandachely denied since it behaves in at least titereint
ways, i.e.one parallel, none parallelor one parallel, infinite parallelsor none parallel,
infinite parallels which are verified in the following.

If there are Euclidean and non-Euclidean pointddp, ;) simultaneously, not loss
of generality, let be Euclidean but non-Euclideangy(v) = (1, i, - - -, ttn) With 11 < 0.

: M L2 <
T _\
L — L
(@) (b)

Fig.8.5.1

Let L be a line parallel the axig; in (R”,,uLB). Then there is only one ling, locally
parallel to () (L) passing through the pointsince there is only one lingy(L,) parallel
toLin (R”,,u%). However, ifu; > 0, then there are infinite many lines passing through
u locally parallel tOgDBl(L) in (Up, ¢p) because there are infinite many lines pardlléh
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(R”,,u%), such as those shown in Figh8L(a), in where each line passing through the
pointT = ¢j(u) from the shade field is parallel ta But if 4, > 0, then there are no lines
locally parallel to ) (L) in (U, ¢) since there are no lines passing through the point
V = ¢(v) parallel toL in (R”,ﬂi@), such as those shown in Figh8L(b).

If there are two elliptic pointsl, v along a directionO, consider the plang de-
termined byg;(u), ¢5(v) with B in (R”,w%). Let L be a line intersecting with the
line gy (U)gp(v) in 3. Then there are infinite lines passing througkocally parallel
to (go‘lg)‘l(L) but none line passing throughocally parallel tosolgl(L) in (Up, ¢p) because
there are infinite many lines or none lines passing thraughp; (u) or v = ¢ (v) parallel
toLin (R”, w}@) such as those shown in Figh&.

—
-
N
<l

v
Fig.8.5.2

For the case of hyperbolic points, we can similarly get thectusion. Since there
exists a Smarandachely denied axiom to the fifth Euclid’'smin (M", A“), it is indeed
a paradoxist manifold. O

If M = R", we get consequences for pseudo-Euclidean s;(ﬁtf\es;}ﬁ) following.
Corollary 8.5.2 For an integer n> 2, if there are Euclidean and non-Euclidean points
simultaneously or two elliptic or hyperbolic points in arientationO in (R”, w%) then

(R”, w%) is a paradoxist n-manifold.

Corollary 85.3 If there are pointsp, g € (R3, w%) such thathB(ﬁ) # (0,0,0) but
w%(ﬁ) = (0,0,0) or p, q are simultaneously elliptic or hyperbolic in an orienttio in
(R3, w%) then(R3, w%) is a paradoxist n-manifold.

8.5.3 Dfferential Pseudo-Manifold. For an integer > 1, aC'-differential pseudo-

manifold (M", A®) is a pseudo-manifold\", A“) endowed with &£'-differentiable struc-
ture A andw% for an orientatiorD. A C=-differential pseudo-manifold{", A“) is also
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said to be amooth pseudo-manifaldcor such pseudo-manifolds, we know theifteli-
entiable conditions following.

Theorem 8.5.3 A pseudo-ManifoldM", A%) is a C-differential pseudo-manifold with
an orientationO for an integer r> 1 if conditions following hold.

(1) There is a C-differential structureA = {(U,, ¢,)la € 1} on M";

(2) w% isC';

(3) There are Euclidean and non-Euclidean points simultankoarswo elliptic or
hyperbolic points on the orientatiod in (Up, ¢p) for a point pe M".

Proof The condition (1) implies thatM", A) is a C'-differentialn-manifold and
conditions (2) and (3) ensurd(, A*) is a diferential pseudo-manifold by definitions
and Theorem 8.2. O

§8.6 RESEARCH PROBLEMS

Definition 84.1 is a general way for introducing pseudo-geometry on mspraces. How-
ever, even for Euclidean plar, there are many problems not solved yet. We list some
of them on Euclidean spac&$’ andm-manifolds form > 2 following.

8.6.1 Let C be a closed curve in Euclid planéwithout self-intersection. Then the curve
C divides )] into two domains. One of them is finite, denoted Dy;,. We callC the
boundary ofD¢j,. Now letU = > andW = Dy, in Definition 84.1 withn = 1. For
example, choos€ be a 6-polygon such as those shown in g8

Fig.8.6.1
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Then we get a geometry (', w) partially Euclidean, and partially non-Euclidean. Then
there are open problems following.

Problem 8.6.1 Find conditions for parallel bundles of}. ", w).

Problem 8.6.2 Find conditions for existing an algebraic curveXEy) = 0on (3", w).
Problem 8.6.3 Find conditions for existing an integer curve C 09, w).

8.6.2 For any integem,m > 3 and a pointi € R™. ChooseJ = W = R™ in Definition
8.4.1 forn = 1 andw(U) an angle function. Then we get a pseudo-space geoni&try.).

Problem 8.6.4 Find conditions for existing an algebraic surfac€Xt, Xz, - - -, Xm) = 0in
(R™ w), particularly, for an algebraic surface Xy, X, X3) = 0 existing in(R3, w).

Problem 8.6.5 Find conditions for existing an integer surface(R™, w).

If we takeU = R™andW a bounded convex point set@f" in Definition 84.1. Then
we get a bounded pseudo-spaBé&'(, w), which is also partially Euclidean, and partially
non-Euclidean. A natural problem oRT", w) is the following.

Problem 8.6.6 For a bounded pseudo-spafR™, w), solve Problem8.6.4 and8.6.5.

8.6.3 For a locally orientable surface andVvu € S, chooseU = W = S in Definition
8.4.1 for n = 1 andw(u) an angle function. Then we get a pseudo-surface geometry
(S, w).

Problem 8.6.7 Characterize curves on a surface S by choice angle funeiioihether

can we classify automorphisms on S by applying pseudoeaigeometrysS, w)?

Notice that Thurston [Thul] had classified automorphismsusfaceS, y(S) < 0
into three classeseducible, periodicor pseudo-Anosovif we takeU = S andW a
bounded simply connected domain 8rn Definition 84.1, we get a bounded pseudo-
surface §-, w).

Problem 8.6.8 For a bounded pseudo-surfa®-, w), solve Problen8.6.7.

8.6.4 A Minkowski normon manifoldM™ is a functionF : M™ — [0, +0) such that

(1) Fis smooth orM™\ {0};
(2) Fis 1-homogeneous, i.e&=(AU) = AF(U) forui e M™anda > 0;
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(3) forvy e M™\ {0}, the symmetric bilinear forng, : M™ x M™ — R with

__ 10°FA(y + U+ tV)
%OV = 53— G

t=s=0
is positive definite and Rinsler manifoldis such a manifoldM™ associated with a func-
tionF : TM™ — [0, +c0) that

(1) Fis smooth orif M™\ {0} = [J{TxM™\ {0} : X € M™};

(2) Flrumm — [0, +00) is a Minkowski norm forvx € M™.

As a special case of pseudo-manifold geometry, equip a psewhifold M™, w)
with a Minkowski norm and choose(X) = F(X) for X e M™, then M™, w) is aFinsler
manifold particularly, ifw(X) = gx(y,y) = F2(x,Y), then M™, w) is aRiemann manifold
Thereby, we conclude théhe Smarandache manifolds, particularly, pseudo-maasfol
include Finsler manifolds as a subs&pen problems on pseudo-manifold geometry are
listed in the following.

Problem 8.6.9 Characterize the pseudo-manifold geomdt/", w) without boundary
and apply it to classical mathematics and mechanics.

Similarly, if we takeU = M™ andW a bounded submanifold &fI™ in Definition
8.4.1, we get a bounded pseudo-manifold", w).

Problem 8.6.10 Characterize the pseudo-manifold geomdt/™, w) with boundary
and apply it to classical mathematics and mechanics, paldity, to hamiltonian me-
chanics.



CHAPTER 9.

Spacial Combinatorics

Are all things in the WORLD out of order or in order? fldrent notion an-
swers this question flerently. There is well-known Chinese ancient book,
namelyTAO TEH KINGwritten by LAO ZI claims thatthe Tao gives birth to
One; One gives birth to Two; Two gives birth to Three; Threeegibirth to
all thingsandall things that we can acknowledge is determined by our eyes,
or ears, or nose, or tongue, or body or passions, i.e., thesergans which
implies that all things in the WORLD is in order with patterrighus human
beings can understand the WORLD by finding such patternss fidiion
enables us to consider multi-spaces underlying combii@&iructures, i.e.,
spacial combinatoricand find their behaviors to imitate the WORLD. For
this objective, we introduce the inherited combinatoriedstures of Smaran-
dache multi-spaces, such as those of multi-sets, multiggomulti-rings
and vector multi-spaces in Sectiorl3@nd discuss combinatorial Euclidean
spaces and combinatorial manifolds with characteristicSactions 2 and
9.3. Section 9 concentrates on the combination of topological with thafse
algebraic structures, i.e., topological groups, a kind oftirspaces known in
classical mathematics and topological multi-groups. Foltirmetric spaces
underlying graphs, we get interesting results, partitylargeneralization of
Banach’s fixed point theorem in Sectiofb9All of these are an application of
the combinatorial principle to Smarandace multi-spaces,Conjecture 5.1
(CC Conjecture) for advancing the 21st mathematical seepcesented by
the author in 2005.
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§9.1 COMBINATORIAL SPACES

9.1.1 Inherited Graph in Multi-Space. Let (E; YNQ) be a Smarandache multi-space con-
sisting ofm spaces;; Ry), (Z2; R2), - -+, (Em; Rm) for an integem > 2, different two by

two with . .
E:UZi, and ﬁzURi.
i=1 i=1
Its underlying graph is an edge-labeled graph defined fatigw

Definition 9.1.1 Let (E; ﬁ) be a Smarandache multi-space with- Lrj Y andR = Lnj R.
i1 |

i=1

Its underlying graph G R is defined by
V(G[Z.R]) = (£1,%5, -, T,
E(G[Z.R]) ={(E@.2) 12N #0.1<i,j <m)

with an edge labeling
IE (Ei,Zj) € E(G [g, ﬁ]) - |E(Ei,2j) = w(Zi ﬂZj),

wherew is a characteristic ork; () Z; such thats; N Z; is isomorphic taz N Z; if and
only ifw(Xi N Zj) = w (Z (N %) forintegersl < i, j,k, | <m.

For understanding this inherited graBi=. R| of multi-space(Z; R), we consider a
simple case, i.e., all spaces;(R;) is nothing but a finite se$; for integers 1< i < m.
Such a muIti-spacé is called amulti-set Choose the characteristie on S; (N S; to
be the se5;NS;. Then we get an edge-labeled grablﬁg]. For example, le6; =

— 4
{a,b,c}, S, = {c,d,e}, S3 = {a,c,e} andS,; = {d, e, f}. Then the multi-se6 = | S; =

i=1

{a,b,c.d.e f}with its edge-labeled grap®|S| shown in Fig.oL.1.

Sy {c} @
{a,c} {c,e {d, e}
Sy el S,
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—_ —_ m
Theorem 9.1.1 LetS be a multi-set witls = |J S; and i; € {1,2,---, m} for integers
i=1
1< s<m. Then,

S
S| =1 Jsil+m-s-1
=1

Particularly, |S| > |Si| + m— 1 for any integerj 1 <i < m.

Proof Notice that setS§;, 1 <i < mare diferent two by two. thutS; — S;| > 1 for
integers 1< i, j < m. Whence,

S| > +m-s-1

S
s,
j=1

Particularly, lets = 1. We get thafS| > |S;j| + m— 1 for any integer, 1 <i <m. O

—_ m . . n
Let S = JSi be ann-set. It is easily to know that there aEe ]2”‘”‘ sets
i=1 m

S1, Sy, -+, Sy, different two by two such that their union is the multi-§&t Whence,

5[2)

2<m<n

there are

msuch set$,, Sy, - - -, Sy, consisting the multi-ses. By Definition 91.1, we can classify
Smarandache multi-spaces combinatorially by introdutiiegollowing conception.

Definition 9.1.2 Two Smarandache multi-spac(éﬁ; 7%1) and(fz; 7~€2) are combinatori-
ally equivalent if there is a bijectiop : G [fl; 7%1] -G [fz; 7~€2] such that

(1) ¢is anisomorphism of graph;
(2) If ¢ : 21 € V(G|Z1; Re|) > 22 € G|Za; Ry, theng is a bijection onzy, X, with
P(R1) = R ande(I5(Z;, 2)) = 15(p(;, £))) for V(24, %5) € E (G [Z4; Ry ).

Similarly, we convince this definition by multi-sets. Forchumulti-spaces, there is
a simple result on combinatorially equivalence following.

—_ —_ —_ m — m —_
Theorem 9.1.2 LetS;, S, be multi-sets witt§; = (JS! andS, = U S?. ThenS; is
i=1 i=1

combinatorially equivalent t&, if and only if there is a bijectionr : S; — S, such that
o(S}) € V(G[S;|) ando(St N SY) = o(S}) N or(SY), whereo(S) = { o(e) | e € S} } for
anyintegerj 1 <i<m.
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Proof If the multi-setS; is combinatorially equivalent to that &,, then there
are must be a bijectionr : S; — S, such thatr(S}) € V(G|S|) ando(StNSY) =
o(S1) N o(S;) by Definition 91.2.

Conversely, ifr(S}) € V(G|S;|) ando(St N SY) = o(SH) N o(SY), we are easily
knowing thato- : V (G [S,]) — V(G[S.]) is a bijection and$}, S}) € E(G[S,]) if and
only if (o(S). o(S) € E(G|[S,|) becauser(St NS1) = o(SH) N o(SY). Thuse is an
isomorphism from graph& |S, | to G| S| by definition. Now ifc : S}t € V (G[Sy|) —
S2ev (G [§2]) itis clear thatr is a bijection orS?, S? becauser is a bijection fromS;
to S,. Applying (St N S}) = o(SH) N o(Sh), we are easily finding that(I5(S}, S)) =
I%(c(S}. S?)) by IF(S}. S1) = St N S} for ¥(S}, SY) € E(G[S,]). So the multi-seB, is
combinatorially equivalent to that &,. O

If S; =S, = S, such a combinatorial equivalence is nothing but a perriautan S.
This fact enables one to get the following conclusion.

Corollary 9.1.1 LetS = C]si be a multi-set withS| = n, |Sj| = n, 1 <i < m. Then
i=1
m
there are th — l_[ ni multi-sets combinatorially equivalent ® with elements i .
i=1

Proof Applying Theorem 4.2, all multi-sets combinatorially equivaleBtshould
beS@, wherew is a permutation on elements$ The number of such permutations is
n!. It should be noted the&8® = S if @ = @@ - - @m, Where eachw; is a permutation

m
onS;j, 1 <i <m. Thus there ara! — l_[ ni multi-sets combinatorially equivalent & O
i=1

A multi-setS = Usi isexactif S; = |J (S;NS;). For example, [e§; = {a,d, €},

m
i=1 j=1,j#i
}.

S, ={a,b,e},S; = {b,c, f}andS, = {c, d, f}. Then the multi-se% = S; |J S, S3J Sa
is exact with an inherited graph shown in Fig.2.

{a}

Sy Sz
(d) 2 (b}
(f)
Sy (c] Ss

Fig.9.1.2
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Then the following result is clear by the definition of exaatlthset.

Theorem 9.1.3 An exact multi-seS uniquely determine an edge-labeled grap[ng
and conversely, an edge-labeled graph &so determines an exact multi-twniquely.

Proof By Definition 91.1, a multi-spaceS determines an edge-labeled graph
uniquely. Similarly, letG'® be an edge-labeled graph. Then we are easily get an exact
multi-set

S= | J s with s,= [ =(e. O

veV(GlE) ecN e (V)

9.1.2 Algebraic Exact Multi-System. Let (K; 5) be an algebraic multi-system with

— n . — .
A=[JA andO = {o;, 1 <i < n}, i.e., each A'; o) is an algebraic system for integers
i=1

1 <i < n. By Definition 91.1, we get an edge-labeled gra@lﬁﬂ; 5] with edge labeling
lg determined by

le(A A) = (A [ A lon0)))
for any (A, A.) € E(G|G; OJ), such as those shown in Figl®, whereA,, = (A'; o))
forintegers I< | < n.

(A N A {oi o))
A, - . A,

Fig.9.1.3

For determining combinatorially equivalent algebraic tasystems, the following
result is useful.

—_ - —_ - _ m —_
Theorem9.1.4 Let (Al; Ol), (Az; 02) be algebraic multi-systems with, = (J AL, O; =
i=1

{ol, 1<i<njandA; = GA?, O, = {o?, 1 <i <nj. Then(A}; 51) is combinatorially
i1

equivalent tc(ﬂz; 62) if and only if there is a bijection : A; — A, such thator(Al) €

V(G[A]) and (AL N Ad) = (A N o (AL), wherea(Al) = { o(h) | h € Al } for any

integeri 1<i<m.

Proof The proof is similar to that of Theorem192. O

Now let (A; o) be an algebraic system. If there are subsystens) < (A; o) for
integers 1< i < | such that
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(1) for Vg € A, there are uniquelg € A suchthaj=a;ca,0---0 a;;
(2) acb=Dboaforae A andbe Aj, where 1< i, j < s,i # |,

|
then we say thatq; o) is a direct product of4;; o), denoted byA = () A.

i=1
Let (A; O) be an algebraic multi-system with = U A andO = {o;, 1 <i < n}.
Such an algebraic multi-system is said tofbeorablelf for any integeri, 1 <i < n,
(A" AJ; ) is itself an algebraic system or empty @dbr integers 1< j < n. Similarly,
such an algebraic multi-systemezactif for YA, € V (G [K; 5])

A= () (ANA).
AeNg 7.5 (As)

—_ —_ n . —
An algebraic multi-systerfA; O) with A = |J A’ andO = {o;, 1 < i < n} is said to be
i=1
in-associativef

(acib)ojc=aoj(bojc) and @ojb)ojc=ao0;(bojc)

hold for elements, b,c € A’ Al for integers 1< i, j < n providing they exist.

9.1.3 Multi-Group Underlying Graph. For favorable multi-groups, we know the fol-
lowing result.

Theorem 9.1.5 A favorable multi-group is an in-associative system.

Proof Let (G 6) be a multi-group withG = U G' andO = {0}, 1 <i < n}. Clearly,

i=1
G'NG! c G andG' NG/ c G! for integers 1< i,j < n. Whence, the associative

laws hold for elements ind' (" G'; 0;) and G' (N G';0j). Thus G' N G!;{oi,0;}) is an
in-associative system for integers<li, j < n by definition. O
Particularly, ifo; = o, i.e., G'; o) is a subgroup of a group for integers<li < nin

Theorem 91.5, we get the following conclusion.

Corollary 9.1.2 Let(G'; o) be subgroups of a groufZ; o) for integersl <i < n. Then a
multi-group(G; {o}) with G = U G'is favorable if and only itG' N G!; {o}) is a subgroup
of group(¥¢4; o) for any mtegerSL <i,j<n,ie, G[G {o }] ~ K.

Proof Applying Corollary 12.1 with G'G! 2 {15} for any integers K i, j < n,
we know this conclusion. O
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Applying Theorem 9.4, we have the following conclusion on combinatorially equi
alent multi-groups.

—_ - —_ - —_ n —_
Theorem 9.1.6 Let (Gl; Ol), (Gz; Oz) be multi-groups witlG; = [JGL, O; = {0}, 1 <
i=1
—_ n —_ —_ -
i <nfandG, = J Giz, 0O, = {oiz, 1<i<nh Then(Gl; Ol) is combinatorially equivalent
i=1

to (52; 52) if and only if there is a bijectiop : G, — G, such thap(G') € V (G [52; 52])
is an isomorphism and(G1 N G3) = ¢(G7) N ¢(G}) for any integerj 1 <i <n.

By Theorem 91.3, we have known that an edge-labeled gr&huniquely deter-
mines an exact multi-s&. The following result shows when such a multi-system is a
multi-group.

Theorem 9.1.7 Let (G; O) be a favorable exact multi-system determined by an edge-
labeled graph & with G = U Gy, Wwhere G = @ 1E(u,v) andO = {o;, 1 <i <

ueV(G'e) VeN g (U)
n}. Then it is a multi-group if and only if fovu € V(G'), there is an operatior, in

le(u, v) for all v € Ngie (u) such that forva € Ig(u, v1), b € lg(u, v»), there is ao, b ¢
le(u, v3), where ¥, Vo, V3 € Ngie (U).

Proof Clearly, if (C~;; 6) is a multi-group, then fovu € V(G'), there is an operation
oy € G, for all v e Ny (u) such that fova € Ig(u, v1), b € Ig(u, ), there isao, b €
le(u, v3), wherevy, Vi, V3 € Ngie (U).

Conversely, leti € V(G'®). We prove that the paiGQ,; o,) with G, = @ 1E(u, v)

veNG|E(u)
is a group. In fact,

(1) There existsahe Gyand &, =hoh™ e Gy;

(2) Ifa,be Gy, thena™ = 15, oy at € G,. Thusao, (b)) =ao,beGy;

(3) Notice that

gouh: l_[ gvouhv,

veNg g (u)

whereg = ]—[ ov € G, h= l_l h, € G, because o6, = @ 1E(u,v). We

veNG|E (u) veNG|E (u) ve NG'E (u)

know that the associative laaw, (bo,C) = (aoyb) o, cfor a b, c e Gy holds by Theorem
9.1.4. Thus G,; o) is a group fovu € V(G').
Consequently,@; O) is a multi-group, O

Let O = {o} in Theorem 9L.7. We get the following conclusions.
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Corollary 9.1.3 Let (5; {o}) be an exact multi-system determined by an edge-labeled
graph Ge with subgroupsti(u, v) of group(¥; o) for (u, v) € E(G'®) such that F(u, v;) N
IE(u. V) = {1y} for V(u, 1), (u,v2) € E(G). Then(G; {o}) is a multi-group.

Particularly, let ¢; o) be Abelian. Then we get an interesting result following by
applying the fundamental theorem of finite Abelian group.

Corollary 9.1.4 Let (5; {o}) be an exact multi-system determined by an edge-labeled
graph Gt with cyclic p-groupsf(u, v) of a finite Abelian grou§; o) for (u,v) € E(G'®)

such that F(u, vi) N 15(u, v2) = {1y} for ¥(u, v1), (u. V) € E(G). Then(G; {o}) is a finite
Abelian multi-group, i.e., ead{G,, o) is a finite Abelian group for & V(G').

9.1.4 Multi-Ring Underlying Graph. A multi-system(ﬂ; oluoz) with A = iLi]JlAi,
O; ={;1<i<nfandO, = {+;; 1 <i < n}isin-distributedif for any integeii, 1 <i < n,
a-i(b+c) =a-b+ a-choldforva, b, ce A' N Al providing they exist, usually denoted
by (K; 0, — Oz). For favorable multi-rings, we know the following result.

Theorem 9.1.8 A favorable multi-ring is an in-associative and in-distuitled multi-
system.

Proof Let (R O, — Oz) be a favorable multi-ring WithR = U R, O ={i1<
i <npandO; = {+;1 <i < n}. Notice thatR "R, c R, R.ﬁRJ c R and R; -, +i),
(Rj; -j, +j) are rings for integers X i, ] < n. Whence, ifR N R; # 0 for integers 1<
i,j<n,leta b ce R NR;. Then we get that

(@a-ib)-ic=a-(b-oc), (@jb)-jc=a-j(b-jc)

(a+i b)+ic:a+i (b+iC), (a+,- b)+jc:a+,- (b+jC)

and
a - (b+ic):a-ib+ia-ic, a-j(b+jc):a-,-b+ja-jc.
Thus(ﬁ’; 0, — 02) is in-associative and in-distributed. O
Particularly, if; = - and+; = + for integers 1< i < nin Theorem 9.8, we get a

conclusion following for characterizing favorable muiings.

Corollary 9.1.5 Let(R' ,+) be subrlngs of ring 4R; -, +) for integersl <i < n. Then
a multi-ring (R; {- +)) With R = U R is favorable if and only {R O R/;-, +) is a

subring of ring(R; -, +) for any mtegerSL <i,j<n,ie, G[R,{ } e {+ }] ~ K.
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Proof Applying Theorems B.2 and 91.8 with R "R/ 2 {0,} for any integers k
i, j < n, we are easily knowing thR; {-} < {+}) is favorable if and only ifR "\ RJ; -, +)
is a subring of ringR; -, +) for any integers X i, j < nandG [ﬁ; {}— {+}] ~K, O

Similarly, we know the following result for combinatoriglequivalent multi-rings
by Theorem 9..6.

Theorem 9.1.9 Let (R'; O} < O}), (R%; 02 — 03) be multi-rings withR"* = URL,
o1
O, ={L1l<i<nandR=JG%0,=(2 1<i<n) Then(RY; O} < 0}) is combi-
i=1
natorially equivalent t¢R2; O < O3)if and only if there is a bijectiop : R* — R?such
thato(R") e V (G [ﬁz; 0?2 — og]) is an isomorphism and(R} N R}) = ¢(R}) N ¢(R}) for
any integerj 1 <i <n.

Let (R, -, +), (Ry, -, +),-, (R, -, +) bel rings. Then we get a direct sum

R:Rl@RZ@“'@RI

by the definition of direct product of additive groug®;(+), 1 <i <. Define

(al,aZ,"'3a|)'(bl’sz"'abO:(al'bl’aZ'bZ""’al'b|)

for (ag, @, -+, &), (b, by, ---,b) € R Then it is easily to verify thatK; -, +) is also a
ring. Such aring is called the direct sum of ring&,(, +), (Rx, -, +), -, (R, -, +), denoted
|

byR= PR.
-1
A multi-ring (ﬁ; O, — Oz) with R = LnJRi, O ={i1<i<niandO, = {+;1<
=1

n
i < n}is said to beexactif it is favorable andR = EP(R N R;) for any integei 1 < i <
j=1
n. ThusR = D @ (R, R)) in its inherited graplG's [’F“e; 0, — oz]. The
(R.R)€E(G[R,01=0))
following result is an immediately consequence of Theorehv9

Theorem 9.1.10 Let (ﬁ; O — 02) be a favorable exact multi-system determined by an
edge-labeled graph &with R = U R,, where R = @ IB(u,v), O = {4, 1 <

ueV(GE) veNy g (U)
i <njand Q = {+;, 1 <i < n}. Then itis a multi-ring if and only if fou € V(G'),

there are two operations,, -, in Ig(u, V) for all v € Nge (u) such that fova € Ig(u, vp),
b € lg(u, v,), there is a—, b € Ig(u, v3) and a-, b € Ig(u, v4), where \, Vo, V3, V4 € Ngie (U).
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Particularly, if-; = - and+; = + for integers 1< i < nin Theorem 91.10, we get the
following consequence.

Corollary 9.1.6 Let (ﬁ; N {+}) be an exact multi-system determined by an edge-
labeled graph &G with subrings ¥(u, V) of a ring (R; -, +) for (u,v) € E(G) such that
I5(u, va) N 15(u, v2) = {0.} for ¥(u,va), (u.v2) € E(GE). Then(R;{-} < {+}) is a multi-
ring.

Let pi, 1 < i < sbe diferent prime numbers. Then eagh’; -, +) is a subring
of the integer ringZ; -, +) such that p;Z) (N(p;Z) = {0}. Thus such subrings satisfy the
conditions of Corollary 4.6, which enables one to get an edge-labeled graph with its
correspondent exact multi-ring. For example, such an éalgeed graph is shown in
Fig.91.4 forn = 6.

7
Ry P1 62
PsZ
PaZ. P27
PeZ
a R
R R
Fig.9.1.4

9.1.5 Vector Multi-Space Underlying Graph. According to Theorem. 4.6, two vector
spacesV; andV, over a fieldF are isomorphic if and only if di; = dimV,. This
fact enables one to characterize a vector space by its Uaeﬂisév; If) be vector multi-
space. Choose the edge labellag (Vu. Vi) = Z(V, W) for ¥(V,, ) € E(G V)

in Definition 91.1, where#(V, (1 V,) denotes the basis of vector spa¢g V., such as
those shown in Fig.2.5.

BMNW)
Vu VV

Fig.9.1.5

Let A c B. Aninclusion mapping : A — Bis such a 1 mapping that(a) = afor
Ya e Bif a€ A. The next result combinatorially characterizes vectortiraubspaces.
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Theorem 9.1.11 Let (Vl; Ifl) and(\72; Ez) be vector multi-spaces witt; = iL_nJl V! and
Fi= iLnjl Fl, andV, = iLnjlviz andF; = iLnJl F2. Then(Vy; F1) is a vector multi-subspace
of (\72; Ez) if and only if there is an inclusion : V; — V, such that (G [Vl; El]) <
G [\72; I?z].

Proof If (Vl; El) is a vector multi-subspace @Vz; Ez), by definition there are must
beV! c V? andF} c F{ for integers 1< i < n, wherei; € {1,2,---,n}. Then there is an
inclusion mapping : V; — V, determined by(V!) = Vi c V2 such that (G [Vl; El]) <
G [\72; I?z].

Conversely, if there is an inclusion V; — V. such that (G [Vl; El]) <G [\72; Ez],
then there must bgV") c VZ andy(F) c F% for some integerg; € {1,2,---,n}. Thus
Vi= UVi= UVl c JV2 = VoandFy = UFL = UuFY) ¢ UF? = B e,

i=1 i=1 j=1 ' i=1 i=1 j=1
(Vl; El) is a vector multi-subspace @72; I?z). O

Let V be a vector space and M, V, c V be two vector subspaces. Féa € V, if
there are vectors € V; andc € V, such tha@ = b + T is uniquely, therV is said adirect
sumof V; andV,, denoted by = V; P V,. Itis easily to show that i¥/; NV, = 0, then
V=V, P V.

A vector multi-space\(; F) with V = Lnjl V; andF = Lnjl F; is said to beexactif

i i

Vi = EB(Vi ﬂ Vi)
j#i
holds for integers k i < n. We get a necessary andfcient condition for exact vector
multi-spaces following.

—_— —_ n —_— n

Theorem9.1.12 Let (V; ﬁ) be a vector multi-space witi = | J V; andF = [J Fj. Then

i=1 i=1
it is exact if and only if | |
B(V) = U @(vﬂv') and %(vﬂv')ﬂ@(vﬂv") =0
(V.V')eE(G[V;F))
forV',V” e NG[\7;I?] (V)
Proof If (V; ﬁ) is exact, i.e.V; = P(V, MVj), then itis clear that

j#i

B(V) = U %(vﬂv') and @(vﬂv')ﬂ@(vﬂv"):o

(V.v)eE(G[ViF])
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by the fact that¥, V') € E(G|V; F|) if and only if V V" # @ for YV, V" € Ngg.g(V)
by definition.
Conversely, if
2V)= () 2V V) and (V[ V)2V V)=0
(V,V)eE(G[ViF])

for V',V € Ng.g(V), notice also that\{ V') e E(G [V; E]) if and only if VOV’ # 0,

we know that
vi= P w( V)

j#i
for integers 1< i < nby Theorem 4.4. This completes the proof. OJ

§9.2 COMBINATORIAL EUCLIDEAN SPACES

9.2.1 Euclidean Space.A Euclidean spacen a real vector spade over a fieldF is a
mapping
(vy:EXE > R with (€,6) — (€,6) forve,,& € E

such thatfoe, e, & cE,a e F

(El)(e e +&)=(e&)+(&8&);

(E2) (€ a€) = a (& &);

(E3) (&1, &) = (&, &1);

(E4) (8,8 > 0 and(e & = 0 if and only ife = 0.

In a Euclidean spadg, the number\/@ is called itsnorm and denoted bjg|. It
can be shown that

(1) (0.€) = (8 0) = Ofor Ve e E;

n 1 m 2 n m 1 2 .

(2) <Z x&, Y yiéj> = 3 Y Xy, (é ,éj>, for&® € E, where 1< i < maxm, n} and

i=1 =1 i=1i=1
s=1or?2.

In fact, lete, = & = 0 in (E1). Then(é,ﬁ) = 0. Applying (E3), we get that
<6, é) = 0. This is the formula in (1). For the equality (2), applyiranditions (E1)-(E2),
we know that
n m m n m n
<Z mél,Zyié,?> = Z< mél,yié,-z> =D <Z mél,é,?>
i-1 =1 =1 \i=1 =1 i-1

J
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Theorem9.2.1 LetE be a Euclidean space. Then fé€;, & € E,

(1) &L &) | < I&lllell;

(2) I8 + &l < |[&ll + [[Exll.

Proof Notice that the inequality (1) is hold & or €, = 0. Assumeg, # 0. Let
IRCHCY

(8. ®&1)

. Since

(8 — X€1, 8 — X&) = (B2, &) — 2(B, &) X + (B, &) X* > 0.

Replacingx by (61, &) %; in it, then

(€1, 81) (€, 8) — (61, &) > 0.
Whence, we get that
| (€1, )| < |[EllEl].

For the inequality (2), applying inequality (1), we knowtha

(€1 +6,8 + &)
(L) +2(8, &) + (&, &)

(B8 + 2| (B &) | + (&2, &)

(@1 8) + 2| €L &) Il (&, 8 || + (€2, &)
(CEREE

@1, &) |

IA

Thus

181 + &l < [[eull + [[€&ll. O

Let E be a Euclidean spacg,b € E, @ # 0, b # 0. Theanglebetweerd andb is
defined by
_ (D)

ETEE

(=]
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Notice that by Theorem.2.1(1), the inequality

(2.b)

1<
I[allllbll

<-1

always holds. Thus the angle betw@smdb is well-defined. Lek,y € E. CallXandyto
beorthogonalif (X,y) = 0. For a basi®;,&,---,e, of Eif €,6,,---, €, are orthogonal
two by two, such a basis is called anthogonal basis Furthermore, ifijg|| = 1 for
integers 1< i < m, an orthogonal basi, &, - - -, €, is called anormal basis

Theorem 9.2.2 Any n-dimensional Euclidean spaEehas an orthogonal basis.

Proof Letd,, @, - - -, &, be a basis of. We construct an orthogonal babisb,, - - -, b,
of this space. Notice thait_)l, 51> + 0. Chooséy, = 3, and let

Thenb, is a linear combination &, anda, and

a, b1>
(B By)

/\

(bs, by) = (32, by) - (b, by) =0,
i.e.,b, is orthogonal withb;.
If we have constructel, by, - - -, by for an integer 1< k < n—1, and each of themis a

linear combination o8, 3, ---,3, 1 <i < k. Notlce<b1, b1> <b2,52>,---,<5k_1,5k_1>¢
0. Let

_ <§k’ B:l. — <§k’ 62>— <§k’ Bk—:l.> —
bk:ak—__ bl—__ b2—"'__ — k-1
(brby) ~ (bphy) (b1, bc1)
Thenby is a linear combination cdy, @y, - - -, a1, and
_ . {@b1) _ _ aube)
(bebi) = <5k’bi>‘§§k Bli (b B) _<f_)ak gl>> (B B)
1, M1 k-1 Mk-1
o (&b
= (a.b)- (Bi,6:> (b.B) =0
fori=1,2,---,k—1. Apply the induction principle, this proof is completes. 0J

Corollary 9.2.1 Any n-dimensional Euclidean spa€ehas a normal basis.
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Proof According to Theorem 2.2, anyn-dimensional Euclidean spaéehas an

orthogonal basig,, @, - - -, an. Now letg; = <= i‘z , o B = iﬂ Then we
. IEA] EA] IE
find that
(a.3) & Ial
6,)=——>=—=0and|gll=ll=ll= = =1
< J> IETHEN! IE1l IET]
for integers 1< i, | < mby definition. Thu$,, &, - - -, €y, is a normal basis. O

9.2.2 Combinatorial Euclidean Space. Let R" be a Euclidean space with normal
basis#(R") = {€i, €, -, €}, Wwheree; = (1,0,---,0), € = (0,2,0---,0), -+, €, =
O,---,0,1), namely, it has orthogonal orientations. Generally, we think any Euclidea
spaceR" is a subspace of Euclidean sp&® with a finite but seficiently large dimen-
sionn,,, then two Euclidean spac&" andR™ have a non-empty intersection if and only
if they have common orientations.

A combinatorial Euclidean spacis a geometrical multi-spacdR(R) with R =
Ul R"™ underlying an edge-labeled gra@t with edge labeling
iz

le: (R™R") > 2 (R"[|R")

for Y(R™, R") € E(G't), whereR consists of Euclidean axioms, usually abbreviatel .to
For example, a combinatorial Euclidean spafée&’() is shown by edge-labeled gra@ft
in Fig.9.2.1,

R3 {e2} R3
{€1} {€1}
R3 {€2} R3

Fig.9.2.1

determine the dimension of a combinatorial Euclidean spgdés underlying structure
G'= following.
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Theorem9.2.3 LetR be a combinatorial Euclidean space consistingRéf, R™, - - -, R™
with an underlying structure &. Then

dimR = > (-1 dim (R™ ()R () [ R™).

(vieV(G'E)|1<i<s)eCLs(G'E)

where R, denotes the dimensional number of the Euclidean space & W(G's) and
CL¢(G') consists of all complete subgraphs of order s In.G

Proof By definition,R™ n R™ # 0 only if there is an edgeR™, R™) in G'&, which
can be generalized to a more general situation,R&i,NnR™ N --- N R™ # @ only if
(Vi, Vo, -+, Wge = K. Infact, ifR™M NnR™ N --- N R™ # 0, thenR™ N R™ # 0, which
implies that R™, R™) € E(G") for any integers, j, 1 <i,j <. Thus(vi, Vo, - -, V)ge
is a complete subgraph of ordein graphG'e.

Notice that the number of fierent orthogonal elements is dim= dim[ U R”V).

veV(GE)
Applying the inclusion-exclusion principle, we get that

dimR = dim( | R”V]

veV(GE)

= Z ( 1)s+1d|m R™ ﬂ R™2 ﬂ ﬂ ans

{v1.Vs}cV(G'E)

- > (~1)*Hdim (R™ (R (][ |R™). 0

(vieV(G'E)|1<i<s)eCLs(GIE)

Notice that dimn(R™ N R™) # 0 only if (R™, R™) € E(G'®). We get an applicable
formula for dinR on Ks-free graphs3's, i.e., there are no subgraphs@f isomorphic to
K3 by Theorem .3 following.

Corollary 9.2.2 Let R be a combinatorial Euclidean space underlying afikee edge-
labeled graph ¢&. Then

dimR= > n- > dim(R"[|R™).

veV(G'E) (uVv)eE(G'E)

Particularly, if G = vy, - - - vy, @ circuit for an integer ne 4, then

dimR = Zm: Ny — Zm: dim(R”Vi ﬂ RnVi+1),
i—1 i—1
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where each index is modulo m.

9.2.3 Decomposition Space into Combinatorial One. A combinatorial fan-space
R(ny,---,Ny) is a combinatorial Euclidean spaBeconsists ofR™, R™, ..., R™ such
that for any integerg j, 1<i# j<m,

m

RY((|RY = |R™.

k=1

The dimensional number cﬁ(nl, <o, Ny IS

m
dimR (. ) = M+ ) (0~ ).
i=1

determined immediately by definition, where= dim F} R™.

For visualizing the WORLDweather is there a cgzr;binatorial Euclidean space, par-
ticularly, a combinatorial fan-spacR consisting of Euclidean spac&:, R™, - .., R™
for a Euclidean spacR" such thadimR™ UR™ U - - -UR"™ = n? We know the following

decomposition result of Euclidean spaces.

Theorem 9.2.4 LetR" be a Euclidean spacegjn,, - - -, ny, integers withm < n; < n for
1 <i < m and the equation

m
M+ > (- =n
i=1

holds for an integeim,1 < m < n. Then there is a combinatorial fan-spaﬁénl, N,
.-+, Ny) such that
Rn = ﬁ(n].’ n23 Tty nm)

Proof Not loss of generality, we assume the normal basR"a €; = (1,0, -, 0),
EZ = (0,1,0"',0)1“"EI’1 = (0’70’1) Since

m
n—m= Z(n. — ),
i=1
choose
Rl = <El’22? e ,E’rﬁ,g’n‘wl, e ’En1> ;
RZ = <El’ EZ’ ) Efﬁa En]_+l’ En]_+2’ ) Et’]2> ;

R3 = <61’ €2, 5 Emy €Emy+1s Enp+2, " " 7 Eﬂ3> ;
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Rm = <El? EZ? Y Eﬁb Enm_1+1, Enm_1+2, Y El’lm> .
m —_—
Calculation shows that diRy = n; and dim( R;) = M. WhenceR(ng, nz, - -+, Ny) is a

i=1
combinatorial fan-space. Thus

R" ~ R(Ny, Ny, -+ -, Ny). ]

Corollary 9.2.3 For a Euclidean spacR", there is a combinatorial Euclidean fan-space
ﬁ(nl, N, - - -, Ny) underlying a complete graphkwithm < n; < n forintegersl <i <m,
m

m+ Z (nj —mM) = n such thaR" ~ ﬁ(nl, Ny, -+, N).
i=1

§9.3 COMBINATORIAL MANIFOLDS

9.3.1 Combinatorial Manifold. For a given integer sequenng hy, - - -, Ny, M > 1 with
O<n << --- < Ny, acombinatorial manifoldV is a Hausdaf space such that for
any pointp € M, there is a local chartJ,, ¢p) of p, i.e., an open neighborhoddl, of
pin M and a homoeomorphisgy, : U, — ﬁ(nl(p), n2(p), - - -, Ngp)(P)), @ combinatorial
fan-space with

{ni(p), m(p), - -+, Np)(P)} € (N, Mo, -+ -, N}

and
Ja(p).na(p), - Ny (P)) = (1, -+ i,

peM

denoted byM(ny, ny, - - -, Ny) or M on the context, and

ﬁ = {(U p»> ‘Pp)|p € |K/Iw(nl’ Mo, ---, nm))}

an atlas ortM(ny, Ny, - - -, Ny). The maximum value o§(p) and the dimensio®(p) =
s(p)

dim(_ﬂ RM(P | are called thelimensiorand theintersectional dimensioof M(nl, N
at thelzpl)ointp, respectively.

A combinatorial manifoldM is finite if it is just combined by finite manifolds with
an underlying combinatorial structu@without one manifold contained in the union of

others. Certainly, a finitely combinatorial manifold is @&tl a combinatorial manifold.
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Two examples of such combinatorial manifolds witlfelient dimensions iR are
shown in Fig.98.1, in where, (a) represents a combination of a 3-manifolti wito tori,
and (b) three tori.

@ (Cor

(@) (b)

Fig.9.3.1

By definition, combinatorial manifolds are nothing but a getization of mani-
folds by combinatorial speculation. However, a locally gaotn-manifold M" without
boundary is itself a combinatorial Euclidean sp&ie) of Euclidean spaceR" with an
underlying structur&'s shown in the next result.

Theorem 9.3.1 A locally compact n-manifold Mis a combinatorial manifoloMg(n)
homeomorphic to a Euclidean spaB¢n, 1 € A) with countable graphs & inherent in
M", denoted by GM"].

Proof Let M" be a locally compaat-manifold with an atlas
M| = {(Uspa) [ 1€ A},

whereA is a countable set. Then eath, 1 € A is itself ann-manifold by definition.
Define an underlying combinatorial structu®& by

V(G®) = {U, 1 € A},
E(G) = {(U,,U)i, 1<i <k +UU;NU, #0,2,0€A}

wherex,, is the number of non-homotopic loops formed betwdgmndU,. Then we get
a combinatorial manifold/" underlying a countable gragbie.
Define a combinatorial Euclidean spaien, A € A) of Euclidean space’" by

V(G'E) = {ga(U,)IA € A},

E(GIE) = { (prl(U/l)’ ¢L(UL))i’ 1< [ < K:h + 1| SD/I(U/I) ﬂ ¢L(UL) # 0’ /1’L € A},
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wherex’, is the number of non-homotopic loops in formed betwegf,) andy,(U,).
Notice thatp,(U,) N¢.(U,) # 0 ifand only if U, U, # 0 andk,, = «/, for 1,. € A.

Now we prove thatM" is homeomorphic tdR(n, A € A). By assumptionM" is
locally compact. Whence, there exists a partition of ugjty U; — R", 1 € A on the
atlas/[M"]. Let A, = suppfp,). Define functiond, : M" - R" andH : M" — &z (n)
by

if U,,
hy(X) = Ci(¥)pa(X) | It Xe U,
O:(O,"',O) |fX€U/1—A,1.

and

H= Z @.C, and J = Z c ot

AeA AEA
Thenh,, H andJ all are continuous by the continuity gf, andc, for YA € A on M".

Notice thatc,’¢;%¢,c, =the unity function onM". We get thatl = H™%, i.e.,H is a
homeomorphism fronM" to &z (n, A € A). O

9.3.2 Combinatorial d-Connected Manifold. For two pointsp, q in a finitely combi-
natorial manifoldﬂ(nl, ny, - -+, Ny), if there is a sequend®,, B,, - - -, Bs of d-dimensional
open balls with two conditions following hold:

(1) B c M(ny, ny, - - -, ) for any integeli, 1 < i < sandp € By, q € B

(2) The dimensional number dif() Bj,;) > dforVi,1<i <s-1,
then points, g are calledd-dimensional connected ﬁ(nl, n,, - - -, Ny) and the sequence
B, B, - - -, Be ad-dimensional path connectirgandg, denoted byPY(p, g). If each pair
p, q of points inM(ny, Ny, - - -, Ny is d-dimensional connected, théA(ny, ny, - - -, Ny) is
calledd-pathwise connected and say its connectivity

Not loss of generality, we consider only finitely combingbmanifolds with a
connectivity> 1 in this book. LetM(ny, ny, - - -, ny) be a finitely combinatorial manifold
andd > 1 an integer. We construct a vertex-edge labeled g&§pN (ny, n, - - -, ny)] by

V(Gd[m(nla np,---, nm)]) = V]_ U V2,
where,

V, = {isolated intersection poin@y» » ofM™, M™ in M(nl, Ny, ---,Ny)forl <
i, ] < m}. Labeln; for eachn;-manifold inV; and O for each vertex W, and

EG Mz, -+, 1)]) = Ex | Eo,
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where E; = {(M", M") labeled with dimM"™ | M) |dim(M" YM") >d,1<i,] < m}
and E; = {(Oyn mni, M), (O i, M™)  labeled with O M™ tangent M" at the point
Omm mm for L <i, j <mj.

For example, these correspondent labeled graphs gotterfimdely combinatorial
manifolds in Fig.98.1 are shown in Fig.8.2, in whered = 2 for (a) and (b). Notice if
dim(M™ N M") < d— 1, then there are no such edg® M") in G M(n., ny, - - -, Ny)].-

Fig.9.3.2
Theorem 9.3.2 Let G)[M(ny, ny, - - -, )] be a labeled graph of a finitely combinatorial
manifoldM(ny, Ny, - - -, N). Then

(1) GI[M(ny, ny, - - -, )] is connected only if & ny.
(2) there exists an integer,d < n; such that G[M(ny, N, - - -, Ny)] is connected.

Proof By definition, there is an edgev™, M") in GY[M(ny, ny, - - -, Ny)] for 1 <
i, j < mifand only if there is al-dimensional pati®‘(p, ) connecting two pointp € M"
andqg € M"i. Notice that

(P*(p.a) \ M™) ¢ M™ and °(p,q) \ M) € M.
Whence,
d < min{n;, n;}. 9-3-1)
Now if GI[M(ny, ny, - - -, Ny)] is connected, then there iscapath P(M™, M™) con-
necting verticeM™ andM™ for YM™, M™ € V(GM(n, ny, - - -, Nm)]). Not loss of gen-
erality, assume
P(M™, M") = MMM ... M1 M",
Then we get that
d < min{n, s, &, -+ -, §-1, Ny} (9-3-2)
by (9- 3 - 1). However, by definition we know that

Jm(p).na(p). - Ny ()} = (M. M-+ . (9-3-3)

peM
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Therefore, we get that

d < min| |_Jinu(p), na(p), - Neg(P)} | = mining, ng, -, i} = 1y
peM
by combining (9- 3 — 2) with (9 - 3 — 3). Notice that points labeled with 0 and 1 are
always connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinabrnanifold is always
pathwise 1-connected by definition. According&:[M(n., ny, - - -, Ny)] is connected.
Thereby, there at least one integer, for instadce 1 enablingG® [M(nl, ny, - --,nm)]
to be connected. This completes the proof. O

According to Theorem 8.2, we get immediately two conclusions following.

Corollary 9.3.1 For a given finitely combinatorial manifol¥, all connected graphs
G [I\W] are isomorphic if d< ny, denoted by G[I\W]
Corollary 9.3.2 If there are k1-manifolds intersect at one point p in a finitely combina-

torial manifold M, then there is an induced subgrapk*Kin G- [l\ﬂ

Now we define an edge s&f (M) in G- [M| by
E*(M) = E(G*[M])\E(G**[M]).

Then we get a graphical recursion equation for graphs oftfjncombinatorial manifold
M as a by-product.

Theorem9.3.3 Let M be a finitely combinatorial manifold. Then for any integeda- 1,
there is a recursion equation®@ [M] = G [l\ﬂ — Ed (M) for labeled graphs ofl.

Proof It can be obtained immediately by definition. O

Now let H(ny,---,Nny) denotes all finitely combinatorial manifoldi?(nl, o, Nm)
and@glo0, n,] all vertex-edge labeled grapk with 6, : V(G") U E(G') — {0,1, - -, Ny}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with Giis a union of complete
graphs and vertices labeled with O can only be adjacent taesrabeled with 1.

(2)For each edge = (u,V) € E(G), 72(€) < min{ry(u), 1(V)}.

Then we know a relation between s&in;, ny, - - -, ny) andG(|0, ny], [0, ny]) fol-
lowing.
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Theorem9.34 Letl <n; <n, <--- < npm> 1be a given integer sequence. Then
every finitely combinatorial manifol¥ € H(ny, ---, ny) defines a vertex-edge labeled
graph [0, ny]) € G[0,ny]. Conversely, every vertex-edge labeled gragfoG,]) €
G[0, ny] defines a finitely combinatorial manifol € H(n,, - - -, Nym) With a1—1 mapping

6 : G([0, nm]) — M such tha®(u) is a#(u)-manifold inM, 74(u) = dimé(u) andr(v, w) =
dim(@(v) N 8(w)) for Yu € V(G(]O, ny])) and V¥ (v, w) € E(G([0, ny))).

Proof By definition, for¥M e H(n,,-- -, ny) there is a vertex-edge labeled graph
G([0,nm]) € G([0,n]) and a 1- 1 mappingd : M — G([0, n]) such thato(u) is a
6(u)-manifold in M. For completing the proof, we need to construct a finitely bbm
natorial manifoldM € H(ny, - - -, ny) for YG([0, ny]) € G[0, nw] with 74(u) = dimé(u)
andr,(v, w) = dim(@(v) N 6(w)) for Yu € V(G([0, ny])) and VY (v,w) € E(G([0, ny])). The
construction is carried out by programming following.

STEP 1 Choosd€G([0, ny])| — [Vol manifolds correspondent to each vertewith a di-

mensionahy if 71(u) = n;, whereV, = {uju € V(G([0, ny])) andr,(u) = 0}. Denoted by
V., all these vertices i6([0, ny]) with label> 1.

STEP 2 ForVYu; € V1 with 71(ug) = ny,, if its neighborhood selg o n,p (U1) (M Va1 =

VEAZ VY with Ty () = g, 1a(V) = N, -, (™) = magy, then let the
manifold correspondent to the vertex with an intersection dimensiom(ulv"l) with

manifold correspondent to the verléleor 1 <i < 5(uy) and define a vertex sag = {u,}.

STEP 3 If the vertex set\| = {us, Up, - - -, U} € V51 has been defined andl; \ A, # 0, let
U1 € Va1 \ A with a labeln;,. Assume

(NG([O,I’lm]) (u|+1) ﬂ VZl) \ Al = {V|1+]_’ V|2+]_’ Y V|S+(_l:lll_l+l)}

with 71(V%,) = Npa, 71(Vy) = Naz, 71 (V8™Y) = Niyigu.y. Then let the man-
ifold correspondent to the vertax,; with an intersection dimensionz(u|+1v}+1) with
the manifold correspondent to the verlv%gl, 1 < i < 9(u,1) and define a vertex set
Ay = A U{Ui)

STEP 4 Repeat steps 2 and 3 until a vertex 8et= V., has been constructed. This
construction is ended if there are no vertiees V(G) with r,(w) = 0, i.e.,Vs; = V(G).
Otherwise, go to the next step.

STEP 5 ForVw € V(G([0, nm])) \ Va1, assumeNg o,y (W) = {w, Wo, -+, We}. Let all
these manifolds correspondent to vertiegsws, - - -, We intersects at one point simulta-
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neously and define a vertex g€t = A; (J{w}.

STEP 6 Repeat STEP 5 for vertices WG([O, ny])) \ V-1. This construction is finally
ended until a vertex sét;,, = V(G[ny, ny, - - -, Ny]) has been constructed.

A finitely combinatorial manifoldVl correspondent t&([0, ny,]) is gotten whemy;,
has been constructed. By this construction, it is easiljfiedrthatM € H(ny, - - -, Ny
with 71(u) = dim@(u) andr,(v, w) = dim(@(v) N 6(w)) for Yu € V(G([O, ny])) andV (v, w) €
E(G([0, npm))). This completes the proof. 0J

9.3.3 Euler-Poincag Characteristic. the Euler-Poincaré characteristic dE8V-complex
M is defined to be the integer

X = (-1
i=0

with «; the number of-dimensional cells i?t. We calculate the Euler-Poincaré charac-
teristic of finitely combinatorial manifolds in this subsien. For this objective, define a
clique sequencgClI(i)}i-1 in the graphGh [l\ﬂ by the following programming.

STEP 1 LetCI(G"|M]) = lo. Construct
Cllo) = {K£ K, KEIKP > G-[M] andK{® N K? = 0,
oravertexe V(G- |M]) fori# j,1<i,j < p}.

STEP2 LetG, = |J K! andC|(GL[|\7|’] \ G1) = 1. Construct
KleCl(l)

Cl() = (KK - KK > G [M] andK! n K} = 0
oravertexe V (G- [M|) fori # j,1<i,j < q}.

STEP 3 Assume we have construct€d{l,_,) foranintegek > 1. LetG, = |J Kt
K'k-1eCI(l)

an M LU---UGY) = l,. We construct
dcl(GH[M]\ (G GJ) = . W
Ci(h) = {K{ Ky, KFK > GH[M] andK* n Kl = 0,
or a vertexe V (G- [M]) fori#j,1<i,j< r}.

STEP 4 Continue STEP 3 until we find an integesuch that there are no edges in
—~ t
G [M[\ UG
i=1
By this clique sequenc€l(i)}i-1, we can calculate the Euler-Poincaré characteristic
of finitely combinatorial manifolds.
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Theorem9.3.5 Let M be a finitely combinatorial manifold. Then

x(M)= > ) DT (Maf ][ M)

KkeCl(k).k=2 M; J. eV(KK),1<j<s<k

Proof Denoted the numbers of all theisdimensional cells in a combinatorial mani-
fold M or in a manifoldM by @; anda;(M). If G- [l\ﬂ is nothing but a complete grapti
with V (GL [M]) = {My, My, -- -, My}, k > 2, by applying the inclusion-exclusion principe
and the definition of Euler-Poincaré characteristic wetlyat

x (M)

b i

I}
o

(-1

1 D, DT a(My )My

MijeV(Kk),lsjsssk

> (—1)5”_2( e (M () (M)

MijeV(Kk),lsjsssk

> DMy ()W)

MijeV(Kk),lsjsssk

for instancey (M) = x(My) + x(Mz) = x(My N My) if GL[ ] = K2 andV(GL[M]) =
{M1, M,}. By the definition of clique sequence Gf |M [ ] we finally obtain that

x®@)= > Y (M) M), -

KkeCl(k),k>2 MijeV(Kk),lgjsssk

Particularly, ifG- [I\ﬂ is one of some special graphs, we can get interesting conse-
quences by Theorem®5.

Corollary 9.3.3 LetM be a finitely combinatorial manifold. Ifqﬂ] is K3-free, then

x(M)= > - > x (M M),

MeV(GL[M]) (M1,Mp)eE(GL[M])

Particularly, if dim (My (N M,) is a constant for anyM;, M,) € E (GL [M]) then

x(M)= > M) —x (M2 Mo 'E M])‘

MeV(GL[M])
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Proof Notice thatG-[M] is K3-free, we get that

X(M) = Z (X(M1)+X(M2) _X(Mlﬂ Mz))

(M1,M2)€E(GL[M])

D M) M) - DT (Ma[ M)

(M1,M2)eE(GL[M]) (M1,M2)eE(GL[M])
= Z XA(M) - Z X(Mlﬂ Mz)-
MeV(GL[M]) (M1,M2)eE(GL[M])

O
Since the Euler-Poincaré characteristic of a manifdid O if dimM = 1(mod2), we
get the following consequence.

Corollary 9.3.4 Let M be a finitely combinatorial manifold with odd dimension fgm
for any intersection of k manifolds withx2. Then

x(M)= > x(m).

MeV(GL[M])

§9.4 TOPOLOGICAL SPACES COMBINING WITH MULTI-GROUPS

9.4.1 Topological Group. A topological group is a combination of topological space
with that of group formally defined following.

Definition 9.4.1 A topological groupG; o) is a Hausdoff topological space G together
with a group structure oifG; o) satisfying conditions following:

(1) The group multiplicatior : (a,b) » aob of Gx G — G is continuous;
(2) The group inversion g» g~* of G — G is continuous.

Notice that these conditions (1) and (2) can be restateo\iotly by the definition of
continuous mapping.

(1) Letab e G. Then for any neighborhood W obd, there are neighborhoods
U, V of aand b such that U W, where UV= {xoy|xe U, y e V};

(2') For ae G and any neighborhood V of § there is a neighborhood U of a such
thatU c V.
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It is easily verified that conditions (1) and (2) can be repthby a condition (3)
following:

(3) Letab e G. Then for any neighborhood W ob#1, there are neighborhoods
U, V of aand b such that UV c W.

A few examples of topological group are listed in the follagi

(1) (R"+) and (C"; +), the additive groups afi-tuple of real or complex numbers
are topological group.

(2) The multiplicative groupy; -) of the complex numbers with = { z| |7 = 1} is
a topological group with structurg*.

(3) Let (C*;-) be the multiplicative group of non-zero complex numbetse Topo-
logical structure of C*;-) is R? — {(0,0)}, an open submanifold of complex plaf&.
Whence, it is a topological group.

(4) LetGl(n,R) be the set oh x n non-singular matriceM,, which is a Euclidean
space ofR" — (0,0, - - -, 0). Notice that the determinant function de¥l;, — R is contin-

n
uous because it is nothing but a polynomial in theftoents ofM,. Thus GI(n, R); det)
is a topological group.

Some elementary properties of a topological gra@po{ are listed following.

(P1) Leta € Gforintegers 1< i < nandal o & o---oay = b, whereg is
an integer. By condition (}, for a V(b) neighborhood ob, there exist neighborhoods
Ui, Uy, -+, Uy of ag, a,---,a, such thaf o US o --- o U C V(D).

(P2) Leta e G be achosen element arfifx) = xo a, f'(x) = ao xandg(x) = x*
for Yx € G. lItis clear thatf, f” and¢ are bijection orG. They are also continuous. In
fact, leth’ = X' - afor X € G andV a neighborhood olf’. By condition (1), there are
neighborhood8), W of X anda such thatJW c V. Notice thata € W. ThusUa c V. By
definition, we know that is continuous. Similarly, we know thdt and¢ are continuous.
Whence,f, " and¢ are homeomorphism da.

(P3) Let E,F c be open and closed subsets, respectively. Thewdoe G, by
property (P2)Ea, aE, E-! are open, anéa, aF, F~! are closed also.

(P4) A topological spacé& is homogenous there is a homeomorphisih: S — S
for Vp,g € S such thaff (p) = g. Leta = pt o qin (P2). We know immediately that the
topological group@; o) is homogenous.
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9.4.2 Topological Subgroup. Let (G; o) be a topological group and c G with condi-
tions following hold:

(1) (H, o) is a subgroup ofG; o);
(2) His closed.
Such a subgrougH; o) is called aopological subgroupf (G; o).

Theorem9.4.1 Let(G; o) be a topological group and I€H; o) be an algebraic subgroup
of (G; o). Then(H; o) is a topological subgroup dfG; o) with an induced topology, i.e.,
S is open if and only if SS HN T, where T is open in G. Furthermorg; irc) is a
topological subgroup ofG; o) and if H< G, then(H; o) is a topological normal subgroup
of (G; o).

Proof We only need to prove that: H x H — H is continuous. Let, b € H with
ao bt = candW a neighborhood of in H. Then there is an open neighborhddtof ¢
in G such thaWwW = H (" W'. Since G; o) is a topological group, there are neighborhoods
U’, V' of a andb respectively such that’(V’)~* ¢ W’. Notice thatU = H U’ and
V = H( V' are neighborhoods @ andb in H by definition. We know thaV-! c W.
Thus H; o) is a topological subgroup.

Now leta,b € H. Thenao b € H. In fact, bya, b € H, there exist elements
X,y € H such thaixo y* € H W, which implies thatio b* € H. Whence {; irc) is a
topological subgroup.

ForVce Gandac H, if H< G, thencoaoc™ e H. LetV be a neighborhood of
coaoct Then there is a neighborhood dfsuch thatUc™? c V. Sincea € H, there
existx e HN U suchthato xoc™® e HNV Thusco xo ¢ € H. Whence, ;o) is a
topological normal subgroup o6 o). O

Similarly, there are two topological normal subgroups in tapological group@; o),
i.e.,{1g} and G; o) itself. A topological group only has topological normabguoupd 1}
and G; o) is called asimple topological group

9.4.3 Quotient Topological Group. Let (G; o) be a topological group and let<1G be a
normal subgroup ofG; o). Consider the quotiei@/H with the quotient topology, namely
the finest topology o /H that makes the canonical projectign G — G/H continuous.
Such a quotient topology consists of all sg(d), whereU runs over the family of all open
sets of G; o). Whence, ifU c Gis open, themtq(U) = UH = {Uhh € H} is the union
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of open sets, and so it is also open.

ChooseA, B € G/H, a € A. Notice thatB = bH is closed anc ¢ B. There exists a
neighborhoodJ(a) of awith U(a) " B = 0. Thus the set)’ consisting of allxH, x € U
is a neighborhood oA with U’ " B = 0. Thus G/H; o) is Hausdoft space.

By definition,q(a) = aH. Let U’ be a neighborhood 4, i.e., consisting oiH
with x € U andU a neighborhood ofG; o). Notice thatUH is open anda € UH.
Whence, there is a neighborhoddf a such thatv ¢ UH. Clearly,q(V) c U’. Thusq
is continuous.

It should be noted that: G/HxG/H — G/H is continuous. In fact, leA, B € G/H,
C = AB !t andW’ a neighborhood of. ThusW’ consists of elemen&sW, whereW is a
neighborhood inG; o) andz € W. BecauseC € W', there exists an elemeate W such
thatC = cH. Letb e Banda = cob. Thena € A. By definition, there are neighborhoods
U, V of aandb respectively such thalV-! c Win (G; o). Define

U ={xH|xeU} and V' ={yH|ye V}.
There are neighborhoods AfandB in (G/H; o), respectively. BJH < G, we get that
(xH)(yH)™ = xHH 'y = xHy? = (xoy H)H e W".

ThusU’ (V') c W, i.e.,,o : G/H x G/H — G/H is continuous. Combining these
discussions, we get the following result.

Theorem 9.4.2 For any normal subgroup H of a topological gro@; o), the quotient
(G/H; o) is a topological group.

Such a topological grouf/H; o) is called aquotient topological group

9.4.4 Isomorphism Theorem. Let (G; o), (G’; ®) be topological groups anfd: (G; o) —
(G’; o) be a mapping. Iff is an algebraic homomorphism, also continuous, thes
called ahomomorphisnfrom topological group@; o) to (G’; ). Such a homomorphism
is openedf it is an opened topological homeomorphism. Particulafly is an algebraic
iIsomorphism and a homeomorphisiis called anisomorphisnfrom topological group
(G;0)to (G'; o).

Theorem 9.4.3 Let (G; o), (G’; e) be topological groups and g (G; o) — (G';e) be
an opened onto homomorphiskerg = N. Then N is a normal subgroup (&; o) and
(G;0)/N = (G} o).
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Proof Clearly, N is closed by the continuous property @fand N = Kerg. By
Theorem 12.4, Kerg <1 G. Thus (N; o) is a normal subgroup of3; o). Letx' € G’. Then
g(X'N) = X'. Definef : G/N — G’ by f(X’N) = X'. We prove such & is homeomorphism
from topological spac& to G/N.

Leta’ € G, f(a’) = A. Denoted byJ’ the a neighborhood ok in (G/N; o). Then
U’ consists of cosetgN for x € U, whereU is a neighborhood ofG; o). Leta € U
such thatA = aN. Sinceg is opened and(a) = &, there is a neighborhood’ of &
such thag(U) > V’. Now letx € V’. Then there ix € U such thaig(x) = x'. Thus
f(X') = XN € U’, which implies thatf (V") c U’, i.e., f is continuous.

Let A = aN € G/N, f1}(A) = a andU’ a neighborhood off. Becauseg is
continuous andj(a) = &, there is a neighborhood afsuch thag(V) c U’. Denoted by
V’ the neighborhood consisting of all cosgtd, wherex € V. Notice thaig(V) c U’. We
get thatf (V') c U’. Thusf~tis also continuous.

Combining the above discussion, we know thatG/N — G’ is a homeomorphism.
Notice that such d is an isomorphism of algebraic group. We know it is an isorhm
of topological group by definition. O

9.4.5 Topological Multi-Group. A topological multi-group(#; ©) is an algebraic
P —_~ m m
muIti-systerT(;zf; @’) with o7 = | J 2 and& = | J{o;j} with conditions following hold:
i=1 i=1

(1) (%, o) is a group for each integey 1 < i < m, namely, (7, 0) is a multi-
group;

(2) o is a combinatorially topological spack;, i.e., a combinatorial topological
space underlying a structu@

(3) the mappingd, b) — ao b tis continuous foiva,b € 4, Yo € 0;, 1 <i <m.

For example, leR™,1 < i < m be Euclidean spaces with an additive operatipn
and scalar multiplicationdetermined by

(A1 - X1, A2 X, =+, An = X)) +i (G- Y. 82+ V2o 5 Loy Vi)

= (- X+ &Y, A2 Xo+ L2 Yo, o, An - Xy + 4oy i)
for V4,4 € R, where 1< 14,4 < ni. Then eactR"™ is a continuous group undet;.
Whence, the algebraic multi-syste#(ny, - - -, Ny); ©) is a topological multi-group with
a underlying structur& by definition, whereZ’ = _G{+i}. Particularly, ifm = 1, i.e.,
ann-dimensional Euclidean spa&® with the vectoIFladditiver and multiplication is a
topological group.
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A topological spaces is homogenoudf for Ya,b € S, there exists a continuous
mappingf : S — S such thatf (b) = a. We know a simple characteristic following.

Theorem 9.4.4 If a topological multi-grou.%G; ©) is arcwise connected and associa-
tive, then it is homogenous.

Proof Notice that¥% is arcwise connected if and only if its underlying graphs
connected. FoY¥a, b € .75, without loss of generality, assuraes .74 andb € 7 and

P(a b) = s --- A, s20,
a path from.J# to 7 in the graphG. Choosec; € % N 74, C; € 4 N H5, -,
Cs € J 1 NI Then
aoqgCy 01 CIl 07 Cp03C304 051 Cgtogh™
is well-defined and
ao0gCq 01 CIl 02Cp03C304-++ 051 Cotoshblosb=a

LetL = @ogCy01C 1 0pCr03C504- - 05 1C5osb™tos. ThenL is continuous by the definition
of topological multi-group. We finally get a continuous magplL : .¥s — %5 such that
L(b) = Lb = a. Whence, (/; ) is homogenous. O

Corollary 9.4.1 A topological group is homogenous if it is arcwise connected

A multi-subsystem &; O) of (“; ©) is called atopological multi-subgroug it
itself is a topological multi-group. Denoted b¥,;, < .“s. A criterion on topological
multi-subgroups is shown in the following.

Theorem 9.4.5 A multi-subsysterfi%y; O,) is a topological multi-subgroup dt7s; ©),
whereO; c O if and only if it is a multi-subgroup df#5; ©) in algebra.

Proof The necessity is obvious. For theflsciency, we only need to prove that for
any operatiorr € O,, ao bl is continuous in%;. Notice that the condition (3) in the
definition of topological multi-group can be replaced by:

for any neighborhood M, (acb™) of aocb™ in .74, there always exist neighborhoods
N (a) and Ny, (b™1) of a and b such that N, (a) o Ny, (b™) c Ny (ao b™), where
N (@) 0 Ny (b7) = X0 VX € Ny (@), y € Ny (b71))

by the definition of mapping continuity. Whence, we only neéedhow that for any
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neighborhoodN 4, (xoy™1) in 44, wherex, y € .4, ando € 04, there exist neighborhoods
N, (X) andNg, (Y1) such thatN g, (X) o Ny, (Y1) € Ng, (xo y 1) in %y. In fact, each
neighborhoodN &, (xo y1) of xo y™* can be represented by a fohy, (xoy ™) N %y. By
assumption,.¢G; ©) is a topological multi-group, we know that there are nemloods
Ny (%), Noe (y1) of xandy ™ in .7 such thalN .y, (X) o N (Y1) € Ny (X oy t). Notice
thatN .y, (X)N-Z, No (Y HN.Z are neighborhoods ofandy ™t in 4. Now letNg, (X) =
Noe(¥) N Ly andNg, (y™") = Nyg(y™) Ny, Then we get thalNy, (X) o Ng, (yH) ©
Ny, (Xoyt)in Zy, i.e., the mappingxy) — xoyis continuous. Whence4; O;) is

a topological multi-subgroup. O

Particularly, for the topological groups, we know the faliag consequence.

Corollary 9.4.2 A subset of a topological grouj’; o) is a topological subgroup if and
only ifitis a closed subgroup df’; o) in algebra.

For two topological multi-groups¥s,; 1) and (%,; 0>), amappingv : (“s,; 01) —
(-7G,; 0>») is ahomomorphisni it satisfies the following conditions:

(1) w is a homomorphism from multi-groups#;,; 031) to (“s,; 0>), namely, for
VYa,b e ./, ando € 01, w(ao b) = w(@w(c)w(b);

(2) w is a continuous mapping from topological spac&s to .75, i.e., forVx e .7,
and a neighborhood of w(X), w (V) is a neighborhood of.

Furthermore, ifw : (,; 01) — (&, 02) is an isomorphism in algebra and a
homeomorphism in topology, then it is called momorphism particularly, anauto-
morphismif (./5,; 01) = (Y,; 0>) between topological multi-groups#4,; ¢1) and
(FG,: O2).

§9.5 COMBINATORIAL METRIC SPACES

—_ m
9.5.1 Multi-Metric Space. A multi-metric space is a unioM = [ J M; such that each
i=1
M; is a space with a metrig for Vi, 1 < i < m. Usually, as we say a multi-metric space
m

M = [J M;, it means that a multi-metric space with metyigsp,, - - -, pm such that i, ;)
i=1

— m —
is a metric space for any integef < i < m. For a multi-metric spacM = | J M;, xe M
i=1
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and a positive number, ar-disk B(x, r) in M is defined by
B(x,r) = { y| there exists an integér 1 < k < msuch thap(y,X) <r,y e M}

Remark 9.5.1 The following two extremal cases are permitted in multitmeespaces:

(1) there are integens, i, ---,is such thatM;, = M;, = --- = M, wherei; €
{1,2,---.m,1<j<s

(2) there are integerk,ly,---,ls such thatp, = p,
{1,2,---.m,1<j<s

pi,, Wherel; ¢

Theorem 9.5.1 Letpq,p», -+, pm be m metrics on a space M and let F be a function on
R™ such that the following conditions hold:

(1) F(Xl’ X2,”',Xm) > F(yl,yZ,"’,ym) fOI’VI,l < | < m, X > yla
(2) F(Xl,XZ,”’,Xnﬂa:OonlyifX]_:X2:---:M:O;
(3) for two m-tuplesxs, Xz, - - -, Xm) @nd (yz, Yz, . Ym),

F(Xt, X2, - -+, Xm) + F(Y1, Yo, -+, Ym) = F(X0 + Y1, X2 + Yo, -+, Xm + Ym)-

Then Ko1, 02, - - -, pm) IS also a metric on M.

Proof We only need to prove th#& (o1, 02, - - -, pm) Satisfies those conditions of met-
ric for ¥x,y,z € M. By the condition (2),F(o1(X ¥), 02(XY), - -, om(X%Y)) = 0 only if
pi(x,y) = 0 for any integer. Sincep; is a metric onM, we know thatx = y.

For any integer, 1 < i < m, sincep; is a metric orM, we know thap;(x, y) = pi(Y, X).
Whence,

F(pl(x, y)’pZ(X’ y)’ e ,pm(X, y)) = F(pl(y’ X)’ pZ(y’ X)’ e ’Pm(y’ X))

Now by (1) and (3), we get that

F(pl(x’ y)’pZ(X’ y)’ U ,pm(X, y)) + F(pl(y’ Z)’ pZ(y’ Z)’ e ,pm(y’ Z))
= F(pl(x’ y) + Pl(y’ Z)’PZ(X, y) + pZ(y’ Z)’ e ’Pm(x’ y) + Pm(y’ Z))
2 F(pl(x’ Z)’PZ(X, Z)’ e ’Pm(x’ Z))

Therefore F (o1, 02, - -, pm) IS @ metric onM. O

Corollary 9.5.1 If p1, 0o, -, pm aremmetrics on a spackl, thenp; + p, + - - - + p, and

Py P2 44+ PT are also metrics oM.

l1+p1 l+p 1+ pm
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9.5.2 Convergent Sequence in Multi-Metric Space A sequencéx,} in a multi-metric
—_ m —_
spaceM = |J M, is said to beconvergent to a point,x € M if for any numbere > 0,
i=1
there exist number andi, 1 < i < msuch that

pi(%, X) < €

providedn > N. If {x,} is convergent to a poirk, x € M, we denote it by limx, = x.
n
We get a characteristic for convergent sequences in mdtitospaces following.

—_ m
Theorem 9.5.2 A sequencéx,} in a multi-metric spaceM = | M; is convergent if and
i=1
only if there exist integers N and k < k < m such that the subsequer{egin > N} is a
convergent sequence (M, py).

Proof If there exist integerdl andk, 1 < k < msuch thafx,|n > N} is a convergent
sequence inNly, px), then for any numbesr > 0, by definition there exist an integBrand
a pointx, X € My such that

A%, X) < €
if n> maxN, P}.
Now if {x,} is a convergent sequence in the multi-spMteby definition for any

positive numbek > 0, there exist a poink, x € M, natural number\(e) and integer
k,1 < k < msuch that ifn > N(e), then

ok(Xn, X) < e

Thus{xnIn > N(€)} ¢ My and{x,/n > N(e)} is a convergent sequence My o). O

Theorem 9.5.3 LetM = Lnj M; be a multi-metric space. For two sequend¢gs, {yn}
in M, if Ii[]n Xn = Xo, Ii[]n y:l: Yo and there is an integer p such thag, ¥o € M, then
lim oo Yo) = 5%, Vo)

Proof According to Theorem 8.2, there exist integer; andN, such that ifn >

maxNi, N2}, thenx,, y» € M,. Whence,

pp(xn, Yn) < pp(xn, XO) + pp(XO, YO) + pp(yn, YO)

and
pp(XO’ YO) < pp(xn, XO) + pp(xn, Yn) + pp(yn, YO)
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Therefore,
lop(Xn, Yn) = Pp(X0, Yo)l < pp(Xn, X0) + Pp(Yns Yo)-
Now for any numbeg > 0, since Iri]mxn = X and Iinmyn = Yo, there exist numbers
Ni(e), Ni(e) > Ny and Na(e), No(e) > N, such thatpp(xn, Xo) < g if n > Ny(e) and
Pp(Yn, Yo) < g if n> N»(¢). Whence, if we choose > maXNj;(€), N»(e)}, then

lop(Xn, Yn) = op(X0, Yo)l < €. 0

Can a convergent sequence has more than one limiting poirtsZollowing result
answers this question.

—_— m
Theorem 9.5.4 If {X,} is a convergent sequence in a multi-metric spite () M;, then
i=1
{Xn} has only one limit point.

Proof According to Theorem 8.2, there exist intege andi, 1 < i < msuch that
Xn € M; if n> N. Now if
lim x, = x; and limx, = X,
n n

andn > N, by definition,
0 < pi(X1, X2) < pi(Xn, X1) + pi(Xn, X2).
Thusp;i(xy, X2) = 0. Consequentlygy = Xs. O

Theorem 9.5.5 Any convergent sequence in a multi-metric space is a boupaiads set.

Proof According to Theorem 8.4, we obtain this result immediately. U

9.5.3 Completed Sequence in Multi-Metric Space A sequencéx,} in a multi-metric
spaceM = U M; is called aCauchy sequend&for any numbele > 0, there exist integers

N(e) ands, 1 < s< msuch that for any integerg, n > N(e), ps(Xm, X1) < €.

Theorem 9.5.6 A Cauchy sequende,} in a multi-metric spaceM U M; is convergent

if and only if [{xn} () Myl is finite or infinite but{x,} N M is convergent i(My, px) for
vk, 1<k<m.

Proof The necessity of conditions in this theorem is known by Theof5.2. Now
we prove the sfliciency. By definition, there exist integessl < s < mandN; such that
Xn € Mg if n > N;. Whence, ifl{x,} N My| is infinite and Im{xn } () Mg = X, then there
must bek = s. Denote by{X,} () Mk = {Xk1, X2, * = * » Xkns * * °}-
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For any positive numbee¢ > 0, there exists an integeé¥,, N, > N; such that

ok(Xm, Xn) < % and px(Xan, X) < % if mn > N,. According to Theorem 8.3, we
get that

Pr(Xns X) < Pk, Xkn) + Pk(Xins X) < €
if n> N,. Whence, Ir!mxn =X O

A multi-metric spaceM is said to becompletedif its every Cauchy sequence is
convergent. For a completed multi-metric space, we obtainimportant results similar
to Theorems 5.3 and 15.4 in metric spaces.

Theorem9.5.7 LetM = U M; be a completed multi-metric space. Foradisk sequence
{B(en, Xn)}, Wheree, > Ofor n=1,23,-- if the following conditions hold:

(1) B(E]_, X]_) B B(Ez, X2) B B(63, X3) D--+D B(En, Xn) D BN
2) lim & =0,
Nn—+oo

+00
then ) B(en, Xn) Only has one point.
n=1

Proof First, we prove that the sequenog} is a Cauchy sequence . By the con-
dition (1), we know that iftn > n, thenxy, € B(ém, Xm) C B(en, Xn). Whencepi(Xm, X)) < &
providedXny, X, € M; for Vi, 1 <i <m.

Now for any positive numbet, since lim g, = 0, there exists an integé(e) such

nN—-+0co

that if n > N(¢), thene, < €. Therefore, ifx, € M, then lim x,, = X,. Thereby there
m—+oo

exists an integeN such that ifm > N, thenx,, € M, by Theorem %.2. Choice integers
m,n > maxN, N(e)}, we know that

P1(Xm %) < & < €.

So{x,} is a Cauchy sequence.

By the assumption thafl is completed, we know that the sequefg is convergent
to a pointxg, xo € M. By conditions of {) and i), we get thap,(xo, X.) < & if M — +co.
Whence X, € ﬂ B(en, Xn)-

+00
Now if there is a poiny € [ B(en, %), then there must bge M,. We get that
n=1
0< iy, %) = lim py(y, x0) < lim &, = 0

by Theorem %.3. Thusp(y, X)) = 0. By the definition of metric function, we get that
Y = Xo. O
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Let M; andM, be two multi-metric spaces and let M; — M, be a mappingxo €
My, (%) = Yo. ForVe > 0, if there exists a numbersuch thatf (x) = y € B(e, Yo) € M,
for Vx € B(6, Xp), i.e.,

f(B(6. x0)) < B(e. o),

then f is calledcontinuous at pointx A mappingf : M; — M, is called acontinuous
mappingfrom My to M, if f is continuous at every point ofl;.

For a continuous mappinfyfrom M; to M, and a convergent sequenieg} in My,
Ii[]n Xn = Xo, We can prove that

lim (%) = (%o)-

—_ m —_ —_—
For a multi-metric spac® = |J M; and a mapping : M — M, if there is a point
i=1

x* € M such thafT x = x, thenx" is called afixed pointof T. Denote the number of
fixed points of a mapping in M by *®(T). A mappingT is called acontractionon a
multi-metric spaceM if there are a constant,0 < @ < 1 and integers, j,1 <i,j <m
such that foivx,y € M, Tx Ty € M; and

Pi(TXTY) < api(x,y).

—_ m
Theorem 9.5.8 Let M = [J M; be a completed multi-metric space and let T be a con-
i=1
traction onM. Then

1<Fo(T)<m
Proof Choose arbitrary points, yo € M; and define recursively
Xne1 = Txn, Yne1 = Txn

forn=1,23,---. By definition, we know that for any integexn > 1, there exists an
integeri, 1 < i < msuch that,, y, € M;. Whence, we inductively get that

0 < pi(X%n, Yn) < @"p1(Xo, Yo)-

Notice that O< a < 1, we know that lima" = 0. Thereby there exists an intedgr

nN—-+0co

such that
Pio(lim Xq, lim y,) = 0.
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Therefore, there exists an intedéy such thatx,, y, € M;, if n > N;. Now if n > N;, we

get that
Pio(Xns1s %) = Pio(T %0, T X0-1)
< apig(Xn, Xn-1) = apio(T Xa-1, T %-2)
< a'zpio(xn—l, Xp2) < -+ < an_Nlpio(XN1+1, XNy )-

and generally,

IA

Pio(Xns Xn41) + Pig(Xn+1, Xne2) + -« + Pig(Xn1, Xn)

(a/m—l + a,m_z + .0 4 an)pio(XN1+1’ XNJ_)
n

[0
mpio(XNﬁl’ Xy;) = 0 (MmN — +00).

Pio (Xm» Xn)

IA

IA

for m> n > N,. Therefore{x,} is a Cauchy sequence M. Similarly, we can also prove
{Yn} is a Cauchy sequence.
BecauseM is a completed multi-metric space, we know that

limx, =limy, =Z.
n n

Now we provez is a fixed point ofT in M. In fact, bypi,(lim X,, limy,) = 0, there exists
n n
an integemlN such that

Xn, Yn, Txm Tyﬂ € Mio

if n> N + 1. Whence,

0<pi(Z.TZ)

IA

pio(Z*’ Xn) +Pio(Yn,TZk) +Pio(xn, Yn)
pio(Z*’ Xn) + a,pio(yn—l’ Z*) + Pio(xn, yn)

IA

Notice that
1M pig(Z, %) = 1IM_pig(yn-1,2) = M pio(Xn, yn) = 0.
We getp;(z',TZ) =0, i.e.,.Tz = 7.
For other chosen points, vo € My, we can also define recursively,; = Tu,, Vy.1 =
Tu* € M;,. Since

i»

Tv, and get a limiting point linu, = limv, =u* e M
n n
pio(Z*’ U*) = pio(Tzk’ TU*) < apio(Z*’ U*)

and O< «a < 1, there must be* = u*.
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Similarly, consider the points iM;, 2 < i < m. We get that
1< o(T)<m O

Particularly, letm = 1. We getBanach theorenn metric spaces following.

Corollary 9.5.2(Banach)Let M be a metric space and let T be a contraction on M. Then
T has just one fixed point.

§9.6 RESEARCH PROBLEMS

9.6.1 Themathematical combinatori¢particularly,spacial combinatoricgs a universal

theory for advancing mathematical sciences on CC conjediaol9], a philosophi-
cal thought on mathematics. Applications of this thought ba found in references
[Mao10]-[Maoll], [Maol7]-[Mao38], Particularly, theseomographs [Mao37]-[Mao38].

9.6.2 The inherited graph of a multi-spaSe= U % is uniquely determined by Definition
9.1.1, which enables one to classify multi- space combinatgridhe central problem is
to find an applicable labeling, i.e., the characteristie on L N Z;.

Problem 9.6.1 Characterize multi-spaces with an inherited graphreGZ’, where 7 is
a family of graphs, such as those of trees, Euler graphs, Hanian graphs, factorable
graphs, n-colorable graphs; -, etc..

Problem 9.6.2 Characterize inherited graphs of multi-syste(#s O) with A = U A

i=1
andO = {o|1 < i < n} such that(A; o) is a well-known algebraic system for integers
1 <i < n, for instance, simple group, Sylow group, cyclic group, etc..

9.6.3 Similarly, consider Problems®1-9.6.2 for combinatorial Euclidean spaces.

Problem 9.6.3 Characterize a combinatorial Euclidean space underlyingpdy G and
calculate it characteristic, for example, dimension, isbm, - - -, etc..

9.6.4 For a given integer sequencen, < n, < - - - < Ny, a combinatoriaC"-differential
manifold (M(nl, n,, - nm)'ﬁ) is a finitely combinatorial manifolﬂ(nl, Ny, - -, Ny,
M(Nng, Ny, -+, Ny) = U U, endowed with a atlagl = {(Uy; @)l € 1} onM(ng, Ny, -+ -, Ny)
for an integeih, h > 1 with conditions following hold.
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(1) {U,; a € 1} is an open covering dﬁ(nl, Ny, -+, N).
(2) ForVa,pB €|, local charts{,; ¢,) and Ug; ¢p) areequivalenti.e.,U, Uz = 0
or U, M Ug # 0 but the overlap maps

g5 95 (Ua [ | Us) = 95(Up) and g, - ¢ (Ua [ Up) = 0a(Ua)

areC"-mappings, such as those shown in Fig.Bfollowing.

Pa

5

e(Us M Up)
©pPy
MU g 0p(Ua M Up)

e

“p

Fig.9.6.1

(3) A is maximal, i.e., if U; ¢) is a local chart oM(ny, n,, - - -, ) equivalent with
one of local charts itA, then {U; ¢) € A.

Such a combinatorial manifolﬁ(nl, Ny, - - -, Ny) is said to besmoothf it is endowed
with a C>-differential structure. Lef be an atlas oM(nl, ny,---,Ny). Choose a local
chart U; @) in A. For¥p e (U; @), if @, : Uy — _SL(j) B"(P andg(p) = dim(_S((%) B"(M), the
following (p) X Ny Matrix [@(p)] - -

xit xSP 1(8(p)+1) iny
. X oo X R 0
E ce % X2(§(p)+1) RRVAL ce 0
[w(p)] = s(p) s(p)
% cen _Xs(sg())§;p) XS(p)(§(p)+l) cee oo XAPINg -1 yes(PIN(p)
P P

with XS = xisfor 1 < i,j < §(p),1 < s < §p) is called thecoordinate matrix of p
For emphasizer is a matrix, we often denote local charts in a combinatoiigiecential
manifold by U; [@]). Applying the coordinate matrix system of a combinathdigferen-
tial manifold (M(ny, Ny, - - -, Ny); A), we can defin€" mappings, functions and establish
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differential theory on combinatorial manifolds. The readerefeneed to [Mao33] or
[Mao38] for details.

9.6.5 Besides topological multi-groups, there are also topallgnulti-rings and multi-
fields in mathematics. A distributive muIti-systeém?;ﬁl < 6"2) with o7 = iCJl S, Oy =
_Ul{-i} ando, = _Ul{+i} is called a topological multi-ring if
i= i=

(1) (4, +i,+) is aring for each integer, 1 < i < m, i.e., (7,0, — 0,) is a
multi-ring;

(2) o is a combinatorially topological spac&;;

(3) the mappingsa b) — a- b2, (@, b) — a+; (—b) are continuous fova, b € /%,
1<i<m

Denoted by ¢; 01 — 05,) a topological multi-ring. A topological multi-ring
(S, 01 — 05) is called atopological divisible multi-ringor multi-field if the condi-
tion (1) is replaced by A7; +i, -i) is a divisible ring or field for each integek < i < m.
Particularly, ifm = 1, then a topological multi-ring, divisible multi-ring orutti-field is
nothing but a topological ring, divisible ring or field in nh@matics, i.e., a ring, divisible
ring or field R; +, -) such that

(1) Ris atopological space;

(2) the mappingsa b) — a- b, (a,b) — a - b) are continuous fova,b € R.
More results for topological groups, topological rings cenfound in [Ponl] or [Pon2].
The reader is refereed to [Mao30], [Mao33] or [Mao38] foruleson topological multi-
groups, topological multi-rings and topological multitfis.

—_ m
9.6.6 Let M = |J M; be a completed multi-metric space underlying gr&handT a
i=1

contraction orM. We have know that ¥ *®(T) < mby Theorem %.8. Such result is
holds for any multi-metric space. Generally, there is amgp®blem on the number of
fixed points of a contraction on multi-metric spaces follogi

Problem 9.6.4 Generalize Banach'’s fixed point theorem, or determine thef@and up-
per boundary of ®(T) for contractions T on a completed multi-metric space unded
a graph G, such as those of tree, circuit, completed grapiactorable graph; - -, etc..



CHAPTER 10.

Applications

There are many simpler but more puzzling questions conftiseeyes of hu-
man beings thousands years and does not know an answer diléoday.
For exampleWhether are there finite, or infinite cosmoses? Is there jugPo
What is the dimension of our cosmo$®fe dimension of cosmos in eyes of
the ancient Greeks is 3, but Einstein’s is 4. In recent dessabl®or 11 is the
dimension of cosmos in superstring theory or M-theory. A#de assump-
tions acknowledge that there is just one cosmé#hich one is the correct?
We have known that the Smarandache multi-space is a systemton deal-
ing with objective, particularly for one knowing the WORLDhus it is the
best candidate for thEheory of Everything.e., a fundamental united theory
of all physical phenomena in nature. For introducing tffea of Smaran-
dache multi-space to sciences, the applications of Smactedmulti-spaces
to physics, particularly, the relativity theory with Schwschild spacetime,
to generalizing the input-output model for economy analgsid to knowing
well infection rule for decreasing or eliminating infeai® disease are pre-
sented in this chapter.
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§10.1 PSEUDO-FACES OF SPACES

10.1.1 Pseudo-Face. For find diferent representations of a Euclidean spB€gwe
introduce the conception of pseudo-face following.

Definition 10.1.1 Let R™ be a Euclid space an@R", w) a Euclidean pseudo-space.
If there is a continuous mapping p R™ — (R",w), then the pseudo-metric space
(R", w(p(R™))) is called a pseudo-face & in (R", w).

For example, these pseudo-facesdfin R? have been discussed in Chapter 8. For
the existence of pseudo-faces of a Euclid sgR€éen R", we know a result following.

Theorem 10.1.1 LetR™ be a Euclid space an(R", w) a Euclidean pseudo-space. Then
there exists a pseudo-faceRfT in (R", w) if and only if for any numbe¢ > O, there exists
a number > 0 such that foivt, v e R™ with |[U - V|| < 6,

llwo(p(W)) — w(PW))Il < €,
where|[t]| denotes the norm of vectadrin Euclid spaces.

Proof We show that there exists a continuous mapgnd®™ — (R", w) if and only
if all of these conditions hold. By the definition of Eucligdepseudo-spacdr(, w), w is
continuous. We know that for any numher 0, [[w(X) — w(Y)|| < € for ¥X,y € R" if and
only if there exists a numbey > 0 such that{X — y)|| < 1.

By definition, a mapping| : R™ — R" is continuous if and only if for any number
61 > 0, there exists a numbép > 0 such that|q(X) — q(y)|| < 61 for VU,V € R™ with
It - V)| < 6. Whence,p: R™ - (R",w) is continuous if and only if for any number
€ > 0, there is a numbe¥ = min{d4, 65} such that

llw(p(W) — (Pl < €
for VU,V e R™ with |[T - V)|| < 6. O

Corollary 10.1.1 If m > n+ 1, letw : R" - R™" be a continuous mapping, then

(R", w(p(R™)) is a pseudo-face &M in (R", w) with
p(xl,xz,"',xn,xml,'“,xm) = U)(Xl,xz,'“,xn)'

Particularly, if m= 3,n = 2 andw is an angle function, the(R", w(p(R™))) is a pseudo-
face with Xy, X0, X3) = w(Xq, X2).
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A relation for a continuous mapping of Euclid space and tlidietween pseudo-
faces is established in the next.

Theorem10.1.2 Letg: R™ - R™and p: R™ — (R", w) be continuous mappings. Then
pgpt: (R" w) — (R",w) is also a continuous mapping.

Proof Because the composition of continuous mappings is also tncaus map-
ping, we know thapgp ! is continuous.
Now for Yw(Xy, X, - - -, Xn) € (R", w), assume that(ys, Yz, - - -, Ym) = w(Xg, X2, « -+, Xn),

g(yl? YZ, T ym) = (Zl’ Ly, -, Zm) and p(zl’ Ly, -, Zm) = (J)(tl, t2’ Tt tn) CalCU|at|on
shows that

PA(Y1, Y25 * > Ym)
p(zl’ 22’ T, Zm) = (J)(tl, t2’ Y tI’]) € (Rn’ CL))

PP (w(X1, X2, - -, Xn))

Whence pgp?: (R", w) — (R", w) is continuous. O

Corollary 10.1.2 Let C(R™) and QR", w) be sets of continuous mapping on Euclid space
R™ and pseudo-metric spa¢R", w), respectively. If there is a Euclidean pseudo-space
for R™in (R", w). Then there is a bijection betweerflC") and QR", w).

10.1.2 Pseudo-Shape.For an objectB in a Euclid spacd&k™, its shape in a pseudo-
face R", w(p(R™))) of R™in (R", w) is called apseudo-shapef 8. We get results for
pseudo-shapes of balls in the following.

Theorem 10.1.3 Let B be an(n + 1)-ball of radius R in a spac&™?, i.e.,
X+ X4+ X+ P <R
Define a continuous mapping: R" — R" by
W (X1, Xz, -+, Xn) = t(Xe, X2, -+, Xn)

for a real numbek and a continuous mapping:R"! — R" by

P(X1, X2, * * -, Xn, £) = W (X1, X2, -+, Xn)-

2 2

Then the pseudo-shape 8fin (R", w) is a ball of radiusT for any parameter

. . 1. . . .
t,—-R < t < R. Particularly, if n= 2 and¢ = > it is a circle of radius VRZ — t2 for
parameter t and an elliptic ball ifR® as shown in Figl0.1.1.
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(0,0,-2R)

Fig.10.1.1

Proof For any parametdr an f+ 1)-ball
XX+ -+ X +P <R

can be transferred to anball

2 2 2 2
XX+ + X <Rt

of radius VRZ — t2. Whence, if we define a continuous mappingRihby

(L)(Xl, X, v, Xl"l) = gt(xl’ Xyt 00, Xn)

and
P(X1, X2, * *+, Xn, ) = W(Xe, X2, - <+, Xn),
then we get easily an-ball

x§+x§+---+xﬁs%,
of B8 underp for parametet, which is just a pseudo-face Bfon parameterby definition.
For the case of = 2 andg = > since its pseudo-face is a circle on a Euclid plane
and-R <t < R, we get an elliptic ball as shown in Fig.1QL. U
Similarly, if we definew(xy, X, - - -, X,) = 24(@, Ot) for a pointP = (Xq, X, - - -,
Xn, 1), i.e., an angle function, we can also get a result like Téweol01.2 for pseudo-
shapes of am(+ 1)-ball.
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Theorem 10.1.4 LetB be an(n + 1)-ball of radius R in spac&™, i.e.,
X+ X+ + X+ P <R
Define a continuous mapping: R" — R" by
W(X1, Yo, - -+, Xo) = 2/(OP, Of)
for a point P onB and a continuous mapping:R™! — R" by
P(X1, X2, 5 %0, 1) = w(Xq, Xo, + -+, Xn).

Then the pseudo-shape 8fin (R", w) is a ball of radius VR? — t? for any parameter
t,—R <t < R. Particularly, if n= 2, itis a circle of radius VR? — t? on parameter t and a
body inR3 with equations

95 arctané) =27 and 56 arctané) =2r

for curves of its intersection with planes XOT and YOT.

Proof The proof is similar to that of Theorem 103, and these equations

96 arctané) =2n or 56 arctané) =2r

are implied by the geometrical meaning of an angle functiothé case oh = 2. O

10.1.3 Subspace InclusionFor a Euclid spac®", we can get a subspace sequence
RoDRiD---DRp.1 DRy,

where the dimension d?; isn—i for 1 < i < nandR, is just a point. Generally, we can
not get a sequence in a reversing order, i.e., a sequence

RopcRicCc---cRyp1 CRy

in classical space theory. By applying Smarandache mpidicass, we can really find this
kind of sequence, which can be used to explain a well-knowdehfor our cosmos in
M-theory.

Theorem 10.1.5 Let P = (X, X, - - -, X,) be a point inR". Then there are subspaces of
dimensional s in P for any integer5< s< n.
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Proof Notice that there is a normal bags= (1,0,0,---,0),e = (0,1,0,---,0),
-, = (0,---,0,1,0,---,0) (every entry is 0 unless theth entry is 1),---, &, =
(0,0,---,0,1) in a Euclid spac®" such that

(X1, Xo, - =+, Xn) = X1€1 + Xo€ + - - - + X€n

for any point &g, Xo, - - -, X,) in R". Now consider a linear spa¢€ = (V, +new ©new) ON @
field F = {a, b, ¢, -, di;i > 1}, whereV = {Xq, X, -, X,}. Not loss of generality, we
assume that,, X, - - -, Xs are independent, i.e., if there exist scakars,, - - -, as such that

A Onew X1 Fnew @2 Onew X2 Fnew” * * Fnew As Onew Xs = 0,
thena; = a, = - - - = Ohewand there are scalabs ¢, - - -, d with 1 < i < sin R™ such that
Xs+1 = D1 Onew X1 +new D2 Onew X2 +new - * +new Ds Onew Xs;

Xs+2 = C1 Onew X1 tnew C2 Onew X2 +new * * +new Cs Onew Xs;
Xn = dl Onew X1 +newd2 Onew X2 *new" " * +newds Onew Xs-
Consequently, we get a subspace of dimensisirapoint P of R". O
Corollary 10.1.3 Let P be a point in a Euclid spacB". Then there is a subspace
sequence
RocRic---cR,_;CR,
such thatR;, = {P} and the dimension of the subspdeis n—i, wherel <i < n.

Proof Applying Theorem 1(L.5 repeatedly, we can get such a sequence. [

§10.2 RELATIVITY THEORY

10.2.1 Spacetime.In theoretical physics, these spacetimes are used to des@rious

states of particles dependent on the time in a Euclid spdceThere are two kinds of
spacetimes. One is tlabsolute spacetimeonsisting of a Euclid spade® and an inde-
pendent time, denoted byy( X,, X3|t). Another is therelative spacetimei.e., a Euclid

spaceR*, where time is thé-axis, seeing also in [Car1] for details.
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A pointin a spacetime is called aventi.e., represented by{, X, x3) € R® andt €
R* in an absolute spacetime in Newton’s mechanics angx{, xs,t) € R* with time
parametet in a relative spacetime in Einstein’s relativity theory.

For two eventsA; = (X, X, X3lty) and A, = (Y1, Y2, Yalt2), thetime intervalat is
defined byat = t; — t, and thespace intervah(Aq, Ay) by

A(ALAY) = V(X — Y1)2 + (X2 — ¥2)2 + (X — Y3)2.

Similarly, for two eventB; = (X, X2, X3, t1) and B, = (Y1, Y2, Y3, 12), the spacetime
interval Asis defined by
A%s= —C?At? + A%(By, By),

wherec is the speed of the light in vacuum. For example, a spacetimhewith two
parameters, y and the time parametérs shown in Fig.1®.1.

z

x0T
Fig.10.2.1

10.2.2 Lorentz Transformation. The Einstein’s spacetime is a uniform linear space.
By the assumption of linearity of spacetime and invarianicthe light speed, it can be
shown that the invariance of space-time intervals, i.e.,

For two reference systemsg 8nd S, with a homogenous relative velocity, there must
be
AS = AS2

We can also get the Lorentz transformation of spacetime lacitees by this as-
sumption. For two parallel reference syste®isandS,, if the velocity of S, relative to
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S, alongx-axis isv, such as shown in Fig.122,

VA V)
\'
Ol Y1 z 02 Yo
X1 X2
Fig.10.2.2

then theLorentz transformation of spacetinteansformation of velocitgre respectively

Xp — vt Vy, —V
X2 — 1 1 VX2 — X1 WXl
J1-0r 1-%5
\
Y2=¥1 Vi /1= (5)°
and Vo = — W,
ZH =7 1- =
Vv
= oL Va 1- ()2
vV,, = —M
— (V)2 r2) WV,
Vi-© -

In a relative spacetime, tlgeneral intervalis defined by
ds = g, dx¥'dx,

whereg,, = g,,(x’,t) is a metric both dependent on the space and time. We can also
introduce the invariance of general intervals, i.e.,

ds = g, dx¥'dx = g,,dx*dx".
Then theEinstein’s equivalence principkays that

There are no dference for physicalgects of the inertial force and the gravitation
in a field small enough.

An immediately consequence of the this equivalence priadgpthe idea that the
geometrization of gravitatign.e., considering the curvature at each point in a spaeetim
to be all @fect of gravitation), which is calledgravitational factorat that point.

Combining these discussions in Sectionl1Dwith Einstein’s idea of the geometriza-
tion of gravitation, we get a result for spacetimes follogvin
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Theorem 10.2.1 Every spacetime is a pseudo-face in a Euclid pseudo-spspecially,
the Einstein’s space-time R" in (R, w) for an integer nn > 4.

By the uniformity of spacetime, we get an equation by equiim of vectors in
cosmos following.

Theorem 10.2.2 For a spacetime ifR*, w), there exists an anti-vectasg of wo along
any orientationO in R such that

wo + wg = 0.

Proof SinceR* is uniformity, by the principle of equilibrium in uniform sges,
along any orientatio® in R%, there must exists an anti-vectf, of wo such that

wo + wg = 0. U

10.2.3 Einstein Gravitational Field. For a gravitational field, let
1
wyy = Ry — ERg‘V + A,y

in Theorem 1@.2. Then we get that

w,, = —81GT,,.
Consequently, we get tl&instein’s equations

1
R, — ERg,V + Ag,, = —8nGT,,

of gravitational field. For solving these equations, twaiasggtions following are needed.
One is partially adopted from that Einstein’s, another iggasted by ours.

Postulate10.2.1 At the beginning our cosmos is homogenous.

Postulate6.2.2 Human beings can only survey pseudo-faces of our cosmosseyvab
tions and experiments.

10.2.4 Schwarzschild Spacetime.A Schwarzschild metrits a spherically symmetric
Riemannian metric
d?s = g, dx”

used to describe the solution of Einstein gravitationadfeduations in vacuum due to
a spherically symmetric distribution of matter. Usuallyetcoordinates for such space
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can be chosen to be the spherical coordinatgs ), and consequentlyt,, 6, ¢) the
coordinates of a spherically symmetric spacetime. Themmdsird such metric can be
written as follows:

ds = B(r, t)dt? — A(r, t)dr? — r3(de? + sir? 6d¢?).
Solving these equations enables one to get the line element

de = (1) (1 - rr—@’)on2 - 1—1rgdr2 _ r2(dé? + sir 0de?)
for Schwarzschild spaces. See [Carl] or [Mao36] for details

The Schwarzschild radiussiis defined to be

o= 8 = 28M
c? c?
At its surfacer = rg, these metric tensoig, diverge andy; vanishes, which giving the
existence of a singularity in Schwarzschild spacetime.

One can show that each line with constant and ¢ are geodesic lines. These
geodesic lines are spacelikerif> rg and timelike ifr < rs. But the tangent vector of
a geodesic line undergoes a parallel transport along tmésdnd can not change from
timelike to spacelike. Whence, the two regions rs andr < rg can not join smoothly at
the surface =r..

We can also find this fact if we examine the radical null di@ts alongdd = ¢ = O.

In such a case, we have

rs\ . rs\™* ,
d¢ = (1— ?)dt —(1— ?) dr? = 0.
Therefore, the radical null directions must satisfy théof@lng equation
dr rs
i (1- _)
dt +( r
in units in which the speed of light is unity. Notice that timaelike directions are con-
tained within the light cone, we know that in the region rg the opening of light cone
decreases withand tends to O at = r, such as those shown in Fig.2(B.
In the regionr < rg the parametric lines of the timebecome spacelike. Conse-

quently, the light cones rotate 9Guch as those shown in Fig.2(B, and their openings
increase when moving from= 0 tor = rs. Comparing the light cones on both sides of
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I = rs, we can easy find that these regions on the two sides of thacgurt rs do not

join smoothly atr = r.

Mgz

I
I's

Fig. 10.2.3

10.2.5 Kruskal Coordinate. For removing the singularity appeared in Schwarzschild
spacetime, Kruskal introduced a new spherically symmetrardinate system, in which

radical light rays have the slogi/dt = +1 everywhere. Then the line element will has a

form

d< = f2dE - F2dr? — r2(d6? + sir? 0d¢?).

By requiring the functionf to depend only om and to remain finite and nonzero for

u = v = 0, we find a transformation between the exterior of splerically singularity

r > rsand the quadrant > |v| with new variables following:

1
r 2 ry . t
V= (r—s - 1) exp(i) smh(z—rs),
1
u= L—1 2ex - cos L
s P 2rs 2r)”

The inverse transformations are given by

r r\_ o
(r—s—l)exp(z—rs)_u V2,

L arctanl‘(y)
2rs u
and the function f is defined by
32Gm? ( r )
ex

f2 = ——
r

I's

a transcendental function af — 2.
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This new coordinates present an analytic exten&arf the limited regiorS of the
Schwarzschild spacetime without singularity fas rs. The metric in the extended region
joins on smoothly and without singularity to the metric & boundary o8 atr = rs. This
fact may be seen by a direction examination of the geodescsvery geodesic followed
in which ever direction, either runs into tharrier of intrinsic singularity ar = 0, i.e.,
v2 — U2 = 1, or is continuable infinitely. Notice that this transfotina also presents a
bridge between two otherwise Euclidean spaces in topology, whachbe interpreted as
thethroat of a wormholeonnecting two distant regions in a Euclidean space.

10.2.6 Friedmann Cosmos. Applying these postulates, Einstein’s gravitational equa
tions and thecosmological principlei.e., there are no dference at dferent points and
different orientations at a point of a cosmos on the metfii.y., we can get a standard
model for cosmos, called tlgiedmann cosmoBy letting

dr?

_fR24:2 A2
de = et + 2O

+ r2(de? + sirf 6dy?)]

in Schwarzschild cosmos, seeing [Carl] for details. Su@mases are classified into
three types:

Static Cosmos da/dt = 0;
Contracting Cosmos da/dt < 0;
Expanding Cosmos da/dt > 0.

By Einstein’s view, our living cosmos is the static cosmokatflis why he added a cos-
mological constant in his equation of gravitational field. But unfortunatelyra@osmos
is an expanding cosmos found by Hubble in 1929.

§10.3 A COMBINATORIAL MODEL FOR COSMOS

As shown in Chapter 2, a graph with more than 2 vertices if issenulti-space with
different vertices, edges two by two. As an application, we cemsiuch multi-spaces for
physics in this section.

10.3.1 M-Theory. Today, we have know that all matter are made of atoms and sub-
atomic particles, held together by four fundamental forggswvity, electro-magnetism,
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strong nuclear forcandweak force Their features are partially explained by theantum
theoryand therelativity theory The former is a theory for the microcosm but the later is
for the macrocosm. However, these two theories do not relgepalch other in any way.
The quantum theory reduces forces to the exchange of dispaeket of quanta, while
the relativity theory explains the cosmic forces by pogtatathe smooth deformation of
the fabric spacetime.

As we known, there are two string theories : #gex Eg heterotic string, th&0(32)
heterotic stringand three superstring theories: ®©(32) Type | stringheType IIAand
Type |I1Bin superstring theories. Two physical theories dual to each other if they
have identical physics after a certain mathematical teansition. There ar@-duality
andS-dualityin superstring theories defined in the following table3L0([Duf1]).

fundamental string dual string

T-duality Radius~ 1/(radius) charge- 1/(charge)
Kaluza-Klein~ Winding Electric> Magnet

S-duality | charge- 1/(charge) Radius~ 1/(Radius)
Electric> Magnetic | Kaluza-Klein— Winding

table 10.3.1

We already know some profound properties for these sprisgiperspring theories,
such as:

(1) TypellA andlIB are related by T-duality, as are the two heterotic theories.

(2) Typel and heterotiS 32) are related by S-duality and Typé is also S-dual
with itself.

(3) Typell theories have two supersymmetries in the 10-dimensionaksdut the
rest just one.

(4) Typel theory is special in that it is based on unoriented open avgkd strings,
but the other four are based on oriented closed strings.

(5) ThellA theory is special because it is non-chiral(parity conseyyibut the
other four are chiral(parity violating).

(6) In each of these cases there is an 11th dimension thaimssclarge at strong
coupling. For substance, in thBA case the 11th dimension is a circle andliB case
it is a line interval, which makes 11-dimensional spacetdisplay two 10-dimensional
boundaries.
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(7) The strong coupling limit of either theory produces andlihensional space-
time.
(8) ---, etc..

The M-theory was established by Witten in 1995 for the unitghmse two string
theories and three superstring theories, which postullasesll matter and energy can be
reduced tdoranesof energy vibrating in an 11 dimensional space. This theargggone
a compelling explanation of the origin of our cosmos and coedball of existed string
theories by showing those are just special cases of M-theach as those shown in the
following.

Es x Eg heterotic string
S 032) heterotic string
M —theory> { SQ32)Type I string
Type IIA

Type IIB

See Fig.1®.1 for the M-theory planet in which we can find a relation of Mediny
with these two strings or three superstring theories.

The M-theory Planet

[IA Superstring Type | superstring

Heterotic SO(32)

[IB Superstring
HeteroticE8 x E8
[IB Superstring Uncharted water

Fig.10.3.1

A widely accepted opinion on our cosmos is that itis in aceieg expansion, i.e.,
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it is most possible an accelerating cosmos of expansiors dibservation implies that it
should satisfies the following condition

d?a

W>O.

TheKasnertype metric
ds® = —dt* + a(t)’d3, + b(t)*ds*(T™)
solves the 4 mdimensional vacuum Einstein equations if
a(t) =t* and b(t) = tv
with
_3: \EWm¥2) 3% VImm+2)

3m+3)  3(m+3)
These solutions in general do not give an accelerating eskpauof spacetime of dimen-

sion 4. However, by applying the time-shift symmetry
t — t+oo - t’ a(t) = (t+00 - t)ﬂ’

we see that yields a really accelerating expansion since

da(t) d?a(t)
Gt > 0 and e

According to M-theory, our cosmos started as a perfect 1kdsional space with

> 0.

nothing in it. However, this 11 dimensional space was umstabhe original 11 dimen-

sional spacetime finally cracked into two pieces, a 4 and anédsional cosmos. The
cosmos made the 7 of the 11 dimensions curled into a tinyd&lying the remaining 4

dimensional cosmos to inflate at enormous rates. This @iigyrof our cosmos implies

a multi-space result for our cosmos verified by Theorem.50

Theorem 10.3.1 The spacetime of M-theory is a multi-space with a wargRigt each
point of R%.

Applying Theorem 1(B.1, an example for an accelerating expansion cosmos of
4-dimensional cosmos from supergravity compactificatianhgperbolic spaces is the
Townsend-Wohlfarth typa which the solution is

ds’ = ™0 (-S%dt* + S?d ) + re*Vds, .
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where

1

o(t) = ——(INK(®) - 34qt), S°= K s B ot

m

and
/IOéVrc
(m=1) sin[Aed]t + ta]

K(t) =

with £ = V3 +6/m. This solution is obtainable from space-like brane sotutimd if
the proper times is defined byds = S3(t)dt, then the conditions for expansion and
acceleration ar%? >0 andfT? > 0. For example, the expansion factor i88if m= 7,
i.e., a really expanding cosmos.

10.3.2 Pseudo-Face Model gi-Brane. In fact, M-theory contains much more than just
strings, which is also implied in Fig.1®1. It contains both higher and lower dimensional
objects, calletbranes A braneis an object or subspace which can have various spatial
dimensions. For any integ@r> 0, ap-branehas length inp dimensions, for example, a
O-braneis just a point; a dbraneis a string and a-braneis a surface or membrane..

For example, two branes and their motion have been showrgia@®3.2, where (a)
is a 1-brane and (b) is a 2-brane.

N — N
VN
N e U

Fig.10.3.2

(a

Combining these ideas in the pseudo-spaces theory and dfyttee model forR™
by combinatorial manifolds is constructed in the below.

Model 10.3.1 For each m-brand® of a spaceR™, let (ny(B), nx(B), - - -, np(B)) be its unit
vibrating normal vector along these p directions andR™ — R* a continuous mapping.
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Now forVP € B, define

w(d(P)) = (N(P), n2(P), - - -, np(P)).
Then(R?*, w) is a pseudo-face dR™, particularly, if m= 11, it is a pseudo-face for the
M-theory.

If p=4,the interesting conclusions are obtained by applyingltes Chapters 9.

Theorem10.3.2 For a sphere-like cosmd??, there is a continuous mapping @2 — R?
such that its spacetime is a pseudo-plane.

Proof According to the classical geometry, we know that there iscgeptionq :
B2 — R2? from a 2-ballB? to a Euclid plandR?, as shown in Fig.18.3.

N

NwsZ

R? S p(u)

Fig.10.3.3

Now for any pointu € B? with an unit vibrating normal vectorx(u), y(u), z(u)),
define

w(q(u)) = (Zu), 1),
wheret is the time parameter. TheR%, w) is a pseudo-face o8¢, t). O

Generally, we can also find pseudo-surfaces as a pseudmfamhere-like cos-
moses.

Theorem 10.3.3 For a sphere-like cosmoB? and a surface S, there is a continuous
mapping ¢ B2 — S such that its spacetime is a pseudo-surface on S.

Proof According to the classification theorem of surfaces, ares@$ can be com-
binatorially represented by anzbolygon for an integen,n > 1. If we assume that each
edge of this polygon is at an infinite place, then the propecin Fig.66 also enables us
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to get a continuous mappirg: B> — S. Thereby we get a pseudo-face 8rfor the
cosmosB2. (]

Furthermore, we can construct a combinatorial model forcosmos.

Model 10.3.2 For each m-brand of a spaceR™, let (ny(B), nx(B), - - -, Ny(B)) be its unit
vibrating normal vector along these p directions andR™ — R* a continuous mapping.
Now construct a graph phag¢, w, A) by

V(g) = {p - branes ¢B)},

E(G) = {(q(By), q(B,))Ithere is an action betwedsy, andB,},

w(q(B)) = (nu(B), nz(B), - - -, np(B)),

and
A(q(By),q(B,)) = forces betweeB; andB,.

Then we get a graph phag€, w, A) in R*. Similarly, if m= 11, it is a graph phase for
the M-theory.

If there are only finitgp-branes in our cosmos, then Theorems3and 103.3 can
be restated as follows.

Theorem 10.3.4 For a sphere-like cosmaB? with finite p-branes and a surface S, its
spacetime is a map geometryon S.

Now we consider the transport of a graph phased, A) in R™ by applying conclu-
sions in Chapter 2.

Theorem 10.3.5 A graph phasdg;, w;, A1) of spaceR™ is transformable to a graph
phase(G,, w,, A,) of spaceR" if and only if G, is embeddable iR" and there is a con-
tinuous mapping such thatw, = 7(w1) andA, = 7(A1).

Proof If (G1, w1, A4) is transformable tod,, w», A»), by the definition of transfor-
mation there must bg,; embeddable ilR" and there is a continuous mappinguch that
wy = T(w71) andA, = 7(Ay).

Now if G, is embeddable iR" and there is a continuous mappinguch thatw, =
T(w1), Ax = (A1), lets : G1 — G» be a continuous mapping frogy to G, then ¢, 7) is
continuous and

(. 7) 1 (G1, w1, A1) = (G2, w2, A).
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Therefore G1, w1, A1) is transformable tod,, w,, A»). O

Theorem 1.5 has many interesting consequences as by-products.

Corollary 10.3.1 A graph phaséGgi, w1, A1) in R™is transformable to a planar graph
phase(G,, w», Ay) if and only if G, is a planar embedding a7, and there is a contin-
uous mapping such thatw, = 7(w1), A» = 7(A1) and vice via, a planar graph phase
(G2, wa, Ay) is transformable to a graph phagg, w1, A1) in R™if and only ifG; is an
embedding o7, in R™ and there is a continuous mapping! such thatw; = 71(w,),
A =7 HAY).

Corollary 10.3.2 For a continuous mapping, a graph phaséG., wi, A1) in R™is trans-
formable to a graph phasgr,, t(w1), 7(A1)) iIn R" with mn > 3.

Proof This result follows immediately from Theorem22 and 103.5. 0J

Theorem 1.5 can be also used to explain the problemga¥elling between cos-
mosesor getting into the heaven or hefbr a person. We all know that water can go
from liquid phase to steam phase by heating and then cometbdigkiid phase by cool-
ing because its phase is transformable between liquid predesteam phase. Thus it
satisfies the conditions of Theorem.38. For a person on the earth, he can only get
into the heaven or hell after death because the dimensiotie dfeaven and that of the
hell are respectively more or less than 4 and there are nsftnanations from a pattern
of alive person in cosmos to that of in heaven or hell by théolgical structure of his
body. Whence, if the black holes are really these tunnelsdmat diferent cosmoses, the
destiny for a cosmonaut unfortunately fell into a black hislenly the death ([Haw1]-
[Haw3]). Perhaps, there are other kind of beings found by dmireings in the future
who can freely change his phase from one state in sBéde another irR" with m > n
orm < n. Then at that time, the travelling between cosmoses is Iplessir those beings.

10.3.3 Combinatorial Cosmos.Until today, many problems in cosmology are puzzling
one’s eyes. Comparing with these vast cosmoses, humanstaiagery tiny. In spite of
this depressed fact, we can still investigate cosmosesityemply thinking. Motivated by
this belief, a multi-space model for cosmoses, called coatbrial cosmos is introduced
following.
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Model 10.3.3 A combinatorial cosmos is constructed by a trifle A, T), where

a=|Ja. a=(Jo

i>0 i>~0

and T = {t;;i > O} are respectively called the cosmos, the operation or the 8at with
the following conditions hold.

(1) (@, A)is a Smarandache multi-space dependenton T, i.e., the a{SN®),) is
dependent on time parametefdr any integer ji > 0.
(2) For any integerji > 0, there is a sub-cosmos sequence

(S) QiD"'DQilDQio

in the cosmogQ;, O;) and for two sub-cosmoséq;;, O;) and (i, O), if Q;; > Q;, then
there is a homomorphispy, g, : (Qij, O;)) — (€1, O)) such that

(i) for V(Qi1, G, (Qiz, Oi), (s, O)) € (S), if Qix D Qiz D Qj3, then

P10 = PQi1.Qip © POi.Qiss

where “o” denotes the composition operation on homomorphisms.
(it) for Vg, h e @, if for any integer i,00.0,(9) = pa.qo (h), then g= h.
(iit) for Vi, if there is an fe Q; with

P00 mgj(fi) = P00 mQj(fj)

for integers j j, Qi Q; # 0, then there exists an & Q such thatoq o, (f) = f; for any
integer i.

These conditions in (2) are used to ensure that a combiahtmsmos posses the
general structure sheaif topological space, for instance if we equip each multiesp
(Qi, O)) with an Abelian groups; for any integeri,i > 0, then we get structure sheaf
on a combinatorial cosmos. This structure enables thatragbeia cosmos of higher
dimension can supervises those in lower dimension geoeral sheaf theoryhe reader
is referred to the reference [Harl] for details.

By Model 1Q3.3, there is just one cosmésand the sub-cosmos sequence is

R*>DR®*>R?>R'>R={P}oR;>:--2R; DRy = {Q}.
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in the stringM-theory. In Fig.103.4, we have shown the idea of the combinatorial cos-
mos.

visual cosmos dimension: 4

higher cosmos

Fig.10.3.4

For 5 or 6 dimensional spaces, it has been established a dyadaimreory by this
combinatorial speculation([Papl1]-[Pap2]). In this dymesnwe look for a solution in the
Einstein’s equation of gravitational field in 6-dimensibspacetime with a metric of the
form

2
ds? = —n(t,y, 2dt® + a%(t, y, 2)d Z +b?(t, y, 2)dy? + di(t, y, 2)dZ
k

whered Y2 represents the 3-dimensional spatial sections metrickvith-1, 0, 1 respec-
tive corresponding to the hyperbolic, flat and elliptic sgmcFor 5-dimensional space-
time, deletes the indefinitein this metric form. Now consider a 4-brane moving in a
6-dimensionabchwarzschild-ADS spacetinbe metric can be written as

2
d€ = —h(@)dt + lfzd > +h(2)dZ,
k

where
2 dr2
d> = Tt r2dQ2, + (1 - kr2)dy?
k
and 2 M
h(Z) =k+ |—2 - ;

Then the equation of a 4-dimensional cosmos moving in a 6edpae is

. : 4 4

R 4R Ke) 2 Xe) K S
2-43(=)2=-392_ 0@, 3° 2
rT3R 62’ " B8FPP TR T2
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by applying theDarmois-Israel condition$or a moving brane. Similarly, for the case of
a(2) # b(z2), the equations of motion of the brane are

2 .. B . Ty - . K4
d"dR dzdf - ‘1+nd R (th+ % — (da,n - nazd)Rz) - —g Bp+p)+ D),
V1 + d?R

4
0 K
%‘«/udzw:—g(m p—p),

4
. K
00 Vv = "0 (30— ).

where the energy-momentum tensor on the brane is
£ _p oTe 1
Tpv - vaTﬂ - ZT h/Jv

with T = diag(—p, p, p, p, p) and theDarmois-Israel conditions

A

[Kuv] = _K(26)Tyv,
whereK,, is the extrinsic curvature tensor.

10.3.4 Combinatorial Gravitational Field. A parallel probeon a combinatorial Eu-
clidean spac® = Lnj R"™ is the set of probes established on each Euclidean spader
integers I< i < m,lblarticularly forR™ = R3 for integers 1< i < mwhich one can detects
a particle in its each spad®® such as those shown in Fig.B® in whereG = K, and

there are four probeg,, P,, P3, P;.

Fig.10.3.5
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Notice that data obtained by such parallel probe is a setoafl IdataF (X1, X2, Xi3)
for 1 < i < munderlyingG, i.e., the detecting data in a spatiakhould be same if
€ € R3nR3, whereR? denotes th&® atu € V(G) and(Rﬁ, R?;) € E(G).

For data not in th&® we lived, it is reasonable that we can conclude that all age th
same as we obtained. Then we can analyze the global beh&@gasticle in Euclidean
spaceR" with n > 4. Let us consider the gravitational field with dimensiend. We
know the Einstein’s gravitation field equationsRA are

1
R}lV - EguvR = KTyv’

whereR,, = R?,, = g”Rys., R = ¢”R,, are the respectivRicci tensor Ricci scalar

curvatureand

K= % =208x10%cm?!.g?t. &

Now for a gravitational fieldR" with n > 4, we decompose itinto dimensional 3 Euclidean
spaceRR3, R3, -, R3. Then we find Einstein’s gravitational equations as follows

1
Rﬂu"u - EgﬂuVuR = _87TGéjluVu’

1
R:“VVV - EgﬂvVvR = _87TG(§#VVV’

1
R/JwVw - Egywva = —8n GCg;lva

for eachR3, R3,---, R3. If we decompos®" into a combinatorial Euclidean fan-space
R(3,3,---,3), thenu,v, - - -,w can be abbreviated tq 2-- -, m. In this case, these gravi-
R

m
tational equations can be represented by

1
Rioen) = 59menR = —=81G & )(or)

with a coordinate matrix
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m m )
for a pointp € R", wherem = dim{ () R" | a constant foip € N R"™ andx' = ;j—'q for
i=1 i=1
1<i<m1l< | <m Because the local behavior is that of the projection of théea).

Whence, the following principle for determining behavidiparticles inR", n > 4 hold.
—_ n
Projective Principle A physics law in a Euclidean spa&® ~ R = [JR®withn> 4is
i=1
invariant under a projection oRR? in R.

Applying this principe enables us to find a spherically syrtrioesolution of Ein-
stein’s gravitational equations in Euclidean spREe

A combinatorial metrids defined by
d§ = g(ﬂy)(,(,l)d)(uvd)(d,

whereg«1y is the Riemannian metric i(ﬂ, 0. 5). Generally, we can choose a orthog-
onal basig@is, -+, Biny, - -, Bypngy ) FOF @p[U], P € M(Y), i.e.,<é,w, é,(,1> = 6{). Then

d§ = g(#v)(ﬂy)(d)(lv)z

s(p) S(p) s(p) S(p)+1
= Z Z Gy (AX)? + Z Z Qo) un) (AX7)?
pu=1 v=1 pu=1l v=1
1 Sp) sp) s(p) S(p)+1
= = > O U)X + DT G (AXY,
S (FD y=1 pu=1 pu=1l v=1

which enables one find an important relation of combinakonietric with that of its pro-
jections following.

Theorem10.3.6 Let ,ds’ be the metric o,'(B"(P) for integers 1 < u < §(p). Then
de’ = 1dS+ dS+ -+ gpds
Proof Applying the projective principle, we immediately know tha
#dSZ = d32|¢51(5nﬂ(p)), 1<pu<9(p).

Whence, we find that

s(p) ni(p)
dS = Q) (dx)? = Z Z D)) (AXY)?
pu=1 v=1
s(p) s(p

> ds] sy = ), w0 0
pu=1

=1

=
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Let M be a gravitational field. We have known its Schwarzschildrimet.e., a
spherically symmetric solution of Einstein’s gravitat@equations in vacuum is

dr?
1-1Is

r

4 = (1— %)dtz— _ r2de? — 12 sir? 6d¢?,

wherers = 2Gm/c2. Now we generalize it to combinatorial gravitational fietdsind the
solutions of equations

1
Rioen) = 59menR = —=81G & )(or)

in vacuum, i.e. &) = 0. For such a objective, we only consider the homogenous
combinatorial Euclidean spaché = U, R", i.e., for any poinfp € M,

Xll e leﬁ Xl(ﬁﬁ)+1) e Xlnl e 0
[ ] X21 ce sz X2(’rﬁ+l) . X2n2 ce 0
Ppl =

XMoo ymmo ym(mel) 0 0 Ly

with m = dim(fn]1 R") a constant foKp e F]l R" andx' = ﬁ'] forl<i<mil<l<m

Let M(t) tl)e a combinatorial field 01l gravitational fielti&,, M, - - -, M, with masses
my, My, - - -, My, respectively. For usually undergoing, we consider the cdse, = 4
for 1 < u < msince line elements have been found concretely in clasgreaitational
field in these cases. Now establishspherical coordinate subframg;(,, 6,, ¢,) with
its originality at the center of such a mass space. Then we kiaown its a spherically

symmetric solution to be

-1
ds = ( _ rrL:) de? - (1 - %) dr? — r3(de’ + sin’ 6,d¢?).

u

for 1 < u < mwith r,s = 2Gm,/c?. By Theorem 8.1, we know that
d$ = 1dS+ dS + -+ dS,

where ,ds* = ds; by the projective principle on combinatorial fields. Notitet 1 <
m < 4. We therefore get combinatorial metrics dependertidollowing.

Casel.m=1ie,{, =tforl<pu<m.
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In this case, the combinatorial metdsis
m 2G
ds = Z( zm‘) d -
— c2r,
pu=1

Case2. m= 2 ie,{ =tandr, =r,ort, =tandg, =6, ort, = tandg¢, = ¢ for
1<pu<m.

2G & .
Czrm')‘ldrﬁ — > (A + sir? 6,02).
H u=1

We consider the following subcases.

Subcase 2.1t, =t,r, =7

In this subcase, the combinatorial metric is

m G m 2Gm,\ ! m .
4 Z; ( c;rnl)dt2 ) (Z; (1 B c;rm) - Z; U+ ST O
u= u= H=

which can only happens if thesefields are at a same poi@tin a space. Particularly, if
m, = M for 1 < < m, the masses d¥1;, My, - - -, M, are the same, thany = 2GM is a
constant, which enables us knowing that

-1
dszz(l ZGM) md? ( 2GM

= ) mdr - > r2(de? + sir’ 6,dg?).
p=1

Subcase 2.2t, =t,6, = 6.

In this subcase, the combinatorial metric is

& 2Gm,
a2 = Z( = )dt2
p=1 H

. g(l_

Subcase 2.3, =t, ¢, = ¢.

ZG -1 m
c2rml) drz - r2(de? + sir? 60?).
H u=1

In this subcase, the combinatorial metric is
dg = Z( m‘)dt2 (Z( ) )2 = 3 r2(de? + sir? 6,d¢?).

pu=1
Case3. m=3,ie, |, =tr,=randf, =6,ort, =t, r,=rand¢, = ¢, orort, =t,
0, =60andg, =¢forl<u<m.
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We consider three subcases following.

Subcase 3.1t, =t,r, =randd, = 6.

In this subcase, the combinatorial metric is

m m -1 u
o8 = 3o "G Jar- D1 TG ot e - tsito) o
pu=1

c2r

u=1 p=1

Subcase 3.2, =t,r, =rand¢, = ¢.

In this subcase, the combinatorial metric is

m

2Gm, L 2Gm,
dszzz;(l— - )dtz—Z(l— -
l,[:

pu=1

-1 m
) dr? — r2 Z(dej + sir? 6,d¢?).
pu=1
There subcasesBand 32 can be only happen if the centers of theskelds are at
a same poin® in a space.

Subcase 3.3, =t,60, = 6 and¢, = ¢.

In this subcase, the combinatorial metric is

o 2Gm, (4 26m\ T N i
p= =

u=1

Cased4.m=4,ie,t, =tr,=r,60,=0andg, =¢forl<u<m.

In this subcase, the combinatorial metric is

m

2Gm, a 2Gm,
dszzz;(l— = )dtz—Z(l— =
‘L[:

pu=1

-1
) dr? — mr?(dé? + sir? 6d¢?).

Particularly, ifm, = M for 1 < u < m, we get that

2GM
c2r

Yt - - 22
cr

-1
ds? = (1 —~ ) mdr® — mr?(dé? + sir? 6d¢?).

Define a coordinate transformatianr( 6, ¢) — (<, f, 0, s¢) = (tVm,r/m, 4, ¢).
Then the previous formula turns to

2
ds = (1 - 2Sz:vl)dst2 - 1?’5%_,“ — r2(dg0? + sir? Hdsp?)

c2r
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in this new coordinate systemd(, <, <, s¢), whose geometrical behavior likes that of
the gravitational field.

Considerm the discussion is divided into two cases, which lead to twposge
conclusions following.

Casel. m=4.

In this case, we get that diti= 3, i.e., all Euclidean spacd®}, RS, ---,R3 are in
one R3, which is the most enjoyed case by human beings. If it is dahalbehavior
of Universe can be realized finally by human beings, paidityl the observed interval
is dsand all natural things can be come true by experiments. Teesraeans that the
discover of science will be ended, i.e., we can find an ultéla¢ory for our cosmos - the
Theory of Everything This is the earnest wish of Einstein himself beginning, treh
more physicists devoted all their lifetime to do so in lasttcey.

Case 2. m< 3.

If our cosmos is so, then diR> 4. In this case, the observed interval in the field
R3

uman Where human beings live is

dﬁuman = a(t’ r’ 9’ ¢)dt2 - b(t’ r’ 03 ¢)dr2 - C(t’ r, 03 ¢)d92 - d(t’ r, 9’ ¢)d¢2
by Schwarzschild metrics iR®. But we know the metric ifR should bedss. Then

how to we explain the gierencegds; — d Swuman in physics?

Notice that one can only observes the line elente®qima, i.€.,, a projection ofiss on
R3 ...by the projective principle. Whence, all contributionsdg{— d s,yman come from
the spatial direction not observable by human beings. kdase, it is dhicult to deter-
mine the exact behavior and sometimes only partial infolonadf the Universe, which
means that each law on the Universe determined by humandisiag approximate result
and hold with conditions.

Furthermore, ifm < 3 holds, because there are infinite underlying connectgzhgra
i.e., there are infinite combinations 8, one can not find an ultimate theory for the
Universe, which means the discover of science for humangsewill endless forever,
I.e., there are no @heory of Everything
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§10.4 A COMBINATORIAL MODEL FOR CIRCULATING ECONOMY

10.4.1 Input-Output Analysis in Macro-Economy. Assume these anme departments
D1, Dy, - - -, Dy in @ macro-economic systef satisfy conditions following:

(1) The total output value of departmet is x,. Among them, there arg; out-
put values for the departmeBt; andd; for the social demand, such as those shown in
Fig.104.1.

Social
Demand

GRS

Fig.10.4.1

(2) A unit output value of departmei}; consumesg;; input values coming from
departmenD;. Such numbers;, 1 <i, j < nare callecconsuming coficients

Therefore, such a overall balance macro-economic systesatisfieq linear equations
n
X =) X+ (10-1)
j=1

for integers 1< i < n. Furthermore, substitutg = x;;/X; into equation (10-1), we get
that

n
Xi:Ztinj+di (10—2)
j=1

for any integefi. LetT = [tjj]nxn, A = lnin — T. Then

AX = d, (10— 3)

from (10-2), wherex = (Xq, Xz, -+, %), d = (ch, dy, - - -,dy)T are the output vector or
demand vectors, respectively. This is the famioysit-output modeih macro-economic
analysis established by a economist Leontief won the Natmi@mic prize in 1973.
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For an simple example, |&f consists of 3 departmerily, D,, D3, whereD;=agriculture,
D,=manufacture industryps=service with an input-output data in Table 10.4.1([TaC1]).

Department| D, | D, | D3 | Social demand| Total value
D, 15| 20 | 30 35 100
D, 30 | 10 | 45 115 200
Ds 20 | 60 / 70 150
Table 104.1

This table can be turned to a consumingficent table byt;; = X;;/X; following.

Department D, D, D;

D, 0.15 0.10 | 0.20

D, 0.30 0.05 | 0.30

Ds 0.20 0.30 | 0.00

Thus

0.15 010 Q20 0.85 -0.10 -0.20
T=[{030 005 030 |, A=lI33—-T=| -030 095 -0.30
0.20 030 Q00 -0.20 -0.30 100

and the input-output equation system is

0.85x; — 0.10x, — 0.20x3 = d]_
—0.30x1 + 0.95%, — 0.30%3 = dy
—0.20%; — 0.30%x, + Xx— 3 =ds

Solving this equation system enables one to find the inpubatlit data for economy.

Notice that the WORLD is not linear in general, i.e., the aggtiont; = X;;/X;
does not hold in general. A non-linear input-output modehiewn in Fig.104.2, where
X = (X4, Xai» * * +» Xni), D1, Do, - - -, Dy @aren departments and SEocial demand. Usually,
the functionF (X) is called theproducing function
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SD
X1 Xi

Dl 1i di 1 Dl
D Xoi Xi2 D

2 Fi(X) 2

Xni Xin
Dn Dn
Fig.10.4.2

Thus a general overall balance input-output model is clhamzed by equations
n
Fi(® = ) +d, (10— 4)
=1
for integers 1< i < n, whereF;(X) may be linear or non-linear.

10.4.2 Circulating Economic System. A scientific economical system should be a
conservation system of human being with nature in harmoay,to make use of matter
and energy rationally and everlastingly decrease the unfavorabléext that economic
activities may make upon our natural environment as far asipte, which implies to
establish a circulating economic system shown in Fig.B0

Utility resources

O O

Green product Recyclic resource

Fig.10.4.3

Generally, acirculating economic systeis such a overall balance input-output multi-
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spaceM = U M;(t) that there are no rubbish in each producing departmenticEarly,
there are no harmful wastes to the WORLD. Thus any producagadment of a cir-
culating economical system is in a locally economical sysid,(t), Ma(t), - - -, M(t)
underlying a directed circul® [I\7I1] = ?:)k for an integeik > 2, such as those shown in
Fig.104.4.

My(t)
/ Q\
Mz(t) ¢ Ms(t)
Fig.10.4.4

Consequently, we get a structure result for circulatingheaaic system following.

Theorem 10.4.1 Let M(t) be a circulating economic system consisting of producing de
partments M(t), Mx(t), - - -, My(t) underlying a graph C{I\W(t)]. Then there is a circuit-
decomposition

GM()]| = U‘c’s

for the directed graph (Fﬂ(t)] such that each output of a producing departmenft\
1<i<nisonadirected circui?fs foranintegerl < s<|.

Similarly, assume that there aneproducing departmentsl;(t), My(t), - - -, My (t),
X;j output values ofM;(t) for the departmeniM;(t) andd; for the social demand. Let
Fi(X4, X, - - -, Xni) be the producing function ill;(t). Then a circulating economic system
can be characterized by equations

Fi(®) = > %) + 4, (10-5)
=1

for integers 1< i < nwith eachx;; on one and only one directed circuit consisting some
of departmentd(t), M(t), - - -, M(t), such as those shown in Fig.40!.
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§10.5 A COMBINATORIAL MODEL FOR CONTAGION

10.5.1 Infective Model in One Space.Let N be the number of persons in considered
group¥. Assume that there are only two kind groups in persons at tin@ne is in-
fected crowd. Another is susceptible crowd. Denoted(byandS(t), respectively. Thus
S(t) + I1(t) = N, i.e., S(t)/N) + (I(t)/N) = 1. The numbers(t)/N, I(t)/N are called
susceptibility or infection rate and denoted®t) andI (t) usually, i.e.S(t) + 1(t) = 1. If
N is suficiently large, we can further assume t&4t), |(t) are smoothly.

Assume that the infected crowd is a direct proportion of epsble crowd. Letk
be such a rate. Thus an infected person can inf€gfg susceptible persons. It is easily
know that there ar&l(l (t + At) — I (t)) new infected persons in the time intervgl+ At].
We know that

N(I(t + At) — 1(t)) = KNS(t)I (t)At.
Divide its both sides bjNAt and lett — oo, we get that

dl
ot = kIS.

Notice thatS(t) + I(t) = 1. We finally get that

di
— =kI(1-1
dt ( ) (10-6)
1(0) = lo.
This is theSI model of infectious diseasa infected diseases. Separating variables we
get that
I(t) = ————e™@
® 1+ (11 -1)
and . )
It —1)e™
S(t)=1-1() = (o~ 1)

1+ (15— 1)kt

Clearly, ift —» +oo, thenl(t) — 1in SI model. This is not in keeping with the actual
situation. Assume the rate of heal persons in infected persh. Then Yh denoted the
infective stage of disease. The SI model (10-6) is reformed t

dl
{a:kl(l—l)—hl, (10-7)

1(0) = lo,
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called theSIS model of infectious diseas8imilarly, by separating variables we know

that
-1

[e‘(k‘h)t(1 __ 1 —1) + L = >
1(t) = lo 1-0 l1-0
lo

kt|0+ 1

whereo = k/h is the number of average infections by one infected persan infective
stage. Clearly,

1 .
- I(t):{ 1-= ifo>1
e 0 if o < 1.
Consequently, if- < 1, the infection rate is gradually little by little, and fihahpproaches
0. Butif o > 1, the increase or decreasd (1) is dependent oty. In fact, iflg < 1-072,
I(t) is increasing and it is decreasinglif> 1 — o~1. Both of them will letl (t) tend to a
non-zero limitation - o~. Thus we have not a radical cure of this disease.

Now assume the heal persons acquired immunity after irdeébedecrease and will
never be infected again. Denoted the rate of such persoR@hbyrhenS(t) +I(t) + R(t) =

1 and the SIS model (10-7) is reformed to

;—?: —kIS,
& ks, (10-8)
dt

S(0) = So, 1(0) = 10,R(0) = 0,
called theSIR model of infectious diseas@hese diferential equations are first order
non-linear equations. We can not get the analytic solut®&(ts I(t).

Furthermore, let and J be respectively diagnosis of infection and non-diagnosis
infection. Letky, ko, be the infection rate by an infection, or a diagnohis, h, the heal
rate from infection or diagnosis and the detecting rate igfitifectious disease hy. We
get the followingSIJR model of infectious disease
ds

y = —(kll + sz)S,

ar_ (ki + ko J)S = (a + ML,

% =al —hyJ

g&— 2% (10_ 9)
— = hll + th,

dt

S(0) = Sp, 1(0) = Iy,

J(0) = Jo, R(0) = Ry,
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which are also first order flerential non-linear equations and can be find behaviors by
qualitative analysis only.

10.5.2 Combinatorial Model on Infectious DiseaseletC,,C,, - - -, C, bemsegrega-
tion crowds, i.e., a person moving from crow@sto C; can be only dependent on fiia
means with persond;, Ny, - - -, Ny, respectively. For an infectious disease, we assume
that there are only two kind groups @, namely the infected crowii(t) and susceptible
crowd S;(t) for integers 1< i < m. Among them, there arg;(t), V;(t) persons moving in

or awayC; at timet. ThusS;(t) + li(t) — Ui(t) + Vi(t) = N;. Denoted byc;;(t) the persons
moving fromC; to C; for integers 1< i, j < m. Then

2.,GM=Ui® and > cs) = Vi(b).
s=1 s=1

A combinatorial model of infectious disease is defined bylialy graphG' following:
V (GI) = {Cl? C27 Tt Cm}a
E(G') = {(Ci, C))| there are triic means from Cto G, 1 <i,j <m};
1(Ci) =N, I"(Ci,Cj) =g

for ¥(Ci.C;) € E(G') and integers ki, j < m. Such as those shown in Fig.501.

Ci4
C13| Caz Co4 Ca2
Ca1
N Ca3 /N“
Cas
Fig.10.5.1

Similarly, assume that an infected person can infestssceptible persons angl = t;;N;,
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wheret;; is a constant. Then the number of persons in cr@vd also a constant

N; [1 + Zn: (tsi— tis)) :

s=1

In this case, the Sl, SIS, SIR and SIJR models of infectiosisatie for crow; turn to

dlii ML
{ 5 = K-, (10- 10)
1i(0) = lio.
{ gt = Kh@=1) =ht, (10-11)
li(0) = ljo,
das .
ﬁ = —KkI;S;,
d_t‘ - kIiS: - hl;, (10-12)
Si(0) = Sio, 1i(0) = lip, R(0) = 0,
ds
ﬁ = —(k1|i + kz\]i)si’
= = (kil; + ko J)S = (@ + hy)l,
d}
éj—é:ali_hZJi’ (10_13)
ot =l + hyJ;,
Si(0) = Sio, 1i(0) = o,
Ji(0) = Jo, R(0) = Ro

if there are always exist a contagium@ for any integer 1< i < m, whereh andR
are the respective rates of heal persons in infected pesahthe heal persons acquired
immunity after infectedk;, k, the infection rate by an infection, or a diagnogig, h,
the heal rate from infection or diagnosis anthe detecting rate of the infectious disease.
Similarly, we can solve Sl or SIS models by separating végk-or example,

-1
[e—<k_h>t(l __1 _1) P _1] ,
li(t) = | lo 1-0 l-0

0
kt'o +1

for the SIS model of infectious disease, where k/h. Thus we can control the infectious

likewise that in one space.
But the first contagium can only appears in one crowd, foamstC;. As we know,
the purpose of infectious disease is to know well its infattiule, decrease or eliminate
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such disease. Applying the combinatorial model of infacdialisease, an even more
effective measure is isolating contagia unless to cure thetiofes, which means that we
need to cut & all traffic lines from the contagia appeared crowds, for exampleuah s
traffic lines Cy, Cs), (Cs, Cy) for integers 1< s < m, whereC; is the crowd found the
first contagium.

§10.6 RESEARCH PROBLEMS

10.6.1 In fact, Smarandache multi-space is a systematic notiorbgcttves. More and
more its applications to natural sciences and humanitefoaind today. The readers are
refereed to [Mao37]-[Mao038] for its further applicatioré\d also encouraged to apply it
to new fields or questions.

10.6.2 The combinatorial model on cosmos presents research pnelikeboth physics
and combinatorics, such as those of the following:

Problem 10.6.1 Embed a connected graph into Euclidean spaces of dimenslore-
search its phase space and apply it to cosmos.

Motivated by this combinatorial model on cosmos, a numbe&oofectures on cos-
moses are proposed following.

Conjecture 10.6.1 There are infinite many cosmoses and all dimensions of ca&smos
make up an integer intervfll, +co].

A famous proverbs in Chinese says thaeing is believing but hearing is unbeliev-
ing, which is also a dogma in the pragmatism. Today, this viewkhbe abandoned for
a scientist if he wish to understand the WORLD. On the firstpwesent a conjecture on
the traveling problem between cosmoses.

Conjecture 10.6.2 There exists beings who can get from one cosmos into anaimer,
there exists being who can enter the subspace of lower diorefrem that of higher
dimensional space, particularly, on the earth.

Although nearly every physicist acknowledges the existeot black and white
holes. All these holes are worked out by mathematical calmri, not observation of
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human beings.

Conjecture 10.6.3 A black hole is also a white hole in spacefféient from the observa-
tion in or out the observed space.

Our cosmonauts is good luck if Conjectur®.8 holds since they are never needed
for worrying about attracted by these black holes. Todayingyortant task for experi-
mental physicists is looking for dark matters on the eartbweler, this would be never
success by the combinatorial model of cosmos, includedeiméxt conjecture.

Conjecture 10.6.4 One can not find dark matters by experiments on the earth Isecau
they are in spatial can not be found by human beings.

Few consideration is on the relation of dark energy with dagtters. We believe
that there exists relations between them, particularg/feiowing conjecture.

Conjecture 10.6.5 The dark energy is nothing but a kind gfext of internal action in
dark matters and the action of black on white matters. Oneardy surveys the acting
gffect of black matters on that of white, will never be the all.

10.6.3 The input-output model is a useful in macro-economy angalyisi fact, any sys-
tem established by scientist is such an input-output sybteacombinatorial speculation.
Certainly, these systems are non-linear in general becaus&/ORLD is non-linear.

Problem 10.6.2 Let F(X) be a polynomial of degree ® 2 for integersl < i < n. Solve
equations (10-5) for circulating economic system undadya graph G, particularly,
d=2andG=~C,orn< 4.

Problem 10.6.3 Let F(X) be a well-known functions(x), such as those of(X) = x,
whereu is a rational number, or X) = Inx, sinx, cosx, ---, etc.. Determine such
conditions that equations (10-5) are solvable.

10.6.4 We have shown in Subsection.B@ that one can control an infectious disease in
a combinatorial space likewise that in one space if assuatedhl numbec;; of persons
moving from crowdC; to C; is a proportion of persons in crowd, i.e., cj = t;;N; with

a constant;; for integers 1< i, j < m. Such a assumption is too special, can not hold in
general.

Problem 10.6.4 Establish Sl, SIS, SIR and SIJR models of infectious disa#ssut the
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assumption ¢ = t;N;, i.e., g; = f(N;, N;j,t) for integersl < i, j < m and solve these
differential equations.

Although these dierential equations maybe venfiddirent from these equations (10-
10)-(10-13), the measure by isolating contagia and cuttifigll traffic lines from the
contagia appeared crowds is stiffective for control a disease in its infective stage. That
is why this measure is usually adopted when an infectiveagseccurs.
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{Fi,Fs, -, F¢-free 51
fail set 6

eccentricity value sequence of graph 37 favorable multi-system 270

edge 33

edge-induced subgraph 36
edge-transitive 43
edge-twisting surgery 147

fiber overv 105
fiber overe 105
field 16

finite cover 134
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finite-dimensional 20,93,98
finitely generated 101
Finsler geometry 264
Finsler manifold 264

first countable space 132
focal point 248

Friedmann cosmos 317
fundamental group 170

G

Gauss-Bonnet theorem 210

general interval 313

general structure shelf of a space 325
genus polynomial 168
geometrization of gravitation 313
geodesic 180

Goldbach’s conjecture 103

graph 33

graph phase 162

graph phase gp-brane 323

graph phase transformation 165,170
graphical sequence 107

group 8

group action 107

H

hamiltonian circuit 45
hamiltonian graph 45
hamiltonian path 45
Hausdoft space 132
H-automorphism 118
Hilbert's axiom system 185
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H-isomorphism 118
homeomorphism 135
homomorphism 12
homogeneous lifting 112
homogeneous space 295
H-symmetry 43
H-vertex transitive 43
hyperbolic curve 239
hyperbolic geometry 175
hyperbolic in-spiral 246
hyperbolic out-spiral 246
hyperbolic point 180,236
hyperbolic triangle 215
hyperbolic vertex 178

identical set 2
indegree 122
indefinite set 6
integral curve 241
isomorphic graph 34
ideal 17

ideal chain 18
identical graph 34
idempotent 89
image 13
immersion 140
incident 33

including multi-embedding 142
independent vertex subset 42

induced subgraph 36
input-output model 334
isolated vertex 36
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isomorphic graph 34
isomorphic group 13
isomorphic map geometry 196
isomorphic multi-group 77
integral domain 16

integral multi-ring 86

joingraph 53
K

13

Klein Erlanger Programm 174
Klein model 189

knot 247

kernel

Lagrange theorem 10

left-inverse 76

left-mapping 75

left subaction 113

left unit 71

length of a path 34

length of series 84

length of s-line 218

lifted multi-voltage graph of Type | 109
lifted multi-voltage graph of Type Il 116
lifting graph 105

lifting multi-voltage map 151

lifting walk 106

limiting point 132

limiting ring 249
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line bundle 221

linear isomorphic 24

linear operator 25

linear space 18

linear transformation 24
linearly independent 20,92,94
linearly spanning 20,92,94
Lorentz transformation 313

M

manifold graph 158

map geometry with boundary 189
map geometry without boundary 179
mathematical space 30
maximal element 5
maximum genus 145
metric pseudo-space 258
metric space 25

minimal element 5
Minkowski norm 263
minus orientation 105
monomorphism 12
M-theory 318
multi-embedding 140
multi-field 85

multi-genus range 154
multi-group 76

multi-ideal 87

multi-ideal chain 87
multi-metric space 296
multi-module 95
multi-operation system 102
multiplicity set 39
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multi-ring 85

multi-subgroup 78
multi-submodule 97
multi-subring 85

multi-surface 167

multi-voltage graph of type | 109
multi-voltage graph of type Il 116
multi-voltage map 150

N

natural projection 105
neighborhood 132
neutrosophic set 7
n-multi-ball 170
n-multi-manifold 170
Noether ring 101

Noether multi-ring 101
non-geometry 176
non-orientable genus 145
non-orientable genus range 145
non-orientable surface 137
non-trivial divisor of zero 15
normal series 12

normal subgroup 11
normal multi-subgroup 81
nucleus 51

@)

one-way system 124
opposite multiple 2-edge 122
orderset 6

orientable genus 145
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orientable genus range 145
orientable surface 137
orientation-preserving 137
orientation-reversing 137
oriented operation sequence 83
orthogonal vector 278
outdegree 122

P

partite graph 42
paradoxist geometry 175
parallel bundle 221
parallel multiple 2-edge 122
partially-action 120
partially-quotient graph 120
partially order set 5
p-brane 321

pendent vertex 36
permutation system 138
planar block number 140
planar graph 43
plus-orientation 105
Poincare’s model 189
polygon 212

polyhedron 44

power set 3

producing function 335
projective principle 329
pseudo-embedding 140
pseudo-Euclidean geometry 250
pseudo-Euclidean space 255
pseudo-face 307
pseudo-manifold 257
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pseudo-plane 236
pseudo-shape 308
pure rotation system 143

Q

quotient graph 114

quotient group 11

quotient multi-group 82
quotientring 18

quotient topological group 293

R

radius of graph 37
rectilinear embedding 139
regular graph 42
regular quotient 107
relative spacetime 311
representation pair 70
Riemann geometry 175
Riemann manifold 264
right-inverse 76

right mapping 75

right unit 71

ring 14

rotation matrix 255
rotation system 114

S

saddle point 248
Schwarzschild metric 314
Schwarzschild radius 315
s-circle 218
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second countable space 132
self-centered graph 38

semi-arc automorphism of graph 55
semigroup 8

set 2

sign function 221

SIJR model of infectious disease 339
Sl model of infectious disease 338
simple graph 33

singular point 247

SIR model of infectious disease 339
SIS model of infectious disease 339
skew field 15

s-line 180

Smaranadche digital sequence 60
Smarandache geometry 176
Smarandache manifold 177
Smarandache multi-space 30
Smarandache multi-structure 103
Smarandache symmetric sequence 60
Smarandachely denied 176
Smarandachely graph 66
Smarandachely embedded graph 257
Smarandachely constrained labeling 66
Smarandachely super mean labeling 66
Smarandachelj-coloring 67

Smarandachely#;, 42,)-decomposition 113

Smarandachely map 193
space interval 312
space permutation 138
spacetime 311
spacetime interval 312
spanning subgraph 36
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spanning tree 36
splitting operator 51
s-point 180

stable limiting ring 249
star-automorphism 118
static cosmos 317
subaction of multi-group 113
subdivision 45
subgraph 35

subgraph hereditary 168
subgroup 10

subring 15

subset 3

subspace 19

symmetric graph 43
symmetric multi-group 80

T

time interval 312
trail 34

transformable graph phases 165
travelling between cosmoses 324

trivial divisor of zero 15

U

ultimate vertex 37

union graph 53
universal set 4

unstable limiting ring 249

Vv

valency of face 44
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valency of vertex 36
valency sequence 36
vector multi-space 91
vector multi-subspace 91
vector space 18

vector subspace 18
vertex 33
vertex-induced subgraph 36
vertex-transitive 43
voltage assignment 105
voltage graph 105

W

walk 34
weighted graph 122

Z

zero 15
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