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Graviton-graviton scattering near a weakly coupled string description = Thomas Evans

Abstract: We consider graviton-graviton scattering with center-of-mass energy E,
supposing nearness to a weakly coupled string description, at some small but finite

coupling g. We utilize a ten-dimensional gravitational constant of order G, g’c" . We

demonstrate the evolution of a pure state into density matrices, which may be more
effectively represented by a model proposed herein, as well as a concept of staticity
matrices. It is asserted that these staticity matrices have a corresponding density mode,
given by its elements as density matrices. It is then shown that these modes can thus be
characterized only by the theoretical introduction of a constant, which we shall denote
EGM, which is an acronym for equigravimagnetism. We introduce an interesting
relationship between this constant and Einstein's cosmological constant A .
Consequential of supersymmetry, we may contain the properties of the entire Fock space
of massless well separated particles of the supergravity theory. We introduce a space
characterized mathematically by density modes, that may be interpreted equivalently as
nonsingular projective algebraic varieties in a holomorphic-commutative geometry
embedded in a holomorphic-commutative spacetime. This holomorphic-commutative
spacetime is effectively nullified by the supersymmetry of our modeling, proposed
within. We thus may completely characterize an attempted reconciliation of quantum
field theory/cosmology, general relativity; and the various string theories, in terms of
density modes. Mathematically, we use the geometries of Riemann, Christoffel, and the
general extensions there from, cohomology, k-theory, matrix theory, and topology.
Familiarity with the work of Hodge and, overall, algebraic geometry, is assumed.

Introduction: It is the purpose of this paper to, generally, demonstrate a tentative
reconciliation of some concepts within the various theories of quantum field
theory/cosmology, general relativity, and the differing string theories. This is attempted
through the theoretical introduction of a constant, EGM, denoted A . There are a number
of interesting relationships which we observe after the introduction is carried out, one of
these is too lengthy to investigate within the context of this paper however it will be
presented within a work of later date. Namely, given the value of this constant EGM, 4,
we may effectively calculate large areas of —A , which correspond significantly to areas
of observable "dark matter" within the universe. Although there are a number of other
phenomena derivative of this constant A, we limit details to the above. Mathematically
we also obtain some results of presumable interest, namely the concepts of
density/staticity matrices and corresponding density modes. From an analysis of these
concepts given parameterizations of a modeling described within, we find the concept of
dimension to be unnecessary at best, and a misinterpretation at worst. We now begin with

an summary of the background material used: A graviton of momentum p,,=n/R,, isa



bound state of n DO-branes. Given a bound state of total momentum g, , the SU(n)

dynamics is responsible for the zero-energy bound state, and the center-of-mass energy E
from the U(1) part p, =q,{,/n is

2

R g
E = iTr(pipi) = s
2 2py,

which correctly reproduces the energy of a particle with # units of compact momentum,

.2 2\ g+’ n Ry, 2
E=(p'y+q" +m’)~py+ 5 =—-—+—5—(q2+m).
Po Ry 2n
We consider both a simple interaction, graviton-graviton scattering, and a graviton-
graviton scattering given to one-loop order. Let the gravitons have 10-momenta

Pro =M,/ Ry, and be at well-separated positions Y, . The total number of DO-branes is

n, +n,, and the coordinate matrices X" are‘approximately block diagonal. Write X' as
X =X+
X, =Y1,+Y1, X =x +xy +x
Here I, and 7, are the identity matrices in the two blocks, which are respectively n, xn,
and n, x n,, and we have separated the fluctuation x’' into a piece in each block plus off-
diagonal pieces. First setting the off-diagonal x|, ,, to zero, the blocks decouple because

[x{,,xJ,]=0. The wavefunction is then a product of the corresponding bound state
wavefunctions,

WX, X0) = Wo(x, DY (X,).
We now consider the off-diagonal block. These degrees of freedom are heavy: the
commutator

[Xo,xi,]= (¥ —Y))xi,
gives them a mass proportional to the separation of the gravitons. Thus we can integrate
them out to obtain the effective interaction between the gravitons (Polchinski, 1998). This
may be utilized to see that the effective intetaction at long distance agrees with eleven-
dimensional supergravity. This may be obtained through the cylinder amplitude [1], as
follows. At distances small compared to the string scale, the cylinder is dominated by the
lightest open strings stretched between the DO-branes, which are precisely the off-
diagonal matrix theory degrees of freedom. At distances long compared to the string
scale, the cylinder is dominated by the lightest closed string states and so goes over to the
supergravity result. This is ten-dimensional supergravity, but it is equivalent to the
answer from eleven-dimensional supergravity, as in the process we are observing, the
sizes of the blocks stay fixed at », and #»,, meaning that the values of p,, and p',, do

not change in the scattering and the p,, of the exchanged graviton is zero. This has the

effect of averaging over x' and so giving the dimensionally reduced answer. Finally, we
should keep only the leading velocity dependence from the cylinder, because the time



dilation from the boost suppresses higher power our initial value of the energy. The result
for p =0, multiplying by the number of DO-branes in each clump, is
4
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Because the functional form is the same at large and small r, the matrix theory correctly
reproduces the supergravity amplitude (Polchinski, 1998). It is apparent that we must take
the large n limit to obtain agreement with supergravity. The loop expansion parameter in
the quantum mechanics is then large, so perturbative calculations are not sufficient. Also,
the process being studied here, where the p,, of the exchanged graviton vanishes, is quite

special. When this is not the case, one has a very different process where the sizes of the
blocks change, meaning that DO-branes move from one clump to the other. We assert that
this phenomena may be attributed to our following analysis of the characterizations of a
string theory-modeling given density modes, so that our characterization of the said
modes allows for this case given our constant A4 present. This is a phenomena of interest,
and we find, in a later section, that we may characterize the majority, if not all, of our
physically observable results given the presénce of the constant A . In later work we
extend this, and we may equate our aforementioned modeling to the curl of a vector
defined for our density, and some yet to be introduced, modes. We will also observe,
again in a subsequent paper, that we may verify our and the general results of matrix
theory by our calculation of the presence of "dark matter" relative to our constant EGM,
i.e. by the relation 4 = —A . Thus, we can verify calculations of graviton-graviton
scattering numerically at any energy. In order to correspond with the said modeling, we
will see that for any simulation at finite n and R, we must nullify n, and modify R,

corresponding to the given density matrices and, later, modes.
For a summary of graviton-graviton scattering to one-loop order, the author refers

the reader to [2].

1) The M-theory membrane, matrix-theory membranes, and our proposed
modeling

In this section, we present a summary of results concerning the M-theory
membrane, and then our proposed modeling with a corresponding analysis.

If the matrices X' are a complete set of degrees of freedom, then it must be
possible to identify all the known states of M-theory, of interest to our work, the
membranes. It has been presented that the néembranes are already present as excitations
of the DO-brane Hamiltonian, simplifying the necessary work, as one would otherwise
have to add the explicit d2-brane degrees of freedom. To see this, we define the nxn
matrices
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where « =exp(27i/n). These have tﬁe 'bros%erti_es

U'=r"=1, UV=alU,
and these properties determine U and V up to change of basis. The matrices U'V* for
1<r,s <n form a complete set, and so any matrix can be expanded in terms of them.
Thus,

‘ [(n/2] '
(1.1) X'= Y XUV,
r,s=[1-n/2]

with [ ] denoting the integer part and similarly for the fermion 4. To each matrix we can

then associate a periodic function of two variables,
[7/2]

(1.2) X' > X'(p,g)= Z X! exp(ipr +igs) .

r.s=[1-n/2}
Focusing on matrices which remain smooth functions of p and ¢ as n becomes large
(so that the typical r and s remains finite), the commutator maps
i 1 27[1. i j i i -
[X', X/]—>~—(8,X'0,X' -38,X'0,X")+0(n"?)
n
(1.3) 270 i g
=2 (X', X Y it O(n7).
n

We can verify this by considering simple monomials U'V* . Notice the analogy to taking
the classical limit of a quantum system, with the Poisson bracket appearing. We have the
Hamiltonian

(1.4)
6 3
Rlo_[dqdp( " HfoWL&{Xi’Xj};B —igll

8r* 167°n r?
Since X'(p,q) is a function of two variables, this Hamiltonian describes the quantum
mechanics of a membrane. It is identical to the Hamiltonian one gets from an eleven-
dimensional supersymmetric membrane action in the light-cone gauge (Polchinski,

1998). We obtain the static configuration and the energy,

! ,1I‘°r'{X",4}PBj.

(1.5) X'=aqq, X?=bg;
(1.6) MR, ,a’b’ _ M7, _ Ty A’
2n 2(271')4plo 2piy

where A =47’ab is the area of the membrane. The product 7,,,4 is the mass of an M-
theory membrane of this area, so this agrees with the energy.

st



A variety of circumstances as listed in [3] lead us to the following conclusions
regarding matrix-theory membranes, i.e. DO-branes: First, that M-theory in the infinite
momentum frame is a theory in which the only dynamical degrees of freedom (partons)
are DO-branes. Secondly, all systems are built out of composites of partons, each of
which carries the minimal p,,. For a summary of D0-brane mechanics in an infinite

momentum frame, we refer the reader to [3] and [4].
We may now introduce our proposed modeling:
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Fig. 1.1.  All string theories/M-theory as limits of one theory.

Fig 1.1. effectively illustrates of what we are currently aware: there is a single theory, and
all known string theories arise as limits of the parameter space, as does M-theory with 11
noncompact spacetime dimensions. For instance, if we define M-theory with a

compactified longitudinal coordinate x'', M-theory is thus by definition type IIA string

theory. For another example, if one starts with type I theory on 7%, then by varying the
two radii, the string coupling, and the Wilson line in one of the compact directions, one
can reach the noncompact weakly coupled limit of any of the other string theories, or the

noncompact limit of M-theory.
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Fig 1.2. Our proposed modeling. Denoting the membrane of Fig 1.1. as
m, . and the membrane within this figure as m, , we assert the following, that of the limits

of our membranes m, we may further parameterize each string theory to a mathematical
representation as a nonsingular projective algebraic variety embedded within the
nondimensional N-fold. It is thus the purpose of the immediately following section to
introduce the concepts of density/staticity matrices evolved from a pure state, and how
we may define their corresponding density modes. The associated ease with which we
may represent a) our model and b) the general results are indicative of, if correct, the
presumable superiority of our representations.

2) Density, staticity matrlces and density modes

We begin by following the pattern of the bosonic string. L;and Lo are the center-

of-mass modes of the world-sheet energy-momentum tensor, denoted 7, T » - We find the

only nontrivial condition is from L,, giving

1
7“' .
This state is a tachyon. It has exp(7iF0) = -1, where F is given by
eXp(”iF)|O>NS =T IO>NS >
exp(ﬂiF)|s>R = Is ‘>R r

.D m?=—-k*=-

(2.2)

The first excited state is
2.3) |e;k>NS =e'w—1/2|0;k>1vs
The nontrivial physical state conditions are
0=1L ]e;k) =a'k’ |e'k>

NS?

e 0=Gl,lesk), = (2 k-e|0sk) .,
while
2.5) G2 |03k )ys = (20) k€| 0s)
is null. Thus
(2.6) k*=0, e-k=0, e’=e*+ k",

This state is massless, the half-unit of excitation canceling the zero-point, energy, and has
exp(ziF') = +1. We assume familiarity with the characterization of a pure state, and we
let this state in turn perform such a characterization, by the following analysis: In the
limits of the closed string spectrum, the closed string is two copies of the open string,



0
with the momentum rescaled £ — %k in the generators. With v,v taking the values 0

1 - .
and 5 the mass-shell condition can be summarized as

194 ' 2 a n]
(27) Tm =N-v=N-v.
Thus, we obtain the tachyonic and massless closed string spectrum by combining one
left-moving and one right-moving state, subject to the equality (2.7). Characterizing this

~

state by lw A> = —;— Tx> , provided lz,u A) is a pure state, we thus obtain a density matrix p,

such that

2.8) p=2wlw)w|= Zw,.(V,.)J.(VT,.)k | /) k| = 2P| 1) (K]
i,j.k .k
From (2.8), we may define a corresponding staticity matrice, which we define as the
measurement of the statistical basis for correspondence between the string theories/M-
theory (as parameters of our model), i.e. the staticity of the relations of our theories given
singularity. We do this through an analysis of the superconformal generators of sectors
(not necessarily Neveu-Schwarz and Ramond, although those are the most commonly
seen) relative to the superconformal generators of the other theories. It is possible to
define a staticity matrice irregardless of the presence of generators. Thus, we find for our

example, for the generators L and G,, such that

1 e ° 1 [ o n
L,= —Zoaﬂm-n%,, . + 2 Z 2r— m)ow,fj_rt//w . +a"35,,

neZ reZ+v

G, = Zarf‘w#:r:ﬂ;.

neZ

(2.9)

] [e]
denotes creation-annihilation normal ordering. We may define a staticity matrice
[e] Q

(s)
(2.10) ($)=>"w, <t//i /Allt//i>,

where w, represents the generators of the theory (as defined in the R, NS sectors

respectively), and y;, represents its' (physical) states. We may obtain the pure state |¢// A>

from this matrix by performing the operation <A> - <w,. A]z//,. > , leaving the generators

A

A}, so that we may reach the pure state from there.

and

We define the concept of density modes as follows: Having defined the staticity
matrice, we need only classify the matrice, and then we may define the density mode. We
classify a staticity matrice given the theory in which the sectors of its generators are
defined, such that we may use the following-chart:



F=Type IB=H""(Q,5,t)1

A=Type HA=H"*(Q,s,t),;,

C=SO(32)-Heterotic=H"" (0, s, (50(32))) (50
2.11) E=Type |=H"?(Z,s,t)

D=E, x E; heterotic=H""((Q,ss, t)é‘nl

B =Mrtheory=H"’((, s,1)0, .

with the theory equating to its corresponding definition as a nonsingular projective
algebraic variety embedded in the nondimensional N-fold of our modeling. Thus, we may
define our density mode 7, , where n is any [F,A,C.E.D,B]. We may in turn characterize

[F,A,C.E,D,B]: ‘ with A

e

~

We obtain the area of the membrane from the density mode as follows:

h,
a= My Meseres KT
(2.12) kTZ:OUF M45Mc 7, Tk

> h 2 2w 27w
_Z -

kT'=0 T Rn, R77n m,
Thus, we have demonstrated how, from our representation of a density mode, we may
nullify dimensionality. We conclude that we may calculate the density mode of any
[F,A,C,E,D,B] as follows: Find a pure state in an analysis of the theory, find its'
correspondence amongst the string theories by identifying its generators, define its'
staticity matrice, classify it, reduce through simplification, and we have our density




mode.

3) Our constant EGM, A

From the consideration of our results in section 2), we find an anomaly, in that we
may characterize phenomena associated with each [F,A,C,E,D,B} of our model as
physically observable, however for [F,A,C,E,D,B] defined at different values (that are
apparently corresponding), we find them lacking such necessary characterizations. As
such, at this point we are required to theoretically introduce the concept of the
holographic constant- i.e. EGM, or 1. By the introduction and definition of this constant
we see that we may effectively characterize [F,A,C,E,D,B} in the desired way. We define

A by the Clifford algebra {F“,F”} , such that
(2.13) {rr"1=G,=1.

We present the following axioms concerning A . We define a local GM action tensor as
follows, representing the system of staticity matrices regularized by 4 on m,

(2.14) T8, a,p=T6," =a,B;.
This lends itself to a calculation directly resultant of the aforementioned relation 4 =-A,
S 1 5 )
(2.15) C’J = _6;5(27)'(2]—] viyj 2HiHj - gin ).

This result will be discussed (and formally presented) in a later work, however it is
interesting to note that a thorough analysis yields exact correspondence to the area of
significant quantities of "dark matter" throughout the universe. We continue with the

presentation of our axioms, assuming G, is the 4 action on m by @, — G, where

P, =T6,'

ni *

and @, may thus denote the local GM action tensor. We have:

1) S,=x/c, T, € L'(IR™).

(2) Scale invariance for {G}~_ on 7,,

J
Sn(G) = Sn(fa,R) forall G ;,
(3) Positivity,
D3, (0G, *xG,7) >0, forall Ge,
a.p

(4) Symmetry,
3,(G)=33,(G"), forall permutations 7 € g/’n ,all

G e /(R™),
(5) Cluster property,

. 2% o~ ot
Hm Z; (G, % 85(2,1) = 3,,(0G,)3 ()3 =0, foran
G
= 3
(D;s g€£+> g-(O,ﬁl),gEB

(6) Temperedness,



(7) Relativistic invariance,
(8) Positivity,
(9) Transformation invariance,
(10) Local commutativity,
(11) Cluster property,
(12) Spectral condition,
(13) Hermiticity,
(14) Anisotropism.
We will now introduce several theorems concerning these axioms for 4.

Theorem 1): There exists for a scale invariance C a corresponding gauge

y >

invariance
4 B
C.. -G =
C, > G7.

Theorem 2): For the scale invariance of 1), there exists conditions (1)-(14).

Theorem 3): Conditions (1) and (2) yield (3)-(14).

Theorem 4): For conditions (3), (5), (8), (9), (10), (11), and (12), there exist gauge
functions which yield each other commutatively, given the gauge invariance
transformation of 1).

Theorem 5): For a given sequence of the gauge functions of theorem 4) satisfying
conditions (1)-(5) there exists a unique sequence of eigenfunctions with the properties of
(6)-(8) and (10)-(13), closely resembling Wightman distributions.

Theorem 6): For a given sequence of eigenfunctions resembling Wightman
distributions in the above way satisfying (1)-(8), (10), (12), and (13), there corresponds a
unique sequence of gauge functions with the properties (1)-(5).

Theorem 7): To a given sequence of EGM, A distributions there exists a
corresponding sequence of distributions over a scale invariance, from which we may
obtain the original sequence (and may not necessarily be interpreted as a sequence of
distributions over a scale invariance).

Theorem 8): For a given sequence of EGM, A distributions over a scale
invariance, there is a corresponding sequence of EGM, A distributions over a gauge
invariance.

Note that one could compactify these results to three dimensions and obtain a
satisfying quantum Yang-Mills theory. Consequential of the supersymmetry of our
modeling, and by the work of [3], we also note that our characterizations allow us to
contain the entire Fock space of massless well separated particles of the supergravity
theory. Having stated these theorems, we now move on to a necessary definition of the
cohomology from which we may obtain the nonsingular projective algebraic definitions
of [F,A,C,E,D,B], then continuing in the subsequent section to the introduction and
definition of a holographic space, i.e. the space characterized mathematically by density
modes, that may be interpreted equivalently as nonsingular projective algebraic varieties
in a holomorphic-commutative geometry embedded in a holomorphic-commutative
spacetime, assuming we nullify the holomorphic-commutative spacetime. Thus, we
continue to an obtainment of the desired cohomolo gy:



3.1) SE- cohomology (static-expansionary cohomology)
We define SE- Cohomology as the characterization of SE-transformations
by the classes of collinear integral combinations for a Hodge group G, related to
[F,A,C,E,D,B] in the expected way. Thus, we may define an SE-transformation by, given

. & ~ut T . . .
a metric 5,:2;19 A’}, /5 for a system of static-expansionary (SE) transformations,

5anm_ 5amAni
3.1.1) n, " —1, ,
where o and S are the set covariants of two Galileon fields,

AD = -47G, + EAp

24 = ,
Perturb O+VY = —aQ,
(3.1.2) 5 {A¢+ 22(@,0" - (Ap)* =—47Gp,,
Perturdb C{ % /’LUQTJ&

& is the nonlinear decomposition into nonlocality, © remains as in the local GM action
tensor, the Laplace operator A represents differentiation with respect to point coordinates
in physical fields, and p is the density mode.

4) The holomorphic-commutative geometry embedded in a holomorphic-

commutative spacetime
We define the holomorphic-commutative geometry embedded in a holomorphic

commutative spacetime, and the desired space associated therewith, similarly to the
definition of a noncommutative geometry embedded in a noncommutative spacetime,
however the geometry is left-moving or right moving, so that it is not necessarily
commutative (i.e. it may be either commutative, noncommutative, or anticommutative),
and the spacetime is nullified and thus vanishes.

5) Conclusion
We have satisfied our attempts by the methods summarized within the abstract
and the introduction of this paper, as such we will conclude this work without further

extension.
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