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Gauge transformations and the Riemann Hypothesis                    Thomas Evans  
 
Abstract: Presented is a new determination of conditions proving the Riemann 
Hypothesis of any global L-function, drawing heavily on conceptual and mathematical 
parallels from quantum theory, specifically those summarized by Bohm in his 1951 text. 
We present a proof of this for a special case concerning the function ( )sζ , defined by 
Riemann in his seminal 1859 paper, "On the number of primes less than a given number". 
A new method of defining a system of inverted concatenations at the simple pole(s) of a 
global L-function is introduced and used to finalize our proof.  
 
Introduction: The theory regarding the Riemann Hypothesis, the statement that of  

    /21
( ) ( 1) ( ) ( )

2 2
s s

t s s sξ π ζ−= − Γ  

with 
1
2

s it= + , the nontrivial zeros of ( )sζ have real part equal to
1
2

, i.e. the 

prototypification of general classes of functions, L-functions, Dirichlet series with a 
suitable Euler product satisfying an appropriate functional equation and a Riemann 
Hypothesis, are of central and significant relevance. The author refers the reader to [1] for 
a history of development. It is the purpose of this paper to show, a new determination of 
solubility. The proof of the Riemann Hypothesis follows. Applications exist to general 
global L-functions. Some future work is discussed.   
 
1) We begin with a co-ordinate transformation. We can verify the Riemann Hypothesis 
for a given range. The number ( )N T of zeroes of ( )sζ in the rectangle ℜwith vertices 
at 1 ,2 ,2 , 1iT iT iT it− − − + − +  is given by Cauchy's integral  

    
1 '

( ) 1 ( )
2 R

N T S ds
ζ

π ζ∂

−
− = ∫  

provided T is not the imaginary part of a zero. It is our purpose to determine a transition 
of dimensionality, from d=2 to d=3. This can be done simply, by introducing a system of 
inverted concatenations at the simple pole of ( )sζ defining ( ) 1N T −  in that range. 
However as we will show this is not a sufficient method for determining a proof and as 
such further steps must be taken. We then have  
  
 Proposition 1.1) For ( )g x continuous and real for real t defined in ( )f x , we define 
components of arbitrary x defined in� 1 2, ,..., nξ ξ ξ with respect to the  

basis 1 2{ } { , ,..., }ne e e e= of the n-dimensional space nk , and let the quantities 1 2, ,..., nη η η be 
defined by the formulas  
    (1.1) 1 11 1 12 2 1... ,n ns s sη ξ ξ ξ= + + +  

             2 21 1 22 2 2... ,n ns s sη ξ ξ ξ= + + +  
               ......................................  
              1 1 2 2 ... ,n n n nn ns s sη ξ ξ ξ= + + +  
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where det 0jks ≠ . Then a new basis 1 2{ } { , ,..., }nf f f f= can be found in the 

space nk such that the numbers 1 2, ,..., nη η η are the components of a vector x with respect to 
the basis { }f . 

 Proof: Introduce the matrix jks s=  and the matrix 1 ( ')P S −=  with elements 

denoted by ( ) j
iP . Substituting these elements into the formulas (1.1), we get a new basis 

1 2{ } { , ,..., }.   nf f f f= We assert that this is the desired basis. In fact, consider the 
transformation formulas  

(1.2)      
( )

1

       ( 1,2,..., )
n

j
k k j

j

q k nη ξ
=

= =∑ , 

which give the components of the vector x with respect to the new basis. These formulas 
can be written in terms of the matrix 1( ) 'P− . But in the present case, 1( ) 'P− coincides 
with S, since  

    1 ' 1 1( ) ' ([( ) ] ) ' ( ') ' .P S S S− − −= = =   
Hence, given any vector x, the quantities 1 2, ,..., nη η η  are just the components of x with 
respect to the basis { }f . 
 
 Proposition 1.2) For the arbitrary vector x defined in�  with components 

1 2, ,..., nη η η , setting d=2 yields  

      1 2 (1 ), .dη η η −≡  
The proof of this is evidenced by [2], [3], and [4].  
 In the presentation of these propositions it is our purpose to demonstrate first the 

providing of the transformation of components of a vector x=s, where 
1
2

s tσ= + , then 

the representation of these components given varying dimensionalities, third the 
introduction of an orthogonality component in x, and lastly the complete transformation 
of dimensionality of � . From the third of these we can define orthogonality relations 
that, yielding certain valuations, proves a theorem of locality for general global L-
functions and a corresponding Riemann Hypothesis.  
 
 Proposition 1.3) For the arbitrary vector x defined in �  with d=2, we can 
introduce an orthogonality component a, such that .ixya x a⋅ = The proof of this is 
evidenced by [3] and [5].  
  Theorem 1.3.1) By proposition 1.3) we van define orthogonality relations 
that, given certain values, proves a theorem of locality of the Riemann hypothesis of any 
global L-function. We begin by defining boundary conditions to simplify the necessary 
calculations. Consider the field � . Let us imagine a cube of side L. We then imagine that 
this structure is repeated periodically throughout� for all values, so that for some 
rectangleℜ , definition in the complex plane yields in some way association to the cubes 
L. Let us suppose, further, that the half-planes are the same at corresponding points of 
every cube. We now assert that these boundary conditions will yield the same phenomena 
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as will any other boundary conditions at the walls. To prove this, we need only ask why 
the phenomena is independent of the type of boundary. The answer is that, from a 
theoretical viewpoint, the wall merely serves to prevent deviation from constancy. 
Making the values periodic must have the same effect because each cube cannot deviate 
from constancy. If this were not so, the system would cease to be periodic. Thus, we have 
a boundary condition that serves the essential function of keeping the value in any 
individual cube constant. Although artificial, it must give the right answer, and it will 
make the calculations easier by simplifying the Fourier analysis of the half-planes. 
 Let ( , , , )a z y z t be any conceivable solution of a global L-function, we will use 

( )sζ , where 

     
1

1
( ) : s

n

s
n

ζ
∞

=

=∑ . 

( )sζ is the function of the complex variable s, defined in the half-plane ( ) 1sℜ > and in 
the whole complex plane � by analytic continuation. As shown by Riemann, 

( )sζ extends to �  as a meromorphic function with only a simple pole at s=1, with 
residue 1, and satisfies the functional equation  

    /2 (1 )/2 1
( ) ( ) ( ) (1 ).
2 2

s ss s
s sπ ζ π ζ− − − −

Γ = Γ −  

It will be the purpose of one of our later propositions to present a system of inverted 
concatenations at s=1. a(x) is imposed by our boundary conditions, that it must be 
periodic in space with period L/n, where n is an integer. It is a well-known mathematical 
theorem that an arbitrary periodic function ( , , , )f x y z t can be represented by means of a 
Fourier series in the following manner:  
  (1.3)      

 
( , , , )

, , , ,
, ,

2 2
[ ( )cos (( )) ( )sin ( )]

f x y z t

l m n l m n
l m n

a t x my nz b t lx my nz
L L
π π

+ + + + +∑  

where l, m, n are complex numbers. Any choice of a's and b's leading to a convergent 
series defines a function, ( , , , )f x y z t , which is periodic in the sense that is takes on the 
same value each time x, y, or z changes by L. For a given function, ( , , , )f x y z t it can be 
shown that the , , ( )l m na t and the , , ( )l m nb t are given by the following formulas:  

 (1.4)  , , , ,( ) ( )l m n l m na t a t− − −+  

    3
0 0 0

2 2
cos ( ) ( , , , )

L L L

dxdydz lx my nz f x y z t
L L

π
= + +∫ ∫ ∫  

   , , , ,( ) ( )l m n l m nb t b t− − −−  

    3
0 0 0

2 2
sin ( ) ( , , , )

L L L

dxdydz lx my nz f x y z t
L L

π
= + +∫ ∫ ∫ . 

These formulas illustrate the fact that only the sum of the a's and the difference of the b's 
are determined by the function f . From the above, we may conclude that f may be 
specified completely in terms of the quantities , , , ,l m n l m na a− − −+ and , , , ,l m n l m nb b− − −− , but we 

prefer to retain the specification in terms of the , ,l m na and , ,l m nb  because of the simpler 
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expressions to which they lead. Equations (1.4) are obtained by the aforementioned 
orthogonality relations:  

 (1.5a)   0 0 0

2
cos ( )

2
                                        sin ( ' ' ' ) 0

L L L

dxdydz lx my nz
L

l x m y n z
L

π

π

+ +

+ + =

∫ ∫ ∫
 

    0 0 0

2
cos ( )

2
                                       cos ( ' ' ' ) 0

L L L

dxdydz lx my nz
L

l x m y n z
L

π

π

+ +

+ + =

∫ ∫ ∫
 

unless  

    

'

'    

'

l l

m m

n n

= 
 = 
 = 

or  

'

 '

'

l l

m m

n n

= − 
 = − 
 = − 

 

in which case it is 3 / 2L , except when 0l m n= = = , in which case it is 3L . 

 (1.5b)  
0 0 0

2 2
sin ( )sin ( ' ' ' ) 0

L L L

lx my nz l x m y n z
L L
π π

+ + + + =∫ ∫ ∫  

unless 

    

'

'    

'

l l

m m

n n

= 
 = 
 = 

or  

'

 '

'

l l

m m

n n

= − 
 = − 
 = − 

 

in which case it is 3 / 2L . Fourier analysis, in the preceding form, enables us to represent 
an arbitrary function as a sum of standing plane waves of all possible wavelengths and 
amplitudes. The entire treatment is essentially the same as that used with waves in strings 
and organ pipes, except that it is three-dimensional. Let us now expand the vector 
potential in a Fourier series. Because a is a vector, involving three components, each 

, ,l m na and , ,l m nb  also has three components and, hence, must be represented as a vector:  

  , , , ,
, ,

2 2
( )cos ( ) ( )sin ( ) .l m n l m n

l m n

a a t lx my nz b t lx my nz
L L
π π = + + + + +  

∑   

We assume that 0,0,0a is zero in the above series. We now introduce the propagation 
vector k, defined as follows:  

 (1.6)  
2

x

l
k

L
π

=     
2

y

m
k

L
π

=       
2

z

n
k

L
π

=  

    
2

2 2 2 22
( ).k l m n

L
π = + + 

 
 

By orienting our co-ordinate axes in such a way that the z axis is directed along the k 
vector, we obtain 0l m= = , and 2 /k Lπ= . From the definition of k, it follows that 

/ 2k π is the number of waves in the distance L; hence the wavelength is 2 / ,kλ π= or 
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2 /k π λ= . In this co-ordinate system a typical wave takes the form cos2 /nz Lπ . Thus, 
the vector k is in the direction in which the phase of the wave changes. Going back to 
arbitrary co-ordinate axes, we conclude that k is a vector in the direction of the 
propagation of the wave. Its magnitude is 2 /π λ , and it is allowed to take on only the 
values permitted by integral l, m, and n in eq. (1.6). With this simplification of notation, 
we obtain  

 (1.7)    [ ]( )cos ( )sink k
k

a a t k r b t k r= ⋅ + ⋅∑ . 

where the summation extends over all permissible values of k.  
 Let us now apply the condition div 0a = to (1.7). We have  
    ( )div sin cos 0.k k

k

a k a k r k b k r= − ⋅ ⋅ + ⋅ ⋅ =∑  

It is a well-known theorem that if a Fourier series is identically zero, then all of the 
coefficients, ka and kb , must vanish. From the above it follows that 

( ) ( ) 0k kk a t k b t⋅ = ⋅ = . Thus, ( )ka t and ( )kb t are perpendicular to k , as are the half-planes 
belonging to the kth wave. Since the vibrations are normal to the direction of 
propagation, the waves are transverse. The direction of the half-plane [ ] 1sℜ > is also 
called the direction of polarization. To describe the orientation of ka  let us return to the 

set of co-ordinate axes in which the z axis is in the direction of k. The vector ka  can have 
only x and y components, and if we specify the value of these, we shall have specified 
both the magnitude and the direction of ka . We designate the direction of the vector ka  

by the subscript µ , writing ,ka µ where µ  is allowed to take on the values 1 and 2. For 

1µ = , ,ka µ  is in the x direction; but for 2µ = , it is in the y direction. All possible ka  

vectors can then be represented as a sum of some ,1ka  vector, and some other ,2ka  vector. 

Hence, the most general vector potential, subject to the condition that div 0a = , is given 
by  

 (1.8)    , ,
,

( )cos ( )sin .k k
k

a a t k r b t k rµ µ
µ

 = ⋅ + ⋅ ∑  

Here the summation extends over all permissible k vectors and over the two possible 
values of µ . It can be verified from (1.8) and the partial differential equation defining a 
in complex space  

 (1.9)    
2

2
2 2

1
0

a
a

c t
∂

∇ − =
∂

 

that the ,ka µ satisfies the following differential equation:  

 (1.10)    

2
, 2 2

,2 0k
k

d a
k c a

dt
µ

µ+ =  

which shows that the ,ka µ  terms oscillate with simple harmonic motion and with angular 

frequency, kcω = . The first step in evaluating the half-plane value is to express [ ] 1sℜ >  



 7

and [ ] 0sℜ >  in terms of the Fourier series for a. These expressions are:    

   

. .

, ,
,

, ,
,

1
[ ] 1 ( cos sin )

[ ] 0 ( sin cos )

k k
k

k k
k

s a k r b k r
c

s k a k r k b k r

µ µ
µ

µ µ
µ

ℜ > = ⋅ + ⋅

ℜ > = − × ⋅ + × ⋅

∑

∑
. 

Let us now evaluate the ,k µ  following over the cube of side L:  

  

2
2

, , 0 0 0

. . . .

, ', ' , ', '

. . .

, ', ' , ', '

1 1
( [ ] 1)

8 8

cos cos ' sin

                sin ' cos sin '

sin cos '

L L L

k k

k k k k

k k k k

s d dxdydz
c

a a k r k r b b k r

k r a b k r k r b a

k r k r

µ µ

µ µ µ µ

µ µ µ µ

τ
π π

⋅

ℜ > =

 ⋅ ⋅ ⋅ + ⋅ ⋅ 
 

⋅ + ⋅ ⋅ ⋅ + ⋅ 
 ⋅ ⋅  
 

∑∑∫ ∫ ∫ ∫

. 

With the aid of eqs. (1.5) we see that all integrals vanish except when 'k k= , and that all 

terms involving 
. .

, ', 'k ka bµ µ⋅  are zero. Furthermore, 
. .

, , ' 0k ka aµ µ⋅ =  unless 'µ µ= . When 

'µ µ≠ , the two vectors are, by definition, perpendicular to each other. Thus, the above 
expression reduces to  

   
2 3 . .

2 2
, ,2

,

( [ ] 1) 1 1
[ ( ) ( ) ]

8 8 2 2
k k

k

s dt L
a b

c
µ µ

µπ π
ℜ >

= +∑∫ . 

With a similar method, which involves somewhat more algebra, we obtain  

   
2 3

2 2
, ,

,

( [ ] 0) 1 1
[ ( ) ( ) ]

8 8 2 2
k k

k

s L
a bµ µ

µπ π
ℜ >

= +∑∫ . 

Thus, the constancy in the half-plane is (with 3L V= ) 
 
 (1.11)  

 

. .
2 2 2 2 2 2 2 2

,, , ,2
,

1 1
{ [( ) ( ) ] [( ) ( ) ]}

8 2 2

 for all [ ] 0 [ ] 1 defined in .

kk k k
k

V
C a c k a b c k b

c

s s

µµ µ µ
µπ

= + + +

= ∞ ℜ < < ℜ >

∑

�

 

 
By continued analysis, we obtain constancy  
 (1.12)    C nDO=  
which reduces to [ ] 0 [ ] 1s sℜ > < ℜ < . We obtain the probability that a zero lies on the 

line 
1

[ ]
2

sℜ =  

 (1.13)    
/ ln / ln( ) 2 Cn T nDO TN critical e eπ − −=� , 

corresponding with the density by the Riemann-von Mangoldt formula  
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    ( ) ln (ln ).
2 2
T T

N T O T
eπ π

 = + 
 

 

Thus, we may complete our proof as follows, beginning with the obvious justification of 

our arguments. For the line 
1

[ ]
2

sℜ = , we have frequencies  

 (1.14)    cos ,       cos( ).x D t y D tω ω δ= = −  
It is specified that the distributions x and y of N(T) have the same frequency. We assume 

0δ = , so that any value, constant and residual, in the sense that we are only concerned 
with the N(T) of the present, unless other values of N(T) are specified, of s lies on the 
straight line  

     
1
2

y b
x a
= = . 

It is the basis of this proof to yield an exact determination of the wavelength as utilized in 
our above propositions, and how we may heuristically observe a proof in this way. The 
following interpretation is noted: each coordinate s as in s itσ≡ +  is, a periodic function 
of the constancy as obtained by the oscillator in our above propositions. We define the 
following:  
     :Dv v=  
  Wavelength Frequency= velocity of propagation of the phase.×  
Now, it is evident that we have obtained a method to observe the proof or disproof of our 
assertions. For the value s, there must be constant t for any plane perpendicular to the 
direction of propagation. This translates to constant t given real part perpendicular to the 
direction of propagation. It is known that there are an infinite number of zeros on the line 

1
[ ]

2
sℜ = , therefore we assume the direction of propagation to approach ∞ , iff we have 

constancy of value equivalent to [ ]sℜ . Thus, to determine a value in �  with real part 

perpendicular to 
1
2

, we obtain a value 2s tσ= + − . To determine the L-function yielding 

this value, we need only look at the inverse of the Riemann zeta function, with 
[ ] 2sℜ = − . Thus,  

  (1.15)   
1

k

n

n
∞

=

−∑ ,   [ ] 2sℜ = − , 

so that  

  (1.16)   
1

1
( )

( )

x
k

u
n

u
s n du

x e
λ

∞∞

= −∞

−
= − =

Γ −∑ ∫ , 

where ( )xΓ  is the gamma function. We define the satisfied functional equation, and then 
obtain our value of t,  

  (1.17)   
2 2( 2 ) ( ) (2 ) ( )s ss s s sπ λ π λ−Γ − − = Γ + − − . 

Then, we define our value of t as constant for which t remains trivial and consistently 
perpendicular iff 2, 4, 6,...,t = − − − etc. We have finalized this part of our approach. It is 



 9

evident that the density of the distribution of zeros yields the continuity of propagation of 

the line 
1

[ ]
2

sℜ = . Call the angle between the wave-normal and the z-axis a. If we let the 

wave normal n fall in reflected non-values of 
1

[ ]
2

sℜ = , as in Fig. 1, then, the normal to 

the reflected wave, 'n , will be reflected similarly, and will also make the angle a with the 
z-axis. 

 
   Fig 1., with the angle closest to the y axis (horizontal) denoted y, 

the corresponding angle denoted a, and the corresponding angle denoted 
cos
y
a

.  

 
Thus, to prove the Riemann hypothesis of any global L-function, we need only determine 
the values of the standing wave corresponding to the density of the distribution of the 
zeros of the L-function, as the locality corresponds exactly to the values and propagation 
of a standing wave, such that the corresponding values, propagation, and assumed 
direction of propagation yield a determination of the density of the distribution of zeros. 

In the case of the line 
1

[ ]
2

sℜ = , we have demonstrated the direction of propagation to be 

∞ , and thus, in addition to the above arguments, we have our proof. We may determine 
the Riemann hypothesis of any global L-function in this way, and we have yielded a more 
effective representation of the phenomena concerning the density of the distribution of 
zeros.  
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