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A simple quantum relativistic model of νµ − ντ neutrino oscillations in the OPERA experiment
is presented. This model suggests that the two components in the neutrino beam are separated in
space. Being created in a meson decay, the µ-neutrino emerges 18 meters ahead of the beam’s center
of energy, while the τ -neutrino is behind. Both neutrinos have subluminal speeds, however the ad-
vanced start of the νµ explains why it arrives in the detector 60 ns earlier than expected. Our model
does violate the special-relativistic ban on superluminal signals. However, usual arguments about
violation of causality in moving reference frames are not applicable here. The invalidity of stan-
dard special-relativistic arguments is related to the inevitable interaction-dependence of the boost
operator, which implies that boost-transformed space-time coordinates of events with interacting
particles do not obey linear and universal Lorentz formulas.

I. INTRODUCTION

A recent preprint [1] published by the OPERA collabo-
ration claims observation of a superluminal effect in neu-
trino propagation. Muon-type neutrinos (νµ) with ener-
gies of about 17 GeV were produced at the CERN site
and captured by the OPERA neutrino detector 730 kilo-
meters away. It is believed that in the course of propaga-
tion the muon neutrinos partially converted to tau neu-
trinos (ντ ) due to the effect of neutrino oscillations [2].
The carefully measured propagation time of the νµ beam
was 60 ns shorter than if neutrinos moved with the speed
of light. There is a great deal of scepticism in the scien-
tific community regarding this remarkable result. How-
ever, in this paper we will assume that the superluminal
OPERA effect is valid, and offer a possible explanation,
which, on one hand, is fully within mainstream quantum
relativistic physics, and on the other hand, challenges the
traditional interpretation of Einstein’s relativity theory.
In section II we consider a simple but realistic model

of νµ − ντ oscillations. The model is formulated in one
spatial dimension, but its generalization for the real 3D
world is not expected to bring any significant changes.
The model is fully relativistic, meaning that commuta-
tion relations of the Poincaré Lie algebra are explicitly
satisfied by operators of the total momentum, total en-
ergy and boost. The interaction responsible for oscilla-
tions is controlled by a momentum-dependent function
f(p) ≡ |f(p)|eiα(p). The modulus |f(p)| of this function
determines mixing coefficients for neutrinos with momen-
tum p. The phase factor eiα(p) plays a different physical
role: If the phase α(p) changes rapidly with p, then the
two components (νµ and ντ ) of the neutrino beam are
separated by a certain distance |χ|. The theory does
not restrict behavior of function α(p) and the numerical
value of χ. So it is possible to assume that the separa-
tion between two neutrino components amounts to |χ|=
several meters, so that the νµ neutrino moves ahead of
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the beam’s center-of-energy, while the ντ neutrino lags
behind. Note that both components are subluminal, as
expected for massive particles.

In section III we use this theory to explain the OPERA
experiment. When the initial µ-neutrino is created in a
meson decay at CERN, this particle emerges not from
the interaction vertex, but 18 meters in the forward di-
rection. This advanced start explains the early arrival of
muon neutrinos in the OPERA detector in spite of their
subluminal propagation speed.

In our proposed explanation a decay product (νµ)
emerges instantaneously 18 meters away from the inter-
action vertex. This is in a sharp disagreement with tradi-
tional special relativity, which claims that superluminal
propagation of any physical signal is inconsistent with
the principle of causality. In section IV we argue that
our model does not violate causality even in the moving
reference frame. The key idea is that transition to the
moving frame should be performed by using a boost op-
erator that depends on interaction. Therefore, transfor-
mations of observables (including positions of particles)
in the relevant interacting system (unstable meson plus
muon plus oscillating neutrino) are different from simple
and universal Lorentz formulas of special relativity. This
allows us to reject the special-relativistic ban on superlu-
minal velocities and, at the same time, obey the causality
principle. Finally, we use our model to formulate a few
predictions for future neutrino experiments.

II. NEUTRINO OSCILLATIONS

We would like to describe a free neutrino system os-
cillating between two states: µ-neutrino and τ -neutrino.
For simplicity, we will ignore the possible effect of the
third (electronic) e-neutrino species. Then the Hilbert
space can be constructed as a direct sum of two one-
particle subspaces

H = Hµ ⊕Hτ (1)
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This Hilbert space will be used for both non-interacting
and interacting neutrino systems considered in this work.

A. Non-interacting system

Both Hµ and Hτ are Hilbert spaces carrying unitary
irreducible representations of the Poincaré group charac-
terized by (non-observable) free neutrino masses mµ and
mτ , respectively [3]. In the absence of interaction respon-
sible for neutrino oscillations the noninteracting represen-
tation of the Poincaré group acting in the Hilbert space
H can be built as a direct sum of these two irreducible
representations. To write explicit formulas we will choose
a convenient basis set in (1). For each momentum p we
will select two orthonormal basis states of definite flavor:

|νµ⟩ ≡
[
1
0

]
|ντ ⟩ ≡

[
0
1

]
Then each normalized state vector |ψ⟩ can be represented
as a 2-component momentum-dependent vector in this
basis

|ψ⟩ ≡
[
Φµ(p)
Φτ (p)

]
where Φµ,τ (p) are complex wave functions satisfying the
normalization condition

∫
dp
(
|Φµ(p)|2 + |Φτ (p)|2

)
= 1

In this paper we adopt Schrödinger representation:
Any inertial change of the observer is reflected in the
change of system’s state vector or wave function. Dif-
ferent observers use the same Hermitian operator to de-
scribe a given observable. Finite transformations from
the Poincaré group (space translations, time translations
and boosts) can be written as exponential functions of
generators. They have simple expressions in the flavor
basis [4]

e
i
h̄P0a|ψ⟩ =

[
e

i
h̄paΦµ(p)

e
i
h̄paΦτ (p)

]
e−

i
h̄H0t|ψ⟩ =

[
e−

i
h̄ωµ(p)tΦµ(p)

e−
i
h̄ωτ (p)tΦτ (p)

]

e
i
h̄K0cθ|ψ⟩ =

 √ωµ(Λµp)
ωµ(p)

Φµ(Λµp)√
ωτ (Λτp)
ωτ (p)

Φτ (Λτp)


where

ωµ,τ (p) ≡
√
m2

µ,τ c
4 + p2c2

Λµ,τp ≡ p cosh θ − ωµ,τ

c
sinh θ

and parameter θ is related to the boost velocity by for-
mula v = c tanh θ.

The basis of the corresponding non-interacting repre-
sentation of the Poincaré Lie algebra is provided by Her-
mitian operators of total momentum P0, total energy H0

and boost K0. The explicit matrix form of these genera-
tors can be obtained by differentiation

P0 = −ih̄ lim
a→0

d

da
e

i
h̄P0a =

[
p 0
0 p

]
(2)

H0 =

[
ωµ(p) 0
0 ωτ (p)

]
(3)

K0 = −ih̄

[
ωµ(p)
c2

d
dp + p

2ωµ(p)
0

0 ωτ (p)
c2

d
dp + p

2ωτ (p)

]
(4)

B. Interaction

In the Dirac’s instant form of dynamics [5, 6], relativis-
tically invariant description of interaction is achieved by
adding extra terms to both the energy operator H =
H0+V and the boost operator K = K0+Z, while keep-
ing the total momentum P0 unchanged. The choice of
interactions V and Z must ensure that Poincaré commu-
tators remain the same as in the non-interacting case

[H,P0] = 0 (5)

[K,P0] = − ih̄
c2
H (6)

[K,H] = −ih̄P0 (7)

The most general interaction operator is

V =

[
η(p) f(p)
f∗(p) ζ(p)

]
where diagonal elements η(p), ζ(p) are real functions and
the off-diagonal f(p) is a complex function. For future
use it will be convenient to write f(p) ≡ |f(p)|eiα(p),
where α(p) is a real phase function. Then in the fla-
vor basis we can write the full Hamiltonian as a 2 × 2
momentum-dependent matrix

H = H0 + V =

[
ω̃µ(p) f(p)
f∗(p) ω̃τ (p)

]
(8)

where ω̃µ(p) ≡ ωµ(p) + η(p) and ω̃τ (p) ≡ ωτ (p) + ζ(p).



3

C. Mass (energy) eigenstates

Our primary goal in this section is to calculate the
time evolution of neutrino states. This can be done most
easily if we find eigenvalues E1,2 and eigenstates of H.
So, we need to solve equation

0 =

[
ω̃µ(p)− E1,2(p) f(p)

f∗(p) ω̃τ (p)− E1,2(p)

] [
Φ1,2

µ (p)
Φ1,2

τ (p)

]
(9)

together with normalization conditions (i = 1, 2)

|Φi
µ(p)|2 + |Φi

τ (p)|2 = 1 (10)

For the eigenvalues E1, E2 we obtain two equations

|f(p)|2 = [ω̃µ(p)− E1(p)] [ω̃τ (p)− E1(p)]

= [ω̃µ(p)− E2(p)] [ω̃τ (p)− E2(p)] (11)

A necessary requirement for this theory to be relativisti-
cally invariant is that energy eigenvalues have the stan-
dard momentum dependence [7]

E1,2(p) =
√
m2

1,2c
4 + p2c2 (12)

where m1,2 are neutrino mass eigenvalues [8]. The true
Hamiltonian (8) of the neutrino system is not known, so
we are free to make our guesses. We will assume that the
mass eigenvalues are known: m2 > m1 > 0. Then, hav-
ing at our disposal four adjustable real functions ω̃µ(p),
ω̃τ (p), |f(p)| and α(p), we can always choose them in
such a way that condition (12) is satisfied, ω̃µ,τ (p) and
|f(p)| are smooth functions of momentum, and

ω̃µ(p) + ω̃τ (p) = E1(p) + E2(p)

For example, we can choose arbitrary |f(p)| and solve
the system of equations (11) to express ω̃µ,τ (p) through
|f(p)| and E1,2(p)

ω̃µ,τ (p)

=
1

2

(
E1(p) + E2(p)∓

√
(E1(p)− E2(p))2 − 4|f(p)|2

)
Then α(p) is left unspecified. So, we are free to choose
any real phase function α(p) in our study.
As can be verified by direct substitution in (9) - (10),

the eigenvectors of the full Hamiltonian are

|1, p⟩ =
[

A(p)
−B(p)e−iα(p)

]
(13)

|2, p⟩ =
[
B(p)eiα(p)

A(p)

]
(14)

where we introduced notation

A(p) ≡ +

√
ω̃τ (p)− E1(p)

E2(p)− E1(p)

B(p) ≡ +

√
ω̃µ(p)− E1(p)

E2(p)− E1(p)

A2(p) +B2(p) = 1

Note also that (13) - (14) are eigenvectors of the total
momentum P0 and mass M .

Next we need to find a connection between the flavor
and mass-energy bases. If (Ψ1(p),Ψ2(p)) is a state vec-
tor written in the basis of mass eigenstates [9], then the
corresponding expansion in the flavor basis is obtained
by a unitary transformation

[
Φµ(p)
Φτ (p)

]
=

(
A(p) B(p)eiα(p)

−B(p)e−iα(p) A(p)

)(
Ψ1(p)
Ψ2(p)

)
(15)

The transformation from the flavor basis to the mass ba-
sis is provided by the inverse matrix

(
Ψ1(p)
Ψ2(p)

)
=

[
A(p) −B(p)eiα(p)

B(p)e−iα(p) A(p)

] [
Φµ(p)
Φτ (p)

]
(16)

D. Interacting representation of the Poincaré
group

The mass basis is useful because the interacting rep-
resentation of the Poincaré group takes especially simple
form there

e−
i
h̄Ht

(
Ψ1(p)
Ψ2(p)

)
=

(
e−

i
h̄E1(p)tΨ1(p)

e−
i
h̄E2(p)tΨ2(p)

)
(17)

e
i
h̄Kcθ

(
Ψ1(p)
Ψ2(p)

)
=

 √E1(Λ1p)
E1(p)

Ψ1(Λ1p)√
E2(Λ2p)
E2(p)

Ψ2(Λ2p)


where Λip ≡ p cosh θ − (Ei/c) sinh θ is the usual boost
transformation of momentum.

Poincaré generators in the mass basis can be obtained
by differentiation similar to (2) - (4)

H = ih̄ lim
t→0

d

dt
e−

i
h̄Ht =

(
E1(p) 0
0 E2(p)

)
K = −ih̄

(
E1(p)
c2

d
dp + p

2E1(p)
0

0 E2(p)
c2

d
dp + p

2E2(p)

)
(18)

P0 =

(
p 0
0 p

)
(19)
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By noticing the analogy of these formulas with the non-
interacting representation in subsection IIA one can con-
vince oneself that commutators (5) - (7) are, indeed, sat-
isfied. So, our theory is relativistically invariant.

E. Time evolution

Obviously, the state vector with one µ-neutrino having
a normalized momentum-space wave function ψ(p)

|ψ⟩ ≡
[
ψ(p)
0

]
(20)∫

dp|ψ(p)|2 = 1

is not an eigenstate of the Hamiltonian (8). So, neutrino
states with definite flavor are not stationary. Our goal in
this subsection is to calculate the time evolution of these
states.
Let us now make further simplifications by assuming

that the initial wave function ψ(p) is localized in a narrow
region ∆p of the momentum space. We will also assume
that in this region the modulus |f(p)| of the interaction
function varies slowly, while its phase changes as a linear
[10] function of p

α(p) ≈ χp

h̄
(21)

where χ is a yet unspecified parameter with the dimen-
sionality of length. In the region ∆p the quantities A(p)
and B(p) can be assumed smooth. Moreover, in cases
of practical interest neutrinos are ultrarelativistic, so we
can set

p≫ m1,2c

E1(p) =
√
m2

1c
4 + p2c2 ≈ cp

E2(p) =
√
m2

2c
4 + p2c2 ≈ cp+ γ(p)

γ(p) ≈ (m2
2 −m2

1)c
3

2p

Next we use (16) to expand the initial state vector (20)
in the basis of eigenvectors of the full Hamiltonian

|ψ⟩ = ψ(p)

(
A

Be−
i
h̄χp

)
The time evolution of this state vector is obtained from
(17)

|ψ(t)⟩ ≡ e−
i
h̄Ht|ψ⟩ = ψ(p)

(
Ae−

i
h̄E1(p)t

Be−
i
h̄χpe−

i
h̄E2(p)t

)
(22)

Its components in the flavor basis can be found using
transformation (15)

|ψ(t)⟩ = ψ(p)

(
A Be

i
h̄χp

−Be− i
h̄χp A

)(
Ae−

i
h̄E1(p)t

Be−
i
h̄χpe−

i
h̄E2(p)t

)

≈ ψ(p)e−
i
h̄ cpt

 (
A2 +B2e−

i
h̄γt
)

ABe−
i
h̄χp

(
e−

i
h̄γt − 1

) 
To switch to the position representation we perform a
Fourier transform

1

2πh̄

∫
dpe

i
h̄pxψ(p)e−

i
h̄ cpt

[
A2 +B2e−

i
h̄γt

ABe−
i
h̄χp

(
e−

i
h̄γt − 1

) ]

≈ ψ

 (
A2 +B2e−

i
h̄γt
)
δ(x− ct)

AB
(
e−

i
h̄γt − 1

)
δ(x− χ− ct)

 (23)

Here we took into account that the support ∆p of the
smooth wave function ψ(p) is much larger than the pe-
riod of oscillations of imaginary exponents, so we can
treat A(p), B(p) and γ(p) as constants and also move
out of the integral some average value of the smooth wave
function ψ. Due to the normalization of ψ(p), this value
has to be unimodular |ψ|2 = 1. By doing these approx-
imations, we have simplified our solution to the level of
classical trajectories. In particular, we have neglected
the wave function “spreading” effect, which is known to
be superluminal but negligibly small [11–16].

F. Oscillations and the neutrino “size”

Equation (23) is our main result, and in this subsec-
tion we will analyze physical implications of this formula.
The probabilities for finding µ-neutrino and τ -neutrino
change with time as

ρµ(t) =
∣∣∣A2 +B2e−

i
h̄γt
∣∣∣2 = A4 +B4 + 2A2B2 cos

(
γt

h̄

)
ρτ (t) = A2B2

∣∣∣e− i
h̄γt − 1

∣∣∣2 = 2A2B2

(
1− cos

(
γt

h̄

))
1 = ρµ(t) + ρτ (t)

In the ultrarelativistic limit the oscillation period is [17]

T =
2πh̄

γ
≈ 4πh̄p

(m2
2 −m2

1)c
3

In the particular case of “full mixing” (A2 = B2 = 1/2)
both probabilities oscillate between two extremes 0% and
100%
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T

0

x

ct

χ

νμ

ντ
c.
e
.

FIG. 1. Space-time diagram for a free oscillating neutrino
system. The two components νµ and ντ have different tra-
jectories separated by the distance |χ|. Varying line densities
indicate oscillating probabilities ρµ,τ (t) for finding the two
particles. “c.e.” is the center-of-energy trajectory.

ρµ(t) =
1

2

(
1 + cos

(
2πt

T

))
ρτ (t) =

1

2

(
1− cos

(
2πt

T

))
This example is shown in Fig. 1.
From arguments of delta functions in (23) we can find

classical trajectories of the two neutrino species

xµ(t) = ct (24)

xτ (t) = χ+ ct (25)

We see that both particles move with (almost) the speed
of light, as expected. The remarkable property is the
presence of parameter χ in (25). This means that the two
neutrino components do not overlap in space [18]. They
have different trajectories separated by the distance |χ|.
Recall that χ is a free and unrestricted real parameter in
our theory. In the example shown in Fig. 1 this param-
eter has been chosen negative.

G. Conservation laws

The behavior of the neutrino system described above is
rather peculiar: The system oscillates not only between
two flavor states, but also between two different trajecto-
ries. In a sense, this object has a non-vanishing size |χ|,
and nothing in the theory forbids this size to be macro-
scopically large, e.g., several meters. In order to convince

ourselves in the validity of this solution, let us check that
conservation laws have not been compromised. Our so-
lution (22) - (23) is not an eigenvalue of any physical
observable (like flavor number, momentum, energy, po-
sition, etc.), so, we can only verify the conservation of
certain expectation values.

First, we check that the total momentum of the system
is conserved. Using the mass basis representation (19) it
is easy to show that the expectation value of P0 does not
depend on time

⟨P0(t)⟩ ≡ ⟨ψ(t)|P0|ψ(t)⟩

=

∫
dp|ψ(p)|2

(
Ae

i
h̄E1t, Be

i
h̄χpe

i
h̄E2t

)(
p 0
0 p

)
×(

Ae−
i
h̄E1t

Be−
i
h̄χpe−

i
h̄E2t

)
=

∫
dpp|ψ(p)|2

(
A2 +B2

)
=

∫
dpp|ψ(p)|2 = ⟨p⟩

Similarly, we demonstrate the time independence of the
total energy

⟨H(t)⟩ ≡ ⟨ψ(t)|H|ψ(t)⟩

=

∫
dp|ψ(p)|2

(
Ae

i
h̄E1t, Be

i
h̄χpe

i
h̄E2t

)
×(

E1 0
0 E2

)(
Ae−

i
h̄E1t

Be−
i
h̄χpe−

i
h̄E2t

)
=

∫
dp|ψ(p)|2(E1A

2 + E2B
2) ≈ c⟨p⟩

Another less known conservation law says that the cen-
ter of energy of any isolated physical system moves with
constant velocity along a straight line. This law follows
from the definition of the center-of-energy position [19]

R = −c
2

2
(KH−1 +H−1K)

and the relationship [20]

K(t) ≡ e
i
h̄HtKe−

i
h̄Ht = K − P0t

which is a direct result of the basic commutators (6) -
(7). Using the matrix form of the boost operator (18)
and taking into account that [21]

∫
dp
E1(p)

c2
ψ∗(p)

dψ(p)

dp
=

∫
dp
E1(p)

2c2
d

dp
|ψ(p)|2

= −
∫
dp

d

dp

(
E1(p)

2c2

)
|ψ(p)|2 ≈ − 1

2c

we calculate
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⟨K(t)⟩
≡ ⟨ψ(t)|K|ψ(t)⟩

= −ih̄
∫
dpψ∗(p)

(
Ae

i
h̄E1(p)t, Be

i
h̄χpe

i
h̄E2(p)t

)
×(

E1(p)
c2

d
dp + p

2E1(p)
0

0 E2(p)
c2

d
dp + p

2E2(p)

)
×

ψ(p)

(
Ae−

i
h̄E1(p)t

Be−
i
h̄χpe−

i
h̄E2(p)t

)
≈ −ih̄

(
− iA

2

h̄
pt− i

h̄
χ
B2E2(p)

c2
− iB2

h̄
pt

)
= −χB

2E2

c2
− pt = ⟨K⟩ − ⟨p⟩t

The center-of-energy trajectory is then obtained as

⟨R(t)⟩ = −c
2⟨K(t)⟩
⟨H(t)⟩

≈ χB2E2

c⟨p⟩
+ ct ≈ χB2 + ct

This means that the center-of-energy moves with the
light speed c, as expected. This imaginary trajectory
lies between real trajectories (24) - (25) of the two neu-
trino components. In the case of full mixing (B2 = 1/2)
the center of energy is right in the middle between νµ
and ντ , as shown in Fig. 1.

III. OPERA EXPERIMENT

A. Neutrino creation reaction

In the OPERA experiment, CERN accelerator supplies
high energy protons, which fall on a graphite target and
produce multiple secondary particles, including charged
π± and K± mesons. The mesons decay in-flight and
emit muon neutrinos, which are eventually captured by
the OPERA detector. In Fig. 2 we sketch a space-time
diagram for the π+ → µ+ + νµ decay process.
In subsection II F we have established that the neutrino

system may have a large size (|χ| = several meters). So,
it is important to understand the location of this object
at the point of its creation. Here we will be helped by
the law of continuity of the center-of-energy trajectory
mentioned above. This law should remain valid even in
the pion decay process. But it cannot be satisfied if νµ is
emitted directly from the decay interaction vertex, as is
usually assumed. As shown in Fig. 2, for the conserva-
tion law to be valid, the decay point (marked “W” in the
figure) should lie on the imaginary line representing the
neutrino center-of-energy trajectory (the thin dashed line
in the figure). In this case, the µ-neutrino component at
time t = 0 is displaced from W by the distance of |χ|B2

in the forward direction, while ντ is |χ|A2 meters behind.

χ
π+

00

FIG. 2. Space-time diagram for the neutrino creation reac-
tion π+ → µ+ + νµ. The center-of-energy trajectory emerges
directly from the decay interaction vertex W , while νµ and
ντ trajectories are displaced.

B. Neutrino detection

Now we can collect all the results obtained so far in
order to suggest a realistic picture of the OPERA ex-
periment and explain the superluminal behavior of the
neutrinos. We will use our theory described above and
assume full mixing [22] and the value χ = −36m. Accord-
ing to this model, the imaginary trajectory of the neu-
trino center-of-energy emerges directly from the decay in-
teraction vertex W , as shown in Fig. 2. This imaginary
trajectory arrives in the OPERA detector “on schedule”
without superluminal suprises. The µ-neutrino emitted
in the meson decay has a position that is advanced by
|χ|/2 = 18m with respect to the center of energy. On the
other hand, the τ -neutrino component of the beam trails
18m behind the center of energy. The speed of all three
points is very close to the speed of light. So, naturally,
µ-neutrinos arrive in the detector 60 ns ahead of sched-
ule, while τ -neutrinos are 60 ns late. This is illustrated
in Fig. 3.

IV. DISCUSSION

In this article we have formulated a simple model of os-
cillating neutrinos. This model satisfies all requirements
of relativistic quantum theory: A unitary representation
of the Poincaré group is constructed explicitly in the neu-
trino Hilbert space, and this representation takes into
account interaction responsible for neutrino oscillations.
This model predicts a peculiar property: the two com-
ponents of the neutrino beam may not overlap in space.
They can be separated from each other by a macroscop-
ically large distance |χ| without violating any conserva-
tion law. This property can naturally explain the su-
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x

ct

CERN OPERA

FIG. 3. Schematic representation of the OPERA neutrino
experiment. The 60 ns early arrival of µ-neutrinos is explained
by their creation 18 meters away from the meson decay point
at time t = 0.

perluminal effect seen in the OPERA experiment if we
assume that χ = −36 meters for neutrinos with ener-
gies in the interval roughly from 13.8 GeV to 40.7 GeV.
In this respect it is important to mention other similar
experiments performed at Fermilab [23, 24], in which µ-
neutrinos and muons produced in meson decays arrived
in the detector essentially simultaneously, thus suggest-
ing that χ(E) ≈ 0 in the energy range 32 - 195 GeV.
The partial overlap of the two mentioned energy inter-
vals challenges our suggested explanation, even if we as-
sume abrupt disappearance of the superluminal effect for
neutrino energies above 30 GeV. To resolve this apparent
controversy, it is necessary to perform additional exper-
imental studies on how the superluminality of OPERA
neutrinos depended on their energy.
In our derivations we have assumed that the support

(∆p) of the momentum-space neutrino wave function
ψ(p) is much larger than the period of oscillations of

imaginary exponents e−
i
h̄χp and e−

i
h̄Ei(p)t. This condi-

tion can be satisfied if the spatial extension ∆x ≈ h̄/∆p
of the position-space wave function is much smaller than
|χ| ≈ 36m, which is definitely true. On the other hand,
∆p cannot be very large, so that we are allowed to use
the assumptions of the constancy of A(p), B(p) and γ(p)
and the linearity of α(p) and Ei(p) as functions of p. This
condition can be satisfied if ∆p is not greater than few
MeV/c, which places the lower boundary for ∆x on the
scale of the size of nucleus. This means that our approx-
imations are well justified.
In our model neutrinos are created at a distance of

|χ|/2 = several meters from the meson decay point. This
is at odds with the traditional local quantum field the-
ory, which would insist that |χ| = 0 [25]. Thus, it would
be extremely interesting to try to measure this distance
experimentally. Unfortunately, neutrinos do not leave

tracks in bubble chambers or emulsions, so direct mea-
surements of |χ| are going to be rather challenging.

A. Comments on causality

According to our model, the OPERA result does not
mean that neutrinos move faster than light. Neverthe-
less, they violate the special-relativistic ban on super-
luminal propagation in a different manner. The model
presented above can be interpreted as a statement that
the νµ − ντ system has a large radius (≈18 meters). The
violation of special relativity occurs already at time t = 0,
when such a big system is created instantaneously in a
meson decay, while according to the traditional concepts,
its creation must take at least 60 ns. Indeed, our model
implies a superluminal signal propagation. According to
usual ideas, this is impossible, because the principle of
causality would be violated. The traditional argument in-
vokes Lorentz transformations of special relativity. They
say that if (x, t) are space-time coordinates of a physical
event in the reference frame at rest, then in the iner-
tial frame moving with velocity v ≡ c tanh θ space-time
coordinates of the same event are given by formulas

x′ = x cosh θ − ct sinh θ (26)

t′ = t cosh θ − (x/c) sinh θ (27)

Special relativity postulates that these formulas remain
valid in all circumstances, independent on the physical
nature of the event occurring at (x, t) and on interactions
responsible for this event. The claim is that formulas
(26) - (27) express fundamental universal properties of
the space-time. The tacit or explicit assumption used in
many discussions of quantum relativistic effects is that
space-time arguments of wave functions must transform
by the same formulas, i.e., that the position-space wave
function transforms to the moving frame as

ψ(x, t) → ψ(x cosh θ − ct sinh θ, t cosh θ − (x/c) sinh θ)

(28)

If this were true, then the appearance of νµ at point 0
in Fig. 2 would be scandalous, because, according to
(26) - (28), one would be able to find a moving reference
frame in which event 0 (creation of the µ-neutrino) has
happened before event W (decay of the π-meson). So, in
this moving frame the effect would occur before its cause,
which is impossible.

However, there are logical gaps in the above argu-
ments. These gaps allow us to claim that violation of
causality in our model is not obvious at all. We use the
Newton-Wigner’s definition of particle’s position [26] and
Wigner-Dirac formulation of quantum dynamics [5]. In
this theory, formula (28) is not valid even in the case
of non-interacting particles. The correct transformation
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of a non-interacting position-space wave function to the
moving frame is [27]

ψ(θ;x, t) = ⟨x|e− i
h̄H0te

i
h̄K0cθ|ψ⟩

which is not the same as (28). This fundamental differ-
ence is demonstrated by the well-known effects of super-
luminal spreading of wave packets and the loss of particle
localization in the moving frame [11–15].

In the interacting case the picture is even more com-
plicated as one needs to use interacting energy and boost
operators to find the wave function transformation

ψ(θ;x, t) = ⟨x|e− i
h̄Hte

i
h̄Kcθ|ψ⟩

Let us consider the time evolution of the initial state (20)
seen from the moving reference frame in the case of full
mixing A = B = 1/

√
2

|ψ(θ; t)⟩ = e−
i
h̄Hte

i
h̄Kcθ|ψ⟩ = 1√

2

 e−
i
h̄E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p)

e−
i
h̄E2(Λ2p)t

√
E2(Λ2p)
E2(p)

e−
i
h̄χΛ2pψ(Λ2p)


Switching to the flavor basis by usual formula (15) we obtain

|ψ(θ; t)⟩ =

 e−
i
h̄E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e
i
h̄χpe−

i
h̄χΛ2pe−

i
h̄E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)

−e− i
h̄χpe−

i
h̄E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e−
i
h̄χΛ2pe−

i
h̄E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)

 (29)

We will not analyze this result in detail here, just mention
two remarkable features, which disagree with traditional
interpretations of special relativity. First, the oscillation
period observed from the moving frame does not scale
with velocity according to the usual Einstein’s time dila-
tion formula: T ′ ̸= T cosh θ [28]. Second, even at t = 0,
the probability of finding µ-neutrino is less than 1 and the
probability of finding τ -neutrino is greater than 0. This
means that definitions of the νµ and ντ states are different
for different observers. So, this oscillating system lacks
clearly identified local events, whose space-time coordi-
nates could be used in a rigorous discussion of causality.
These two unusual features are very similar to properties
of unstable particles discussed in [29–32].

Even if the above difficulty with event definitions is re-
solved, formula (29) cannot provide a clear answer about
causality in the moving frame, because in the real ex-
periment we are not dealing with free (albeit oscillating)
neutrinos: The crucial superluminal effect (an instanta-
neous creation of the macroscopic neutrino system) oc-
curs at the point of meson decay. Then, for a mean-
ingful discussion, we need to include in our model the
unstable meson and its decay products as well as inter-
actions responsible for the meson decay and neutrino os-
cillations. To the best of author’s knowledge, a rigor-
ous quantum relativistic description of this interacting
system in different moving frames has not been devel-
oped yet. However, one can get some useful hints from
previous studies of “normal” inter-particle interactions,
e.g., between two charges. One can demonstrate that in
relativistic Hamiltonian systems of interacting particles
boost transformations of space-time locations of events

are different from Lorentz formulas (26) - (27) even in
the classical (non-quantum) limit [33]. This fact is essen-
tial for the proof that instantaneous action-at-a-distance
potentials remain instantaneous in all reference frames,
so that causality is preserved [34]. If we assume that sim-
ilar arguments hold for decay/oscillation interactions as
well, then no conflict with causality will be found in the
OPERA superluminal results.

These arguments lead us to the conclusion that the
oscillating neutrino system does not behave in a way
expected from a näıve application of special relativity.
However, this does not mean that the causality postu-
late is violated. A proper discussion of causality requires
more realistic modeling of the neutrino preparation event
in different reference frames. Such a modeling would be
a promising line of further research, but it is beyond the
scope of the present paper.

B. Other experiments and predictions

When the OPERA results are discussed, two other neu-
trino observations are usually mentioned. One of them is
the MINOS experiment [35] that saw a hint of advanced
propagation of µ-neutrinos, however, large experimen-
tal uncertainties did not allow the authors to make a
definitive conclusion about superluminality. This exper-
iment was different from OPERA [36] in the sense that
the propagation time was measured between two neutrino
detectors. In this case, according to our model, no super-
luminal effects can be observed as neutrino’s speed does
not exceed c. The other experiment concerns observation
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of neutrinos originated from supernova SN1987A [37–39].
This observation confirmed that neutrino’s speed coin-
cides with the speed of light to a high precision, which is
also consistent with our model.
Based on our study, three predictions can be formu-

lated, which may be useful for those designing future ex-
periments measuring neutrino propagation speed:

1. We predict that a more thorough remake of the
MINOS experiment will confirm that the speed of
neutrinos is not higher than the speed of light.

2. The observed superluminal effect in the OPERA
setup is independent on the distance traveled by

the neutrino beam. If the neutrino energy is kept
at 17 GeV, then for any source-detector distance µ-
neutrinos will arrive to the detector by 60 ns “too
early”.

3. If τ -neutrinos (instead of νµ) are detected in the
OPERA setup, then the superluminal effect will
disappear: ντ will be found in the detector later
than expected. In the case of full mixing, the delay
time is going to be 60 ns (i.e., 120 ns later than νµ).

The author would like to thank Dr. Robert Wagner
for critically reading this manuscript.
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