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Abstract

A simple quantum relativistic model of νµ − ντ neutrino oscillations in the
OPERA experiment is presented. This model suggests that the two components
in the neutrino beam are separated in space. After being created in a meson
decay, the µ-neutrino moves 18 meters ahead of the beam’s center of energy,
while the τ -neutrino is behind. Both neutrinos have subluminal speeds, how-
ever the advanced start of the νµ explains why it arrives in the detector 60 ns
earlier than expected. Our model does violate the special-relativistic ban on
superluminal signals. However, usual arguments about violation of causality are
not applicable here. The invalidity of standard special-relativistic arguments is
related to the interaction-dependence of the boost operator, which implies that
boost-transformed space-time coordinates of events with interacting particles do
not obey linear and universal Lorentz formulas.

1 Introduction

A recent preprint [1] published by the OPERA collaboration claims observation of
a superluminal effect in neutrino propagation. Muon-type neutrinos (νµ) with ener-
gies of about 17 GeV were produced by the CERN accelerator and captured by the
OPERA neutrino detector 730 kilometers away. It is believed that in the course of
propagation the muon neutrinos partially converted to tau neutrinos (ντ ) due to the
effect of neutrino oscillations. The carefully measured propagation time of the νµ beam
was 60 ns shorter than the one expected from the usual assumption about subluminal
propagation speeds. There is a great deal of scepticism in the scientific community
regarding this remarkable result. However, in this paper we will assume that the su-
perliminal OPERA effect is valid, and offer an explanation, which, on one hand, is fully
within mainstream quantum relativistic physics, and on the other hand, challenges the
traditional interpretation of Einstein’s relativity theory.
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In section 2 we consider a simple but realistic model of νµ − ντ oscillations. The
model is formulated in one spatial dimension, but its generalization for the real 3D
world is not expected to bring any significant changes. The model is fully relativis-
tic, meaning that commutation relations of the Poincaré Lie algebra are explicitly
satisfied by operators of the total momentum, total energy and boost. The interac-
tion responsible for oscillations is fully controlled by a momentum-dependent function
f(p) ≡ |f(p)|eiα(p). The modulus |f(p)| of this function determines the frequency of
oscillations of neutrinos with momentum p. The phase factor eiα(p) plays a different
physical role: If the phase α(p) changes rapidly with p, then the two components (νµ
and ντ ) of the neutrino beam are separated by a certain distance χ. The theory does
not specify the behavior of α(p) distance and the distance χ. Then it is possible to
assume that the separation between neutrino components amounts to several meters,
so that the νµ neutrino moves ahead of the beam’s center-of-energy, while the ντ neu-
trino lags behind. Note that both components are subluminal, as expected for massive
particles.

In section 3 we use this theory to explain the OPERA experiment. When the initial
µ-neutrino is created in a meson decay at the CERN site, this particle emerges not
at the interaction vertex, but 18 meters in the forward direction. This advanced start
explains the early arrival of muon neutrinos in the OPERA detector in spite of the
subluminal propagation speed.

Ourproposed explanation requires instantaneous appearance of a decay product
(νµ) 18 meters away from the interaction vertex. This is in sharp disagreement with
traditional special relativity, which claims that superluminal propagation of any phys-
ical signal is inconsistent with the principle of causality. In section 4 we will argue
that our model does not violate causality even in the moving reference frame. The
key idea is that transition to the moving frame should be performed by using a boost
operator, which depends on interaction. Therefore, transformations of observables (in-
cluding positions of particles) in the relevant interacting system (unstable meson plus
muon plus two oscillating neutrinos) are different from simple and universal Lorentz
formulas of special relativity. This allows us to reject the special-relativistic ban on
superluminal velocities and, at the same time, obey the causality principle. Finally,
we formulate a few predictions for future neutrino experiments, which follow from our
model.

2 Theory

We would like to describe a free neutrino system oscillating between two states: µ-
neutrino and τ -neutrino. For simplicity, we will ignore the possible effect of the third
(electronic) e-neutrino species. Then the Hilbert space can be constructed as a direct
sum of two one-particle subspaces
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H = Hµ ⊕Hτ (1)

This Hilbert space will be used for both non-interacting and interacting neutrino sys-
tems considered in this section.

2.1 Non-interacting system

BothHµ andHτ are Hilbert spaces carrying unitary irreducible spinless representations
of the Poincaré group characterized by free neutrino masses mµ and mτ , respectively.

1

If the interaction responsible for neutrino oscillations is turned off then the noninter-
acting representation of the Poincaré group acting in the Hilbert space H can be built
as a direct sum of these two irreducible representations. To write this representation
in an explicit form we will choose a convenient basis set in (1). At each momentum p
we can select two orthonormal basis states of definite flavor:

|νµ⟩ ≡
[
1
0

]

|ντ ⟩ ≡
[
0
1

]

Then each state vector |ψ⟩ can be represented as a 2-component momentum-dependent
vector in this basis

|ψ⟩ ≡
[
Φµ(p)
Φτ (p)

]

Finite transformations from the Poincaré group (space translation, time transla-
tions and boosts) can be written as exponential functions of generators. They have
simple expressions in the flavor basis (see section 2.5 in [2] and section 5.1 in [3])2

e
i
h̄
P0a|ψ⟩ =

[
e

i
h̄
paΦµ(p)

e
i
h̄
paΦτ (p)

]
1In our 1-dimensional world neutrinos are spinless. For definiteness we will assume that mτ > mµ,

though this is not critical for our results.
2In this paper we adopt Schrödinger representation: Any inertial change of the observer is reflected

in the change of system’s state vector (or wave function). Different observers use the same Hermitian
operator to describe a given observable.
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e−
i
h̄
H0t

[
Φµ(p)
Φτ (p)

]
=

[
e−

i
h̄
ωµ(p)tΦµ(p)

e−
i
h̄
ωτ (p)tΦτ (p)

]

e
i
h̄
K0cθ|ψ⟩ =


√

ωµ(Λµp)
ωµ(p)

Φµ(Λµp)√
ωτ (Λτp)
ωτ (p)

Φτ (Λτp)


where

ωµ,τ (p) ≡
√
m2

µ,τc
4 + p2c2

Λµ,τp ≡ p cosh θ − ωµ,τ

c
sinh θ

and parameter θ is related to the boost velocity by formula v = c tanh θ.
The basis of the corresponding representation of the Poincaré Lie algebra is provided

by Hermitian operators of total momentum P0, total energy H0 and boost K0. The
explicit form of these generators can be obtained by differentiation

P0 = −ih̄ lim
a→0

d

da
e

i
h̄
P0a =

[
p 0
0 p

]
(2)

H0 =

[
ωµ(p) 0
0 ωτ (p)

]
(3)

K0 = −ih̄

 ωµ(p)
c2

d
dp

+ p
2ωµ(p)

0

0 ωτ (p)
c2

d
dp

+ p
2ωτ (p)

 (4)

2.2 Interaction

In the Dirac’s instant form of dynamics [2, 4], relativistically invariant description of
interaction is achieved by adding extra terms to both the energy operator H = H0+V
and the boost operator K = K0+Z, while keeping the total momentum P0 unchanged.
The choice of interactions V and Z must ensure that Poincaré commutators remain
the same as in the non-interacting case

[H,P0] = 0 (5)

[K,P0] = −ih̄
c2
H (6)

[K,H] = −ih̄P0 (7)

In the flavor basis we can write the full Hamiltonian as a 2×2 momentum-dependent
matrix
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H = H0 + V =

[
ωµ(p) f(p)
f ∗(p) ωτ (p)

]
(8)

where f(p) is a complex function. For future use it will be convenient to write f(p) =
|f(p)|eiα(p), where α(p) is a real phase function.

2.3 Mass (energy) eigenstates

Our primary goal in this paper is to calculate the time evolution of neutrino states.
This can be done most easily if we find eigenvalues E1,2 and eigenstates of H. So, we
need to solve equation

0 =

[
ωµ(p)− E1,2(p) f(p)

f ∗(p) ωτ (p)− E1,2(p)

] [
Φ1,2

µ (p)
Φ1,2

τ (p)

]
(9)

together with normalization conditions (i = 1, 2)

|Φi
µ(p)|2 + |Φi

τ (p)|2 = 1 (10)

For the eigenvalues E1, E2 we obtain

|f(p)| =
√
(ωµ(p)− E1(p)) (ωτ (p)− E1(p)) =

√
(ωµ(p)− E2(p)) (ωτ (p)− E2(p)) (11)

A necessary requirement for this theory to be relativistically invariant is that energy
eigenvalues have the standard momentum dependence

E1,2(p) =
√
m2

1,2c
4 + p2c2 (12)

where m1,2 are neutrino mass eigenvalues.3 We suppose that these eigenvalues are
known and consider (11) as a definition of the modulus |f(p)| of the interaction func-
tion.4 Note that energy eigenvalues do not depend on the phase function α(p). So, we
are free to choose any real function α(p) in our study. In the next subsection we will
build an interacting representation of the Poincaré group explicitly, thus showing that
(11) - (12) are also sufficient conditions for the relativistic invariance.

3The operator of mass is defined as M = +
√
H2 − P 2

0 c
2/c2. Here we assume that m2 > m1 > 0.

4A useful property ωµ(p) + ωτ (p) = E1(p) + E2(p) also follows from the definition (11).
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As can be verified by direct substitution in (9) - (10), the eigenvectors of the full
Hamiltonian are

|1, p⟩ =

[
A(p)

−B(p)e−iα(p)

]
(13)

|2, p⟩ =

[
B(p)eiα(p)

A(p)

]
(14)

where we introduced notation

A(p) ≡ +

√√√√ωτ (p)− E1(p)

E2(p)− E1(p)

B(p) ≡ +

√√√√ωµ(p)− E1(p)

E2(p)− E1(p)

A2(p) +B2(p) = 1

Note also that (13) - (14) are eigenvectors of the total momentum P0 and mass M .
Next we need to find a connection between the flavor and mass-energy bases. If

(Ψ1(p),Ψ2(p)) is a state vector written in the basis of mass eigenstates,5 then the
corresponding expansion in the flavor basis is obtained by a unitary transformation

[
Φµ(p)
Φτ (p)

]
=

(
A(p) B(p)eiα(p)

−B(p)e−iα(p) A(p)

)(
Ψ1(p)
Ψ2(p)

)
(15)

The transformation from the flavor basis to the mass basis is provided by the inverse
matrix

(
Ψ1(p)
Ψ2(p)

)
=

[
A(p) −B(p)eiα(p)

Be−iα(p) A

] [
Φµ(p)
Φτ (p)

]
(16)

2.4 Interacting representation of the Poincaré group

The mass basis is useful because the interacting representation of the Poincaré group
takes especially simple form there

5Here we use round parentheses to indicate that expansion coefficients refer to the mass basis.
Square brackets are used for the flavor basis.
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e−
i
h̄
Ht

(
Ψ1(p)
Ψ2(p)

)
=

(
e−

i
h̄
E1(p)tΨ1(p)

e−
i
h̄
E2(p)tΨ2(p)

)
(17)

e
i
h̄
Kcθ

(
Ψ1(p)
Ψ2(p)

)
=


√

E1(Λ1p)
E1(p)

Ψ1(Λ1p)√
E2(Λ2p)
E2(p)

Ψ2(Λ2p)


where

Λip ≡ p cosh θ − Ei

c
sinh θ

is the usual boost transformation of momentum.
The interacting generators in the mass basis can be obtained by differentiation

similar to (3) - (4)

H = ih̄ lim
t→0

d

dt
e−

i
h̄
Ht =

(
E1(p) 0
0 E2(p)

)

K = −ih̄

 E1(p)
c2

d
dp

+ p
2E1(p)

0

0 E2(p)
c2

d
dp

+ p
2E2(p)

 (18)

By noticing the analogy of these formulas with the non-interacting representation in
subsection 2.1 one can convince oneself that commutators (5) - (7) are, indeed, satisfied.
So, our theory is relativistically invariant.

2.5 Time evolution

Obviously, the state vector with one µ-neutrino having a normalized momentum-space
wave function ψ(p)

|ψ⟩ ≡
[
ψ(p)
0

]
(19)∫

dp|ψ(p)| = 1

is not an eigenstate of the Hamiltonian (8). So, neutrino states with definite flavor are
not stationary. Our goal in this subsection is to calculate the time evolution of these
states.
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Let us now make further simplifications by assuming that the initial wave function
ψ(p) is localized in a narrow region ∆p of the momentum space. We will also assume
that in this range function |f(p)| varies slowly, while ”interaction phase” grows linearly
α(p) ≈ 1

h̄
χp.6 Moreover, it is reasonable to assume that neutrinos are ultrarelativistic,

so we can set

p ≫ m1,2c

E1(p) =
√
m2

1c
4 + p2c2 ≈ cp

E2(p) =
√
m2

2c
4 + p2c2 ≈ cp+ γ

Next we use (16) to expand the initial state vector (19) in the basis of eigenvectors
of the full Hamiltonian

|ψ⟩ =

(
ψ(p)A

ψ(p)Be−
i
h̄
χp

)

The time evolution of this state vector is obtained from (17)

|ψ(t)⟩ ≡ e−
i
h̄
Ht|ψ⟩ =

(
ψ(p)Ae−

i
h̄
E1(p)t

ψ(p)Be−
i
h̄
χpe−

i
h̄
E2(p)t

)

Its components in the flavor basis can be found using transformation (15)

|ψ(t)⟩ =

(
A Be

i
h̄
χp

−Be− i
h̄
χp A

)(
ψ(p)Ae−

i
h̄
E1(p)t

ψ(p)Be−
i
h̄
χpe−

i
h̄
E2(p)t

)

= ψ(p)

 A2e−
i
h̄
E1(p)t +B2e−

i
h̄
E2(p)t

ABe−
i
h̄
χp
(
e−

i
h̄
E2(p)t − e−

i
h̄
E1(p)t

) 
≈ ψ(p)

 e−
i
h̄
cpt
(
A2 +B2e−

i
h̄
γt
)

ABe−
i
h̄
χpe−

i
h̄
cpt
(
e−

i
h̄
γt − 1

) 
To switch to the position representation we perform a Fourier transform

1

2πh̄

∫
dpe

i
h̄
pxψ(p)e−

i
h̄
cpt

 A2 +B2e−
i
h̄
γt

ABe−
i
h̄
χp
(
e−

i
h̄
γt − 1

) 
6More generally, one can write α(p) ≈ 1

h̄ (β + χp), where β is a real constant, but the constant

unimodular factor exp( i
h̄β) is irrelevant for our discussion, so we set β = 0.
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≈ ψ

2πh̄

∫
dpe

i
h̄
pxe−

i
h̄
cpt

 A2 +B2e−
i
h̄
γt

ABe−
i
h̄
χp
(
e−

i
h̄
γt − 1

) 
≈ ψ

 (
A2 +B2e−

i
h̄
γt
)
δ(x− ct)

AB
(
e−

i
h̄
γt − 1

)
δ(x− χ− ct)

 (20)

Here we took into account that the range of ψ(p) is much larger than the period of oscil-
lations of imaginary exponents, so we can simply move out of the integral some average
value ψ. Due to the normalization of ψ(p), this value has to be unimodular |ψ|2 = 1.
By doing these approximations, we also neglected the wave function “spreading” effect,
which is known to be superluminal, but negligibly small [5, 6, 7, 8, 9, 10, 11].

2.6 Oscillations and the neutrino “size”

Equation (20) is our main result, and in this subsection we will analyze physical impli-
cations of this formula. The probabilities for finding µ-neutrino and τ -neutrino change
with time as

ρµ(t) =
∣∣∣A2 +B2e−

i
h̄
∆t
∣∣∣2 = A4 +B4 + 2A2B2 cos

(
γt

h̄

)
ρτ (t) = A2B2

∣∣∣e− i
h̄
∆t − 1

∣∣∣2 = 2A2B2
(
1− cos

(
γt

h̄

))
ρµ(t) + ρτ (t) = 1

In the ultrarelativistic limit the oscillation period is7

T =
h̄

γ
= h̄ (E2(p)− E1(p))

−1 ≈ h̄E

(m2
2 −m2

1)c
4

(21)

where E ≈ E1(p) ≈ E2(p) ≈ cp. In the particular case of “full mixing” (A2 = B2 =
1/2) both probabilities oscillate between two extremes 0% and 100%

ρµ(t) =
1

2

(
1 + cos

(
γt

h̄

))
ρτ (t) =

1

2

(
1− cos

(
γt

h̄

))
This example is shown in Fig. 1.

From arguments of delta functions in (20) we can find classical trajectories of the
two neutrino species

7For a review of neutrino oscillations see [12].
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xx

00

νν
µµ

νν
ττ

χχ

ct

c.
e.

TT

Figure 1: Space-time diagram for a free oscillating neutrino system. The two com-
ponents νµ and ντ have different trajectories separated by the distance χ. Varying
line densities indicate the oscillating probabilities ρµ,τ (t) for finding the two particles.
“c.e.” is the center-of-energy trajectory.

xµ(t) = ct (22)

xτ (t) = χ+ ct (23)

We see that both neutrinos move with (almost) the speed of light, as expected. The
remarkable property is the presence of parameter χ in (23). This means that the
two neutrino components do not overlap in space. They have different trajectories
separated by the distance χ. Recall that χ is a free and unrestricted real parameter in
our theory. In the example shown in Fig. 1 this parameter has been chosen negative.

2.7 Conservation laws

The behavior of the two-neutrino system described above is rather peculiar: The system
oscillates not only between two flavor states, but also between two different trajectories.
In a sense, this object has a non-vanishing size χ, and nothing in the theory forbids this
size to be macroscopically large, e.g., several meters. In order to convince ourselves
in the validity of this solution, let us check that conservation laws have not been
violated. Our solution is not an eigenvalue of any physical observable (like flavor
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number, momentum, energy, position, etc.), so, we can only verify the conservation of
certain expectation values.

First, let us check that the total momentum of the system is conserved. In the
mass basis the operator of total momentum P0 is “p times unity operator”, i.e., the
same as in the flavor basis (2). Then it is easy to show that the expectation value of
P0 does not depend on time

⟨P0(t)⟩ ≡ ⟨ψ(t)|P0|ψ(t)⟩

=
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

)( p 0
0 p

)(
Aψ(p)e−

i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

=
∫
dpp

(
A2|ψ(p)|2 +B2|ψ(p)|2

)
=
∫
dpp|ψ(p)|2 = ⟨p⟩

Similarly, we demonstrate the time independence of the total energy8

⟨H(t)⟩ ≡ ⟨ψ(t)|H|ψ(t)⟩

=
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

)( E1 0
0 E2

)(
Aψ(p)e−

i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

=
∫
dp(E1A

2 + E2B
2)|ψ(p)|2 ≈ E

Another less known conservation law says that the center of energy of any isolated
physical system must move with constant velocity along a straight line. This law
follows from the definition of the center-of-energy position ([13] and section 4.3 in [3])

R = −c
2

2
(KH−1 +H−1K)

and the relationship9

K(t) ≡ e
i
h̄
HtKe−

i
h̄
Ht = K − P0t

which is a direct result of the basic commutators (6) - (7). Using the matrix form of
the boost operator (18) and taking into account that10

8which includes both kinetic energies of the particles and the potential energy of their interaction
9This formula is written in the Heisenberg representation

10Here we assume that ϕ(p) is a real function and perform integration by parts.
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∫
dp
E1(p)

c2
ψ∗(p)

dψ(p)

dp
=
∫
dp
E1(p)

2c2
d

dp
|ψ(p)|2 = −

∫
dp

d

dp

(
E1(p)

2c2

)
|ψ(p)|2

≈ −
∫
dp

1

2c
|ψ(p)|2 = − 1

2c

we obtain

⟨K(t)⟩ ≡ ⟨ψ(t)|K|ψ(t)⟩

= −ih̄
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

) E1(p)
c2

d
dp

+ p
2E1(p)

0

0 E2(p)
c2

d
dp

+ p
2E2(p)


(

Aψ(p)e−
i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

= −ih̄
∫
dp
[
A2

(
E1(p)

c2
ψ∗(p)

dψ(p)

dp
− i

h̄
pt|ψ(p)|2 + p

2E1(p)
|ψ(p)|2

)

+ B2

(
− i

h̄
χ
E2(p)

c2
|ψ(p)|2 − i

h̄
pt|ψ(p)|2 + E2(p)

c2
ψ∗(p)

dψ(p)

dp
+

p

2E2(p)
|ψ(p)|2

)]
≈ −ih̄

(
− iA

2

h̄
pt− i

h̄
χ
B2E2(p)

c2
− iB2

h̄
pt

)
= −χB

2E2

c2
− pt = ⟨K⟩ − ⟨p⟩t

The center-of-energy trajectory is then obtained as

⟨R(t)⟩ = −c
2⟨K(t)⟩
⟨H(t)⟩

≈ χB2E2

(E1A2 + E2B2)
+ ct ≈ χB2 + ct

This means that the center-of-energy moves with the light speed c, as expected. This
imaginary trajectory lies between real trajectories (22) - (23) of the two neutrino
components. In the case of full mixing (B2 = 1/2) the center of energy is right in the
middle between two neutrinos, as shown in Fig. 1.

3 OPERA experiment

3.1 Neutrino creation reaction

In the OPERA experiment, CERN accelerator supplies high energy protons, which
fall on a graphite target and produce multiple secondary particles, including charged
π± and K± mesons. The mesons decay in-flight and emit muon neutrinos, which are
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xx00

νν
µµ

νν
ττ

ππ++

µµ++

χχ

ct

WW
c.

e.

Figure 2: Space-time diagram for the neutrino creation reaction π+ → µ+ + νµ. The
center-of-energy trajectory emerges directly from the decay interaction vertexW , while
νµ and ντ trajectories are displaced.

eventually captured by the OPERA detector. In Fig. 2 we sketch a space-time diagram
for the π+ → µ+ + νµ decay process.

In subsection 2.6 we have established that neutrino system may have a large size
(|χ| = several meters). So, it is important to understand the location of this object
at the point of its creation. Here we will be helped by the law of continuity of the
center-of-energy trajectory mentioned above. This law should remain valid even in the
pion decay process. But it cannot be satisfied if νµ is emitted directly from the decay
interaction vertex. As shown in Fig. 2, the decay point (marked “W” on the figure)
should lie on the imaginary line representing the neutrino center-of-energy trajectory
(the thin dashed line in the figure). In this case, the µ-neutrino component is displaced
by the distance of |χ|B2 in the forward direction, while ντ is |χ|A2 meters behind.

3.2 Neutrino detection

The currently accepted value for the difference of squared masses is m2
2 −m2

1 = 2.7 ·
10−3eV [14]. Then from (21) we obtain the oscillation period for the muon-tau neutrino
pair with energy E = 17 GeV

T =
h̄E

(m2
2 −m2

1)c
4
≈ 0.0041s
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νν
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18m

tt
22

ct
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Figure 3: Schematic representation of the OPERA neutrino experiment. The 60 ns
advance in the µ-neutrino arrival time is explained by their creation 18 meters away
from the meson decay point at time t = 0.

The time of neutrino flight between CERN and OPERA with the speed of light is
0.0024 s. This means that the beam arriving in the detector has completed one half
of one oscillation cycle, which maximizes the chance of detecting ντ and serves the
original purpose of this experiment, which is the study of νµ − ντ oscillations.

Now we can collect all the results obtained so far in order to suggest a realistic
picture of the OPERA experiment and explain the superluminal behavior of the neu-
trinos. We will use our theory described above and assume full mixing (which is not
essential) and the value χ = −36m (which is essential). According to this model, the
imaginary trajectory of the neutrino center-of-energy is directly attached to the decay
interaction vertexW , as shown in Fig. 2. This imaginary trajectory arrives in OPERA
“on schedule” without superluminal suprises. The µ-neutrino emitted in the meson
decay event has a position, which is advanced by |χ|/2 = 18m with respect to the
center of energy. On the other hand, the τ -neutrino component of the beam moves
18m behind the center of energy. The speed of all three points is very close to the
speed of light. So, naturally, µ-neutrinos arrive in the detector 60 ns ahead of schedule,
while τ -neutrinos are 60 ns late. This is illustrated in Fig. 3.
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4 Discussion

In this article we have formulated a simple model of oscillating neutrinos. This model
satisfies all requirements of relativistic quantum theory: An unitary representation of
the Poincaré group is constructed explicitly in the two-neutrino Hilbert space, and
this representation takes into account interaction responsible for neutrino oscillations.
Surprisingly, this simple model predicts an effect, which, to the best of author’s knowl-
edge, has not been noticed before: The two components of the neutrino beam may not
overlap in space. They can be separated from each other by a macroscopically large
distance |χ|, and this separation does not violate any conservation law. This property
can naturally explain the superluminal effect seen in the OPERA experiment if we
assume that χ = −36 meters for neutrinos with energies about 17 GeV. Unfortunately,
our simple model cannot predict how the parameter χ depends on neutrino energy,
but it is reasonable to assume that macroscopic separations between different neutrino
flavors can be found at other energies too. The observed independence of the neutrino
arrival time on its energy [1] suggests that χ remains nearly constant within the energy
interval 13.6 - 42.9 GeV. This confirms the validity of our approximation α(p) ≈ χ

h̄
p,

i.e., the relative insignificance of terms nonlinear in p.

4.1 Comments on causality

According to our model, the OPERA result does not mean that neutrinos move faster
than light. Nevertheless, they violate the special-relativistic ban on superluminal prop-
agation in a different manner. The model presented above can be interpreted as a
statement that the νµ − ντ system has a large radius (≈18 meters). The violation of
special relativity occurs already at time t = 0, when such a big system is created in-
stantaneously in a meson decay, while according to the traditional concepts, its creation
must take at least 60 ns. So, our model implies that, indeed, there is a superluminal
signal propagation. According to usual ideas, this is impossible, because the principle
of causality would be violated. The traditional argument invokes Lorentz transfor-
mations of special relativity. They say that if (x, t) are space-time coordinates of a
physical event in the reference frame at rest, then in the inertial frame moving with
velocity v ≡ c tanh θ space-time coordinates of the same event are given by formulas

x′ = x cosh θ − ct sinh θ (24)

t′ = t cosh θ − (x/c) sinh θ (25)

Special relativity postulates that these formulas remain valid in all circumstances,
independent on the physical nature of the event occurring at (x, t) and interactions
responsible for this event. The claim is that (24) - (25) express fundamental uni-
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versal properties of the space-time.11 The tacit or explicit assumption used in most
discussions of quantum superluminal effects is that space-time arguments of wave func-
tions must transform by the same formulas, i.e., that the position-space wave function
transforms to the moving frame as

ψ(x, t) → ψ(x cosh θ − ct sinh θ, t cosh θ − (x/c) sinh θ) (26)

If this were true, then the appearance of νµ at point 0 in Fig. 2 would be scandalous,
because, according to (26), one would be able to find a moving reference frame in
which event 0 (creation of the µ-neutrino) has happened before event W (decay of the
π-meson). So, in this moving frame the effect would occur before its cause, which is
impossible.

However, there is absolutely no reason to believe in the transformation law (26)
if we use the Newton-Wigner’s definition of the particle’s position [13] and Wigner-
Dirac formulation of quantum dynamics [4]. In this theory, formula (26) is not valid
even in the case of a single non-interacting particle. The correct transformation of the
position-space wave function to the moving frame is

ψ′(x, t) = ⟨x|e−
i
h̄
H0te

i
h̄
K0cθ|ψ⟩

which is not the same as (26). This fundamental difference is demonstrated by the
well-known effects of superluminal spreading of wave packets and the loss of particle
localization in the moving frame [5, 6, 7, 8, 9].

In the interacting case the picture is even more complicated as one needs to use
interacting energy and boost operators to find the wave function transformation

ψ′(x, t) = ⟨x|e−
i
h̄
Hte

i
h̄
Kcθ|ψ⟩

Let us consider the time evolution of the initial state (19) seen from the moving refer-
ence frame in the case of full mixing A = B = 1/

√
2

|ψ(θ, t)⟩ = e−
i
h̄
Hte

i
h̄
Kcθ|ψ⟩ = 1√

2

 e−
i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p)

e−
i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

e−
i
h̄
χΛ2pψ(Λ2p)


Switching to the flavor basis by usual formula (15) we obtain

11Here we intentionally avoid discussion of gravity, space-time curvature, etc.
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|ψ(θ, t)⟩ =
1

2

(
1 e

i
h̄
χp

−e− i
h̄
χp 1

) e−
i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p)

e−
i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

e−
i
h̄
χΛ2pψ(Λ2p)



=

 e−
i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e
i
h̄
χpe−

i
h̄
χΛ2pe−

i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)

−e− i
h̄
χpe−

i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e−
i
h̄
χΛ2pe−

i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)


(27)

We will not analyze this result in detail here, just mention two remarkable features,
which disagree with traditional interpretations of special relativity. First, the oscil-
lation period observed from the moving frame does not scale with velocity according
to the usual Einstein’s time dilation formula: T ′ ̸= T cosh θ [15]. Second, even at
t = 0, the probability of finding µ-neutrino is less than 1 and the probability of finding
τ -neutrino is greater than 0. This means that definitions of the νµ state and ντ state
are different for different observers. So, this oscillating system lacks clearly identified
local events, whose space-time coordinates could be used in a rigorous discussion of
causality. These two unusual features are very similar to the properties of unstable
particles discussed in [16, 17, 18, 19].

Even if these difficulties are resolved, formula (27) cannot provide the definitive
answer about causality, because in the real experiment we are not dealing with free
neutrinos. The crucial superluminal effect (an instantaneous creation of the macro-
scopic two-neutrino system) occurs at the point of meson decay. Then, for a mean-
ingful discussion, we need to include in our description the unstable meson and its
decay products as well as interactions responsible for the meson decay and neutrino
oscillations. These interactions are fundamentally different from “normal” interac-
tions, e.g., between two charges. Nevertheless, it is instructive to note that boost
transformations of space-time locations of events in relativistic Hamiltonian systems
of interacting particles are different from Lorentz formulas (24) - (25) even in the clas-
sical (non-quantum) limit ([20, 21, 22] and section 11.2 in [3]). This fact is essential
for the proof that instantaneous action-at-a-distance potentials remain instantaneous
in all reference frames, so that causality is preserved (see section 11.4 in [3]). If we
assume that similar arguments hold for decay/oscillation interactions as well, the no
conflict with causality will be found in the OPERA superluminal results.

These arguments lead us to the conclusion that the system of oscillating neutrinos
does not behave in a way expected from a näıve application of special relativity. How-
ever, this does not mean that the causality postulate is violated. A proper discussion
of causality requires more realistic modeling of the neutrino preparation event. Such a
modeling would be a promising line of further research, but it is beyond the scope of
the present paper.
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4.2 Other experiments and predictions

When the OPERA results are discussed, two other neutrino observations are usually
mentioned. One of them is the MINOS experiment [14], which saw a hint of advanced
propagation of µ-neutrinos, however, large experimental uncertainties did not allow
the authors to make a definitive conclusion about superluminality. This experiment is
different from OPERA12 in the sense that the propagation time was measured between
two neutrino detectors. In this case, according to our model, no superluminal effects
can be observed as neutrino’s speed is not different from c. The other experiment
concerns observation of neutrinos arriving to the Earth from supernova SN1987A [23,
24, 25]. This observation confirmed that neutrino’s speed coincides with the speed of
light to a high precision, which is also consistent with our model.

Based on our study, three predictions can be formulated, which may be useful for
those designing future experiments measuring neutrino propagation speed:

1. We predict that a more thorough remake of the MINOS experiment will confirm
that the speed of neutrinos is not higher than the speed of light.

2. The observed superluminal effect in the OPERA setup is independent on the
distance traveled by the neutrino beam. If the neutrino energy is kept at 17 GeV,
then for any source-detector distance µ-neutrinos will arrive to the detector by
60 ns “too early”.

3. If τ -neutrinos (instead of νµ) are detected in the OPERA setup, then the superlu-
minal effect will disappear: ντ will be found in the detector later than expected.
In the case of full mixing, the delay time is going to be 60 ns (i.e., 120 ns later
than νµ).

The author would like to thank Dr. Robert Wagner for critically reading this
manuscript.
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