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I INTRODUCTION

The analogy between gravitation (G) and electroraigm has a long history [1]. The conjecture that
mass currents should generate a field called, bjogp with electromagnetism, the gravitomagnetic
field, goes back to the beginnings of general isétgit Indeed, according to general relativity, nivy

or rotating matter should produce a contributiorthi® gravitational field that is the analogue df th
magnetic field of a moving charge or magnetic dipf2]. The term “gravitomagnetism” (GM)
commonly indicates the collection of those graictal phenomena regarding orbiting test particles,
precession of gyroscopes, moving clocks and ateomdgeopagating electromagnetic waves which, in
the framework of the General Theory of Relativi&TR), arise from non-static distributions of matter
and energy. In the weak-field and slow motion agpnation, the Einstein field equations of GTR,
which is a highly non-linear Lorentz-covariant tentheory of G, get linearized, thus looking likest
Maxwellian equations of electromagnetism [3].

Il. THE FOUR-VECTOR FIELD OF VELOCITY

Why does the scalar potential of a G fidlt, t) have the dimension of the square of the vejoci

[m?/s’]? Why does the vectorial potential of the GM fidlg(r, t) have the dimension of the velocity

[m/s]? Are these important questions? Or only asegnence of our perception of reality? We will try
to answer for these questions.

Let's replace the scalar potential of a G fiélf, t), by ng(r, t), where \éz(r, t) =-4(r, t). Let's name
the ng(r, t) asthe scalar field of the square of the velocitgt's replace the vectorial potential of the
GM field Ag(r, t) by theVgy(r, t), whereVgn(r, t) = Aq(r, t). Let's name thé\y(r, t) asthe vectorial
field of the velocity

Let's replace of the G and GM four-potentidl A (¢/c, Ag) by thefour-vector field of the velocity
(Vg)*, which we will define in the form
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where: g — speed of propagation of field (equal to, by GTie speed of light c). The g has
dimension [m/s], from here the nam#he four-vector field of the velocity.

M. THE LAGRANGIAN

The entire system of bodies and fields consista ofechanical part, an interaction part and a field
part. We therefore assume that the total Lagraegsity L' for this system can be expressed as

Ltot - Lmech + Lint + Lfield (2)
where:
mech _ pV2
STy @

is themechanical Lagrange density
L™ = pvV,, +pV, (4)

is theinteraction Lagrange densifgr the body interacting with the () field, and
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is the field Lagrange densityBecause field energy difference expressed intéhsor field of the
velocity (see Appendix A l)i.e. the difference between the G and GM field enelgysities, has the
form
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and equation%) becomes

| field — _ 1 gz+ C; o 2 (5a)
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where:v — velocity of the bodyg — is the intensity of the G field or the fieldtbe acceleratiorgy, —
is the intensity of GM field or field of the rotati, p — mass density, G — gravitational constant.

V. THE LAGRANGE'S EQUATION OF MOTION

The equation of motion for the body moving in thg)( field can be calculated from the Lagrange’s
equation

dtov  or



and for the lagrangian L ="+ L™ we get

d
pm (mv) =mg+ 2mvxo,, (6)

where:wy, = ([0 X Vy4n/2), g = grad (\{,)2 - (0/0t)(Vgm), 2mMv x @y is the Coriolis force, m — mass of
the body.

V. THE LAGRANGE'’S FIELD EQUATIONS

Field equations fog and for thew,, have a form (see Apendix A Il')

Oxg=-2 I
g=-2— (7a)
Og = -4nGp (7b)
_4nG 1 dg
20X gy, == 5 F’V”C—;E (7¢)
Do, =0 (7d)

These equations are similar to the field equatioh®rentz-invariant theory of gravitation in theeak
gravitational field according to the Einstein fi@duations for GTR [4].

VI. THE WAVE EQUATIONS

If we apply the curl operatof](x) to both sides of the equations (7a) and (7b)) the obtain

d(0xo, )
Ox(0xg)=-2————9°
x(0xQ) P
_10{Uxg) 4nG
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Further calculations give the wave equations fentictorgy andwyy, in the form

10°g 411G 0
0%g-—— =-———(pv) - 4nGO
g c ot’ c. ot (bv) P (8a)
1 0% G
D0y~ —— = Ox(pv
O o (pv) (8b)

The wave equations for the vector field\gf, and scalar field of (Y7, have the forms
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if Lorenz gauge condition for thé,, and (\/g)2 is fulfilled, then
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c, ot (8e)
In this sense, the following wave equations:

» (8a) and (8b) are the gravitational and GM analsgowave equations for electromagnetism.

* (8c) and (8d) describes how the vectorial wavethel 4, andthe scalar wavesf the (\/g)2
propagate through the space.

VIl.  PHYSICAL INTERPRETATION OF  (Vy)°

Let's consider equation (8d). For the stationamidfithis equation becomes the Poisson’s field
equation

2\/2 —_
7V, =-4nGp 9)
In particular, solving equation (9) for the sphatisymmetry we obtain well-known equation

vy =[S0 (%a)

where: M is the mass of the star, r — distance fitwgrstar. If we substitute the mass of the Suntlaad
average radius of the orbit for each planet intoetuation (9a), then we obtain average of tje) V
for planets in the Solar System (see the Table 1).

Table 1. Calculated (within the model) average ofhie Vy(r) and observed average velocity v(r)
for the planets in the Solar System.

Average radius Calculated average Observed average
of the orbit of the Vy(r) orbital velocity v(r)
[AU] [kms™] [kms™]
Mercury 0.39 47.70 47.87
Venus 0.72 35.11 35.02
Earth 1.00 29.79 29.78
Mars 1.52 24.16 24.08
Jupiter 5.20 13.06 13.07
Saturn 9.58 9.64 9.69
Uranus 19.23 6.79 6.81
Neptune 30.10 5.43 5.43
Pluto 39.48 4.74 4.67

" 1AU = 149.6 10° km



In our model the G ithe scalar the field of the square of the velocityThe star with the density
generates the scalar field of the square of thecitgl— equation (8d). In particular (equation j9#)e
orbital velocity of the planets v(r) =.i).

VIIl. CONCLUSION

Simple replacement of the four-potentidl A (¢/c, Ag) by thefour-vector field of the velocit{V/y)" =
(-(Vg)zlcg, Vym) gives a new perception for gravitation and thevijomagnetism. In our model the G is
the scalar field of the square of the velocityand the gravitomagnetismtise vectorial field of the
velocity.
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APPENDIX

Al.  The Field of the Velocity Tensor

In Section Il we defined the four-vector field bktvelocity in the contravariant form

g ng
Vg = = Vam (Al 1)

Cq

Now we definghe field of the velocity tensor the contravariant form

oV ovY
A

h v

(Al 2)

Matrix representation of the field of the velocdityntravariant tensor has form
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A ll.  The Field Equations

The field equations we can calculate from the ELbgrange equations of motion for the field [5],
which were adopted for our consideration

s olv, )\ o, (o) oL
O 15,0 Dok || + 2 ok || = =1,2,3 AllL
éaxia/a( 0X, } +6t[a/a( ot j G‘ngii | ( )
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o o ||+ 2 @ ||L= All.2
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For the Lagrange function L Z%(see equation (2)) calculations gives field equeti(7a), (7b), (7¢)
and (7d).



