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Abstract

Despite consistency of the Higgs mechanism, experimental data
have not revealed existence of the Higgs particle. Moreover, the
Higgs mechanism explains why photon is massless, while another
experimental data reveal very small but detectable photon mass.
In this manner the crucial problem is to combine abstract ideas of
the Standard Model with the verified experimental data to obtain
constructive physical picture.

In this paper we discuss two alternative consistent mass gener-
ation mechanisms which are based on charged scalar field and the
O(2) symmetric Higgs potential. Both the mechanisms for abelian
fields of the Standard Model lead to nonzero photon mass, but pre-
dict distinguishable mass of the new neutral scalar boson. Both
the models are similar to the Higgs mechanism. The scenarios
base on existence of a new scalar neutral boson χ and an auxiliary
scalar neutral field ϕ which can be interpreted as a dilaton. In the
first model a new scalar particle is massive, and the value of its
mass can be estimated by the present day experimental limits on
the photon mass. In the second model dilaton is massless and a
new scalar particle has a mass which can be determined only by
experimental data. The mass of a photon in this model does not
depend on the mass of a Higgs-like particle.

∗Contact to: laglinka@gmail.com

mailto:laglinka@gmail.com


1 Introduction
In modern physics, from both theoretical and experimental points of
view, the most fruitful theory is the Standard Model of particles and
fundamental interactions. Its various extensions and modifications
create the natural possibilities for new physics. Albeit, there is still
the problematic presence of what can be called non-physical mathe-
matics, i.e. the part of the Standard Model which is still unverified
positively by experiments. This part of particle physics can be treated,
however, as invisible or undetectable Nature. To such a collection the
Higgs particle belongs, what is confirmed by negative verification of its
hypothetical existence with the rigorous data of experimental particle
physics. In fact, the great success of this commonly accepted and plau-
sible physical theory is the constructive mass generation mechanism
predicting the masses of particles, and in itself leading to existence of
the hypothetical Higgs boson.

However, in spite of a number of the successes of the Standard
Model, which is application the idea of spontaneous symmetry break-
ing to beautiful explain why the W± and Z0 bosons are massive while
the photon is massless [1], the acceptable mass generation mechanism
leaves a lot to be desired from the experimental point of view. Namely,
this explanation demands the existence of at least one additional par-
ticle, and since 1964, when the mass generation mechanism based on
spontaneous symmetry breakdown [2] was proposed, this existence of
the Higgs boson has never been satisfactory confirmed by experimen-
tal data. Despite this mass generation mechanism leads to probably
the most beautiful picture of modern physics, it possesses manifestly
certain singular points that, in the light of experimental data, are in-
adequate and result in inconsistency of the theory. One of the gross
point is the question about the mass of photon. Despite the electroweak
mass generation mechanism is plausible if photon is really massless,
the experimental data (See e.g. the fundamental papers [3, 4, 5]) say
something different about this property of a photon. It looks like that
a photon is rather massive particle, and its mass is very small but
detectable. In the light of this fact the present mass generation mech-
anism of the Standard Model looks like implausibly.

In this paper I propose the new mass generation mechanism for
abelian fields of the Standard Model. This algorithm can be straight-
forwardly generalized to the most general Yang–Mills theories. The our
proposal, however, differs from the usual mass generation mechanism
by involving of the mass of photon. I express our calculations by using
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of the Planck units, what creates natural scenario for new physics at
the Planck scale. The content of the paper is as follows. The Section
2 discusses concisely the mass generation mechanism for abelian sec-
tor of the Standard Model based on the Higgs potential and charged
scalar field. In the Section 3 I present the construction of the alterna-
tive mass generation mechanism to abelian fields within the Standard
Model. This model is based also on charged scalar field, but on the
Higgs potential is modified. Both the models are manifestly invariant
with respect to action of O(2) symmetry group. Finally, in the Section
4 the results of whole paper are concisely summarized.

2 The Higgs Potential
The constructive approach to the mass generation mechanism of ele-
mentary particles within the Standard Model, well-known as the Higgs
mechanism (For detailed discussion see e.g. the Ref. [11]), is based on
the Higgs potential and, in fact, lays the foundations of the particle
physics. In this paper I shall focus our attention on the generation of
mass to the abelian gauge field Aµ , i.e. photon, which interacts with a
charged scalar field Φ. This is the theory of a U(1) gauge field coupled
to a charged spinless boson, which is usually called scalar quantum
electrodynamics (See e.g. the Refs. [12]). In such a particular situation
the algorithm of the spontaneous symmetry breaking is realized via so
called the Abelian Higgs mechanism.

It must be emphasized that both scalar electrodynamics as well as
the Higgs potential possess a number of essential applications. The
first context is the pioneering Ginzburg–Landau model of superconduc-
tor [13], which formulates superconductivity as a charged Bose–Einstein
condensate. In this model a complex order field is applied for descrip-
tion of fluctuations in the order parameter by adding a gradient to the
Gorter–Casimir two-fluid model of superconductors, what lead them
to the theory of superconductivity near the critical temperature. As
was shown by Abrikosov in 1957 [14] and Nielsen and Olesen in 1973
[15], for the 2 + 1-dimensional situation in the Ginzburg–Landau the-
ory there are vortices carrying magnetic flux.

The contexts strictly related to numerous applications in particle
physics, including charged scalar field, have been recently studied by a
number of authors (See e.g. the papers in the Ref. [16]). Phenomeno-
logical context, in the borderland of cosmology and particle physics, has
been discussed recently by Arbuzov, Glinka, and Pervushin [17].
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Let us present the consistent approach to the mass generation mech-
anism, which is based on the Higgs potential. The Standard Model is
described in the Minkowski space-time by the action of the form

S =
1
c

∫
d4xL , (1)

in which L is the total Lagrangian density of the theory

L = L0 +LI, (2)

where L0 is the Lagrangian density of free fields, and LI is an inter-
action Lagrangian density of the theory that, expressed in the Planck
units, have the following form1

L0 = EP`P∂µΦ
†
∂

µ
Φ− 1

`3
P

V (|Φ|)− 1
4µ0

FµνFµν , (3)

LI = − jµAµ +
e2

MP`P
Φ

†
ΦAµAµ . (4)

Here the field Φ(x) is a complex (charged) scalar field, and Φ†(x) is the
complex conjugate of Φ(x)

Φ =
ϕ1(x)+ iϕ2(x)√

2
, (5)

Φ
† =

ϕ1(x)− iϕ2(x)√
2

, (6)

having physical dimension L−1, characterized by a mass m and a di-
mensionless coupling constant g, V (|Φ|) is an effective O(2)-symmetric
potential of such a scalar field in the standard form of the Higgs poten-
tial,

V (|Φ|) = `2
P

m2c2

MP
|Φ|2 +gEP`4

P|Φ|4, (7)

where |Φ|2 = Φ†Φ. The Lagrangian (2) is invariant with respect of the
action of the U(1) symmetry group transformations

Φ
′ = exp(−iθ)Φ, (8)

Φ
†′ = exp(iθ)Φ

†, (9)

Aµ
′ = Aµ +

}
e

∂µθ , (10)

Aµ ′ = Aµ − }
e

∂
µ

θ , (11)

1I use the Planck units immediately as the parameters which allow to express the
theory in the correct dimensional form. When one applies the standard unit system
of particle physics, then `P = 1, EP = 1, MP = 1 etc.
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where θ(x) is a local phase. The conserved Noether current jµ is

jµ = iec
(

Φ
†
∂

µ
Φ−

(
∂

µ
Φ

†
)

Φ

)
. (12)

The electromagnetic interaction is described by the abelian field - charge-
less Maxwell electromagnetic four-potential Aµ which in standard the-
ory is massless, which strength tensor is Fµν = ∂µAν − ∂νAµ . I use the
standard conventions Aµ = ηµνAν , ∂µ = ηµν∂ ν , where ηµν = diag[−1,1,1,1]
is the metric of the Minkowski space-time.

As it is commonly accepted in particle physics, I take into account
the following vacuum expectation values of the real scalar fields

〈0|ϕ1(x)|0〉 = ϕ0, (13)
〈0|ϕ2(x)|0〉 = 0, (14)

where ϕ0 is a real constant, and the vacuum state |0〉 is treated as be-
longing to the static Fock space of the theory. The scalar fields that pro-
voke masses have the following decomposition in terms of the Fourier
harmonics

ϕ1(x) = ϕ0 + χ(x), (15)
ϕ2(x) = ϕ(x), (16)

where the Higgs boson χ(x), and the auxiliary scalar field ϕ have iden-
tically vanishing vacuum expectation values

〈0|χ(x)|0〉 = 0, (17)
〈0|ϕ(x)|0〉 = 0. (18)

By this reason the vacuum expectation value of the Higgs potential can
be derived straightforwardly as

〈0|V (|Φ|)|0〉= `2
P

m2c2

2MP
ϕ

2
0 + `4

PEP
g
4

ϕ
4
0 ≡ E (ϕ0), (19)

and extremal values of this energy are established by vanishing of cor-
responding force

− dE (ϕ0)
dϕ0

=−
(

`2
P

m2c2

MP
ϕ0 +gEP`4

Pϕ
3
0

)
= 0, (20)

which leads to two solutions

ϕ0 = 0, (21)

ϕ
2
0 = −1

g
m2

M2
P

1
`2

P
. (22)
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The values of the energy in these points are respectively

E (ϕ0 = 0) = 0 , E

(
ϕ

2
0 =−1

g
m2

M2
P

1
`2

P

)
=−EP

4g
m4

M4
P
. (23)

The first solution is trivial and does not give a contribution to the
theory. The second one is essential for the theory if and only if there
are satisfied the following stability conditions

g > 0 , m2 =−m2
0 , m2

0 > 0, (24)

which mean that the scalar Higgs particle must be a tachyon.
With using of all the definitions presented above the total Lagrangian

density (2) can be rewritten in the following form

L = L0 +Lχ +Lϕ +LA +LχϕA (25)

where the parts of the Lagrangian describing: constant contribution
L0, free χ real massive scalar field Lχ , free ϕ real massive scalar field
Lϕ , free massive photon LA are

L0 =
(

m2
0c2

2MP`P
− g

4
EP`Pϕ

2
0

)
ϕ

2
0 , (26)

Lχ =
EP`P

2
∂µ χ∂

µ
χ +ϕ0

(
m2

0c2

MP`P
−gEP`Pϕ

2
0

)
χ (27)

+
(

m2
0c2

2MP`P
− 3

2
gEP`Pϕ

2
0

)
χ

2−gEP`Pϕ0χ
3− g

4
EP`Pχ

4, (28)

Lϕ =
EP`P

2
∂µϕ∂

µ
ϕ +

(
m2

0c2

2MP`P
− g

2
EP`Pϕ

2
0

)
ϕ

2− g
4

EP`Pϕ
4, (29)

LA = − 1
4µ0

FµνFµν +
e2ϕ2

0
2MP`P

AµAµ , (30)

while the effective interaction Lagrangian LχϕA has the form

LχϕA = −gEP`Pϕ0χϕ
2− g

2
EP`Pχ

2
ϕ

2 +
e2

2MP`P
ηµν χ

2AµAν (31)

+
e2

2MP`P
ηµνϕ

2AµAν +
e2ϕ0

MP`P
ηµν χAµAν (32)

+ ecηµν χ∂
µ

ϕAν − ecηµνϕ∂
µ

χAν . (33)
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The quadratic in the fields and the derivatives part of the total La-
grangian density (25)

LQ = − 1
4µ0

FµνFµν +
e2m2

A

2M3
P`3

P
AµAµ +

EP`P

2
∂µ χ∂

µ
χ−

m2
χc2

2MP`P
χ

2 (34)

+
EP`P

2
∂µϕ∂

µ
ϕ−

m2
ϕc2

2MP`P
ϕ

2, (35)

allows to establish the masses of the particles

mA = MP`Pϕ0, (36)

mϕ =
√

gm2
A−m2

0, (37)

mχ =
√

3gm2
A−m2

0. (38)

In this manner one receives

ϕ0 =
mA

MP

1
`P

=
mAc
}

. (39)

Applying the formulas (36), (37), and (38) one can express the coupling
constant g by the masses of the particles

g =
m2

χ −m2
ϕ

2m2
A

. (40)

Because physical meaning have the only masses which are real num-
bers one obtains the system of inequalities{

gm2
A−m2

0 > 0,
3gm2

A−m2
0 > 0,

(41)

which lead to the lower bound for the coupling constant

g>
m2

0

m2
A
, (42)

which applied to the basic relation (40) gives the upper bound for the
mass of the charged scalar field Φ

m0 6

√
m2

χ −m2
ϕ

2
. (43)
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In the light of the Markov hypothesis m06MP one obtains the condition
for the squared mass difference ∆m2

χϕ = m2
χ −m2

ϕ

∆m2
χϕ 6 2M2

P. (44)

The masses derived in the maximal point ϕ2
0 =

1
g

m2
0

M2
P

1
`2

P
have the values

mA =
m0√

g
, (45)

mϕ = 0, (46)

mχ =
√

2m0, (47)

and possess natural interpretation as the ground state masses of the
elementary particles – the photon Aµ(x), the auxiliary scalar field ϕ(x),
the χ(x) boson. In this manner in the model presented above the scalar
auxiliary field ϕ(x) is massless, whereas both the Higgs boson χ(x) and
the photon Aµ are massive are their masses are determined by the free
parameter m0. For the trivial solution ϕ0 = 0 one obtains

mA = 0, (48)
mϕ = im0, (49)
mχ = im0, (50)

what means that in such a situation the photon is massless, but both
the scalar fields as tachyons are nonphysical.

The Euler–Lagrange equations of motion following from the La-
grangian (25) are easy to direct derivation. The equation of motion
for photon is

�Aµ −∂
µ(∂νAν)+

µ0e2m2
A

M3
P`3

P
Aµ = µ0 jµ − µ0e2

MP`P

(
χ

2 +ϕ
2 +

2mA

MP`P
χ

)
Aµ , (51)

where �= ∂ ν∂ν and jµ is the conserved Noether current

jµ = ec(ϕ∂
µ

χ−χ∂
µ

ϕ) . (52)

The equation for motion for the auxiliary scalar field is

�ϕ +
m2

ϕ

M2
P`2

P
ϕ +gϕ

3 = −2
gmA

MP`P
χϕ−gχ

2
ϕ +

e2

MP`P
ϕAµAµ (53)

− 2
e
}

∂
µ

χAµ −
e
}

χ∂
µAµ , (54)
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and the equation for motion for the χ boson is

�χ +
m2

χ

M2
P`2

P
χ +3

gmA

MP`P
χ

2 +gχ
3 = −

m2
ϕ

M2
P`2

P
ϕ0−

gmA

MP`P
ϕ

2−gχϕ
2 (55)

+
e2

MP`P
χAµAµ +

e2mA

M2
P`2

P
AµAµ (56)

+ 2
e
}

∂
µ

ϕAµ +
e
}

χ∂
µAµ . (57)

It can bee seen by straightforward and easy calculation that if one
takes into consideration the Markov hypothesis [18], stating that a
mass of any elementary particle is not more than the Planck mass,
applied to the mass of the charged scalar field m0

m0 6MP, (58)

then of obtains the upper bound for the initial datum ϕ0

ϕ0 6
1
√

g
1
`P

. (59)

Recently Glinka (See Chapter 5 of the Ref. [19]) has been presented
certain deductions for the Higgs–Hubble inflaton, i.e. the particular
case of the Higgs scalar field obeying the Hubble law, which gives the
most adequate inflationary cosmology to the Planck scale. In such a
situation the initial datum of the scalar field is

ϕ0 =
2
3
√

π
1
`P

. (60)

Applying this value to the inequality (59) one receives the upper bound
to the coupling constant in such a Planck-scale situation

g6
9

4π
≈ 0.716, (61)

and applying the maximal initial datum value ϕ2
0 =

1
g

m2
0

M2
P

1
`2

P
to the equa-

tion (60) one receives
m0 =

2
3
√

gπMP, (62)

or equivalently

g =
9

4π

(
m0

MP

)2

. (63)
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Using of this relation together with the formula (40) one receives

m0 =
√

2π∆m2
χϕ

MP

3mA
, (64)

where ∆m2
χϕ = m2

χ −m2
ϕ . This formula allows to deduce that

∆m2
χϕ =

9
2π

(
m0mA

MP

)2

, (65)

so that involving the bound (44) one obtains the inequality

m0mA 6
2
3
√

πM2
P. (66)

Another consequence of the Higgs–Hubble initial datum (60) are the
masses of the particles. In the maximum of the Higgs potential they
have the following values

mA =
2
3
√

πMP, (67)

mϕ = 0, (68)

mχ =
√

2gmA. (69)

By using of the inequalities (42) and (61) one can deduce easy the upper
bound

m0 6
3

2
√

π
mA, (70)

which after application of the formulas (62) and (36) leads to the lower
bound for the initial datum ϕ0

ϕ0 >
4π

9
√

g`P. (71)

The scenario presented in this section is in itself a certain algorithm
for generation of the masses of the abelian field Aµ within the Standard
Model. This mechanism involves two neutral scalar fields - the mas-
sive χ boson, and the auxiliary scalar field ϕ which is massless at the
maximum of the vacuum expectation value of the Higgs potential. The
photon Aµ is always massive in this scenario. This mechanism can be
straightforwardly generalized to the case of non-abelian gauge fields.
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3 The Modified Higgs Potential
In the present section I shall take into account the alternative mass
generation mechanism for abelian fields within the Standard Model,
which is based on the Higgs potential modified due to the constant shift
|Φ0| of the variable |Φ|, where Φ is the charged scalar field considered
in the previous section. This mechanism can be also straightforwardly
generalized to the situations involving non-abelian gauge field theories.

I shall base the mass generation mechanism on the following modi-
fication of the standard Higgs potential of the scalar field |Φ|

V (|Φ|) = `2
P

m2c2

MP
(|Φ|− |Φ0|)2 +gEP`4

P (|Φ|− |Φ0|)4 , (72)

that essentially is the standard scalar field potential, discussed in the
previous section, rotated around the point |Φ|= 0. Such a potential (72)
still is invariant under action of O(2) group. The shift-field Φ0 can be
linked to the zero Fourier harmonic of the charged scalar field Φ. Let
us presume that there is the decomposition

σ(x) := |Φ(x)| ≡

√
ϕ2

1 (x)+ϕ2
2 (x)

2
=

σ0 + χ(x)√
2

. (73)

I shall assume that χ is the new neutral scalar boson

〈0|χ(x)|0〉= 0, (74)

so that the vacuum expectation value of the field σ is exactly the zeroth
Fourier harmonic of the real scalar field |Φ(x)|

〈0|σ(x)|0〉= σ0√
2
. (75)

In this manner if one takes into account the relation

〈0|Φ|0〉= Φ0, (76)

then one obtains the identification
σ0√

2
≡ |Φ0|. (77)

Consequently the modified Higgs potential (72) is expressed solely via
the neutral χ-boson

V (|Φ|) = V (χ) = `2
P

m2
χc2

2MP
χ

2 +g
EP`4

P
4

χ
4, (78)
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and the mass of the χ-boson is the mass m of the charged scalar field Φ

mχ = m. (79)

Charged scalar field Φ(x) can be rewritten in the polar decomposition

Φ(x) = σ(x)exp{iθ(x)} , (80)

where its local phase θ(x) is

θ(x) = argΦ(x) = arctan
ℑΦ(x)
ℜΦ(x)

= arctan
ϕ2(x)
ϕ1(x)

+2πn, (81)

where n ∈ Z and according to the decomposition (73) the neutral scalar
fields ϕ1 and ϕ2 satisfy the following constraint

ϕ
2
1 (x)+ϕ

2
2 (x) = σ

2
0 +2σ0χ(x)+ χ

2(x), (82)

which means that the dependence of the neutral scalar fields ϕ1 and ϕ2
on the χ-boson is not unambiguous.

In the most general situation the local phase can be also expressed
by nonlinear dependence on wave four-vector kµ(x)

θ(x) = θ(xµ) = α

∫ xµ

dx′µkµ(x′), (83)

where xµ = [ct,~x] is a position four-vector, and kµ = ηµνkν is given by

kµ(x) =
[

1
c

ω(~k(x)),~k(x)
]
, (84)

where ω(~k) is an oscillation frequency. The length of the wave vector~k
is linked to wavelength λ (x)

|~k|= k(x) =
2π

λ (x)
, (85)

of the wave identified with the charged scalar field Φ(x). The momen-
tum of the particle identified with the charged scalar field Φ(x) shall
be ~p = }~k. In the formula (83) α is certain dimensionless parameter,
which I shall to establish straightforwardly below. In this manner one

12



can connect the formulas (81) and (83) and obtain the ambiguous ex-
pressions for the nautral scalar fields ϕ1 and ϕ2

ϕ1(x) =
σ0 + χ(x)√

1+ tan
(

α
∫ xµ

dx′µkµ(x′)−2πn
) , (86)

ϕ2(x) = (σ0 + χ(x))
tan
(

α
∫ xµ

dx′µkµ(x′)−2πn
)

√
1+ tan

(
α
∫ xµ

dx′µkµ(x′)−2πn
) . (87)

The problem is, however, to establish the wave four-vector kµ(x). Note
that to the case of the Minkowski space-time one has the identity∫ xµ

dx′µkµ(x′) =
∫ xµ

dx′µkµ(x′), (88)

which does not hold to the general case of space-times characterized by
non-flat metric tensors gµν(x).

Let us consider the total Lagrangian of the scalar quantum electro-
dynamics

L = EP`P∂µΦ
†
∂

µ
Φ− 1

`3
P

V (|Φ|)− 1
4µ0

FµνFµν − jµAµ +
e2

MP`P
|Φ|2AµAµ ,

(89)
and express this theory in terms of the χ-boson following from the de-
composition (73), and the wave four-vector kµ(x) following from the for-
mula (83).

By straightforward calculation one can find that the following rela-
tions between derivatives of the complex scalar field Φ(x) and the real
scalar field σ(x) = |Φ(x)| hold

∂
µ

Φ = exp
{

iα
∫ xµ

dx′µkµ(x′)
}

[∂ µ
σ(x)+ iασ(x)kµ(x)] , (90)

∂µΦ
† = exp

{
−iα

∫ xµ

dx′µkµ(x′)
}[

∂µσ(x)− iασ(x)kµ(x)
]
, (91)

so that the kinetic Lagrangian of the charged scalar field is

∂µΦ
†
∂

µ
Φ = ∂µσ∂

µ
σ +α

2
σ

2kµkµ = (92)

=
1
2

∂µ χ∂
µ

χ +
α2σ2

0
2

kµkµ +α
2
σ0χkµkµ +

α2

2
χ

2kµkµ . (93)
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Similarly one can determine the current

jµ =−2ecασ
2kµ =−αec

(
σ

2
0 kµ +2σ0χkµ + χ

2kµ
)
, (94)

and the term

|Φ|2AµAµ =
σ2

0
2

AµAµ +σ0χAµAµ +
1
2

χ
2AµAµ . (95)

Collecting all together one receives the total Lagrangian (89)

L =
EP`P

2
∂µ χ∂

µ
χ +α

2
σ

2
0

EP`P

2
kµkµ +α

2
σ0EP`Pχkµkµ +α

2 EP`P

2
χ

2kµkµ

−
m2

χc2

2MP`P
χ

2−g
EP`P

4
χ

4− 1
4µ0

FµνFµν + ecασ
2
0 kµAµ +2ecασ0χkµAµ

+ ecαχ
2kµAµ +

e2σ2
0

2MP`P
AµAµ +

e2σ0

MP`P
χAµAµ +

e2

2MP`P
χ

2AµAµ . (96)

The Lagrangian (96) describes the classical theory of three interacting
fields – the photon Aµ , the neutral scalar χ, and the non-dynamical
massive vector field kµ . On the one hand, this theory is rather compli-
cated if there is no any restriction for the relation between the wave
four-vector kµ and the electromagnetic four-potential Aµ . On the other
hand, such a relation is necessary because of the non-kinetic nature
of the gauge field kµ . Anyway, the choice of the suitable restraint is, in
fact, the choice of the appropriate gauge and straightforwardly imparts
the physical meaning to the wave four-vector kµ .

Let us consider first the case of the generic gauge

kµ =
ec

EP`P
Aµ =

e
}

Aµ . (97)

In such a situation the classical field theory (96) simplifies to the theory
of interacting photon and neutral scalar field

L =
EP`P

2
∂µ χ∂

µ
χ−

m2
χc2

2MP`P
χ

2−g
EP`P

4
χ

4 (98)

− 1
4µ0

FµνFµν +
e2σ2

0
2MP`P

(α +1)2 AµAµ (99)

+
e2σ0

MP`P
(α +1)2

χAµAµ (100)

+
e2

2MP`P
(α +1)2

χ
2AµAµ . (101)
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Writing out the part of the Lagrangian which is quadratic in fields and
its derivatives in the form

LQ =
EP`P

2
∂µ χ∂

µ
χ−

m2
χc2

2MP`P
χ

2− 1
4µ0

FµνFµν +
e2m2

A

2M3
P`3

P
AµAµ , (102)

one receives immediately the mass of the photon

mA = MP`Pσ0|α +1|. (103)

The mass (103) of photon does not vanish if α 6= −1. This mass for-
mula is completely different from the analogical relation obtained in
the previous section in the framework applying the Higgs potential.
The crucial and most important difference is that in the present sce-
nario the mass of photon is independent on the mass of the scalar neu-
tral boson of the theory. The mass of χ-boson is a free parameter and
can be established by analysis of suitable experimental data. Mean-
while, the mass of photon is solely determined only by two independent
constants, the initial datum σ0 and the parameter α. The parameter
α shall be established below, while the initial datum σ0 possesses the
freedom of choice. One can study the concrete physical situations which
predict the appropriate values of this number. For example one can put

ad hoc σ0 =
2
3
√

π
1
`P

and study the Higgs–Hubble inflaton [19] context of

the classical field theory which I presented in this section. Recall that
nonzero value of the mass of a photon in deeply rooted in interpretation
of the experimental data. Such a belief was deduced in early 1970s by
A. Mazer, C. Imbert, and S. Huard [3] by observations of total internal
reflection to test the Goos–Hänchen effect [4] of the beam shift. Soon
after this essential analysis L. De Broglie and J.-P. Vigier [5] discussed
this contradiction in the context of the quantum theory of radiation
and generalized it to the quantum theory of massive spin-1 photons.
Soon after this paper G.J. Troup et al [6] suggested this proposal as the
untenable. Albeit, still the question of nonzero mass of a photon is one
of the most important and actual problem of physics. One of the best
examples is is the analysis due to R. Lakes [7], in which the photon
mass is analyzed in frames of the Maxwell–Proca equations. More-
over, the possibility of nonzero mass of a photon has been studied also
by Bass and Schrödinger [8] and Feynman [9]. Georgi, Ginsparg, and
Glashow [10] have suggested nonzero photon mass to justify cosmic mi-
crowave background radiation. Another important point is that since
at least three decades there is no success in verification of existence of
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the Higgs boson arising within the framework of the Standard Model.
Such a state of affairs suggests that the Higgs boson is non-existent.
In this manner the model presented in this section is consistent with
both these empirical facts.

The problem is to establish the value of the parameter α. Let us
employ for this the Euler–Lagrange equations of motion arising from
the Lagrangian (96). The equations of motion for the neutral χ boson
are

�χ +gχ
3 +

m2
χ

M2
P`2

P
χ =

(
αkµ +

e
}

Aµ

)(
αkµ +

e
}

Aµ

)
(σ0 + χ) , (104)

while the photon Aµ obeys the equations of motion

�Aµ −∂
µ(∂νAν)+

µ0e2σ2
0

MP`P
Aµ = µ0 jµ − µ0e2

MP`P

(
χ

2 +2σ0χ
)

Aµ , (105)

and the non-dynamical vector field kµ satisfies the equations of motion

(σ0 + χ)2
(

1
2

αkµ +
e
}

Aµ

)
= 0. (106)

The equations (106) are non-dynamical, and by this reason are the con-
straints. They can be solved straightforwardly with the result

αkµ =−2
e
}

Aµ , (107)

what suggests that α = −2. Involving this solution into the equations
of motion (104) one receives

�χ +
m2

χ

M2
P`2

P
χ +gχ

3 =
e2σ0

}2 AµAµ +
e2

}2 χAµAµ , (108)

while the conserved current (94) simplifies to

jµ =
2e2

MP`P

(
σ

2
0 +2σ0χ + χ

2)Aµ , (109)

so that the equations of motion for a photon (105) become

�Aµ −∂
µ(∂νAν)−

µ0e2σ2
0

MP`P
Aµ =

2µ0e2

MP`P

(
χ

2 +σ0χ
)

Aµ . (110)
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Applying, however, the gauge (107) to the total Lagrangian (96) one
receives

L =
EP`P

2
∂µ χ∂

µ
χ−

m2
χc2

2MP`P
χ

2−g
EP`P

4
χ

4 (111)

− 1
4µ0

FµνFµν +
e2σ2

0
2MP`P

AµAµ +
e2σ0

MP`P
χAµAµ +

e2

2MP`P
χ

2AµAµ ,

what means that the mass of a photon is

mA = MP`Pσ0, (112)

and exactly corresponds to α = −2 in the formula (103). The photon
mass formula (112) is principally the same as the photon mass formula
(36) obtained in the previous section. In this manner in the present
model the free parameter σ0 can be also expressed via the photon mass
only

σ0 =
mA

MP`P
=

mAc
}

, (113)

and all deductions related to the Higgs–Hubble inflaton, performed
in the previous section, are analogical. The difference between the
present and the previous model of mass generation mechanism is, how-
ever, essential because of in the present situation the mass of the χ

boson remains a free parameter which can be determined by experi-
mental data, and this parameter is independent on the photon mass.

Interestingly, in the present mass generation mechanism the neu-
tral scalar fields which create the charged scalar field have nontrivial
decomposition

ϕ1(x) =
σ0 + χ(x)√

1− tan
(

2
e
}
∫ xµ

dx′µAµ(x′)+2πn
) , (114)

ϕ2(x) = −(σ0 + χ(x))
tan
(

2
e
}
∫ xµ

dx′µAµ(x′)+2πn
)

√
1− tan

(
2

e
}
∫ xµ

dx′µAµ(x′)+2πn
) . (115)

It is evident that the charged scalar field becomes neutral if and only if∫ xµ

dx′µAµ(x′) =
( p

2
−n
)

π}
e

=
( p

2
−n
) h

2e
, p,n ∈ Z (116)

where the photon Aµ satisfies the system of equations (108) and (110).
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The photon states defined by the condition (116) are nontrivial. In
fact the non-triviality can be seen straightforwardly from the equations
of motion (108) and (110). The equations (108) can be rewritten in the
following form

AµAµ =
}2

e2

�χ +
m2

χ

M2
P`2

P
χ +gχ3

σ0 + χ
, (117)

and solved immediately as Aµ =
[

ϕ(x)
c

,A(x)
]
, where ϕ(x) is the electric

potential

ϕ(x) =
}c
e

√√√√√√�χ +
m2

χ

M2
P`2

P
χ +gχ3

σ0 + χ
−
(

eA
}

)2

, (118)

and A is the magnetic potential. In this manner the condition (116)
says that

c
∫

dt

√√√√√√�χ +
m2

χ

M2
P`2

P
χ +gχ3

σ0 + χ
−
(

eA
}

)2

+
e
}

∫
dxA =

( p
2
−n
)

π. (119)

It is visible that the Aharonov–Bohm effect [20] is the particular case
within this situation. In this manner in the present scenario the Gold-
stone field ϕ2(x) vanishes if there is the generalized Aharonov–Bohm
effect for the photon. It must be emphasized also that the χ boson and
the magnetic potential A are not arbitrary, but satisfies also the equa-
tions of motion (110).

4 Summary
In this paper I have considered two models of mass generation mecha-
nism based on the Higgs mechanism, which is accepted but empirically
half-true algorithm for explanation of the masses of particles within
the Standard Model. Both the models were based on the concept of
charged scalar field Φ. I have considered the case of abelian gauge
fields, i.e. photons.

The first model was strictly based on the Higgs potential and lead
us to consistent and constructive explanation of the photon mass and
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the neutral scalar field χ which breaks the symmetry spontaneously.
In this model there is dependence between the photon mass and the χ

boson mass.
The second model was based on the Higgs potential modified by a

constant shift in the variable |Φ|. I have employed also the idea of the
wave four-vector kµ which allowed to see the structure of the theory.
The concept of the χ boson was also determined in an another way. This
model resulted in the formula for the photon mass, which is practically
the same as the formula obtained in the first model. However, in the
modified model there is no dependence between the χ boson mass and
the photon mass, and the mass of the neutral scalar field remains a
free parameter which can be established by experimental data.

Both the models present certain scenarios for consistent explana-
tion of the photon mass. Moreover, both the models present different
point of view on the idea of the Higgs boson. I shall to present next
results of the models in our next topical papers.

Both the models are seemingly very similar to the standard Higgs
mechanism. However, in the Higgs mechanism the photon is explained
as massless, and moreover the Higgs field is charged four-real-component
complex spinor. In both the scenarios presented in this paper I have no
considered ad hoc that there is the Higgs field. The scenarios have
based on existence of a new scalar neutral boson χ, a Higgs-like parti-
cle, and an auxiliary scalar neutral field ϕ which can be interpreted as
a dilaton. The phenomenological status of both the new particle and a
dilaton is not clear presently. The second model is much more prospec-
tive from this point of view, because of dilaton is massless there and
a new scalar particle which is a free parameter and has a mass which
can be determined only by experimental data. Moreover, in the second
model the mass of a photon does not depend on the mass of a Higgs-like
particle, while in the first model the photon mass strongly depends on
the mass of χ-boson. In frames of the Standard Model estimation of the
mass of a photon is senseless, because by the Higgs mechanism photon
is massless in this theory. In the first model of this paper a new scalar
particle is massive, and the value of its mass can be estimated by the
present day experimental limits on the photon mass.
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