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Fourier series is constructed basing on the idea to model the elementary oscillation (—1,+1) by

the exponential function with negative base, viz. (—1)".
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We inspect the dependence, say, on time of a bounded quantity f expanding it into the sum of periodic processes wy.
First of all, consider a discrete process f;, rendered by the vector comprised of n values, f = (fo, ..., fj, -, &, s fn=1)s
and, accordingly, expand it into the sum of vectors wy = (Wok, ..., Wik, .., Wkks -, Wn—1.k):

Woo Wo; Wok Won—1
n—1 wjo Wi Wik Win—1
f:E CLWE = Co : +Fg : + -t : + - +ena : .
k=0 Wko W Wk Wn—1
Wn—-10 Wn—1j Wn—1k Wpn—1n—1

We seek for the coefficients ¢ of the expansion (1).
The simplest discrete periodic process is described by the vector

w=(1,¢4¢ . ..¢,...¢,  ..¢ "), where g=—1. (2)

Process (2) is the oscillation w; = (—1)7 between 1 and —1 depending on integer argument j and has the period 2.
We will generalize this configuration from ¢ = —1 to

2k

qr = (—1) n. (3)

Then process wy,
Wi = (quvql%v‘”vqi?'“vq’l&'~~7q]?71)7 (4)

will have period n/k: starting from wo, = 1 through j = n/k points there will be again w;, = ¢, = 1, and at the
intermediate value j = n/(2k) the function is w;, = ¢; = —1. At k = 0 the period of the oscillation is infinite, i.e.
the quantity is constant. At k = n/2 the process is identical to (2). When k > n/2 the period of the oscillation will
be less than 2. In the whole, the frequency of the processes varies in the range 0 < k/n < 1.

The set of vectors wy, is orthogonal in the sense that

n—1 n—1 n—1 2(k 7 ])m
Wi = S wgto = S g =) = o
m=0 m=0

m=0

where 8, is the Kronecker delta. Equality (5) follows from the formula of geometric progression

l+p+p°+..4+p" " =(1-p")/(1-p) (6)

with the denominator p = (—1)2*=)/n,
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The property of orthogonality of vectors wy, is convenient by that multiplying the expansion (1) by vector wj, there
can be immediately, making use of (5), found coefficient c¢:

n—1

w,’;-f:Zw;"nkfm:nck. (7)

m=0

In the result we obtain

fi = ch(—l)n ) (8)

o= =3 ful-1) n" 9)

The fractional power of —1, as in (8) and (9), can be reduced to /—1 and rendered in the exponential form with a
positive base.
Theorem:

ev_hp:cosgo—&—\/—lsimp. (10)

Proof (for definition of the Euler’s number e see Appendix).
Indeed, on the one side we have:

V=l V=lpa _ V=11 + p2)
On the other, by the trigonometry:

(cos 1 + vV —1sinr)(cos w2 + v —1sinps) = cos(p1 + w2) + vV —1sin(p; + v2).

Besides, differentiating the left-hand side of (10) we obtain

die V—lp v—1leV _150.
%2

While the differential of the right-hand side (10) is

d
%(cosgo + v —1sinp) = —sinp +vV—1cosp = v—1(cosp + V—1sinp).

This is sufficient in order to substantiate equality (10).
Consider the change of (—1)® in dependence on x:

(-1)°=1, (-)VP=V-1, (-)'=-1 (-1)F=-V-1, (-1)*=1
According to (10), we have exp(y/—17) = —1 and, consequently, exp(v/—1mx) changes with z as
eﬁmo:L NV—lm-1/2 ~ V4, NV—Im-1 _ 1, NV—1m-3/2 _ _J4 N2 _
Thus we have shown that
(—1)7 = V172, (11)
Now we have the convenient form (11), (10) which visually demonstrates the oscillation as rotation of a unit vector

in coordinates (1,4/—1). Fig.1 may illustrate the distribution on the plane in these coordinates of components of a
vector (4) with the denominator (3).
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Figure 1: The products exp[i2mw(k — j)m/n] of the components of orthogonal vectors in relation (5) for the case of the basis
consisting of n = 5 vectors are shown on the complex plane: m-th component of j-th and k-th vectors, k—j =2, m =0,1,2,3,4.

Using (11) in (8) and (9), we find the standard form of the Fourier expansion

n—-1 Z%j
fi = che n -, (12)
k=0
1 n—1 27Tk
—i—m
= Z fme (13)
m=0

where the well-known designation for the imaginary unit +/—1 = 7 is assumed.
Next we proceed to the continuous presentation supposing

t =jAt, T =nAt =const, At — 0. (14)
Using (14) in (12), (13):
2rk 2rk
n—1 . 0o .
i——jAt i———t
f@®) = che nAat? = che T (15)
k=0 k=0
1= Ak A 17 2k,
= At — T dt.
ck nAtT;fme n At — T/f(t)e dt (16)

o

In (15) and (16) 7' is the time duration of the process, and T'/k period of the k-th harmonics.

Replacing in (15) and (16) f(¢) by f(t + to) we obtain formulae for expansion of the function at any finite interval
(to, to + T).

Notice that we may extend the geometric progression (6) at the same length n into the region of negative powers:

P p " b L p L p PP = (0 =) /(1 - D). (17)

In this event, for the extended vectors wy, there holds the orthogonality with g, = (—1)%/"

instead of (5)

, so that we will have

n—1 n—1 (k 7])m
Wi Wy = Z " = Z (-1) n = 2nd;. (18)

m=—n m=—n



The symmetrical expansion has a more regular character: the periods of the discrete processes in question never
become less than 2. At a given k the period equals to 2n/k, i.e. two times more long than it is at the same k
in the one-sided distribution (4). At k = —n the period equals to 2, then with the increase of k it grows up to
infinity at £ = 0, and further drops gradually to almost 2 at k = n — 1. So that the frequency varies in the range
—1/2 < k/(2n) < 1/2. In accord with (18), we recast relations (15) and (16) putting 2n in place of n:

wk

= 3 T (19)
k=—oc0
T —'@t
e = %/f(t)e T (20)
“r

where the function is taken at a finite interval (=T, +T). If f(¢) is defined on the interval (¢1,t2), then we have in
(19), (20) T = (t2 — t1)/2, and f(t) should be substituted by f(t + (t1 + t2)/2).

Notice that if the function f is real, then (20) entails c_j = ¢, where * is the sign of complex conjugation. We will
represent the expansion of the real function in the real form. From (19), using Euler formula (10):

k Tk
s iy —ity o . Tk Tk
ft)=co+ ; cke T +cpe T | =co+ ; [(ck + ¢, cos ?t +i(cx — cj) sin ?t . (21)

Coeficients co, ¢, + ¢, i(cp — ¢;) of this expansion are real and can be determined from (20) as

¢k + ¢

Il
N =
~
—
-
S~—"
o
]
92}
l..
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~—~
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i(exp —cp) = %/f(t)sin%ktdt (23)

where ¢f = cp.
Thus, at a finite interval a function can be expanded into the Fourier series.
Let the time interval be infinite: T'— oo. We will redefine variables:

7k - Tck

T=Ww c(w). (24)
Using (24) in (19) yields
F(t) = i c(w) =Wt / c(w)e“l du (25)
k=—o00 T
since varying k by one w changes by 7/T, i.e. dw = 7/T. Using (24) in (20):
ow) = = / F(t)e@tgy (26)
2 '

So, we deal with the Fourier integral on the entire number axis.
There can be deduced a formula for the concise rendering and remembering of the Fourier expansion. First, refashion
(25) as

(o}
!

f(t) = /dw’c(w')eiw ¢ (27)

— 00



Substituting (27) into (26):

c(w) = / dw'c(w") % / dte! (@ —w)t| (28)
From (28) we have
8w —w) = % / dte! (@ — @)t (29)

Similarly to (29), there can be written §-function for ¢:

S(t — 1) = % / dweiw(t = 1), (30)

Using the representation (30), we may easily obtain formula for the Fourier transform

oo oo oo

1 . .
ﬂﬂ:/ﬁﬁ@ﬁ@—w:/muZi/Wﬂﬂgwygm. (31)
Compare (31) with (25) and (26).
Let
ft) = chei“’“t (32)
k
i.e. we have a set of harmonic oscillators. Substituting (32) in (26):
1 Vi ;
clw) = Py / chel(wk —wWhtg = ché(w — wg) (33)
ok o

where the definition (29) is used. In reality, (32) is blurred, and the discrete spectrum (33) degrades into the sum of
Gauss components

2
20%

o) = Y e )] (34)

that is shown in Fig.2.
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Figure 2: A realistic spectrum of the composite signal.



Appendix A: THE FIRST REMARKABLE LIMIT

Binomial 1 + 1/n raised to the power n at n — oo is bounded by excess and deficiency in the following way

nn—1)(n-2) 1 4 noeo

1 nn-1)1
et 3! n3

1 1\"
2= <(14+4=) =14n-—+ 22—~
2 << +n) T n+ 21 n?
1+1+1+1+ <1+1+1+ +..=1+ ! =3
PIREEE TR 2 27 T 11
Denoting
1 n
lim <1+> =e
n—00 n
we are seeking for
d e+ ATz Ar _q
dz© 7A1;IEO Az ¢ AIQIJIEO Ax
Supposing Az = 1/n gives
A 1
x 1 n-i
hme = lim n <1+) "1 =1
Az—0 Az n—oo n
Hence:
d X xr
—e* = e".
dx
Relationship (A1) can be generalized. We have
m\"™ m n(n—1) ym\2 oo 2 3
S1 = (1+7) :1+n‘—+g<—) o 2 it
n n 2! n 2! 3!
nm 2
]. ]. _]- 1 n o0
Sy = <1+) — 14 mn. L4 molmn )<> TN
n n 2! n

Therefore:
B n ’

e = | lim
n— o0




