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Fourier series is constructed basing on the idea to model the elementary oscillation (−1,+1) by
the exponential function with negative base, viz. (−1)n.
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We inspect the dependence, say, on time of a bounded quantity f expanding it into the sum of periodic processes wk.
First of all, consider a discrete process fj , rendered by the vector comprised of n values, f = (f0, ..., fj , ..., fk, ..., fn−1),
and, accordingly, expand it into the sum of vectors wk = (w0k, ..., wjk, ..., wkk, ..., wn−1.k):

f =

n−1∑
k=0

ckwk = c0



w00

...
wj0

...
wk0

...
wn−10


+ · · ·+ cj



w0j

...
wjj

...
wkj

...
wn−1j


+ · · ·+ ck



w0k

...
wjk

...
wkk

...
wn−1k


+ · · ·+ cn−1



w0n−1

...
wjn−1

...
wkn−1

...
wn−1n−1


. (1)

We seek for the coefficients ck of the expansion (1).
The simplest discrete periodic process is described by the vector

w = (1, q, q2, ..., qj , ..., qk, ..., qn−1), where q = −1. (2)

Process (2) is the oscillation wj = (−1)j between 1 and −1 depending on integer argument j and has the period 2.
We will generalize this configuration from q = −1 to

qk = (−1)

2k

n . (3)

Then process wk,

wk = (1, qk, q
2
k, ..., q

j
k, ..., q

k
k , ..., q

n−1
k ), (4)

will have period n/k: starting from w0k = 1 through j = n/k points there will be again wjk = qjk = 1, and at the

intermediate value j = n/(2k) the function is wjk = qjk = −1. At k = 0 the period of the oscillation is infinite, i.e.
the quantity is constant. At k = n/2 the process is identical to (2). When k > n/2 the period of the oscillation will
be less than 2. In the whole, the frequency of the processes varies in the range 0 ≤ k/n < 1.

The set of vectors wk is orthogonal in the sense that

w∗j ·wk =

n−1∑
m=0

w−1
mjwmk =

n−1∑
m=0

q−mj qmk =

n−1∑
m=0

(−1)

2(k − j)m
n = nδjk (5)

where δjk is the Kronecker delta. Equality (5) follows from the formula of geometric progression

1 + p+ p2 + ...+ pn−1 = (1− pn)/(1− p) (6)

with the denominator p = (−1)2(k−j)/n.
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The property of orthogonality of vectors wk is convenient by that multiplying the expansion (1) by vector w∗k, there
can be immediately, making use of (5), found coefficient ck:

w∗k · f =

n−1∑
m=0

w∗mkfm = nck . (7)

In the result we obtain

fj =

n−1∑
k=0

ck(−1)

2k

n
j
, (8)

ck =
1

n

n−1∑
m=0

fm(−1)
−2k

n
m
. (9)

The fractional power of −1, as in (8) and (9), can be reduced to
√
−1 and rendered in the exponential form with a

positive base.
Theorem:

e
√
−1ϕ = cosϕ+

√
−1 sinϕ. (10)

Proof (for definition of the Euler’s number e see Appendix).
Indeed, on the one side we have:

e
√
−1ϕ1 · e

√
−1ϕ2 = e

√
−1(ϕ1 + ϕ2).

On the other, by the trigonometry:

(cosϕ1 +
√
−1 sinϕ1)(cosϕ2 +

√
−1 sinϕ2) = cos(ϕ1 + ϕ2) +

√
−1 sin(ϕ1 + ϕ2).

Besides, differentiating the left-hand side of (10) we obtain

d

dϕ
e
√
−1ϕ =

√
−1e
√
−1ϕ.

While the differential of the right-hand side (10) is

d

dϕ
(cosϕ+

√
−1 sinϕ) = − sinϕ+

√
−1 cosϕ =

√
−1(cosϕ+

√
−1 sinϕ).

This is sufficient in order to substantiate equality (10).
Consider the change of (−1)x in dependence on x:

(−1)0 = 1, (−1)1/2 =
√
−1, (−1)1 = −1, (−1)3/2 = −

√
−1, (−1)2 = 1.

According to (10), we have exp(
√
−1π) = −1 and, consequently, exp(

√
−1πx) changes with x as

e
√
−1π · 0 = 1, e

√
−1π · 1/2 =

√
−1, e

√
−1π · 1 = −1, e

√
−1π · 3/2 = −

√
−1, e

√
−1π · 2 = 1.

Thus we have shown that

(−1)x = e
√
−1πx. (11)

Now we have the convenient form (11), (10) which visually demonstrates the oscillation as rotation of a unit vector
in coordinates (1,

√
−1). Fig.1 may illustrate the distribution on the plane in these coordinates of components of a

vector (4) with the denominator (3).
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Figure 1: The products exp[i2π(k − j)m/n] of the components of orthogonal vectors in relation (5) for the case of the basis
consisting of n = 5 vectors are shown on the complex plane: m-th component of j-th and k-th vectors, k−j = 2, m = 0, 1, 2, 3, 4.

Using (11) in (8) and (9), we find the standard form of the Fourier expansion

fj =

n−1∑
k=0

cke
i
2πk

n
j
, (12)

ck =
1

n

n−1∑
m=0

fme
−i2πk

n
m

(13)

where the well-known designation for the imaginary unit
√
−1 = i is assumed.

Next we proceed to the continuous presentation supposing

t = j∆t, T = n∆t = const, ∆t→ 0. (14)

Using (14) in (12), (13):

f(t) =

n−1∑
k=0

cke
i
2πk

n∆t
j∆t
→

∞∑
k=0

cke
i
2πk

T
t
, (15)

ck =
1

n∆t

n−1∑
m=0

fme
− 2πk

n∆t
m∆t

∆t→ 1

T

T∫
o

f(t)e
−i2πk

T
t
dt. (16)

In (15) and (16) T is the time duration of the process, and T/k period of the k-th harmonics.
Replacing in (15) and (16) f(t) by f(t+ t0) we obtain formulae for expansion of the function at any finite interval

(t0, t0 + T ).
Notice that we may extend the geometric progression (6) at the same length n into the region of negative powers:

p−n + p−n+1 + ...+ p−1 + 1 + p+ p2 + ...+ pn−1 = (p−n − pn)/(1− p). (17)

In this event, for the extended vectors wk there holds the orthogonality with qk = (−1)k/n, so that we will have
instead of (5)

w∗j ·wk =

n−1∑
m=−n

q−mj qmk =

n−1∑
m=−n

(−1)

(k − j)m
n = 2nδjk. (18)
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The symmetrical expansion has a more regular character: the periods of the discrete processes in question never
become less than 2. At a given k the period equals to 2n/k, i.e. two times more long than it is at the same k
in the one-sided distribution (4). At k = −n the period equals to 2, then with the increase of k it grows up to
infinity at k = 0, and further drops gradually to almost 2 at k = n − 1. So that the frequency varies in the range
−1/2 ≤ k/(2n) < 1/2. In accord with (18), we recast relations (15) and (16) putting 2n in place of n:

f(t) =

∞∑
k=−∞

cke
i
πk

T
t
, (19)

ck =
1

2T

T∫
−T

f(t)e
−iπk

T
t
dt (20)

where the function is taken at a finite interval (−T,+T ). If f(t) is defined on the interval (t1, t2), then we have in
(19), (20) T = (t2 − t1)/2, and f(t) should be substituted by f(t+ (t1 + t2)/2).

Notice that if the function f is real, then (20) entails c−k = c∗k, where ∗ is the sign of complex conjugation. We will
represent the expansion of the real function in the real form. From (19), using Euler formula (10):

f(t) = c0 +

∞∑
k=1

ckeiπkT t
+ c−ke

−iπk
T
t
 = c0 +

∞∑
k=1

[
(ck + c∗k) cos

πk

T
t+ i(ck − c∗k) sin

πk

T
t

]
. (21)

Coefficients c0, ck + c∗k, i(ck − c∗k) of this expansion are real and can be determined from (20) as

ck + c∗k =
1

T

T∫
−T

f(t) cos
πk

T
tdt, (22)

i(ck − c∗k) =
1

T

T∫
−T

f(t) sin
πk

T
tdt (23)

where c∗0 = c0.
Thus, at a finite interval a function can be expanded into the Fourier series.
Let the time interval be infinite: T →∞. We will redefine variables:

πk

T
= ω,

Tck
π
→ c(ω). (24)

Using (24) in (19) yields

f(t) =

∞∑
k=−∞

c(ω)
π

T
eiωt →

∞∫
−∞

c(ω)eiωtdω (25)

since varying k by one ω changes by π/T , i.e. δω = π/T . Using (24) in (20):

c(ω) =
1

2π

∞∫
−∞

f(t)e−iωtdt. (26)

So, we deal with the Fourier integral on the entire number axis.
There can be deduced a formula for the concise rendering and remembering of the Fourier expansion. First, refashion

(25) as

f(t) =

∞∫
−∞

dω′c(ω′)eiω
′t. (27)
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Substituting (27) into (26):

c(ω) =

∞∫
−∞

dω′c(ω′)

 1

2π

∞∫
−∞

dtei(ω
′ − ω)t

 . (28)

From (28) we have

δ(ω′ − ω) =
1

2π

∞∫
−∞

dtei(ω
′ − ω)t. (29)

Similarly to (29), there can be written δ-function for t:

δ(t′ − t) =
1

2π

∞∫
−∞

dωeiω(t′ − t). (30)

Using the representation (30), we may easily obtain formula for the Fourier transform

f(t) =

∞∫
−∞

dt′f(t′)δ(t′ − t) =

∞∫
−∞

dω

 1

2π

∞∫
−∞

dt′f(t′)e−iωt
′
 eiωt. (31)

Compare (31) with (25) and (26).
Let

f(t) =
∑
k

cke
iωkt (32)

i.e. we have a set of harmonic oscillators. Substituting (32) in (26):

c(ω) =
1

2π

∞∫
−∞

∑
k

cke
i(ωk − ω)tdt =

∑
k

ckδ(ω − ωk) (33)

where the definition (29) is used. In reality, (32) is blurred, and the discrete spectrum (33) degrades into the sum of
Gauss components

c(ω) =
∑
k

ck√
2πσ2

k

exp

[
− (ω − ωk)2

2σ2
k

]
(34)

that is shown in Fig.2.

Figure 2: A realistic spectrum of the composite signal.
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Appendix A: THE FIRST REMARKABLE LIMIT

Binomial 1 + 1/n raised to the power n at n→∞ is bounded by excess and deficiency in the following way:

2
1

2
<

(
1 +

1

n

)n

= 1 + n · 1

n
+
n(n− 1)

2!

1

n2
+ +

n(n− 1)(n− 2)

3!

1

n3
+ ...

n→∞−−−−→

1 + 1 +
1

2!
+

1

3!
+ ... < 1 + 1 +

1

2
+

1

22
+ ... = 1 +

1

1− 1
2

= 3 .

Denoting

lim
n→∞

(
1 +

1

n

)n

= e (A1)

we are seeking for

d

dx
ex = lim

∆x→0

ex+ ∆x − ex

∆x
= ex lim

∆x→0

e∆x − 1

∆x
.

Supposing ∆x = 1/n gives

lim
∆x→0

e∆x − 1

∆x
= lim

n→∞
n

(1 +
1

n

)n · 1

n − 1

 = 1.

Hence:

d

dx
ex = ex.

Relationship (A1) can be generalized. We have

S1 =
(

1 +
m

n

)n
= 1 + n · m

n
+
n(n− 1)

2!

(m
n

)2

+ ...
n→∞−−−−→ 1 +m+

m2

2!
+
m3

3!
+ ... ,

S2 =

(
1 +

1

n

)nm

= 1 +mn · 1

n
+
mn(mn− 1)

2!

(
1

n

)2

+ ...
n→∞−−−−→ S1.

Therefore:

em =

[
lim
n→∞

(
1 +

1

n

)n]m
= lim

n→∞

(
1 +

m

n

)n
.


