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Abstract: Mathematical constant e can be expressed in logarithmic functions. There are six  expressions 
for e. Five of them are step functions  and another one is a constant function. 

 

We can express mathematical constant e in terms of logarithmic function. The logarithmic function and 
hyperbolic sine and cosine function is a step function. Where as  one of the hyperbolic cosine function is 
a constant function. All results have no proof. It can be easily verified by a calculator. The expressions for 
e is given below. 
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Limit as    ∞→n    we get the following result. 

For  ey /10 <≤        then    0=ny ,      for   ey /1=     then   eyn /1= , 

For   ey /1>         then      eyn =  

This function converges very fast. 
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For  ey /1sinh0 1−<≤        then    0=ny ,      for ey /1sinh 1−=     then    eyn /1sinh =   , 

For   ey /1sinh 1−>        then   eyn =sinh  
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For    sinh1/y e>      then    1sinh ny e− =  
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For  cosh1/y e<   ,  The inverse of the hyperbolic cosine of a number less than one does not exist. 

Hence  ny  does not exist. 

For   cosh1/y e=   then   
1cosh 1/ny e− = ,  for  cosh1/y e>     then   

1cosh ny e− =  
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For  
1/ey e<  Here the log of negative number does not exist. Hence  ny  does not exist. 
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The hyperbolic sine and cosine functions converge very slowly. 
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