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o ABSTRACT: We present a Berry-Keating model with ‘periodic’ conditions 
in the dilation group so boundary conditions ( ) ( )f nx f x=  n N∈  applied 

to the operator   2
bkH    with  

2 bk

df f
i x H

dx
 − + = 
 

, for the square of the 

Berry-Keating operator with these boundary conditions we manage to 
prove that the Eigenvalues of  2

bkH  are approximately (in the 

semiclassical approximation)  
2

1 2
4 logn

n
E

n
π 

= +  
 

, also we study the case of 

the Eigenvalues for the operator 
2 n

df f
x f

dx
λ+ =  which are asymptotic to  

1
2 niγ+  as  n→∞  , 1

0
2 niζ γ + = 

 
. For simplicity in this paper we will use 

units so  2 1m = = h  also log means the natural logarithm 
o Keywords: = Riemann Zeros, Quantum mechanics, WKB approach 

 
 
One of the first Hilbert-Polya operators proposed to solve RH was the Berry-Keating 

operator  †1
2BK BK

d
H i x H

dx
 = − + = 
 

  This operator comes from the Quantization of the 

Hamiltonian BKH xp=  with the Canonical Quantization conditions involving 
commutators [ , ]x p i=  , the idea is that if we apply the Quantizatio rules to the 
Hamiltonian  BKH xp=  and apply certain regularization conditions , then we recover 
the asymptotics of the smooth term in the Riemann-Von Mangoldt formula 

7
( ) ( ) log 1 ....

2 2 2 8SC

Area E E
N E N E

π π π
  ≈ = = − + +  

  
 ,  with the semiclassical 
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‘regularization’ of the Planck unit-cell in the phase space as  xx l>  , pp l>  and the 

product  . 2p xl l π=  for some cut-offs  ,x pl l  
 
Now, We can can go an step further and consider the square of the Berry-Keating 
Hamiltonian in the form of an Eigenvalue problem 
 

2
2

2

( ) ( ) ( ) 1 1
2 ( ) ( )

4 2 2 n

d x d x x d d
x x i x i x x E x

dx dx dx dx
Ψ Ψ Ψ    − − − = + + Ψ = Ψ   

   
    (1) 

 
This Hamiltonian defined in (1) is self-adjoint so its Eigenvalues will be real and also 
the expected value of the Hamiltonian will be positive  0nE ≥   

2| | | || || 0BK BK BK BKH H H HΨ Ψ = Ψ Ψ = ≥  . Equation (B.1) is of Euler-Cauchy type, 

its general solution will be given by    
1 1
2 2( )

n ni E i E
x A x A x

− + − −

+ −Ψ = +    A R± ∈  
 
Wihtout further boundary conditions then any positive Real number will be an 
eigenvalue of (1) with the Eigenfunctions given  above, we will impose the restriction 
that the Eigenfunctions satisfy the ‘periodic’ conditions  ( ) ( )nx xΨ = Ψ  for any positive 
integer ‘n’ different from 0 , this is motivated from the solution of the Eigenvalue 
problem in Quantum Mechanics 
 

2
2 2 2

2

( )
( ) ( )      4        ( ) ( )n n

d x
p x E x E n x n x

dx
πΨ

− = Ψ = Ψ = Ψ + = Ψ     n Z∈      (2) 

 
The Hamiltonian inside (2) is the one corresponding to a free particle so  2E p=  , here 

‘p’ is the generator of the translations p̂ i
x
∂

→ −
∂

 , the allowed values of the 

Hamiltonian in the WKB approximation are 2p nπ=  for natural ‘n’ taking into account 

the boundary conditions for the eigenvalue problem ni
x
ϕ λ ϕ∂

− =
∂

   ( ) ( )x n xϕ ϕ+ =  

 
For the case of Berry-Keating Hamiltonian we have used the Dilation operator 

1
2

d
i x

dx
 Θ→ − + 
 

 , so it seems quite plausible that we can impose boundary conditions 

inside our Hamiltonian that must be ‘periodic’ in dilations  ( ) ( )xn xΨ = Ψ  for every 
natural number ‘n’ , in fact our Hamiltonian is invariant under the group of dilations  
y ax=  . then from this symmetry and using the Solution of the Cauchy-Euler 
differential equation (1) we have that our Wave function must satisfy 
 

2
log

21 1
log2 2

ni
nn n

ni
i E i E nA x A x A x A x

π π
−− + − −

+ − + −+ = +       
22 2 2
loglog log log

. ( )
inin in in
nn n n

x n xn x
ππ π π±± ± ±

= =    (3) 
 

Since 
2
log 21

in
n inn e

π

π
±

= = , here ‘n’ is a quantum number that labells the different energy 
levels , now if we make the exponents in both sides equal then we have three different 
equations (all equivalents) for the energy levels 
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1 2
2 logn

in
s i E

n
π

= = +      
1 2
2 logn

in
s i E

n
π

= − = −     
2

1 2
. .(1 )

4 logn

n
s s s s E

n
π 

= − = = +  
 

  (4) 

 Then we have managed to give a finite ‘spectrum’ for the square of the Berry-Keating 
Hamiltonian  
 

2

2 ( )1 2
( ) ( )

4 log 4
n

n n

xn d d
x x x

n dx dx
π   Ψ  + Ψ = − Ψ −        

        ( ) ( )xn xΨ = Ψ     (5) 

 
From the Riemann-Von Mangoldt formula for the formula N(E) we find that the 

imaginary parts of the Riemann Zeros obey the following asymptotics  
2
logn

n
n

πγ ≈ , this 

means that perhaps the symmetry  ( ) ( )xn xΨ = Ψ  is just an approximation  and that will 
become only valid in the limit  n→∞   
 
A similar problem that ones encounters using the WKB approximation is the following 
 

2

2

( )
( ) ( )n

n n n

d x
E x x x

dx
Ψ

Ψ = − + Ψ     
2/3

3
2n

n
E

π =  
 

      (6) 

 
In this case the EXACT energies should be the zeros of the Airy function  ( )Ai x , the 

semiclassical approximation gives that these roots are asymptotic to 2/3
nx Dn→  as  

n→∞  1.31037..D =   ,with  ( ) 0nAi x =  . 
 

We can apply the same reasoning to the operator  
2 n

df f
x f

dx
λ+ = , the solutions to this 

differential equation can be written as  
1 1
2 2( ) ( ) ( )

n ni i
x H x C x H x C x

λ λ− + − −

+ −Ψ = +  with the 
aid of the Heaviside step function (also invariant under dilations x nx→  )  

0   1
( )

0   0

x
H x

x

>
=  <

   , in this case imposing the boundary condition  ( ) ( )f nx f x=  for 

every natural number ‘n’ then the Eigenvalues 
1 2
2 logn

ni
n

πλ = ±  , in the limit of big ‘n’ the 

Eigenvalues will tend to the TRUE Riemann zeros  
1 2
2 logn n

ni
n

πλ ρ= ± →    ( ) 0nζ ρ =  

 

For the differential operator 
2 n

df f
x f

dx
λ+ =  if we writte the Eigenfunctions as 

1
2( )

niE

nf x x
− +

=  and we want the Eigenvalues nE  to be equal to the imaginary part of the 
Riemann zeros, then the following approximate identity (explicit formula for the 
Chebyhsev function) must hold 
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3
1

( ) 1
( ) 1 ( )n

n n

n
f x x n

x xn
δ

∞ ∞

=−∞ =

Λ
≈ − − +

−∑ ∑          
log    

( )
0  otherwise

kp n p
n
 =

Λ 


         (7) 

 
 

This identity is analogue to the sum proved by Euler and others  ( )1 2 cos 2 0
n

nxπ
∞

=−∞

+ =∑  

which holds for every ‘x’ different from an integer, as it can be seen every term in the 
series satisfy the functional equation  ( ) ( )f x n f x+ =  for every integer ‘n’ , in the case 
of the Berry operator, the Eigenfunctions satisfy (by application of iterative dilations) 
the functional identity  ( ) ( ) ( )kf nx f n x f x= =  with  k Z∈  and  n N∈ . 
 
If we take x →∞  and kx p≠ (different from a prime or prime power) inside (7) then it 

becomes the boundary condition.  ( ) 1n
n

f x
∞

=−∞

≈∑  

 
 
Conclusions and Final Remarks: 
 
 

• We have applied the Quantization rules for the Berry-Keating Hamiltonian 
H xp=  and its square 2 2( )H xp= , we have obtained the Eigenvalues and 

Energies  
2

2 logn

i in
n

πλ = − (for ‘xp’ ) and  
2

1 2
4 logn

in
E

n
π 

= +  
 

using boundary 

conditions of the type ( ) ( )nx xΨ = Ψ  
 
• The general non-constant function that satisfy ( ) ( )nx xΨ = Ψ  is given by a linear 

combination of  ix η±  with  
2

( )
log

n
n

n
πη η= =  , if we take logarithm in both sides 

of  
2
log

1
in
n

n
π

±

=  with log log | | 2x x i i nθ π= + +  , we find 2 2in inπ π=  , here ‘n’ 
plays the role of a quantum number labelling the Energies of the system 

 
• In order to get a ‘discrete’ spectrum we need to impose the boundary conditions 

( ) ( )nx xΨ = Ψ  otherwise we would have a continuum spectrum 
 

• In both cases the factor  
2
log n

n
n

π γ≈  appears, for big n n→∞ , this term is the 

first term in the asymptotic expansion of the imaginary part for the Riemann 

zeros 
1

0
2 niζ γ + = 

 
  n→∞ , ther is no known closed expression for the 

imaginary parts of the zeros ( )n g nγ ≠ . 
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• For the operator  2
bkH = ∆ , the allowed values of the mometum operator are 

given by  
1 2 2
2 log

d n
i x

dx n
π π

λ
 − + → = 
 

,  this means that for  n→∞  the 

Eigenvalues of the momentum operator are the imaginary parts of the Riemann 
zeros 

• The differential operator 
1
2

d
i x

dx
 + 
 

 is invariant under the group of dilations so 

the natural boundary conditions to be imposed would be ( ) ( )nx xΨ = Ψ  , or in a 

more general case  ( ) ( )kn x xΨ = Ψ  with n a natural number and  k Z∈  
 
• Through the paper we have used the semiclassical approach, we have ignored 

the oscillating term of the number of zeros  
1 1

log
2

m isζ
π

 ℑ + 
 

 , in the case of 

the semiclassical approximation the Energies are obtained from solving the 

equation  
7 1

( ) ( ) log 1
2 2 2 8 2n

dqdp E E
N E H E qp n n

π π πΓ

  ≈ − ≈ − + = + ≈  
  

∫  (here 

‘H’ stands for the Heaviside’s step function not the Hamiltonian operator) 
 

• Using the boundary condition ( ) ( )nx xΨ = Ψ  we have obtained the asymptotic 
(smooth) expansion (only the first term) for the imaginary parts of the Zeros, 
however we do not know if this symmetry (invariance under dilations) will be an 
exact symmetry or only an initial approximation to the true symmetry, since we 
are dealing with the semiclassical approximation we believe that our symmetry 
will be exact in the limit  n→∞  

 
• In both cases for the roots of the Airy function ( )Ai x  and the Riemann zeta  

1
2

isζ  + 
 

 we do not know how to compute the zeros exactly, if we use the 

semiclassical approximation in QM for the Hamiltonians 2H p x= +   and  
H xp= , we obtain the first term in the asymptotic expansion as n→∞  of the 

Airy 
2 /3

3
2n

n
x

π ≈  
 

 and Riemann zeros  
1 2
2 logn

ni
n

πγ ≈ +  , this is because in the 

number of zeros less than a given ‘E’ we have ignored the oscillating term 
1 1

log
2

m isζ
π

 ℑ + 
 

 and use the Stirling’s approximation for the logarithmic 

derivative of the Gamma function   
 

• The infinite potential well model  
2

2

d
dx

−∆ = −  with periodic boundary conditions  

( ) ( )x n xΨ + = Ψ  can be easily generalized to several dimension by using the 

Laplace operator  
2

2
i i

f
f

x
∂

−∆ = −
∂∑  , then the phase space is the one of a n-

dimensional torus, for the case of the Berry-Keating operator we do not know 
how to generalize these results for more than one dimension 
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Although we have made a superficial introduction to the Berry-Keating Hamiltonian 
and its motives, the reader can find more references in the paper  [9] ,[10]  from sierra 
Townsed and Laguna, the Riemann-Von Mangodlt formula is described in the book [2] 
from Apostol, also a good introduction to Quantum mechanics and semiclassical 
approximations is given in [4] by Griffits or in the book of Statistical Mechanics [ 6] by 
Kittel  
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