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Abstract: Detailed models of mesons have been derived in terms of real structured 

particles, in order to replace the formless quark/anti-quark singularities of standard 

QCD theory. Pion design is related to the muonic mass, and a Yukawa potential is 

calculated for the hadronic field. A charged pion is produced by adding a heavy-

electron or positron in a tight orbit around the neutral core. Other mesons are found to 

be ordered assemblies of pionic-size masses, travelling in bound epicyclical orbits, 

with real intrinsic spin and angular momentum. These orbit dimensions are related to 

the mean lifetimes of the mesons through action integrals. Decay products resemble 

parts of their parent mesons, as expected for a relaxation process with traceability of 

particles.  
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1 Introduction 

 According to standard QCD theory, mesons have overall finite dimensions yet 

consist of quark plus anti-quark singularities of infinite mass density. This is not 

realistic and is of limited value in explaining the meson variations from type to type. 

Of course, quantum theory is essential for describing interactions between particles, 

yet it tells us little about particle structure, and there remains the need to elevate 

quantum theory above mathematical inspiration or fantasy. 

 Comprehension of this analysis requires some unique concepts developed 

previously for fermion models; see Wayte, Papers 1, 2, 3. Those models described an 

isolated proton, electron or muon and were very successful at explaining the Yukawa 

potential, the reality of spin and anomalous magnetic moment, and particle creation 

mechanisms. On the other hand, the Standard Model of particle interactions has been 

very successful at accounting for data from high energy collision experiments. 

Consequently, the conceptual differences between these models can be explained if 

particles in collisions reveal behaviour not immediately apparent in static models. To 

link these models, the constituents of baryons and mesons need to behave like up, 

down and strange quarks when in high energy collisions. It will be shown in 

Appendix A how this happens. 

 When we consider that high energy collision experiments are theoretically 

capable of producing a continuum of meson types, it must be significant that so few 

types are somehow chosen to exist. Mesons will be described as real understandable 

mechanisms with variability in their substructure for the different types. In collisions 

and decay processes, historic traceability of products is considered to be very 

important as a guide to design. Spin and angular momentum are always real structured 

quantities. As for fermions, particle mass is simply localised energy travelling at the 

velocity of light in bound orbits, so the Higgs postulate is unnecessary. This bound 

energy has helicity which determines by whether the particle is matter or anti-matter. 

A fundamental particle satisfies the Dirac equation but any concept of negative mass-

energy or time-reversal is excluded. Real particles are covered by their wavefunction: 

  h/)pxEt(iAe −±=Ψ ,      (1.0) 

where +i means right-handed helicity and -i means left-handed helicity of a circularly 

polarised wavefunction; and  E,  t  are real positive quantities only. 
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In this static meson model there are indeed two major pieces, but they do not 

look or behave like QCD quarks, so they will be called quion q+ and anti-quion q-

according to their charge sign. These orbit the origin and can produce real spin 

angular momentum, depending on their orientation and the orbit radius. Often, there is 

also an extra complex particle located at the origin, which increases the mass and adds 

variety to meson behaviour. We will start with the pion model as the basic design, and 

then extrapolate to cover other mesons. 

 The lifetime of a free meson must depend upon its particular internal design. 

This inference is based upon analogy with other physical systems; for example when 

a charged capacitor C is connected to a resistor R, the discharge time constant is 

determined by the hardware involved (CxR). Several separate batches of a given 

meson type will decay so as to converge upon the same characteristic lifetime; 

therefore the same exact mechanism must exist in all batches. The probability that a 

single meson will decay in any given time increment is a constant, so no ageing 

occurs. This implies that the smooth-running mechanism is perfect but subject to 

spontaneous quantum fluctuations of the internal fields which can disturb it 

catastrophically. Different types of mesons have characteristic lifetimes and 

mechanisms but there are some common features. 

 The way that the meson's mean lifetime τ and decay width Γ cooperate during 

its creation in a collision process is interesting. Given: 

  h≈Γτ  ,       (1.1) 

the real value of Γ must be established in the short creation period, whereas τ and the 

decay probability appear realised after the creation is completed, over a much longer 

period in some cases. This contrasts with an atomic emission-line in which the scatter 

in energy depends upon the lifetime of the excited state before emission. Furthermore, 

the Heisenberg uncertainty principle is written: 

  ,pxortE hh ≈∆∆≈∆∆   ,     (1.2) 

where ∆t implies incremental uncertainty in a larger macroscopic value of t; but τ in 

Eq.(1.1) is the macroscopic value. Effectively, τ is established during the creation 

stage as a coherence period of the controlling guidewave, (see Paper 1, Section 10.3). 

The decay probability wavefunction follows as a consequence of this. 
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 Section 2 will now concentrate on the detailed pion design. Section 3 will 

cover the well-observed unflavoured mesons and Section 4 the remaining unflavoured 

mesons. Section 5 describes the designs of strange mesons. Section 6 is the general 

conclusion. Appendix A explains the compatibility of these designs with the Standard 

Model for protons, neutrons and mesons. 

 All particle data have been taken from the Particle Data Group listing at 

http://pdg.lbl.gov. 

 

2 Pions  
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In QCD theory, a pion is thought to consist simply of a quark and anti-quark 

with net charge determined by the type of quarks.  The pion effective charge radius 

has been measured at around 0.65fm, see Amendolia et al. (1986) and Eschrich et al. 

(2001). 

 Our pion model is illustrated in Figure 2.1, wherein a quion q+ and anti-quion 

q−, each consisting of two smaller pearls, orbit the centre at radius roπ and velocity c to 

constitute a πo neutral pion. These may then be orbited by a heavy-positron to make a 

π+ (classed as matter), or a heavy-electron to make a π− (anti-matter). Analogous to 

the proton and antiproton, the quion and anti-quion emit a radial pionic-type field, in 

addition to possessing their own native electromagnetic charge, plus a gluonic strong-

field running around their own circumferences.  Overall angular momentum of the 

pion is zero because the pair rotate about their own axes, counter to their orbital 

motion, that is: 

  π=′ oqqq crmrcm    ,     (2.1) 

where   ]cm/e2r[and)],/2(rr[)],2/(cc[ 2
o

2
ooq πππ =π=π=′ . 
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  Fig.(2.1) Pion component parts for matter π+ and anti-matter π− 

 

2.1 Yukawa potential 

The quion /anti-quion pair is proposed to emit an attractive nuclear-type 

hadronic field similar to the proton; wherein the ‘field-mesons’ have reduced effective 

masses [mπ' = mπo(h'/h) with h' << h] in order to produce a smooth copious field.  

Published QCD calculations will here be considered unrealistic if the exchange field 

particles are as massive as the source particle, see for example Gashi et al. (2001).  

Nevertheless, the calculations may still be useful if aspects like field range can be re-

expressed in terms of the mass mπ' .  

 The metric tensor component for the field is proposed to be analogous to the 

proton field, (see Paper 1, Eq.(3.4)): 
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where (rπ = ħ/mπoc = 1.462fm) is the range factor, and (roπ = 2e2/mπoc2 = 2rπ /137) is 

double the pion classical radius because of the quion /anti-quion pair; compare this 

with positronium. The corresponding empirical potential is given by: 
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where aχπ represents the hadronic charge for pions, to be determined shortly.  Then, 

from Eqs.(3.8) (3.9) in Paper 1, the hadronic coupling constant for (π-π) is definable 

as: 
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This ‘mesonic-field’ is independent of any electromagnetic positive or negative 

charge which orbits the hadronic pair.  For pion-nucleon interactions it is probable 

that the coupling constant will be of the order: 

 ( ) ( ) 065.0137/92/1
NN ≈≈χχ=χ ππ ,    (2.4b) 

where the nucleon-nucleon coupling constant is )3/1( N ≈χ  in Paper 1. 

 Analogous to the proton derivation, hard core repulsion will be attributed to 

rapid spinning of the quion/anti-quion field source which modulates the local field 

and causes it to become repulsive.  Here, the source frequency is (c /2πroπ) compared 

with the Compton frequency of field-mesons (c/2πrπ); that is, (137/2) times greater.  

Therefore, analogous to Eq.(4.1) of Paper 1, the full hard core metric tensor 

component becomes: 
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                 Fig.(2.2) Hadronic potential energy function for the pion. 
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The empirical overall pion potential is given by: 

 ( )

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χπ
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a

cm
1V

2
o

hchc ,     (2.6) 

where [aχπ  = (χπħc)½]. This potential energy (aχπVhc) as a function of radius is 

illustrated in Figure 2.2. 

 

2.2 Pion mass 

The quion /anti-quion masses may be related to electronic mass or to muonic 

mass as was found for the pearls in a proton: 

 0006.09766.134m1426.264m2m eqo ±===π  MeV/c2, (2.7) 

and given muon mass (mµ = 105.658367MeV/c2) we have: 
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Here, we recall that a muonic mass could consist of 3 distinct packs of core-segments 

(Paper 3, Eq.(4.2)); consequently each quion pearl here takes the mass of one such 

pack (mµ /3), approximately. The small negative term in this equation will be taken to 

express overall mass decrement due to binding energy of the attractive field between 

pearls within the quion itself, plus the binding energy of the quion /anti-quion pair in 

the pion circumference.  

 Similar to the proton model, we shall further assume that: 
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where the real quion radius is (rq = roπ(2/π)), and the pearl radius rl is thus: 
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This implies that a pearl is dimensionally 24 times smaller than the quion, and that 

there were 24 original pearl-seed particles which subsequently condensed into 2 equal 

pearls of mass ml to minimise action /energy, analogous to the 3 pearls in a proton’s 

trineon. It is thought probable that a pearl consists of 24 gluon-loops, like a proton 

pearl, but their constituent grains and mites are undefined. 
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 The quion charge e was originally divided between the 24 pearl-seeds, thus: 
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2.3 Charged pions 

A charged pion is produced by adding a heavy-electron or positron to orbit the 

central quion /anti-quion pair.  This increases the total mass, as was found for the 

neutron in Paper 1, viz: 

 he
2o mm9894.8c/MeV0005.05936.4 ==±=π−π±  (2.12) 

We shall assume that the mass increase is due solely to the orbiting heavy-electron (or 

positron), with its compressed dimensions.  Thus, the classical radius of this heavy-

electron is to be equal to the orbit size: 

 fm31347.0cm/er 2
h

2
h == .     (2.13) 

At first sight this result appears arbitrary and does not explain why an electron should 

attach itself to the hadronic core at all.  However, by referring to the neutron analysis, 

a proper physical explanation can be derived. The πo radius is given above 

as )fm0213365.0cm/e2r( 2
o

2
o == ππ , consequently )r692.14r( oh π= . Then this ratio 

of radii must govern a special relationship because the neutral πo and heavy-electron 

cooperate to produce a more stable charged pion,.  Consequently, it is proposed that 

spiralling electromagnetic feeler guidewaves are emitted by the charged quion and 

anti-quion to communicate attractively and continuously with the heavy-electron (or 

positron).  An action equation for these guidewaves will be based upon the following 

formula: 

 ( )ππ≈=π /e692.14ln)r/rln( noh    .    (2.14) 

This may be differentiated and reduced to an electromagnetic action integral upon 
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where δ may be around h΄/h, as used in Section 2.1. On the left is potential energy 

action for the feeler guidewave spiralling out and back from the quion and anti-quion, 
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with (z = ct = 2πr) and including a contribution from the gluon energy, through factor 

(π/en).  On the right is kinetic energy action for the element of pion core material 

which constitutes the guidewave energy.  

 Finally, the manner in which the free electron (or positron) is compressed onto 

the πo core is interesting.  Let the free electron spin-loop be first compressed down to 

electron core radius roe , then further to (rhe = roe /2.843), as was found for the neutron 

(see Paper 1).  This is followed by compression by factor (rhe /rh = 3.1619) to get to 

the final radius rh .  Then (ln(rhe /rh) ≈ π/en) may be reduced to an action integral by 

differentiation and applying Eq.(2.13): 
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On the left is action  due to potential energy  of the  collapsing  electron  charge loop 

(z = 2πr), rotating at velocity c.  The right side represents action of kinetic energy 

around the loop for a second harmonic material helix. 

 

2.4 Pion mean lifetimes 

It has been shown previously that the lifetime of a neutron or muon may be 

related to its internal period, by way of an action integral.  Similarly, the pion 

lifetimes appear to be definite functions of internal periods, as follows: 

 

(a) Let the πo lifetime ( oπτ  = 8.4 + .06 ×  10-17s) represent a number qNπ of 

quion periods, (2πrq /c' = 1.81x10-25s): 

 ( ) 8
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Then ( 2
o 2Nln π≈π ) will be taken to indicate that there is an action integral which 

will describe the pion structure.  Thus, after differentiating and multiplying through 

by (e2/c = mπocroπ /2 = 2mqc'rq /2), we get: 
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On the left, pearl charge is (e/2) and the integral represents classical potential energy 

action required to create a pearl travelling around a quion loop, by assembly of charge 

from the guidewave coherence distance Nπo(2πrq). In reality, the creation may be a 
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faster strong force process so Eq.(2.18) would represent theoretical dissipation of a 

pearl. However, the classical viewpoint allows visualisation and ensures conservation 

of energy and action. Distance (z' = c't) employs velocity [c' = c(π/2)]. The right side 

represents kinetic energy action of a pearl as it travels at velocity c' over one quion 

revolution 2πrq. Only mass (mℓ /2) is involved because half of the pearl mass is in the 

external field which does not rotate. If Eq.(2.18) were multiplied by (δ = h'/h) as in 

Eq.(2.15) then it would represent just the associated guidewave creation mechanism. 

 

 (b) The π+ lifetime ( +πτ  = 2.6033 ×  10-8 s) may also represent a number of quion 

periods, 

 ( ) 17
q 10437.1'c/r2/)(N ×=π= +π+π τ    .   (2.19) 

Thus (ln +πN  ≈ 4π2) may be developed into an action integral similar to Eq.(2.18), 

but with double the action on the right, which is now expressed in terms of the quion 

kinetic energy action: 
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However, the extended π+ lifetime relative to πo should probably be attributed to the 

heavy-positron orbit period (2πrh /c), in some manner like the following.  Let: 

 ( ) 15
hP 10963.3c/r2/)(N ×=π= +πτ    ;   (2.21a) 

then, 

  )24/137(2)Nln( P π≈    .     (2.21b) 

Upon differentiating and multiplying through by (e2/c = mπocroπ /2), this expression 

could represent an action integral, such as: 
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On the left is potential energy action required to establish one of the 137 pearls (see 

Paper 2) within the orbiting heavy positron core, operating over guidewave coherence 

distance NP(2πrh) at velocity c, in time +πτ . On the right side is a quantity of kinetic 

energy action due to one of the 24 pearl-seeds per quion over half a pion period.  This 

expression appears to relate the establishment of the orbiting positron's internal 
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mechanism to the pion's existing core mechanism, through some spiralling feeler 

guidewave link. It is this physical linkage, plus that described in Eq.(2.15), which 

could then govern the long decay lifetime until guidewave coherence is broken by 

random peaks in the internal quantum fluctuations. 

 

3 Various light unflavoured mesons 

 Design structures for a few light mesons will now be outlined, using concepts 

developed for models of the pion, proton and neutron. The decay products can retain 

some features from their parent and are simpler in design, as would be expected from 

a self-controlled relaxation process. 

 

3.1  Some J = 0 mesons 

3.1a   Eta-meson:   ηηηη(548):  m = 547.853MeV/c2, IG(JPC) = 0+(0−−−− +). 

 The lowest η-meson has the mass of around 4 pions, and is thought to take the 

basic design of a pion, see Figure 3.1a. Here the positive quion consists of 2 pearls of 

approximately pionic mass each; likewise for the negative anti-quion. Analogous to 

Eqs.(2.7)(2.8), we have: 

   MeV/c 0.12  547.853   2m m 2
q ±==η ,   (3.1.1a) 

and approximate quion mass, 

 
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where (mµ' = 4mµ /3), which will be called a muonet like a miniaturised muon, as it 

will be used frequently later. This reveals an overall binding mass decrement due to 

an attractive field inside the meson. Particle core radius is given by: 

  fm10257.5)cm/e(2r 322
o

−
ηη ×==  ,   (3.1.2a) 

and quion radius is, 

  )/2(rr oq π= η   .      (3.1.2b) 

 Apparently, there were 37 original pearl-seed particles, and the pearl radius is 

37.7 times less than the real quion radius (rq): 

  7.37/rr q=l .       (3.1.3) 
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Although each pearl in a quion has roughly the mass of a pion, it is miniaturised and 

cannot have identical design. The original 37 pearl-seeds in a quion are proposed to 

have condensed into 2 pearls comprising 37 gluon-loops, each of mass mq /(2x37.7).  

 

 

 

 

 

 

 

 

 

 

 If the lifetime of an η-meson )s10063.5/( 19−
η ×=Γ=τ h  is related to its 

core period )s1002.11c/r2( 26
o

−
η ×=π , then: 

  ,1059.4)c/r2/(N 6
o ×=π= ηηη τ     (3.1.4a) 

and, 

  ( ) )2/(34.15Nln 2 ππ==η    .     (3.1.4b) 

After differentiation, this with Eqs.(3.1.2a), can be reduced to an integral representing 

the action of creation (or dissipation): 
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On the left is the amount of potential energy action required to create (or dissipate) a 

quion travelling around the spin-loop, by assembly of charge from the guidewave 

coherence distance Nη(2πroη). Distance (z' = c't) may describe a spiral, and (c'τη) 

represent a guidewave coherence length. The integral on the right is a quantity of 

kinetic action for a quion as it travels at velocity c over one revolution (2πroη). 

Coefficient (π/2) must be for weighting. 

 An η-meson may emit an attractive nuclear-type of field similar to the pion. 

The corresponding hard-core metric tensor component is like Eq (2.5), wherein roπ is 
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replaced by roη. Similarly in Eq (2.6), mπo is replaced by mη and aχπ by 

) c)(  (a 1/2hηχη χ=  for (χη ≈ (1+0.5/137)/137) derived from Eq.(2.4a) after 

replacements. Overall empirical potential energy (aχηVhc) as a function of radius is 

illustrated in Figure 3.1b. It is 4 times deeper in the short range, than the pion 

potential of Figure 2.2. For ηN interactions, the coupling constant will be:  

  065.0)137/9()( 2/1
NN ≈≈χχ=χ ηη    .    (3.1.6) 
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                 Fig.(3.1b) Hadronic potential energy function for η(548). 

 

3.1b   ηηηη'(958):  m = 957.78MeV/c2, IG(JPC) = 0+(0−−−− +) 

 This eta-meson has a mass of around 7 pions and decays predominantly into 

η(548) plus π+π- or πoπo, which implies that it has a similar but more elaborate design 

than η(548), see Figure 3.1c. In this case, the quions and anti-quion have 3 pearls 

each, like a trineon in a proton. However, there is a further pearl at the centre with 

mass that is less than the quion pearls, estimated as follows.  
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Analogous to Eq.(3.1.1b), let the quion mass be given by: 

 2/
q c/MeV140922.1373

7.37
1

1m3m ×=














 −≈ µ   ,   (3.1.7) 

Factor 37.7 in the denominator means there were originally 37 pearl-seeds, and these 

condensed into 3 pearls, each comprising 37 gluon-loops. Pearl radius is 37.7 times 

less than quion radius. Now let the central pearl mass be less than a quion pearl mass, 

in view of its central bound position: 

  2/
c c/MeV007913.135

24
1

1mm =














 −≈ µl    .  (3.1.8) 

The total meson mass is therefore approximately: 

  2
cq c/MeV85.957mm2m =+≈η′ l    .   (3.1.9) 

Given that the quion's pearls consist of matter, and the anti-quion's pearls of anti-

matter, it appears that the central pearl must resemble a pion with its quion and anti-

quion components. 

 Particle core radius roη'  is determined by the quion masses without the central 

pearl: 

  fm10505.3)cm2/e(2r 32
q

2
o

−
η′ ×==   ,   (3.1.10a) 

and the quion radius is, 

  )/2(rr oq π= η′   .      (3.1.10b) 

  Lifetime is given by )s1026.3/( 21−
η′ ×=Γ=τ h , and may be related to the 

quion period )s1097.2'c/r2( 26
q

−×=π , thus: 

  ,10096.1)'c/r2/(N 5
q ×=πτ= η′η′     (3.1.11a) 
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and then, 

  ( ) ( ) 26/760.11Nln π≈=η′ .     (3.1.11b) 

After differentiation, this with Eqs.(3.1.10a,b), may be reduced to an integral for 

action of creation (or dissipation) of the quion/anti-quion, plus a central pearl: 

  ∫∫
ππη′

π

θ′









×






≈
′









2

0
q

q
)qr2(N

qr2

2
drc

2

m

6
7

dt
z
e

2
1

.   (3.1.12) 

On the left is potential energy action required to create a quion, rotating at velocity c' . 

The guidewave coherence distance (z' = c't) may describe a spiral. On the right, the 

integral covers the kinetic action for a quion (3 pearls) rotating at velocity c', plus the 

action of half the central-pearl is included through coefficient (7/6). 

 

3.1c   a0(980): m = 980 MeV/c2, IG(JPC) = 1−(0++). 

 The a0(980) meson has zero spin and mass equal to 8 pions approximately. 

Since the dominant decay mode is ηπ, it is proposed to have the basic form of η(548), 

but now with binary pearls, see Figure 3.1d. This produces very strong binding energy 

within the quion which has mass given by: 

  














 −≈= µ 24
)2/3(

21m4
2

c/MeV980
m /

2

q    .   (3.1.13a) 

 

 

 

 

 

 

 

 

 

 

Factor (3/2)/24 signifies binding energy, and (1/24) could be a preferred pearl size 

relative to a quion. During creation there were probably 24 pearl-seeds, which 

condensed into the two pearls per quion. If the pearls rotate parallel to their quion 

rotation, it could increase the mass over the f0(980) with its anti-parallel rotation, say. 
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This would be one way of distinguishing the a0(980) from f0(980), as appears 

necessary according to Scadron et al. (2003), Janssen et al. (1994), Baru et al. (2003, 

2008), Wang & Yang (2005).  

 Core radius of the ao(980) is given by: 

  )cm/e(2r 2
a

2
oa =   ,      (3.1.13b) 

and the quion radius is, 

  )/2(rr oaq π=    .      (3.1.13c) 

 Lifetime )s108.8/( 24
a

−×=Γ=τ h appears to be related to the core period 

(2πroa /c = 6.13 × 10−26s) rather than the quion period: 

  143)c/r2/(N oaaa =πτ=   ,     (3.1.14a) 

and then, 

  ( ) 2/955.4Nln 2
a π≈=     .     (3.1.14b) 

After differentiation, this with Eq.(3.1.13b) may be reduced to an action equation, 

similar in part to Eq.(3.1.5): 

  
2

d
cr

2

m
dt

z
e

2
1

oa

2

0

q
)oar2(aN

oar2

2 θ










=

′








∫∫
ππ

π

   .   (3.1.15) 

On the left is potential energy action required to create (or dissipate) a quion, where 

distance (z' = c't) may describe a spiral. On the right, the integral covers the kinetic 

action for a quion, travelling at velocity c around half the core circumference (πroa). 

 

3.1d   fo(980): m = 980 MeV/c2, IG(JPC) = 0+(0++). 

 The f0(980) meson probably has structure very similar to a0(980), but with the 

pearls spinning anti-parallel to their quion rotation, to reduce the overall mass below 

a0(980). The dominant decay (ππ) would exclude (η) because of this anti-parallel spin.  

 

3.2  Some mesons with ( J = 1 ) 

3.2a   Rho-meson ρρρρ(770): m = 775.49 MeV/c2, IG(JPC) = 1+(1− −) 

 The ρ(770) meson is distinctly different from the π and η-mesons because of 

its spin being J = h1  rather than zero. If, like other particles, only half its mass is 

contained in the spin-loop and half is field energy which does not rotate, then: 
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  h== ρρ cr)2/m(J    .       (3.2.1) 

Spin-loop radius rρ is therefore: 

  )]cm/e(2[137)cm/(2r 22
ρρρ == h    ,   (3.2.2) 

which is 137 times the classical/theoretical radius for a quion/anti-quion pair in 

rotation. The mass is around that of 6 pions and is thought to take the design of 3 

pearls in the quion and 3 in the anti-quion, as shown in Figure 3.2a. Therefore: 

  






 −≈
±

= π 24
1

1m3
2

c/MeV34.049.775
m o

2

q    ,  (3.2.3) 

where omπ  is the ''pionet'' mass like a miniaturised pion, rather than the muonet mass 

used previously in Eq.(3.1.1b) etc. As found for the pion pearls in Eq.(2.10), these 

pearls are smaller than the quion by 24 times. However, like trineons in a proton, the 

quions are now very much smaller than the spin-loop:  

  )/2(137/rrq π= ρ    .      (3.2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The electromagnetic lifetime given by )s1035.9/( 20
eee

−
ρ ×=Γ=τ h and the 

spin period (2πrρ /c = 1.0666 × 10-23s) may be related by: 

  3
ee 1077.8)c/r2/(N ×=πτ= ρρρ   ,    (3.2.5a) 

and then, 

  ( ) )24/137)(2/(079.9Nln e π≈=ρ   .    (3.2.5b) 
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This may be reduced to an action integral by differentiating and introducing 

Eq.(3.2.2): 

  
2

d
cr

2

m

2
1

24
1

dt
z

e
2
1 2

0

q
)r2(eN

r2

2 θ

























≈







ρ

πρπρ

ρπ
∫∫    .  (3.2.6) 

On the left is the potential energy action required to create (or dissipate) a quion; 

where (z = ct) describes a spiral over a guidewave coherence length. The integral on 

the right side represents kinetic energy action of the quion travelling around half the 

spin-loop. Coefficient (1/24) means that the quion originally comprised 24 pearl-

seeds, but the action of only one is involved here. These 24 pearl-seeds condensed 

into 3 pearls, each containing 24 grains of reduced mass.  

         The full width   (Γρ = 149.4 ± 1.0 MeV) implies a strong lifetime (τρ = 

4.406×10-24s), which is less than the spin period given above and may be related to 

the period of the rotating quion (2πrq /c' = 7.783 x 10-26s): 

  6.56)c/r2/(N qq =′πτ= ρρ    ,    (3.2.7a) 

and then, 

  ( ) 2
q 41.0036.4Nln π==ρ    .     (3.2.7b) 

Upon differentiating and applying Eqs.(3.2.2), (3.2.4), this reduces to an interesting 

action integral: 

  
3

d
rc

2

m

2
1

dt
z
e

2
1

q

2

0

q
)qr2(qN

qr2

2 θ′















≈
′









∫∫
ππρ

π

   .   (3.2.8) 

On the left is potential energy action required to create (or dissipate) a quion; where 

(z' = c't) over the guidewave coherence length. The integral on the right side 

represents kinetic energy action of a spinning quion over one third period (2πrq /3). 

  

3.2b   Omega-meson:   ωωωω(782): m = 782.65 MeV/c2, IG(JPC) = 0−(1− −) 

 The ω(782) meson design is similar to ρ(770), see Figure 3.2b, but with a 

spin-loop radius slightly less: 

  )]cm/e(2[137)cm/(2r 22
ωωω == h    ,   (3.2.9) 

and a corresponding quion radius, 

  )/2(137/rrq π= ω    .      (3.2.10) 
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The mass is again around that of 6 pionets, although the binding energy within the 

quions is a little less: 

  






 −






 −≈
±

= π 137
1

1
7.37

1
1m3

2
c/MeV12.065.782

m o

2

q . (3.2.11) 

 

 

       

 

 

 

 

 

 

 

 

  

   

 Electromagnetic lifetime )s1010.1/( 18
eee

−
ω ×=Γ=τ h  appears to be related 

to the spin period (2πrω /c = 1.056 × 10-23s) by: 

  5
ee 10041.1)c/r2/(N ×=πτ= ωωω   ;   (3.2.12a) 

and then, 

  ( ) )7.37/137(55.11Nln e π≈=ω   .    (3.2.12b) 

By differentiating and introducing Eq.(3.2.9), this may be reduced to an action 

integral: 

  
2

d
cr

2

m

7.37
1

dt
(N

z
e

2
1 2

0

q
)r2e

r2

2 θ

















≈







ω

πωπω

ωπ
∫∫   .  (3.2.13) 

On the left is potential energy  action  required to create (or dissipate) a quion; where 

(z = ct) could describe a spiral over the guidewave coherence length. The integral on 

the right side represents kinetic energy action of the quion as it travels around half the 

spin-loop. Factor 37.7 in the denominator means there were originally 37 pearl-seeds 

and only one is being considered. These 37 pearl-seeds condensed into 3 pearls, each 

containing 37 grains of reduced mass. 
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 Full width (Γω = 8.49 ± 0.08 MeV) implies a strong lifetime (τω = 7.75 × 

10−23s), which may be related to one third of a quion's rotation period (2πrq/3c' = 2.57 

x 10-26s): 

  3016)c3/r2/(N q/q 3 =′πτ= ωω    .    (3.2.14a) 

Then, 

  ( ) 2
3/q 81.001.8Nln π==ω    ,    (3.2.14b) 

and upon differentiating and introducing Eqs.(3.2.9) and (3.2.10), this reduces to an 

interesting action integral: 

  
3

d
rc

2

m
dt

z
e

2
1

q

2

0

q
)3/qr2(3/qN

)3/qr2(

2 θ′








≈

′








∫∫
ππω

π

   .   (3.2.15) 

On the left is potential energy action required to create (or dissipate) a quion; where 

(z' = c't) over the guidewave coherence length The integral on the right side represents 

kinetic energy action of a spinning quion over one third of a revolution (2πrq /3). 

Equation (3.2.14a) implies that a third harmonic guidewave is operating around the 

quion. 

 

3.2c   Phi-meson φφφφ(1020):  m = 1019.455MeV/c2, IG(JPC) = 0−(1− −). 

 The φ(1020) meson has spin h1 given by: 

  h== φφ cr)2/m(J  ,       (3.2.16) 

where spin-loop radius rφ is:  

  )]cm/e(2[137r 22
φφ =  ,       (3.2.17) 

and quion radius, 

  )/2(137/rrq π= φ    .       (3.2.18) 

Mass is approximately that of 8 pionets and is to take the form of 4 pearls in the quion 

and 4 in the antiquion, as shown in Figure 3.2c. During decay these usually convert to 

separate kaons, although a rho + pi is also possible. Quion mass is given by:  

  






 −≈= π 7.37
)2/3)(3/4(

1m4
2

c/MeV455.1019
m o

2

q     . (3.2.19) 

The constituent pearls are smaller than the quion by 37.7 times. Factor (4/3) means 

that three pearls are at the vertices of an equilateral triangle, and the fourth at the 

centre, see Simo (1978).  Again, the quions are 137(2/π) times smaller than the spin-
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loop, like trineons in a proton. This ensures that a quion rotates 137 times at velocity 

c' during one spin-loop orbit, which is a stable arrangement. 

 

 

 

 

 

 

 

 

 

 

 

 

 The electromagnetic lifetime given by )s10183.5/( 19
eee

−
φ ×=Γ=τ h and the 

spin period (2πrφ /c = 8.114 × 10−24s) may be related by:  

  4
e 10388.6)c/r2/(N ×=πτ= φφφ   ,    (3.2.20a) 

and, 

  )7.37/137(065.11)Nln( e π≈=φ   .    (3.2.20b) 

This can be differentiated and, with Eq.(3.2.17),  reduced to an action integral similar 

to Eq.(3.2.13): 
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cr
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)r2(eN
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≈



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
φ

πφπφ

φπ
∫∫    .  (3.2.21) 

On the left is potential energy action required to create a quion, where (z = ct) along a 

spiral over the guidewave coherence length. The integral on the right represents 

kinetic energy action of the quion as it travels around half the spin-loop. Denominator 

37.7 means that only one of the 37 pearl-seeds is being considered. These 37 pearl-

seeds condensed into 3 pearls, each containing 37 less-massive grains. 

 The full width (Γφ = 4.26 ± 0.04 MeV) implies a strong lifetime of (τφ = 1.55 

×10-22s). This lifetime may be related to the period of the rotating quion (2πrq /c' = 

5.921x10-26s): 
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  2618)c/r2/(N q =′πτ= φφ    ,    (3.2.22a) 

and then, 

  280.087.7)Nln( π==φ    .     (3.2.22b) 

Upon differentiating and introducing Eqs.(3.2.17) and (3.2.18), this reduces to an 

action integral: 

  
3

d
rc

2

m
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z
e

2
1

q

2
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q
)qr2(N

qr2

2 θ′
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
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



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
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ππφ
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   .   (3.2.23) 

On the left is potential energy action expended to create (or dissipate) a quion; where 

z' = c't over the guidewave coherence length. The integral on the right side represents 

kinetic energy action of a spinning quion over one third revolution (2πrq /3).  

 

4 General design of light unflavoured mesons 

 In the previous section, the very lightest mesons have been described in some 

detail, but more massive mesons of each species have also been studied in order to 

produce similar viable structures. Choice of design has been based upon the belief that 

the decay process is a relaxation effect so that the products should be simpler, but 

retain some of the parent features. Those decays accompanied by low levels of kinetic 

energy are most likely to satisfy this criterion. Pearls are not created during a decay 

process, so the number of pearls will either stay the same or decrease by annihilation. 

It is easy for the pearl type to remain unchanged or to lose energy by changing from 

muonet (mµ' = 140.9MeV/c2) to pionet (mπο = 135MeV/c2); but less easy for the 

reverse process, except when enough free kinetic energy is accessible. These rules 

restrict  the use of  mµ' to mesons  with (C = +1, (π η a f)), and mπο  to  mesons  with 

(C = −1, (ρ ω φ b h)). 

 The mesons occupy 8 categories and have been listed with regard to their 

properties in Table 4.1. They have 5 defining characteristics, IGJPC. Each class has a 

particular parity P with a free choice of J value, but I, G and C are related through: 

  I21CG −=   ,       (4.1) 

which limits the number of classes to 8 only. The meson traditional nomenclature is: 

(a) Pseudoscalar (JP = 0−). (b) Scalar (JP = 0+). (c) Pseudovector (JP = 1+). (d) Vector 

(JP = 1−). 
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 Table 4.1  Classification of the light unflavoured mesons. 
 
       
       JPC     

         J − +− +− +− + 
0− − − − +   1− − − − +    2− − − − + 

             J + ++ ++ ++ + 
0 ++    1++     2++     4++ 

     J − −− −− −− − 
1− −− −− −− −     3− −− −− −− − 

     J + −+ −+ −+ − 
    1+ −−−− 

     
I = 1          G = −1 = −1 = −1 = −1          G = −−−−1   G = +1  G = +1 
 πο a0(980) ρ(770) b1(1235) 
 π(1300)        a1(1260) ρ(1450)  
        π1(1400)               a2(1320)         ρ3(1690)  
        π1(1600) a0(1450) ρ(1700)  
                π2(1670)                     a4(2040)   
 π(1800)    
                π2(1880)    
     
I = 0          G = +1      G = +1    G = −−−−1  G = −−−−1 
 η(548) f0(980) ω(782) h1(1170) 
 η'(958)                f2(1270) φ(1020)   
 η(1295)         f1(1285) ω(1420)  
 η(1405) f0(1370) ω(1650)  
 η(1475)         f1(1420)        ω3(1670)  
               η2(1645) f0(1500) φ(1680)  
                     f2'(1525)         φ3(1850)  
  f0(1710)   
                 f2(1950)   
                 f2(2010)   
                       f4(2050)   
                 f2(2300)   
                 f2(2340)   
 

 Scalar and pseudoscalar mesons with zero angular momentum appear to be 

tight orbiting structures, consisting of discrete pearls of muonet-mass around 

140.9MeV/c2, see Table 4.2. The quion and anti-quion rotate counter to their orbital 

motion, in order to cancel angular momentum overall, as in Eq.(2.1) and Section 3.1. 

All vector and pseudo-vector mesons (J ≥ 1) appear to be open structures, to generate 

the spin, following Eq.(3.2.1). Some of these mesons also consist of mµ'- pearls, as 

listed in Table 4.3. The others consist of pearls of pionet-mass (134.9776MeV/c2), and 

decay into simpler pionic structures; see Table 4.4. 

  Mesons f1(1285), η(1295), η(1405), η(1475), and π(1800) can decay into 

ao(980), so they have the same unusual twin-pearl structure, based on the inheritance 

principle.  

 The mass decrements indicate the degree of binding overall and in some cases 

the size of the pearls relative to their quion size, as in Section 2.2. 
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Table 4.2  Internal designs for scalar and pseudoscalar mesons, comprising pearls of 

muonet-mass (mµ' = 140.877823MeV/c2), approximately. A mass analysis formula is 

given, plus IG(JPC), full width Γ, and the main decay products Dy(…). 

 

 

 
η(548) / 547.853 ± 0.024 MeV 
0+(0− +), Γ = 1.29keV, Dy(3π,2γ ) 

MeV56.548

7.37
1

1m4m /

====


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



 −−−−≈≈≈≈ µµµµ  

 

 
η'(958) / 957.78 ± 0.06 MeV 
0+(0− +), Γ = 0.202 MeV, Dy(π,η,ρ,ω ). 

MeV85.957

24
1

1m
7.37

1
1m6m //
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a0(980) / 980 ± 20 MeV 
1−(0+ +), Γ = 50-100 MeV, Dy(ηπ). 
 
f0(980) / 980 ± 10 MeV 
0+(0+ +), Γ = 40-100 MeV, Dy(ππ). 

(((( ))))
MeV1.986

24
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1m8m / ====
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η(1295) / 1294 ± 4 MeV 
0+(0− +), Γ = 55 MeV, Dy(a0(980),η ). 

(((( ))))
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1m2
24
2

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
π(1300) / 1300 ± 100 MeV 
1−(0− +), Γ = 200-600 MeV, Dy(ρπ ). 

(((( ))))(((( ))))

MeV1.1303

24
1

1m2
24

2/33/4
1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

10µ' 

10µ' 

8µ' 

7µ' 

4µ' 
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f0(1370) / 1350 ± 150 MeV 
0+(0+ +), Γ = 200-500 MeV, Dy(ππ,ηη,KKc). 

(((( )))) (((( ))))

MeV3.1351
24

2/3
1m2

7.37
3/4

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 

 
η(1405) / 1409.8 ± 2.5 MeV 
0+(0− +), Γ = 51 MeV, Dy(η,KKc,a0(980)). 

(((( ))))

MeV9.1402

24
2/32

1m3
24
2

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
a0(1450) / 1474 ± 19 MeV 
1−(0+ +), Γ = 265MeV, Dy(η'(958),KKc) 

(((( ))))

MeV6.1474
24
2

1m3
7.37
3/4

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
η(1475) / 1476 ± 4 M eV 
0+(0− +), Γ = 87 MeV, Dy(KKcπ,a0(980)) 

MeV2.1479
24

)2/3(2
1m12m /

====








 −−−−≈≈≈≈ µµµµ  

 

 
f0(1500) / 1505 ± 6 MeV 
0+(0+ +), Γ = 109 MeV, 
Dy(ππ,KKc,ηη,ηη'(958)) 

(((( ))))(((( ))))

MeV6.1508
24

)2/3(2
1m2

24
2/33/5

1m10m

/

/

====






 −−−−++++

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 

 
f0(1710) / 1720 ± 6 MeV  
0+(0+ +), Γ = 140 MeV, Dy(KKc,ηη,ωω) 

MeV0.1716

24
1

1m3
24

3/5
1m10m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

12µ' 

13µ' 

12µ' 

11µ' 
 

11µ' 

10µ' 
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π(1800) / 1816 ± 14 MeV 
1−(0− +), Γ = 207 MeV, Dy(a0(980),ηη'(958)) 

MeV7.1819

24
1

1m2
24
2

1m12m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 
 
 
Table 4.3  Internal designs for vector and pseudovector mesons, comprising pearls of 
muonet-mass mµ' approximately.  
 

 

 
a1(1260) / 1230 ± 40 MeV 
1−(1+ +), Γ = 250-600 MeV, Dy(ρπ). 

MeV3.1234

7.37
1

1m3
7.37

1
1m6m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ

 

 

 
f2(1270) / 1275.1 ± 1.2 MeV 
 0+(2+ +), Γ = 185 MeV, Dy(ππ,KKc) 

(((( ))))

(((( ))))
MeV6.1279

24
2/32

1m2

24
2/3)3/4(

1m8m

/

/

====






 −−−−

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 

 
f1(1285) / 1281.8± 0.6 MeV 
0+(1+ +), Γ = 24.3 MeV, Dy(ao(980),KKc) 

MeV6.1279

24
)2/3(2

1m2
24
2

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 

 
a2(1320) / 1318.3 ± 0.6 MeV 
  1−(2+ +), Γ = 107 MeV, Dy(ηπ,ωππ,KKc). 

(((( ))))

MeV7.1322

24
2

1m2
24

3/4
1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

10µ' 

10µ' 

10µ' 

9µ' 

14µ' 
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π1(1400) / 1354 ± 25 MeV 
1−(1− +), Γ = 313 MeV, Dy(ηπ). 

(((( ))))

MeV2.1357

24
1

1m2
7.37
3/4

1m8m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 

 
f1(1420) / 1426.4 ± 0.9 MeV 
0+(1+ +), Γ = 54.9 MeV, 
Dy(KKc*(892),φ)

(((( ))))

MeV3.1429
24

)2/3(
1m3

24
)2/3(3/4

1m8m

/

/

====






 −−−−

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 
f2

/(1525) / 1525 ± 5 MeV 
0+(2+ +), Γ = 73 MeV, Dy(KKc,ηη) 

(((( ))))(((( ))))

MeV2.1526
24

)2/3(
1m2

24
2/33/5

1m10m

/

/

====






 −−−−

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 
π1(1600) / 1662 ± 15 MeV 
1−(1− +), Γ = 234 MeV, Dy(η/(958)) 

(((( ))))(((( ))))

(((( ))))
MeV2.1658

24
2/3

1m3

24
2/33/5

1m10m

/

/

====






 −−−−++++

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 

 
η2(1645) / 1617 ± 5 MeV 
0+(2− +), Γ = 181 MeV, Dy(a2(1320),KKc,ηπ) 

(((( ))))

MeV8.1620

7.37
1

1m2
7.37
3/5

1m10m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
π2(1670) / 1672.4 ± 3.2 MeV  
1−(2− +), Γ = 259 MeV, Dy(f2(1270),ρ,KKc*) 

MeV8.1678

24
2

1m
24

)3/6(
1m12m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

12µ' 

 13µ' 
 

13µ' 

12µ' 

11µ' 
 

10µ' 
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f2(1950) / 1944 ± 12 MeV 
0+(2+ +), Γ = 472 MeV, Dy(K* Kc*(892),ηη) 

MeV9.1945

24
)2/3(

1m3
24

)3/6(
1m12m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
f2(2010) / 2011 ± 60 MeV 
0+(2+ +), Γ = 202 MeV, Dy(φφ,KKc) 

MeV6.2003

24
)3/4(2

1m16m /

====








 −−−−≈≈≈≈ µµµµ  

 
 

 

 
a4(2040) / 2001 ± 10 MeV 
1−(4+ +), Γ = 313 MeV, Dy(KKc,ρω,f2(1270)) 

MeV6.2003

24
)3/4(2

1m16m /

====








 −−−−≈≈≈≈ µµµµ  

 
 

 
f4(2050) / 2018 ± 11 MeV 
0+(4+ +), Γ = 237 MeV, Dy(ππ, KKc,ηη) 

(((( ))))

(((( ))))
MeV8.2022

7.37
3/4

1m4

24
)2/3(3/6

1m12m

/

/

====






 −−−−

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

 

 
f2(2300) / 2297 ± 28 MeV 
0+(2+ +), Γ = 149 MeV, Dy(φφ,KKc) 

MeV0.2278

7.37
1

1m2
24

)3/4(2
1m16m //

====








 −−−−++++






 −−−−≈≈≈≈ µµµµµµµµ  

 

 
f2(2340) / 2339 ± 60 MeV 
0+(2+ +), Γ = 319 MeV, Dy(φφ,ηη) 

MeV1.2341
24

)2/3(2
1m2

7.37
)3/4(2

1m16m

/

/

====






 −−−−++++

++++






 −−−−≈≈≈≈

µµµµ

µµµµ

 

16µ' 

15µ' 

18µ' 
 

16µ' 
 

16µ' 
 

16µ' 
 

18µ' 
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Table 4.4   Internal designs for vector and pseudovector mesons, comprising pearls of 
pionet-mass (mπο = 134.9776MeV), approximately.  
 

 

 
ρ(770) / 775.49 ± 0.34 MeV 
1+(1− −), Γ = 149.4 MeV, Dy(ππ). 

MeV1.776
24
1

1m6m o

====








 −−−−≈≈≈≈ ππππ  

 

 
ω(782) / 782.65 ± 0.12 MeV 
0−(1− −), Γ = 8.49 MeV, Dy(πππ). 

MeV4.788
7.37

1
1m6m o

====








 −−−−≈≈≈≈ ππππ  

 

 
φ(1020) / 1019.455 ± 0.020 MeV 
0−(1− −), Γ = 4.26 MeV, Dy(KK,ρπ). 

(((( ))))(((( ))))

MeV5.1022
7.37

2/33/4
1m8m o

====








 −−−−≈≈≈≈ ππππ  

 

 
h1(1170) / 1170 ± 20 MeV 
0−(1+ −), Γ = 360 MeV, Dy(ρπ). 

MeV3.1170
7.37

1
1m3

24
1

1m6m oo

====








 −−−−++++






 −−−−≈≈≈≈ ππππππππ  

 

 
b1(1235) / 1229.5 ± 3.2 MeV 
1+(1+ −), Γ = 142 MeV, Dy(ω,KK,φ ). 

(((( ))))(((( ))))

MeV3.1237
24
2

1m2

24
2/33/4

1m8m

o

o

====






 −−−−++++

++++






 −−−−≈≈≈≈

ππππ

ππππ

 

9π 
 

6π 

10π 

8π 

6π 
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ω(1420) / (1400-1450) MeV 
0−(1− −), Γ = 180-250 MeV, Dy(b1(1235),ρ) 

(((( ))))

MeV7.1429
24
1

1m3
7.37
3/4

1m8m oo

====








 −−−−++++






 −−−−≈≈≈≈ ππππππππ  

 

 
ρ(1450) / 1465 ± 25 MeV 
1+(1− −), Γ = 400 MeV, Dy(ππ) 

(((( ))))(((( ))))
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24
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24
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1m10m
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o
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
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ππππ

ππππ

 

 

 
ω(1650) / 1670 ± 30 MeV 
0−(1− −), Γ = 315 MeV, Dy(ρπ,ωππ,ωη) 
ω3(1670) / 1667± 4 MeV 
0−(3− −), Γ = 168 MeV, Dy(ρ,ω) 

(((( ))))

MeV2.1678
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φ(1680) / 1680 ± 20 MeV 
0−(1− −), Γ =150 MeV, Dy(KK*(892)) 

(((( ))))

MeV3.1684
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1
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ρ3(1690) / 1688.8 ± 2.1 MeV 
1+(3− −), Γ =161 MeV, Dy(π,KK,ρ) 
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ρ(1700) / 1720 ± 20 MeV 
1+(1− −), Γ = 250 MeV, Dy(ρππ,ρρ,KKc) 

(((( ))))
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φ3(1850) / 1854 ± 7 MeV 
0−(3− −), Γ = 87 MeV, Dy(KK*(892)) 

(((( ))))

MeV9.1855
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1m3
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φ(2170) / 2175 ± 15 MeV 
0−(1− −), Γ = 61 MeV, Dy(KK,φ fo(980)) 

(((( ))))

MeV4.2178
24
1

1m2
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1m16m oo
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

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 Given all these meson designs, it is now possible to see how spin depends on 

mass to some extent but not predictably. Measured spin is accurately known and the 

number of pearls in each meson is known, but the binding energy varies greatly and 

causes uncertainty. Figure 4.1 shows J vs M for these meson structures, overlaid by 

lines of an average binding energy according to the expression: 

  )3nJ3(m
3
75.2

M / ++= µ   .     (4.2) 

Usually, the spin J falls below the main line (n = 0) and can increase with mass, but it 

shows no obvious relationship. 

 In order to eliminate the confusion caused by variable binding energy, Figure 

4.2 shows (J vs M) for theoretical meson structures with negligible binding energy, 

according to the expression: 

  )3nJ3(mM / ++= µ    .     (4.3) 

There now appears to be some order which may eventually be explicable. At the low 

mass end, several vacancies still remain even after adding 4 strange mesons to fill 

gaps. The ρ(770) stands out as unusual. 

 Missing meson resonances at (J = 0, n = 0, 2, 3, 6) correspond through 

Eq.(4.1) to reduced masses 387MeV, 646MeV(f0(600)), 775MeV(κ(800)), 1162MeV. 

These controversial states are currently supported by several investigators, for 

example, Parganlija et al (2009).  

 

15µ' 

18π 
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Fig.4.1   The actual relationship between spin and mass for light unflavoured 

mesons, with average binding energy lines overlaid according to Eq.(4.2). 

Factor n is given on the right ordinate. The solid points are for mesons in 

Tables 4.2, 4.3, and hollow points are for the mesons in Table 4.4. 

0

1

2

3

4

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
Mass, MeV

J,
 s

pi
n

0 3

6

9

n value

12

 
Fig.4.2   The theoretical relationship between spin and mass for light 

unflavoured mesons, assuming negligible binding energy between pearls of 

mass mµ' according to Eq.(4.3). Several mesons coincide in mass. Four strange 

mesons (Ж) have been added to fill vacancies but several positions remain 

vacant. 
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5. Strange mesons 

5.1 General features 

 When angular momentum is plotted against mass for strange mesons, it is 

apparent that a linear relationship exists, even though many points are vacant, see 

Figure 5.1.  A reasonable fit exists for the empirical formula: 

  ( )( ) ±π

π

+−+≈

++≈ ±

Ko

o

m24/11nJ3m

mm)3/nJ(875.2M KK  ,   (5.1) 

where n is an integer for the parallel lines as marked, and ( omπ = 134.9766MeV/c2), 

)MeV677.493m( K =± are the pionet and kaon masses.  This is like Eq.(4.1) and 

suggests that individual pionets are added to increment meson mass. The mean 

deviation of actual meson masses from Eq.(5.1) is 14MeV/c2, which is good 

compared with 32MeV/c2 for a theoretical random mass distribution.  
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Fig.(5.1)  A plot of strange meson spin against mass, according to Eq.(5.1)  

for the various values of ‘n’ given on the right ordinate. The number of    

pionets in each strange meson is marked. 
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 Equation (5.1) implies that a strange meson resonance can easily decay into a 

single long-lived kaon plus pieces, albeit its own mean lifetime is very short. 

Likewise, an unflavoured meson such as φ(1020) can produce a KK  pair when it has 

a quion and antiquion of sufficient mass. 

 Figure (5.2) represents our basic model for strange mesons, in which there are 

(4 + n) neutral pionets bound by gluons in the compact core of radius rOK . At charge 

radius r± there is a positron for K+ (matter) or an electron for K−−−− (antimatter). At the 

same radius there may also be a neutralising electron to produce a neutral kaon K0 

(matter), or neutralising positron to produce a neutral 0
LK  (antimatter). It is this 

neutralising electron which is emitted during semi-leptonic decay of the K0, and vice-

versa. These two neutral mesons are antiparticles and differ because the core pionets 

have right-handed helicity within the original K+ or left-handed helicity within the 

original K−, (just as a neutron differs from an anti-neutron). 

 

               

 

Fig.(5.2)  Basic model schematic design for strange mesons, showing 4 

pionets at the centre, orbited by a positron or electron, or both for a neutral 

meson. Pionets may also be added to the core to increase the value of n. Spin 

J is accomplished by adding pionets to the quion /antiquion pair in the spin-

loop. 
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 The core always has zero net spin, but overall meson spin may be produced by 

the quion /antiquion pair travelling in a larger spin-loop of radius rs at velocity c.  

During hadronic decay, this spin-loop material plus n core pionets may convert 

rapidly into free π, ρ, etc., eventually leaving the central kaon (2πo + 2πo) intact.  This 

spin-loop may only exist for less than one rotation period, although its creation must 

have been completed more rapidly. For example, K*(892) has a decay full width (Г = 

50.75 MeV) which corresponds to a lifetime of (τ = ħ/Γ = 1.3x10-23sec).  Its spin-loop 

period is given by (2πrs /c = 2.12x10-23sec), according to Eq.(5.4).  In the case of 

K4*(2045),  its lifetime  is only 0.33x10-23sec  and its  spin-loop  period  is also 2.12 x 

10-23sec.  Consequently, strange mesons with spin hardly come into existence before 

decaying. 

 The spin of a strange meson is always given by: 

 ss cr)2/M(J =h    ,      (5.2) 

where Ms is the quion+antiquion mass travelling at velocity c around the spin-loop at 

radius rs .  Given Figure (5.1), we will arbitrarily let the n pionets reside in the core, so 

that 3 pionets must be added to the spin-loop to increase J by unity, then: 

 om875.2JMS π×≈  ,      (5.3a) 

and Eq.(5.1) becomes: 

  







+







+≈ ±π KK mnm
3
875.2

MM oS    .   (5.3b) 

The spin-loop radius is independent of J at: 

 fm017.1
cm875.2

2
r

o
S =








≈

π

h
.    (5.4) 

For all values of J, pionets added to the spin-loop are bound by approximately the 

same energy decrement, since the coefficient 2.875 implies: 

 ( ) oo m24/113m875.2 ππ −=   .    (5.5) 

The mass decrement ( omπ /24) is due mainly to the quion's or antiquion's self-binding 

strong force, plus their mutual electromagnetic attraction.  
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5.2 Kaon mass structure 

 Kaons are denoted strange because of their long lifetime, which implies strong 

binding of the component parts. Kaon mass +Km  represents 4 strongly bound pionets 

through the formula: 

 o
2 m

24
2

14c/MeV677.493mK π






 −≈=+    ,   (5.6) 

where pionet mass is 134.9766MeV/c2.  Here, the negative term represents binding 

energy which keeps the pionets together by the strong force. The core radius r0K will 

be given the classical value for 4 pionets arranged as a quion/antiquion pair like the 

pion design: 

 fm10334.5)cm4/e(2r 32
o

2
OK

−
π ×=×=   .   (5.7a) 

Then, by analogy with the electron and proton, the K+
 charge radius is proposed to be: 

   r± = α-1r0K/2 = 0.3655fm,      (5.7b) 

where (α = 1/137.036) is the fine structure constant.  And a neutralising electronic 

charge can be impressed into this same orbit to yield a neutral kaon K0 of mass (mK0 = 

497.614MeV/c2). 

 Now we recall that for the neutron in Paper 1, the neutralising heavy-electron 

around the proton had a mass determined roughly by its radius: 

 )rc/(em he
22

he =′    .      (5.8a) 

Consequently, the mass of the neutralising electron here (at r±) might be simply: 

 94.3m71.7)rc/(em e
22 ===′ ±− MeV/c2  ,   (5.8b) 

which would account for the measured difference in mass between a neutral and 

charged kaon: 

 028.0937.3mm K0K ±=− ±  MeV/c2 .   (5.9) 

In addition, according to the neutron theory, the neutralising electron is also bound 

and stabilised by its own self-interaction guidewave binding energy; see Paper 1, 

Eq.(10.2.2). Therefore, the analogous expression for the binding energy here would 

produce a heavy-electron of energy: 

  MeV97.3cm773.7
)r2(

e
cm9cm 2

e

2
2

e
2 ==

π
−=

±
− . (5.10) 

This could take the form of 3 groups of 3 nominal electron masses; like 3 pearls in the 

3 trineons of a proton. 
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 The measured charge radius for the K+ is <r> = 0.560 ± 0.031fm, see PDG 

(2010).  This is an effective interaction size, to be compared with our real source size 

(r± = 0.3655fm).  Likewise, the effective/measured size of K0 is <r2> = -0.077 ± 

0.010fm2, which implies that the negative and positive charges together at r± interact 

differently with electrons in liquid hydrogen, so as to produce a net effective radius. 

 

5.3 Mean lifetime 

 The long lifetime of a kaon will be attributed to the surrounding charge, with 

due regard to its particular spin orientation. The basic K+ has a core structure (2πo + 

2πo) which has not been observed to exist by itself without its positron. Decay of a 

kaon occurs via the weak force, which is simply interpreted as repulsion due to direct 

natural jostling between constituent pionets in their tight orbits. 

 

K+.  The kaons K+ have a central core period of (2πrOK /c = 1.12x10-25secs), so the 

number of periods in its mean life (τ± = 1.2380x10-8secs) is: 

 171011.1)c/r2/(N K0K ×=π= ±τ  .   (5.11a) 

 This very large ratio is reminiscent of the pion Eq.(2.19), then: 

  217 4)1011.1ln( π≈×       (5.11b) 

is probably to do with guidewave action and coherence length.  For example, after 

differentiating this and multiplying through by (e2/c = 4mπocr0K /2 = 2mqc'rq /2), we 

get: 

  ∫ ∫
π

π

π

θ









≈











′








)r2(N

r2

2

0

q
2K0K

K0

K0 dcr
2

m
dt

z
)2/e(
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1

   .  (5.11c) 

On the left, pearl charge is (e/2) and the integral represents potential energy action 

required to create the pearl travelling around the core. The right side represents kinetic 

energy action of a quion as it travels at velocity c during one core revolution 2πr0K . 

 

0
LK . The extended lifetime of this kaon (τ0L = 5.116x10-8s) implies that the 

neutralising heavy-electron must interact constructively with the co-rotating core. 

This lifetime represents a number of periods for the heavy-electron at r± : 

  151068.6)c/r2/(N
L0L0K ×=π= ±τ .    (5.12a) 
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Again this ratio is interesting because of its interpretation in terms of a guidewave's 

coherence time and action, through the formula:  

  )12/137()Nln( L0K π≈   ,     (5.12b) 

which, after differentiating may be reduced with Eq.(5.7) to: 
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   .  (5.12c) 

This expression accounts for the long lifetime by coordinating action in the 

neutralising heavy-electron and the core mechanism. On the left, the integral is 

potential energy action required to create the electron with its spiralling 

electromagnetic guidewave, which communicates continuously with the core to 

stabilise it. Weighting coefficient (1/137) records that the electron core consists of 

137 pearls, (see Paper 2). The integral on the right is kinetic energy action for a quion 

running around the core, at radius rOK. Coefficient (1/24) confirms there were 24 

original pearl-seeds in each pionet. 

 

0
SK .   The greatly reduced lifetime of this kaon (τ0S = 0.8956x10-10s) implies that the 

neutralising heavy-electron with the native positron are not very successful at 

stabilising a counter-rotating core. However, the core by itself would not exist at all, 

so some stabilisation must be occurring. The lifetime may again represent a number of 

core periods (2πrOK /c = 1.12x10-25secs): 

  141001.8)c/r2/(N OKS0S0K ×=π= τ     (5.13a) 

This ratio may be interpreted in terms of guidewave action and coherence through the 

formula:  

  )/e(4)Nln( n
2

S0K ππ≈  ,    (5.13b) 

which after differentiating may be reduced to an expression like Eq.(5.11c): 
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On the left, pearl charge is (e/2) and the integral covers action required to create the 

pearl and stabilising guidewave travelling around a quion loop. Factor (π/en) implies 

the participation of gluons in the process.  The right side represents kinetic action of a 

quion as it travels at velocity c during one core revolution 2πr0K . This expression 
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coordinates the heavy-electron and core mechanisms, to produce some stability of the 

core for a short while. 

 The fact that 0
LK  and 0

SK  are produced in equal quantity will be attributed to 

random orientation of the core spin relative to the angular momentum of orbiting 

charge.  Energy difference of 3.491x10-12MeV between the states is then comparable 

with the hyperfine splitting of interstellar hydrogen (5.874x10-12 MeV).  The higher 

energy state 0
LK  is expected to be for parallel spins, which is evidently more stable.  

Regeneration of 0
SK  during interaction of 0

LK  with matter is understandable in terms 

of spin inversion.  Earlier, the extended lifetime of the 0
LK  relative to that of K± was 

proposed to be due to the stabilising effect of the neutralising charge on the co-

rotating core, through the spiralling guidewaves. This is analogous to the charged pion 

being more stable than the neutral pion. 

 According to observations, neutral kaons 0
LK  oscillate between the matter and 

anti-matter state while propagating. In quark theory, this has been explained (see 

Perkins, 2000), as being due to a second-order weak interaction which also causes 0
LK  

and 0
SK  particles to have the different masses mentioned above: 

 212 c/MeV10x491.3mmm KSKL
−=−=∆ ,   (5.14) 

and the oscillation period is (τ0 = h/∆mc2 = 1.18786x10-9 s).  Herein, the 0
LK  and 0

LK  

must have equal status and such oscillations could be attributed to a change in helicity 

of the core from right-handed for 0
LK  to left-handed for 0

LK , maybe due to prompting 

from the orbiting charges.  Figure (5.3) illustrates our model for the 4 possible 

particles. It is only anti-parallel spin of the core, not helicity, which causes the shorter 

lifetime for 0
SK  and 0

SK . 

 Clearly, all mean lifetimes must be determined by definite internal 

mechanisms and may actually be related. For example, the long lifetime of 0
LK  may 

be related to the above oscillation period through (τ0L/τ0 ≈ 137/π). And for some 

reason, two other lifetimes (K± and 0
SK ) are in the ratio (τ± /τ0S ≈ 137).  
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      Fig.(5.3)  Schematic diagram of the 0
LK  and O

SK  neutral kaons with their 

                     anti-kaons 0
LK and 0

SK . 
 

 

5.4 General designs 

 According to Figure 5.1 strange mesons consist of (4 + n) bound pionets in a 

central core, plus a quion /antiquion pair in the spin-loop, as drawn in Figure 5.2. 

Three pionets must be added to the spin-loop to increase J by unity. By considering 

the decay products and kinetic energy, it is possible to derive a design for each one. 

Thus the decay process is to be regarded as relaxation, in which component parts 

separate ergonomically, preserving some features, especially when the free energy is 

low. Table 5.1 illustrates some simple tentative designs for strange mesons, and the 

formulae satisfy their mass distribution fairly well. The grey circles are pearls of pionet 

mass, and the small ovals have half the pionet mass.  
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     Table 5.1  Tentative design of strange mesons, based upon ergonomic agreement with their 

decay products. The pearls shown as small ovals have half the pionet mass, only. 

 
K*(892) / 891.66 ± 0.26 MeV 
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½(1−), Γ = 232 MeV, Dy(K*(892)π,Kρ) 
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K*(1680) / 1717 ± 27 MeV 
½(1−), Γ = 322 MeV, Dy(Kπ,Kρ,K*(892)) 
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K2(1820) / 1816 ± 13 MeV 
½(2−), Γ = 276MeV, Dy(K2*(1430),f2(1270)) 
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 Meson K0*(1430) apparently has no net spin-loop yet accommodates 11 

pionets. It has a very short lifetime (τ = 0.22x10-23 s) and could consist of a quion + 

antiquion pair, which closely orbit the inner core of 7 pionets in counter-rotation. 
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5.5   Charge neutralisation of K*(892) and K2*(1430) 

 These two strange mesons have been measured in their neutral and charged 

states, well enough to analyze like the kaon: 

2
e

o cm38.8MeV34.028.4)892(*K)892(*K ≈±=− ±    ,  (5.15) 

2
e2

o
2 cm3.13MeV0.28.6)1430(*K)1430(*K ≈±=− ±  .  (5.16) 

As for the kaon, the increased mass of the neutralised meson will be attributed to 

adding a heavy-electron, without any change in the quion /anti-quion spin-loop or 

mass. In addition, an explanation of the particular heavy-electron mass value is 

desirable. 

(a) K*(892).   If, following Eq.(5.8a), the heavy-electron radius were smaller than 

the free electron radius at roe /8.38 = 0.336fm, it would be less than (r± = 0.3655fm) in 

the central kaon. This could be an unstable orbit, in view of the earlier kaon analysis. 

Consequently, it is proposed that the heavy-electron is split into 3 loops of mass 

around 2.79me each, but carrying only one electronic charge in total. The radius of 

this heavy-electron assembly is then rhe ≈ roe /2.79 = 1.009fm: just inside the quion 

/anti-quion orbit at 1.017fm. If rhe is now substituted into Eq.(5.10) in place of r± , 

then the resultant heavy-electron mass is )MeV37.4cm56.8cm( 2
e

2 =≈− , which is 

acceptable. It is thought that the heavy-electron actually travels around the spin-loop, 

with the gluons emitted by the quion and anti-quion. This extra mass would decrease 

the spin-loop radius slightly. 

 The compression sequence of the heavy-electron here follows that of the 

neutron, and by analogy in the final stage it is quantisable in terms of action because 

[ln(roe /rhe ) ≈ ln(2.79) ≈ π/3], which leads to an action integral by differentiating then 

multiplying by (e2 = mecroe): 

 ∫ ∫
π

π

π

θ×≈−
her2

oer2

2

0
oe

e
2

dcr
2

m
3
1

dt
z

e
   .    (5.17) 

On the left is the integral for potential energy action done in compressing the 

electron, and on the right is one third of the standard kinetic energy action of an 

electron core. 

(b) K2*(1430)  The accuracy of this data is not enough for certainty but a model 

similar to  K*(892) will be proposed with a heavy-electron mass of approximately 
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14me. If the heavy-electron radius were actually smaller than the free electron, at (rhe 

≈ roe /14 = 0.20fm), it would be less than r± in the central kaon. This is again 

unsatisfactory so let the heavy-electron be split into 5 loops of mass 2.8me each, but 

carrying only one electronic charge in total. The radius of this heavy-electron 

assembly is again coincidental with the spin-loop as for K*(892). It follows that the 

heavy-electron mass of 5 loops is around (5/3)(4.37MeV/c2) ≈ 7.2MeV/c2.  And the 

compression sequence of the heavy-electron follows that of the K*(892). 

 

5.6   Mean lifetimes of K-mesons 

(a) K*(892). The full widths of the charged and neutral mesons are similar, so their 

lifetimes are probably governed by their spin-loop or quion periods independent of the 

charge. The full width ( ΓΚ∗(892) ~ 50 MeV) implies a lifetime (τΚ = 1.30×10-23s), 

which is less than the spin-loop period (2πrS /c = 2.13×10-23s from Eq.(5.4)). It may 

instead be related to the period of the rotating quion (2πrq /c' = 1.55 x 10-25s): 

  9.83)c/r2/(N qq KK =′πτ=    ,    (5.18) 

and then, 

  ( ) 2
q 448.043.4Nln K π==    .     (5.19) 

Upon differentiating and multiplying by the general format ]r'cm)/2(c/e[ qq
22 π= , 

this reduces to an action integral like Eq.(3.2.8): 
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   .   (5.20) 

On the left is potential energy action required to create (or dissipate) a quion; where 

(z' = c't) over the guidewave coherence length. The integral on the right side 

represents kinetic energy action of a spinning quion over one third period (2πrq /3). 

 

(b) K1*(1270) through to K4*(2045). The other K-mesons all have lifetimes less 

than K*(892), with their actions in the range 60% -100% of Eq.(5.20). 

 

6. Conclusion 

 The quark/anti-quark singularity design of meson QCD theory has been 

replaced entirely by very well defined real particles. Particle mass represents 
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organised, localised energy, so the Higgs mechanism is not required. Detailed models 

of mesons have been derived in terms of structured components. First, pion design 

was derived by relating it to the muonic mass. A Yukawa potential was calculated for 

the hadronic field, analogous to the proton's field. By adding a heavy-electron or 

positron in a tight orbit around the hadronic core, a charged pion was produced. Other 

mesons were found to be ordered collections of muonet or pionet masses, travelling in 

bound epicyclical orbits. Periods of these orbits were then related to the mean 

lifetimes of their mesons through specific action integrals. Decay products were 

descended from existing components within parent mesons, as expected for a 

relaxation process. This provided some traceability of particles and increased 

confidence in the analysis. The design of strange mesons with their relatively massive 

core was distinctly different from the flavourless mesons.  

 

Appendix A: Compatibility with Standard Model 

 The models for an isolated proton, electron or muon given in Papers 1, 2, 3, 

were very successful at explaining the Yukawa potential, the reality of spin and 

anomalous magnetic moment, and particle creation mechanisms. On the other hand, 

the Standard Model of particle interactions has been very successful at accounting for 

data from high energy collision experiments. Consequently, the conceptual 

differences between these models can be explained if particles in collisions generate 

aspects not immediately apparent in static models. To link these models, the trineons 

in the proton and quions in mesons need to behave like up, down and strange quarks 

when in high energy collisions. It will be found that quark masses are specific for 

each particle type and not related necessarily to other particles. On average over many 

collisions, anti-quarks may even appear to be mixed with quarks in deep inelastic 

lepton-nucleon scattering experiments. 

 

A.1 Proton and Neutron 

 Consider Figure A.1 wherein the proton of Paper 1 is depicted as 3 trineons 

travelling around the spin-loop at the velocity of light. Each trineon has a charge (+e) 

but only emits an electromagnetic field due to (+e/3) into the exterior space, so the 

proton's total external charge is (+e) as observed. Trineons also emit an e.m field 

around the spin-loop, equivalent to (+2e/3) each.  



 46

 

 

 

 

 

 

 

 

 

         

  

Fig.A.1   A schematic proton consisting of 3 trineons in the spin-loop with 

external and internal electromagnetic fields due to charge (e/3) and (2e/3), 

as experienced by an incident charge D. 

 

 Consequently, an energetic incident charge D is able to approach any one of 

the 3 trineons closely and will experience an interaction which depends upon the 

position and direction of that trineon within the spin-loop. For example, D on A will 

vary as [e/3 + (2e/3)cos(θ)], whereas D on B will vary as [e/3 + (2e/3)cos(θ+120o)], 

and D on C will vary as [e/3 + (2e/3)cos(θ+240o)]. These 3 possibilities for interaction 

of particle D with a proton are shown overlaid in Figure A.2. Clearly the effective 

interaction charge for a trineon can vary from (3e/3) to (-e/3).  
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  Fig.A.2   Variation of interaction charge for trineons A,B,C. 
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 For correspondence with the Standard Model, we require A(+2e/3), B(-e/3), 

and C(+2e/3), which occur at (θ = 60o) where the squared values are nearest to each 

other: A(4e2/9), B(e2/9), C(4e2/9). It happens that the average of [e/3 + (2e/3)cos(θ)]2 

over one spin-loop cycle is e2/3, which is also the average of quark charges-squared 

(4e2/9 + 4e2/9 + e2/9)/3. The A,B,C, nominations are interchangeable at (θ = 120o, 

240o).  

 Thus, the appearance of a negative interaction charge (-e/3) within a positive 

proton is remarkable. This only happens for inelastic collision processes where a 

trineon reacts according to its internal mechanisms and direction of travel. Trineons 

are tightly confined by strong force gluons within a proton, so any collision of an 

incident particle with a single trineon might appear to involve a quark of spin-(1/2). 

 For the neutron model in Paper 1, a heavy-electron closely orbits the proton to 

neutralise its positive charge. Then if this heavy-electron joins with trineon A say, in 

opposing incident particle D, the effective interaction quark charges would be A(-e/3). 

B(-e/3), C(2e/3) as required. This combining-process for a neutron as proposed will 

also be required for the meson interactions below. 

 

A.2 Mesons 

 For the neutral pion model described in Section 2, the quion requires a total 

charge (+e) according to creation equation (2.18). So, analogous to a proton's trineon, 

this charge appears to be distributed as (+e/3) for an external field and (+2e/3) for an 

internal field,. Consequently, a πo has the immediate appearance of a d d quark pair. 

However, the quion with its internal charge (+2e/3) is travelling around the meson 

circumference (2πroπ) at the velocity of light and could interact with an incident 

particle just like a trineon in the proton of Figure A.1. Thus, it could behave like an up 

or down quark, and the corresponding anti-quark could interact like an anti-up or anti-

down quark. On average therefore, the πo can interact like a mixture of u d u d quarks. 

 The π+ has an orbiting heavy-positron as in Figure 2.1. In a collision process, 

this positron combines with the anti-quion (-e/3) to interact like an up quark, so the π+ 

could be viewed as an ud quark pair. Similarly, the π− would interact like an ud quark 

pair. Obviously, these meson quark assignments describe the charges only, and do not 

represent masses, which are less than in the proton. Masses of other unflavoured 
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mesons are multiples of the pionet mass, but their quion and anti-quion charges are 

the same as for the pions, as if this is the ground state. 

 Mesons with zero spin must generate spin for their quions as necessary during 

collisions, but mesons with spin can be considered to possess spin-1/2 quarks in 

collisions. 

 

A.3 Strange quarks 

 Strange quarks were introduced to account for long lifetimes of some particles, 

and they also add more variety to the types of particles. In fact, the more massive 

strange particles decay rapidly into the long-lived lowest form, so that a strange quark 

does not extend the lifetime of its original particle. For example, heavy K-mesons 

described in Section 5 simply have a strongly-bound core which survives the initial 

rapid decay and converts to a kaon of long lifetime. Allocation of charge (-e/3) to a 

strange quark makes K± analogous to π±, and it also makes 0K  the exact anti-particle 

of  K0 by way of helicity. 
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