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Abstract. This paper describes an implementation strategy in preparation for an
implementation of an OpenCL FFT. The two most essential factors (memory band-
width and locality) that are crucial to obtain high performance on a GPU for an
FFT implementation are highlighted. Theoretical upper bounds for performance in
terms of the locality factor are derived. An implementation strategy is proposed that
takes these factors into consideration so that the resulting implementation has the
potential to achieve high performance.
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High-performance implementations of the FFT for GPUs already exist [1,2,3]. In
an attempt to improve performance even further, optimization at every level of the ar-
chitecture by combining the positive aspects of the different existing implementations is
required. This includes

• Memory bandwidth maximization through the use of contiguous memory ac-
cesses for global and local memory

• Minimization of required memory bandwidth through the use of locality at the
SIMT processor and core level

• Maximization of parallelism using instruction level parallelism and/or multiple
warps per block

• Minimization of partition camping

To this end, I plan to construct an OpenCL FFT that combines the positive aspects
of the hierarchical FFT and an FFT with contiguous accesses similar to the Stockham
formulations. The hierarchical FFT will allow to optimize locality so that memory band-
width requirements are minimized, while the contiguous formulation will allow to max-
imize memory bandwidth.

1. Notation

Let 〈ψ〉 denote e−2πiψ . The set of integers from a ∈ Z to b ∈ Z is denoted by
a..b, {i|(i ∈ Z)∧ (a ≤ i)∧ (i ≤ b)}. The set of non-negative integers smaller than
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c ∈ Z is denoted by ĉ, 0..(c − 1). Scalar multiplication and summation by a constant
are overloaded to sets of integers (these are applied element-wise).

The i-th element of an array d is denoted with d[i]. For a set of integers I the sub-
array with elements from I from lowest to highest and re-indexed from 0 to I − 1 is
denoted with d[I] (so, for example, d[9] = d[23̂ + 5][2]).

2. The Fast Fourier Transformation

For a sequence of data d with length N the discrete Fourier transformation (DFT)
F(d[N̂ ]) is defined as:

bN
∀
f
F(d[N̂ ])[f ] ,

bN∑
t

d[t]
〈
ft

N

〉
(1)

We decompose the time index t using two factors A and B of N such that N = AB
with t,Br + s:

bN
∀
f
F(d[N̂ ])[f ] =

bA× bB∑
r,s

d[Br + s]
〈
f(Br + s)

N

〉

=
bA× bB∑
r,s

d[Br + s]
〈
fr

A

〉〈
fs

N

〉 (2)

Since f can be larger than A, different values of f can result in the same value for〈
fr
A

〉
. The decomposition of t thus induces a decomposition of f , g + Ah with the

same factors:

bA× bB
∀
g,h
F(d[N̂ ])[g +Ah] =

bA× bB∑
r,s

d[Br + s]
〈

(g +Ah)r
A

〉〈
(g +Ah)s

N

〉

=
bA× bB∑
r,s

d[Br + s]
〈gr
A

〉〈 (g +Ah)s
N

〉

=
bA× bB∑
r,s

d[Br + s]
〈gr
A

〉〈gs
N

〉〈hs
B

〉
(3)

Many common FFT variants (the hierarchical or four-step FFT, DIT and DIF, both
in-place and out-of-place) can be derived from this formulation.

2.1. A Contiguous Decimation-In-Time Formulation

A decimation-in-time (DIT) formulation is readily obtained from (3) by interpreting the
summation over r as the computation of a frequency of a fourier transform of length A:



bA× bB
∀
g,h
F(d[N̂ ])[g +Ah] =

bB∑
s

(
bA∑
r

d[Br + s]
〈gr
A

〉
)
〈gs
N

〉〈hs
B

〉

=
bB∑
s

F(d[BÂ+ s])[g]
〈gs
N

〉〈hs
B

〉 (4)

This formulation re-expresses a lengthN DFT in terms ofB smaller lengthA DFTs
on interleaved sequences of data. By using dynamic programming to compute these sub-
problems once and reusing the results to compute the larger DFT, the computational
complexity can be reduced. By applying this single decomposition step recursively an
FFT is obtained.

Let us consider a k-step FFT that is obtained using this decomposition on a sequence
of length L where in every step L

Aq
interleaved DFTs of length Aq are combined in

groups of Bq DFTs into L
Nq

interleaved DFTs of length Nq with q ∈ 1..k.

1..k

∀
q

dL
Nq

∀
z

cAq×cBq

∀
g,h
F(d[

L

Nq
N̂q + z])[g +Aqh]

=

cBq∑
s

F(d[
L

Nq
(BqÂq + s) + z])[g]

〈
gs

Nq

〉〈
hs

Bq

〉 (5)

Here, z iterates over the L
Nq

DFTs that are computed in every step q. Rewriting this as
an algorithm that reveals the exact indexes in the intermediate data array dq of step q, we
obtain

1..k

Θ
q

dL
Nq

Θ
z

cAq×cBq

Θ
g,h

dq[
L

Nq
(g +Aqh) + z] =

cBq∑
s

dq−1[
L

Nq
(Bqg + s) + z]

〈
gs

Nq

〉〈
hs

Bq

〉
(6)

where Θ denotes a for-loop. Since the twiddle factors are independent of z and since z
moves with stride 1 through the data, an algorithm that accesses the data contiguously
and with good reuse of the twiddle factors can be obtained by letting z be the inner loop:

1..k

Θ
q

cAq×cBq

Θ
g,h

dL
Nq

Θ
z
dq[

L

Nq
(g +Aqh) + z] =

cBq∑
s

dq−1[
L
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(Bqg + s) + z]

〈
gs

Nq

〉〈
hs

Bq

〉
(7)

When the value of Bq is small, the summation over s and the iteration over h are often
expanded in the inner loop,

1..k

Θ
q

cAq

Θ
g

dL
Nq

Θ
z

cBq

Θ
h
dq[

L

Nq
(g +Aqh) + z] =

cBq∑
s

dq−1[
L

Nq
(Bqg + s) + z]

〈
gs

Nq
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hs

Bq

〉
(8)

For example, in a classical power-of-two DIT FFT where Bq = 2 for every q ∈ 1..k,
the above algorithm specializes to



1..k

Θ
q

cAq

Θ
g
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Nq

Θ
z


dq[

L

Nq
g + z] = dq−1[

L

Nq
(2g) + z] + dq−1[

L

Nq
(2g + 1) + z]

〈
g

Nq

〉
dq[

L

Nq
(g +Aq) + z] = dq−1[

L

Nq
(2g) + z]− dq−1[

L

Nq
(2g + 1) + z]

〈
g

Nq

〉
(9)

The write reference in the iteration over h in (8) has a stride of L
Bq

and the read

reference in the summation over s has a stride of L
Nq

. Within a z-iteration, there is one
write access for every h and there is one distinct read access for every s. The next inner
iteration over z accesses the data with stride 1 and is therefore contiguous for every write
and read reference.

The next inner iteration over g accesses the data with stride L
Nq

for every write
reference (h). Since this is equal to number of iterations of the z-loop this extends the
contiguity of the write accesses over z to the next loop over g. Since the stride over s is
also equal to the number of iterations of the z-loop the combined data read in an iteration
of g for the entire summation is also contiguous. Since the stride of the data read for the
iteration over g, is equal to the length of the data read over the summation in an iteration
over g, L

Aq
, the g-iteration also extends the contiguity of data read for the combination of

read references.
Observe that, if the used twiddle factors are stored as a precomputed array with an

array of stride 1 for every step q, different length FFTs can reuse the same precomputed
table as long as the same factors Bq are used for the common step indexes q.

Since every dq depends only on dq−1, memory for d must only be available for two
subsequent q-values at a time.

These out-of-place formulations can be transformed to in-place formulations to
halve the memory required by performing a single step bit-reversal at every step such
that the results for every inner iteration are stored in the same location as the source
operands and performing a complete bit-reversal of the data before or after (depending
on the choice of single-step bit-reversal) the algorithm completes.

2.2. A Hierarchical Formulation with Improved Locality

A hierarchical formulation can be obtained by interpreting (3) as a two-dimensional DFT
with intermediate twiddle factors:

bA× bB
∀
g,h
F(d[N̂ ])[g +Ah] =

bA× bB∑
r,s

d[Br + s]
〈gr
A

〉〈gs
N

〉〈hs
B

〉

=
bB∑
s

F(d[BÂ+ s])[g]
〈gs
N

〉〈hs
B

〉
=F(λs : B̂ .F(d[BÂ+ s])[g]

〈gs
N

〉
)[h]

(10)

The number of floating point operations for a standard power-of-two FFT on a sequence
of length N is 5N log2N . This gives a locality factor of τ(N) , 5 log2N floating point
operations per data element. The performance is therefore constrained by the bandwidth
µ to τ(N)µ2 .



Choosing a decomposition of N in factors such that one factor allows the corre-
sponding DFT to fit in local memory improves locality and thus reduces memory band-
width requirements by increasing τ(N). If the other factor is too large to allow the DFTs
along the other dimension to fit in memory, the hierarchical decomposition can be recur-
sively applied to obtain a number of dimensions such that all DFTs along every dimen-
sion fit in the smaller and faster memory.

This leads to the four-step algorithm that performs multi-FFTs along both dimen-
sions and also includes a step to transpose the data to ensure contiguity and a step to
apply the twiddle factors.

3. GPU Implementation

3.1. Optimizing Memory Bandwidth with Contiguous Accesses

The contiguous access pattern of (8) can be used to optimize memory bandwidth by
mapping iterations that access separate elements of a contiguous sequence of the data
array to subsequent threads within a warp. This results in a bijection between the iteration

indexes (g, z) ∈ Âq × L̂
Nq

and the indexes (w, v) ∈ L̂
φBq
× φ̂ where

• v is the index of a thread within a warp,
• w is a warp-index (which may be mapped sequentially or in parallel, or a combi-

nation of both) and
• φ is the number of threads per warp.

The elements of every corresponding pair (g, z) and (w, v) are mapped to the same
unique index j, L

Nq
g + z=φw + v. As long as φ ≤ L

Nq
the separate threads within

a warp execute a contiguous subset of iterations of z for the same iteration of g. The
number of contiguous iterations of g that are executed by a warp is

⌈
φNq

L

⌉
. The required

bandwidth for fetching or computing the twiddle factors (one per distinct value of g) is
therefore low too, except for the last steps.

As long as the number of iterations z is no less than φ, every distinct read and write
access will be performed to a contiguous set of indexes of the data array. So, if the last
factor Bk is larger than φ, optimal bandwidth utilization is ensured for every step except
the last step.

For the last steps where multiple iterations of g are processed in a single warp, every
distinct write access is still contiguous, but the read accesses used must be grouped in
the same coalesced access to ensure optimal bandwidth utilization. The values read must
then be communicated through local memory to the threads that work on the same itera-
tion of g. Govindaraju et al. [2] discuss how such a transposition can be done efficiently
through the use of padding to avoid bank conflicts.

3.2. Optimizing Locality for the Contiguous Formulation

The improved locality obtained with a hierarchical formulation can also be applied to the
contiguous DIT formulation (8) by interpreting the summation over s as a local DFT:



1..k

Θ
q

cAq

Θ
g

dL
Nq

Θ
z

cBq

Θ
h
dq[

L

Nq
(g +Aqh) + z] =

cBq∑
s

dq−1[
L

Nq
(Bqg + s) + z]

〈
gs

Nq

〉〈
hs

Bq

〉

=F(λs : B̂q . dq−1[
L

Nq
(Bqg + s) + z]

〈
gs

Nq

〉
)[h]

(11)
or, equivalently,
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Θ
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Θ
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Θ
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〈
gs

Nq

〉
)

(12)
We thus obtain a locality factor of τ(Bq) for the local DFT while we can maintain the
highly contiguous access patterns. If the DFT over s is computed in a single core of a
streaming multiprocessor (SM), Bq is constrained by the number of elements that can be
fit into the registers after other local variables have been allocated. The in-place formu-
lation for (8) can be used to minimize the required registers.

Since local memory can be used to communicate quickly between the threads ex-
ecuted on an SM, letting multiple threads work on the same DFT can further increase
τ(Bq) for the SM level. If the data must be communicated between threads on the same
SM core only, this communication may be done efficiently by a re-indexing approach
for devices with CUDA Compute Capability 2.x as a result of reduced bank conflict
constraints.

Table 3.2 lists the locality factors τ(N) for different values of N and the resulting
upper bound on performance that can be achieved for several GPUs. The computed val-
ues show that it is necessary to use a hierarchic approach for locality since otherwise the
performance is bounded by the memory bandwidth. At the same time, contiguity remains
essential, because halving memory bandwidth due to non-contiguous accesses requires
that the length of the FFT is squared to maintain the same performance bound.

The upper bound of the percentage of peak performance for a given locality factor
is comparable for float and double computations on the Fermi architecture, because both
bandwidth (in elements per second) and processing power are halved. Since twice as
much local memory is required for double precision computation with the same locality
factor, the maximum locality factor for doubles is one step lower than for floats.

The locality factor is constrained by the amount of local memory. Since the amount
of local memory is of the same order as the amount of memory in all the registers of an
SM combined, the amount of local memory is effectively constrained by the total register
size.

Table 3.2 lists some of the relevant GPU parameters for different CUDA Compute
Capabilities. The values show that a four-step hierarchic approach with intermediate
transposition can have a very high locality factor. High performance could be achieved if
the transposition could be carried out efficiently (without sacrificing too much memory
bandwidth and while doing other computations in parallel). However, doing this transpo-
sition efficiently on the current architectures is not easy and even sacrificing half of the
bandwidth erases the benefit of the increase in local register size.

Using the contiguous approach with maximal bandwidth requires that at least φ
different sub-FFTs are computed simultaneously. For most of the steps s of larger FFTs
no transposition in local memory is required if we let each SM core compute its own



GPU GeForce 9400M G (DDR3) GTX280 GTX220 8800GTX

Bandwidth (GB/s) 17.056 141.7 111.9 86.4
Bandwidth (complex floats/s) 2.132 17.7 14.0 10.8
Processing power (GFlops, float) 54 715.392 933.120 518
Maximal log2N per CUDA core 6 7 7 6

CUDA Compute Capability 1.0 1.3 1.3 1.0

Performance bound (GFlops, float):
log2N =1 5.33 44.25 35 27
log2N =2

log2N =3

log2N =4 177
log2N =5 135
log2N =6 31.98 265.5 210 162
log2N =7 309.75 245 189
log2N =8 354 280 216

Table 1. Performance bound resulting from the locality factor when memory bandwidth is used optimally. The
theoretical maxima that take the number of registers per SM core into account have been highlighted in bold.
Architecture parameters have been obtained from [4,5].

CUDA Compute Capability 1.0 1.1 1.2 1.3 2.x

Registers (32-bit) per SM 8K 8K 16K 16K 32K
Registers (32-bit) per SM core 256 256 512 512 1024

Complex floats in registers per SM 4K 4K 8K 8K 16K
Complex floats in registers per SM core 128 128 256 256 512

Maximum number of resident threads per SM 768 768 1024 1024 1536
Maximum number of resident warps per SM 24 24 32 32 48

Table 2. Relevant GPU parameters for several CUDA Compute Capability values from [5].

sub-FFT. By using multiple threads per SM core, we can make sure most of the registers
of the SM core are used (stronger restrictions on the number of registers per thread than
on the number of register per SM core seem to apply) while the higher occupancy also
allows to hide latencies (which is particularly important for accesses to global memory).

As an example for compute capability 2.x, if the number of 32-bit registers per
thread is limited to 64, a 16 point float FFT could be performed in a single thread (using
a partial in-place transformation) and 16 separate threads on the same SM core could be
used to increase this to a 256 point FFT (while 32 of these FFTs are computed in parallel
across the cores of the same SM). The size of the FFT per thread can be traded for the
number of threads that work on the same FFT while keeping the size of the FFT per SM
core (and the locality factor) constant. This trades occupancy for synchronization cost.
Higher occupancy provides a more flexible form of parallelism than ILP (which is also
available). For compute capability 1.2 and 1.3, a similar reasoning allows us to use a 128
point FFT per SM core.

3.3. Hiding Latency through Prefetching

Global memory accesses have a high latency, and if several SMs access the same memory
bank this latency can be even higher. The optimal execution of an FFT on an SM takes



5Nlog2(N) cycles. If c SMs access the same memory bank simultaneously, the latency
is cζ for the access that is served last, where ζ is the access latency for a single access.
On a GPU with many SMs and few memory banks, this latency may be high compared
to the total clock cycles required for computation and the other threads on the SM may
not be able to hide this latency.

To reduce the impact of long stalls for accesses to global memory, we can use some
of the registers that remain available to implement prefetching from global memory and
reduce the dependency constraints on registers used for writes to global memory. Other
remaining registers can be used to improve pipelining of memory operations with the
computation and to increase ILP.

3.4. Minimization of Partition Camping

To further minimize the effect of partition camping, we may try to map subsequent values
of w to different SMs. If the strides of memory accesses are such that all accesses of
an SM are mapped to the same bank, separate SMs will access separate banks. This
ensures that memory bandwidth is optimally used as long as sufficient SMs are available.
A global memory layout transformation for the data with corresponding re-indexing in
the kernels may also provide an alternative solution to reduce or eliminate the effect of
partition camping.

4. Related work

In [3] a GPU implementation that uses the four-step hierarchical approach is used for
FFTs with a limited range in lengths.

In [2] several different GPU implementations of the FFT are discussed:

• A global memory FFT that uses a contiguous access pattern similar to the con-
tiguous approach discussed above (but transposed: the strides of read and write
accesses is mirrored). The iterator j (which has a role similar to our iterator j) is
mapped to the threads of a workgroup. This implementation does not use shared
memory and the locality factor is therefore limited by the number of registers per
thread.

• A shared memory FFT where several threads work on the same FFT. This allows
to increase the locality factor but the implementation is limited to FFTs that fit in
the local memory of each SM.

• A four-step hierarchical FFT where several threads work on the same sub-FFT.
This allows to maximize the locality factor but requires a transposition step in
global memory, thereby sacrificing memory bandwidth.

In [1] an auto-tuning framework built on further extensions of the implementations
in [2] is presented. The auto-tuning framework uses a global memory FFT with contigu-
ous access patterns that uses shared memory to increase the locality factor. This includes
the approach presented above as a special case. However, in [1], the number of sub-FFTs
that are executed simultaneously on an SM is auto-tuned, while we will attempt to keep
this number minimal to obtain the highest possible locality factor. By keeping this num-
ber constant and explicitly mapping the sub-FFTs to separate SM cores, we might also
be able to reduce the penalty of the transpositions in shared memory.



5. Performance Potential

A comparison of performance results obtained by the most recent auto-tuning ap-
proach [1] with the theoretical upper bounds presented in the above analysis shows that
some potential for further performance improvement still remains. Since I believe the
auto-tuning framework includes the approach presented above as a specific case, it seems
unlikely that performance can be improved further, unless the combination of the focus
on the locality factor, the potentially improved efficiency of the local memory transpo-
sition as a result of our explicit per-core mapping and the use of prefetching gives our
implementation some advantage.

6. Conclusions

This paper presents a detailed derivation of an FFT and highlights the two most essential
factors (memory bandwidth and locality) that are crucial to obtain high performance on
a GPU. Theoretical upper bounds for performance in terms of the locality factor are de-
rived. An implementation strategy is proposed that takes these factors into consideration
so that the resulting implementation has the potential to obtain high performance.
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