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The two stages of evolution of spacetjfinérinsic spacetime and the associated space-
time/intrinsic spacetime geometries in a long range metric force field, isolate@wi pr
ous papers, are particularized to the gravitational field. The theonjaifuity on flat
four-dimensional spacetim@Z?, ct) and the intrinsic theory relativity on the underly-
ing flat two-dimensional intrinsic spacetini@p, ¢c¢t), due to the presence of a metric
force field, as well as the absolute intrinsic metric theory (of the metrieftietd) on
curved ‘two-dimensional’ absolute intrinsic spacetifgg, ¢é¢t ), which evolve at the
second (and final) stage of evolution of spacefimansic spacetime in a long range
metric force field, developed in the previous papers, become the thégrgvitational
relativity (TGR) on the flat four-dimensional relativistic spacetime, therisic theory
of gravitational relativity $ TGR) on the underlying flat two-dimensional relativistic
intrinsic spacetime and the metric theory of absolute intrinsic graitdAG) on the
curved ‘two-dimensional’ absolute intrinsic spacetime in a gravitational fieheé basic
aspects of these co-existing theories in every gravitational field aréopede

1 Spacetimdintrinsic spacetime geometries at the first solute spacefj3 in Fig. 6 of [1] in our universe. The absolute
and second stages of evolution of spacetirfietrinsic  rest masses/{, — Mg and—M* of the identical symmetry-
spacetime in a gravitational field partner gravitational field sources will be automaticatiy -

« A A* A()* .
The geometry of Fig. 4 or Fig. 11 of [1], which evolves at th‘(iuced at the symmetry-partner poirifs S andS™ in the
g y g g L] assumed initially empty flat absolute spade®®, — E3* and

first stage of evolution of spacetirgrinsic spacetime in a “>2 . - : ; )

long-range metric force field and the global spacefimen- £ Of the positive time-universe, negative universe and

sic spacetime geometries of Figs. 1 and 3 and their inver3§§ative time-universe feSP‘?Ct'Y‘;'Y' simultaneousiyn e

Figs. 4 and 5 of [2], which evolve at the second stage, deriy8goduction ofA/, at pointS in £* in the positive (or our)

in those papers, shall be adapted to the gravitational fieldflverse. This follows from the perfect symmetry of state

this sectiort among the four universes established in section 2 of [6]. The
Only one external gravitational field source shall be coffict thatMo, Mg, —Mg and —Mg™ are identical in magni-

sidered in this paper in order to make this first paper on apptde: Size and shape was also established in section 2 of [6].

cation of the geometrical background within four-world-pic ~ As explained in section 1 of [6], the appearance\fy at

ture developed in [3-6] and [7,1,2] concise, revealing onpointS in E?; Mg at pointS® in E%; —Mg at pointS* in

the essential features, while extension to two and larger-nu—E** and—M{* at pointS®* in —E%%*, whereS, S°, S* and

ber of external gravitational field sources shall be considle S°* are symmetry-partner points, will lead to the appearance

elsewhere. of identical symmetry-partner ‘one-dimensional’ ab-
Let us consider the reference spacefintensic space- solute intrinsic rest masses\/, in ‘one-dimensional’ ab-

time geometry of Fig. 6 of [1] that exists in a universe asolute intrinsic spacey directly underneathV/, in E3in

sumed to be devoid of a long-range metric force field, whithe positive (or our) universe; @fMy in ¢p° directly under-

is now being taken to be the absence of gravitational fietweathM/§ in E% in the positive time-universe; of ¢ in

Consequently there is absence of absolute intrinsic Riemarn ¢p directly underneath- M in —E%*inthe negative uni-

ian spacetime geometry. This implies the absence of curwedse and of-¢MJ* in —¢p°* directly underneath-MJ* in

‘two-dimensional’ absolute intrinsic spacetintep, pégt) —E** in the negative time-universe, as illustrated in Fig. 1.

and its underlying flat two-dimensional relativistic imsic As explained with the transformation of Fig. 2 to Fig. 8a
spacet?me(gbg, ¢cot) and flat four-dimensional relativisticyyith respect to 3-observers in the Euclidean 3-spa@snd
spacetimg E°, ct) in such a universe, as is the case in Fig. 6 /3« of the positive (or our) universe and the negative uni-

of [1]. verse in [5], the geometry of Fig. 1 must be replaced with that

Then letus introduce the absolute rest mass, to be dengjeflig. 2 with respect to ‘3-observers’ in the absolute space
by Mo, of a gravitational field source at a polin the flatab-  £:3 ang— 3 of our universe and the negative universe. The

1Author's name recently changed to Akindele Oluwole Adekugzeph. 9EOMEtry O_f Fig. 2 will emerge a_utoma_tically in the positive
Will appear as Akindele Joseph in subsequent papers. (or our) universe and the negative universe as the absolute
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Fig. 1: The mutually orthogonal flat ‘three-dimensional’ absolutgig. 2: The diagram of Fig. 1 in four universes naturally transforms
spaces and their underlying straight line ‘one-dimensional’ absoling flat ‘four-dimensional’ absolute spacetimes and the underlying
intrinsic spaces of four symmetrical universes namely, the pdist ‘two-dimensional’ absolute intrinsic spacetimes of the positive
itive (or our) universe, the negative universe, the positive timgr our) universe and the negative universe, containing the absolute
universe and the negative time-universe, containing the identirgdt masses at symmetry-partner positions in the absolute spacetimes
‘three-dimensional’ absolute rest masses in the absolute spacesameihbsolute intrinsic rest masses in the absolute intrinsic spacetimes
‘one-dimensional’ absolute intrinsic rest masses in the absolutedirectly underneath the absolute rest masses in absolute spacetimes,
trinsic spaces, directly underneath the absolute rest masses irothgymmetry-partner gravitational field sources in the assumed oth-
absolute spaces, of symmetry-partner gravitational field sourcegrjise empty universes, with respect to ‘3-observers’ in the absolute

symmetry-partner points in the absolute spaces in the assumed Qﬁbces in our universe and the negative universe.
erwise empty universes.

rest mass<:/é2 (= M) in the absolute time ‘dimensiors#
rest maséwo of a gravitational field source is introduced at gthat possesses absolute gravitational and absolutésirert
point S in the empty flat absolute spadé® in our universe, tributes likeM9 in E% in Fig. 1), will likewise establish non-
which is being assumed to be initially devoid of gravitagbnuniform absolute static speetfs alongéf, which has maxi-
field source. This happens by virtue of the prefect symmetryum magnitude at point and decreases continuously to
of state among the four universes. zero magnitude at point O.

Now the absolute intrinsic rest magdZ, will establish The discussion in the last two paragraphs(ﬂfﬁmEA/éQ)
non-uniform absolute intrinsic static speetis (isolated in in (E3 ¢t) and its underlying(quo, ¢E/¢é ) in (¢p,
section 3 of [1]) that has its maximum magnitude at pdint qucngt) in the positive (or our) universe, obtains f@-l’—MO ,
at the edge of»)/, (point S being at the base af)/;) and E*/c ) in (—E3*, —¢*) and its underlying(—¢M¢
decreases continuously to zero magnitude at point O that—|$E*/¢ 2)in (—¢p* , —pépt*) in the negative universe as
far removed from poinS. The absolute intrinsic rest massvell.
¢E/¢A (= ¢My) in the absolute intrinsic time ‘dimension’  We shall for convenience replace the representation of the
oeéot will likewise establish non-uniform absolute intrinsi¢three-dimensional’ absolute spacE§ and — F3* by hori-
static speed$Vsthat has its maximum magnitude at palift zontal plane surfaces in Fig. 2 by lines along the horizon-
atthe edge oa!)E/ng (pointS° being at the base m‘E/(;Sé?) tal. We shall also revert back to the notaticdsand —X*
and decreases continuously to zero magnitude at point O #eapectively for Euclidean 3-spaces in [3-6]. That is, wallsh
is far removed from poing®. (Recall from from discussionreplace® and —E%* that appear in Fig. 2 and in the dia-
in section 3 of [5] with the aid of Figs. 9a and 9b of thagrams in [7,1,2] by and—>* respectively henceforth. The
paper that £/ /$é? in pégt possesses absolute intrinsic graassumed spherical absolute rest masdggsand — MO, rep-
itational or absolute |ntr|nS|c inertial attributes likbsmlute resented by circles of® and —E>* in Fig. 2, shall be rep-
intrinsic rest mas$M0 in ¢ in Fig. 1). resented by short line segmentsEnand —3 respectively.

The absolute rest masd, (assumed spherical) will es-These representations are dummy with no consequence on
tablish non-uniform absolute static spete that has max- the theory being developed.
imum magnitude at the surface af,, and decreases con- Further more, since we are now particularizing to the
tinuously to zero magnitude at point O along every radigtavitational field, the absolute intrinsic static sp@é@(ﬁ)
direction from its centre. The ‘one-dimensional’ absolut ‘distance’¢# from the basé of ¢, in Fig. 2, shall be re-
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; centre of a large spherical region of the assumed otherwise empty flat
fou o _¢ﬁ*/¢62 universal apsolute space and its ‘one-dimensional’ absolute intrinsic
_ﬁ*/ez_'-/ - rest mass in the ‘one-dimensional’ universal isotropic absolute in-
Sox| :s0* N A trinsic space that can be considered to lie along any radial direction
—/c\/t\*\/ v—pCcat* from the centre of the spherical region with respect to ‘3-observers’

in the absolute space; where gravitational field can be considered to

. ... vanish outside the spherical region of absolute space.
Fig. 3: The absolute rest masses of symmetry-partner gravitational P 9 P

field sources in flat absolute spacetimes, establish non-uniform ab-

solute gravitational speeds in all their finite neighbourhoods in ab- The spherical region of the universal absolute spﬁce

solute spacetimes and their absolute intrinsic rest masses in\fig;i, 1o gravitational field ofiZ, (assuming the gravita-
underlying absolute intrinsic spactimes, establish non-uniform eﬁb-
o

solute intrinsic gravitational speeds in all their finite neighbourho gnal ﬂel,d (_Jf Mo can .be ConSIdered‘to Van|§h OUt,Slde this
in absolute intrinsic spacetimes in the positive and negative uﬁphere), is just a portion of the vast ‘three-dimensionat fl
verses. universal absolute space, which is being assumed to be de-
void of the absolute rest mass of any other gravitational fiel
source at present.
denoted byyV, (¢7) and alternatively referred to as absolute The reference spacetiritrinsic spacetime geometry of
intrinsic gravitational speed. The absolute static spegd) 19- 6 of [1] will endure for as long as a long-range absolute
at radial distance from the centre ofi/, shall likewise be metric force flgld is absent. On_the o_ther hand, the refere_nce
re-denoted by, (#) and alternatively referred to as absolutd€ometry of Fig. 2 or 3 above, in which an absolute gravita-
gravitational speed. tional field source is present in absolute spacetime and-an ab

As foll ¢ the di . inthe f ina f solute intrinsic gravitational field source is present inabte
ows from the discussions In the Toregoing Ve pargs i, qj. spacetime, will endure for no moment before trans

graphs, Fig. 2 shall be replaced with Fig. 3, where only %}ming into the geometry of Fig. 5 at the first stage of evo-

absolute intrinsic gravitational speédlfg((ﬁf)A at an arbitrary lution of spacetiméntrinsic spacetime within the symmetry-

‘distance’¢r along¢p from the base of oMy in ¢p and at parner gravitational fields in the positive and negativée un
equal ‘distanceir along¢cet from the base’ of 9E/dc* | qrges.
in ¢égt, corresponding to absolute gravitational sp@’gdﬁ) Again the line of rest mass/, of length U in Fig. 5
at an arbitrary radial distandein the absolute space from g actually a spherical rest masg, (as being assumed) of
the centre of\/, in ¥ are shown. radius Ry (=S'L’) and the line of proper physical Euclidean
The line of absolute rest mads,, of lengthSL in Fig. 3 3-spaceX’ is actually a spherical proper physical Euclidean
is actually a spherical absolute rest mass (as being as$urBegpace of large radius'S with M, at its centre. The one-
of radius Ry = SL and the segmerO of the line of uni- dimensional proper intrinsic spagg’ is an isotropic intrinsic
versal absolute space is actually a spherical region of ab-dimension with respect to 3-observersih It can be consid-
solute space of large radi® with M, at its centre. The ered to lie along any of the radial directions of the sphérica
‘one-dimensional’ absolute intrinsic spagg is an isotropic proper Euclidean 3-spac#, as illustrated along an arbitrary
intrinsic dimension with respect to ‘3-observers’ in the alpadial direction in Fig. 6, with respect to 3-observers ia th
solute spacé&. It can be considered to lie along any of thproper Euclidean 3-spac# .
radial direction from the centre of the spherical regiontwfa  The spherical proper physical Euclidean 3-spareof
solute space of radiuSO, as illustrated along an arbitrarylarge radius % evolves around the rest mas of the grav-
radial direction in Fig. 4, with respect to ‘3-observers3in itational field source at its centre, where the gravitatifietd
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and its intrinsic rest mass in isotropic proper intrinsic spaeethat
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4 {y, _ A f-eE foc? to 3-observers ix’, which evolves from reference diagram of Fig. 3
SOT_EMSE at the first stage of evolution of spacetifinérinsic spacetime in the

A A
—ct* | . -@cot* gravitational field; where it is assumed that proper Euclidean 3-space
and proper intrinsic space do not evolve outside the spherical region
Fig. 5: The spacetimimtrinsic spacetime geometry that evolvegye to the vanishing of gravitational field.
from the reference geometry of Fig.3 at the first stage of evolu-

tion of spacetimgntrinsic spacetime in all finite neighbourhoods of
symmetry-partner gravitational field sources in the assumed othgie curvatures of)/, within segmentLS of the curvedsp
wise empty positive and negative universes. and the curvature afE$¢2 within segment.?S° of the curv-
ed pcéot, shown in Fig. 5, are temporary. The final forms of
_ _ _ _ _ the segment&S of the curvedy) containingsM, andL.°S°
of M, can be taken to vanish outsidZ. Since this gravita- of the curvedpégt containinquE/gbé?, shall be derived else-
tional field source is the only one in our universe, as beiQghere when the need for the spacetiimeinsic spacetime
assumed, the region of the universal 3-space outsid@r geometry at the interior of a gravitational field sourceesis
outside the gravitational field df/,) remains the flat absolutegn, the other hand, the segments 6f the curvedsp and and
spacex. R OLY of the curvedpégt at the exterior of a gravitational field
The segmenBO of the straight line universal absolutgource in Fig. 5 are valid.
intrinsic spacepp along the horizontal, containing the ab- |t is being assumed that the absolute gravitational field
solute intrinsic rest mass/, of the gravitational field sourcesource( M, , £/¢2) introduced at point{, S°) in @7 ¢t)in
within intervalSL at the origin of segment®of ¢4 in Fig. 3, our universe and its symmetry-partrierM; , —E*/é?) in-
becomes curved towards the vertical as a plane curve ontfaguced simultaneously at the symmetry-partner pdit (
vertical (¢p'-pct’)-plane, projecting straight line isotropic3®+) in (—3* | —¢*) in the negative universe in Fig. 2 or 3,
proper intrinsic spacep’ along the horizontal, which is madeare the only gravitational field sources in our universe and
manifest outwardly in the proper physical Euclidean 3-spage negative universe. Consequently only the segis@nof
3 within thg gravitational field. The line of absolute intios curved absolute intrinsic spage, its projective straight line
rest mass) M located at the origin (or base) of the curve@roper intrinsic spacey’ between points’Sand O along the
segment @ of ¢, likewise ‘projects’ proper intrinsic resthorizontal and the outward manifestationggf namely, the
massp M, at the origin (or base) of the projective proper inarge spherical proper physical Euclidean 3-spaéeexist
trinsic spacepp’ along the horizontal, which is made maniwithin the gravitational field in our universe, while the iegs
fest in the rest mas¥/ of the gravitational field source at theyf the flat universal absolute spacetil(rfé, ¢t ) underlied by
centre of the spherical proper physical Euclidean 3-space flat universal absolute intrinsic spacetifitg) , ¢épi ) outside
The ‘one-dimensional’ absolute intrinsic rest mas¥, the gravitational field of the introduced lone absolute geav
in the straight line absolute intrinsic spagg along the hori- tional field source in our universe remain unchanged. Like-
zontal andpE/$¢2 in the straight line absolute intrinsic timewise for the lone symmetry-partner absolute gravitational
‘dimension’ p¢¢t along the vertical, of the gravitational fieldfield source(—Mj —E*/é?) introduced at pointS*, S°)
source in the reference geometry of Fig. 3, are indeed curiled—.* , —¢é¢*) in Fig. 2 or 3 in the negative universe.
along withg andpéei at the first stage of evolution of space- The segment € of the straight line universal absolute
time/intrinsic spacetime in the gravitational field. Howevantrinsic time ‘dimension’¢é¢t along the vertical, contain-

4 A. (Adekugbe) Joseph. Particularization of spacefimignsic spacetime geometries in a metric force field to the gravitational field.



ing the line of absolute intrinsic rest masE/gb (= qSMO) the positive and negative universes as follows

of the gravitational field source within interval’S° at the

origin (or base) of the segmentSO of ¢épi in Fig. 3, be- SV (¢r") = ¢Vg(¢f) (1a)
comes curved towardgp’ along the horizontal, projecting

straight line proper intrinsic time dimensigr¢t’ along the and .

vertical within the gravitational field, which is made masst VI(r') = V() (10)
outwardly in the proper physical time dimensieti along
the vertical within the graV|tat|onaI field. The line of ab-
solute intrinsic rest masgE /o2 (= ¢M,) of the gravita-
tional field source at the origin (or base) of the curved s
ment G° of ¢égt likewise projects a line of intrinsic rest
masspE’ /¢c? (= ¢ My) at the origin (or base) of the projec-
tive proper intrinsic time dimensioficgt’ along the vertical,
which is made manifest in rest mags/c* (= M,) at the
origin (or base) of the proper physical time dimensioh

It is crucial to note that the line of intrinsic rest mass
oM, of the gravitational field source ifp’ with respect to
3-observers i’ is not the source of the non-uniform ab-
blute intrinsic gravitational speedﬁ/g(gbr) along ¢p’ and
that the three-dimensional rest magl of the field source
is not the source of the non-uniform absolute gravitational

peedsV (7) along every radial direction from its centre in
Y’ with respect to 3-observers ¥ in Fig. 5. Rather the non-
uniform absolute intrinsic gravitational speeﬁ%(gbr) along

The absolute intrinsic gravitational speed (an absolute if)’ are the projections of the non-uniform absolute intrinsic
trinsic static speed&SV (¢r) at arbitrary ‘distance from gravitational speeds thait)/, at the origin of the curvedp
the baseS of ¢, along the straight line absolute intrinsi@stablishes along the curvegd and the non-uniform absolute
spacepp in Fig. 3, is now at an arbitrary ‘distancé’ from gravitational speedh’( ) in ¥’ are the outward manifesta-
the baseS of ¢M, along the curved in Fig. 5. It invari- tions of the projective non-uniformi’ (¢#) alongey'.
antly projects absolute intrinsic gravitational spegid, (¢7) Likewise the non-uniform absolute intrinsic gravitatibna
into the projective straight line proper intrinsic spage at speedssV, (¢7) along the proper intrinsic time dimension
the corresponding ‘distancé’ from the base ofpMy i ki’ with respect to 1-observers itf, have not been estab-
¢p’, which is made manifest outwardly in absolute gravit§ished by¢E’ /¢C in ¢cot’ and non-uniform absolute grav-
tional speed/, () at radial distance’ from the centre of\ly  jtational speedd/, (#) along the proper time dimensian’
in X', with respect to 3-observersif. The absolute intrinsic with respect to 1-observersit/ have not been established by
gravitational speedV, (¢7) at ‘distance’¢r from the base of the rest mas#’ /c2 (= M,) of the gravitational field source
SO of ¢>E/¢> along the curved absolute intrinsic time ‘diin ¢t’. Rather the non- umforrﬁ;V (o) alonggcot’ are the
mension’ géot, likewise invariantly projects absolute intrindnvariant projections along the vertical of non-uniform
sic gravitational speedV (¢7) into the projective straight ¢V (¢7) established along the curved¢t by ¢E/¢ (=
line proper intrinsic time dimensiomcgt’, which is made ¢]V[o> at the origin of the curvedépt andV( )alongct’ are

manifest outwardly in absolute gravitational spée,cdr ) @l the outward manifestations of the prOJectwv (¢7) along
‘distance’r’ from the base of2’/c? in ct’, with respect to .

1-observers int’. The discussions for the first quadrant (or  aq giscussed in section 2 of [1], the projective non-uni-

in the positive universe) in Fig. 5 in the foregoing two pardsm apsolute intrinsic gravitational speedsf (¢7) along
graphs and this equally obtain for the third quadrant (ohén ty,o proper intrinsic spacép’ and along the proper intrinsic

negative universe). time dimensionscgt’ in Fig. 5, cannot give rise to curvature
The invariance of absolute intrinsic gravitational speed of these relative intrinsic dimensions (without hat labe)
the context of the theory of absolute intrinsic grajatysolute produce any otherfiect on them. The absolute gravitational
gravity (#AG/AG), (which is the theory that supports the gespeedd/, (#) in the proper physical Euclidean 3-spagecan
metry of Fig. 5), represented graphically by the invariant p likewise not give rise to any detectablest in PN
jection ofzz)V (¢#) along the curvedp andpépt as¢>V (p7) Thus if the projective non-uniform absolute intrinsic grav
along the projective straight lingy’ andgcgt’ in Fig. 5, have itational speedsbv (¢7) along the straight line proper in-
been stated as invariance of absolute intrinsic staticdspénsic spacesp’ and —¢p'* and straight line proper intrin-
and absolute static speed by Egs. (79a) and (79b) of [1],sin time dimensiongc¢t’ and —¢cgt’™ are all that is possi-
the context of the absolute intrinsic metric phenomenon the and consequently the non-uniform absolute gravitation
gives rise to the geometry of Fig. 11 of [1] in the one-worlgpeedsV, () in the proper physical Euclidean 3-space's
picture, which corresponds to Fig. 5 here in the two-workthd —X"* and the proper physical dimensioa$ and —ct’*
picture. It shall be re-stated as the invariance of absahdte are all that is possible in Fig. 5, then the geometry of Fig. 5
trinsic gravitational speed and absolute gravitationaksiin will endure and evolution of spacetirigrinsic spacetime
the context of the theory of absolute intrinsic grajtigory will terminate at the first stage within a gravitational field
of absolute gravity¢AG/AG) that gives rise to the geometry  However the second stage of evolution of spacefime
of Fig. 5 within the symmetry-partner gravitational fields itrinsic spacetime within a gravitational field is immutable
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This is so because, quite apart from the projective non-umto the diagram in Fig. 7. The proper intrinsic static spgeed
form absolute intrinsic gravitational speet;‘lﬁfg(qbf) along and proper static speeds denotedy, , andV , in Fig. 1
the straight linepp’, ¢cot’, —¢p™ and —pcgt™, the ‘pro- of [2] have also been re-denoted by (¢r') andV, (r') and
jective’ intrinsic rest masgM in ¢p’, as an intrinsic gravi- referred to as proper intrinsic gravitational speeds anggr
tational field source, establishes non-uniform propeiriaic  gravitational speeds, as alternative names, in the casawf g
gravitational speedgV, (¢r’) along ¢p’, whose magnitude itational field.
is maximum at the edg& of ¢ M, and decreases continu- The line of relativistic masd/ of length SL in Fig. 7 is
ously to zero at point O that is far removed from the basetually a spherical relativistic madd (as being assumed)
S of ¢ My. The ‘projective’ intrinsic rest masgE’/¢c? (= of radiusR = SL and the line of relativistic Euclidean 3-
oMy) in ¢egt’ likewise establishes non-uniform proper inspaceX is actually a spherical relativistic Euclidean 3-space
trinsic gravitational speedsV, (¢r’) along ¢cgt’, whose of large radius SO witid/ at its centre. The relativistic intrin-
magnitude is maximum at the edd® of ¢E’/¢c? and de- sic spacepp is an isotropic intrinsic dimension with respect
creases continuously to zero at point O. to 3-observers in the relativistic Euclidean 3-spacdt can

The intrinsic rest mass-¢ Mg in —¢p'™* likewise estab- be considered to lie along any of the radial directions of the
lishes non-uniform proper intrinsic gravitational speedgpherical relativistic Euclidean 3-spakewith respect to 3-
¢V, (¢r') along —¢p™ and —@E"™ /¢c? in —pcpt’™ estab- observers irk.
lishes non-uniform proper intrinsic gravitational speeds As illustrated in Fig. 7, the non-uniform proper intrinsic
oV, (¢r') along—apeept’ in Fig. 5. gravitational speed®V (¢r’) along the curved proper in-

Quite apart from the non-uniform absolute gravitation&insic spacepp’ are projected invariantly as non -uniform
speedsf/g(f) in X" andct’ in Fig. 5, the rest masa/, in X', proper intrinsic gravitational speedd/, (¢r’) along the pro-
as a gravitational field source, establishes non-unifomp@r jective straight line isotropic relativistic intrinsic ape ¢p
gravitational speedB’g’(r’) along every radial direction fromalong the horizontal, which isﬂmade manifest in non-uniform
its centre inx’ and the rest mass’ /c* (= M) in ct’ estab- proper gravitational velocitie¥,; (') along every radial di-
lishes non-uniform proper gravitational speédgs’) along rection from the centre of the relativistic massof the grav-
ct’. Likewise for— Mg in —X'* and—E’* /¢? in —ct’* in the itational field source irt.. The non-uniform proper intrinsic
third quadrant. gravitational speeds along the curved proper intrinsie titia

The non-uniform proper intrinsic gravitational speedsensionpcet’, likewise invariantly project non-uniform pro-
oV, (¢r") established along the straight ling',¢cot’,—pp™  per intrinsic gravitational speeds along the projectivia-re
and—qgcot’™* by the intrinsic gravitational field sourcéd\{,, tivistic intrinsic time dimensiongc¢t along the vertical,
OE/pc?, —p M and—pE"™ | ¢c? respectively in these propemwhich are made manifest in non-uniform proper gravitationa
intrinsic dimensions, as described above, will cagiseand speedd/, (') along the relativistic time dimensiar.
¢cet’ to be curved into the first quadrant and second quadrant The foregoing paragraph describes the graphical repre-
respectively to form orthogonal curvilinear intrinsic dém sentation of the invariance of intrinsic gravitational spend
sions. The curvedy’ in the first quadrant will then projectgravitational speed in the context of the theory of relaiie
a straight line relativistic intrinsic spaceg along the hori- trinsic gravity and theory of relative gravity that transfo
zontal, which is made manifest in a spherical region of re#g. 5 into Fig. 7 at the second stage of evolution of space-
ativistic physical Euclidean 3-spaéein the first quadrant. time/intrinsic spacetime in a gravitational field, expressed as
The curvedpegt’ in the second quadrant will likewise projecfollows
straight line relativistic intrinsic time dimensiafr¢t along oVy(or) = ¢>Vg’(¢r’) (2a)
the vertical, which is made manifest outwardly in relativis
. . . . . e . and
tic physical time dimensiont along the vertical in the first
guadrant.

As discussed in the process of transforming Fig. 11 of
[1] into Fig. 1 of [2], Fig. 5 at the first stage of evolution Eq. (2a) states that the non-uniform relativistic intrinsi
of spacetimgntrinsic spacetime in a gravitational field willgravitational speedsV,(¢r) that are expected to be pro-
endure for no moment before transforming into Fig. 7 at tifected into the relativistic intrinsic spage by the non-uni-
second stage of evolution of spacetiinginsic spacetime in form proper intrinsic gravitational speed¥/; (¢r') along the
a gravitational field. curved proper intrinsic spacgy’, are the same as the non-

Fig. 1 of [2] drawn within an attractive long-range metricniform proper intrinsic gravitational speeds along theved
force field has simply been adapted to the gravitational fieldpp’ and Eq. (2b) states that the non-uniform relativistic grav-
Fig. 7. Consequently the symmetry-partner gravitatioedd fi itational speed¥, (r) that are expected to appear along every
sources in spacetimes and symmetry-partner intrinsigtgravradial direction from the centre of the relativistic magsof
tional field sources in intrinsic spacetimes in the posi{me the gravitational field source in the relativistic Euclide?:
our) universe and the negative universe have been integraggace> in Fig. 7, are non-uniform proper gravitational speeds

Vy(r) = Vg(r') (20)

6 A. (Adekugbe) Joseph. Particularization of spacefiimignsic spacetime geometries in a metric force field to the gravitational field.
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Fig. 7: The spacetinfmtrinsic spacetime geometry at the second stage of evolution of spagetiinsic spacetime within symmetry-
partner gravitational field sources in the positive and negative ueisevath respect to 3-observers in the Euclidean 3-spaces in the two
universes, which evolves from the geometry of Fig. 5 at the first stage

V,(r"). Formal proofs of the invariance (2a) and (2b) alordjmensionct cannot establish non-uniform relativistic grav-
with those of Egs. (1a) and (1b) shall be given elsewhere withtional speeds alongt and ¢ E/¢c* cannot establish non-
further development. uniform relativistic intrinsic gravitational speeds afppcgt.

The geometry of Fig. 7 will endure for as long as the ‘pro- The non-existence of non-uniform relativistic intrinsic
jective’ relativistic intrinsic masg\/ does not establish non-gravitational speedsV,(¢r) along the relativistic intrinsic
uniform relativistic intrinsic gravitational speedsV,(¢r) dimensionspp, ¢cdt, —pp* and —pcpt*, either by projec-
along the relativistic intrinsic spaeg, which could cause thetions from the curved proper intrinsic dimensiahg, ¢cot’,
curvature of¢p and as long as the ‘projective’ relativistic in—@p'* and —pcgpt’™ or by establishments byM, ¢E/pc?,
trinsic mass)E/ ¢c? (= ¢ M) does not establish non-uniform—¢M* and—¢E* /¢c? as sources, as discussed in the forego-
relativistic intrinsic gravitational speedsV, (¢r) along the ing paragraph, implies that the relativistic intrinsic epspp
relativistic intrinsic time dimensiocgt along the vertical, and—¢p* and relativistic intrinsic time dimensiong¢t and
which could cause the curvature @fot. —ocet* in Fig. 7, cannot be curved. This makes the geometry

Now the relativistic masd/ in the relativistic Euclidean .Of Fig. 7 to endure for as long as the symmetry-partner grav-

3-spaceX. shall be identified as the inertial mass and passig%.t;?n?Lgeclgnssc;urcgiclg ct)??hzo'zlttl;]/gtétlgg :%?att.'gﬁsugfmrjc
gravitational mass, which is non-trivially related to thestr XISt qu ISl VOIutl &p

massM, according to a relation that shall be derived els |[ne/|ntr|2|dS|ctspacr:1ettm:e”|n ?I'P?irai\:nltar;:lc::nill f'fld tte;r:lTatgs r?t
where with further development. The relativistic mass. (i. € second stage naturaily. 1his utable Iact of natuae S

the inertial mass or passive gravitational mass) is nota-gr ecome solidly estab Iished_upon this initial introductiofits
tational field source, the active gravitational masg, being establishment elsewhere with further development.

the source of the Newtonian gravitational field [8]. Conse- The geometry of Fig. 7 is valid with respect to 3-observers
qguently M is not a source of gravitational speed. This meairsthe relativistic Euclidean 3-spa¢eand—X* in the posi-
that M cannot establish non-uniform relativistic gravitationdive and negative universes, as indicated. It correspomds t
velocitng(r) radially from its centre irt and consequently Fig. 1 of [2]. There is a complimentary diagram to Fig. 7,
¢M cannot establish non-uniform relativistic intrinsic gravwhich corresponds to Fig. 3 of [2], depicted in Fig. 8. Fig. 8
tational speedsV, (¢r) along the relativistic intrinsic spaceis valid with respect to 1-observers in the relativisticeinafi-

#p. The relativistic mas#&’/c? (= M) in the relativistic time mensions:t and—ct* as indicated.

A. (Adekugbe) Joseph. Particularization of spacetimensic spacetime geometries in a metric force field to the gravitational field. 7
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Fig. 8: The complementary diagram to Fig. 7 that is valid with respect tosgéwbrs in the time dimensions in the positive and negative
universes.

The global spacetinjmtrinsic spacetime diagram ofsub-Riemannian metric tensor with respect to 3-observers i
Fig. 7 and its complimentary diagram of Fig. 8, evolve at thke relativistic Euclidean 3-spac&sand —%* , as has been
second stage of evolution of spacetjin&insic spacetime in established within a long-range metric force field in gehera
a gravitational field. The remarkable feature of the diagranmn [2]. The curved(¢p, ¢é¢t) in Figs. 7 and 8 at the second
as has been made for Figs. 1 and 3 of [2] in a long-rangtage of evolution of spacetirfigtrinsic spacetime in a gravi-
metric force field in general, is that the four-dimensiomdds tational field, has been brought forward from the geometry of
tivistic metric spacetim€X, ct) in which the observers are lo-Fig. 5 at the first stage.
cated and its underlying two-dimensional relativisticimgic For completeness and in order to be able to derive the in-
metric spacetimépp , pcgt) are everywhere flat in a gravita-verse intrinsic gravitational local Lorentz transfornoati(in-
tional field. This fact has been solidly established by demagerse¢GLLT) and inverse GLLT, we must also draw the in-
strating local Lorentz invariance in a long-range metricé verses to the global geometries of Figs. 7 and 8, shown as
field in general in [2]. Gravitational local Lorentz invariFigs. 9 and 10 respectively.
ance (GLLT) shall be established within a gravitationaldfiel

shortly in this paper. . . .. 1.1 Simultaneous progression at the speed of light of the
Although the extended two-dimensional proper intrinsic™ . : o
metric spacetimese’, peot’) and (—gp’* , —dedt™) are f|r_st _and secqnd stages of evolution qf spacetlma-_
’ ’ trinsic spacetime away from the location of a gravi-

curved in a gravitational field in Figs. 7 and 8, they are or- . !
. LT : . tational field source

thogonal curvilinear intrinsic dimensions. This meang tha
they possess intrinsic Lorentzian metric tensor at eveilytpoThe evolution of the extended curved ‘two-dimensional’ ab-
of them with respect to 3-observers in the relativistic Elicl solute intrinsic metric spacetimey , ¢é¢t ) between point
ean 3-space¥ and —¥* and 1-observers in the relativistiqS, S°) and point O in spacetime in Fig. 5, does not happen
time dimensiongt and—ct*, as has been demonstrated iniastantaneously, following the introduction of the abselu
long-range metric force field in general in [2]. rest massi/, of the gravitational field source at poifitin

The only curved spacetime with sub-Riemannian mettite flat absolute space and the consequent introduction of
tensor in Figs. 7 and 8 at the second stage of evolutiontioé absolute rest mags/é2 (= M,) of the gravitational field
spacetimgntrinsic spacetime in a gravitational field in ousource at poin§® in the absolute time ‘dimensiof? in the
universe, so to speak, is the ‘two-dimensional’ absolute ieference geometry of Fig. 3, as would happen if gravita-
trinsic metric spacetimésp, ¢pépt) with absolute intrinsic tional efect propagated at infinite speed in spacetime. How-

8 A. (Adekugbe) Joseph. Particularization of spacefintiénsic spacetime geometries in a metric force field to the gravitational field.
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Fig. 9: The inverse to the spacetifimdrinsic spacetime geometry to Fig. 7 at the second stage of evolutionaatépegntrinsic spactimes
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Fig. 10: The inverse to the spacetifiéérinsic spacetime geometry to Fig. 8 at the second stage of evolutionsacétepegntrinsic
spactimes within symmetry-partner gravitational fields in the positive agdtive universe that is valid with respect to 3-observers in the
relativistic Euclidean 3-spaces in the two universes.
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ever the curvature of the flépy , qbcqﬁt) in Fig. 3 starts from (X', ct’) and its underlying extended flat two-dimensional
pomt(S SO) at the momen(Mm E/c ) is introduced at this proper intrinsic spacetim@pp’, gcgt’) in Fig. 5 in a gravi-
point and progresses at the speed of light away from the pdattonal field, will endure for as long as this situation (&S

(S, SO), since gravitational féect propagates at the speed dfhe clarifications of the concepts of relative static speat] a
light in spacetime. It therefore took a long time for curvaturelative metric force field done in sub-section 3 of [2] are
of (¢p, ¢égt) to propagate from poir(lS,SO) to the distant directly applicable to the concepts of relative gravitatib
point O. speed and relative gravitational field being introducedis t

Likewise the curvature of two-dimensional proper intrirpaper.
sic metric spacetim@bp’, ocgt’) at the second stage of evolu-  However the situation of absence of relative gravéla-
tion of spacetiméntrinsic spacetime in a gravitational fieldfive intrinsic gravity but the presence of absolute graeity
starts from the point (SS°) where the proper gravitationalsolute intrinsic gravity, which Fig. 5 represents, diseasi
field source(My, E'/c?) is located in Fig. 5 and progressethe preceding two paragraphs, is hypothetical; it does xot e
at the speed of light away from this point. It therefore todkt in reality. This is so because as the evolution of curved
a long time for curvature of¢p’, pcgt’) to propagate from ‘two-dimensional’ absolute intrinsic metric spacetirigs,
point (S,5°) to the distant point O in Fig. 7. pépt ) starts from the pointS, S°) on the flat absolute space-

The point to be established in this sub-section is that ttime (3, ¢ ) where the absolute gravitational field souidg,
curvature of the proper intrinsic metric spacetimgp’, E/é2) is introduced in the reference geometry of Fig. 3 and
¢cgt’) at the second stage of evolution of spacefintansic progresses at the speed of light from this point towardstpoin
spacetime in a gravitational field did not start after a langet O that is far removed from the poilﬁS, éo), as mentioned
taken by curvature of the absolute intrinsic metric spaoceti earlier, the evolution of the projective flat two-dimensibn
(¢p, dégt ) to propagate from poir(S, S°) of location of the proper intrinsic metric spacetiniey’, ¢cét’) containing the
gravitational field source to the distant point O in Fig. 5t bprojective intrinsic rest masgM,, ¢E’ /¢c?) of the gravita-
that the curvatures dfp, ¢c¢t) and(¢p’, ¢t’) commence tional field source at point (8") at the origin (or base) of
simultaneously from p0|r(lS S°) at the momentMy, £2/¢2)  the projective flat¢p’, pegt’), as well as the evolution of the
is introduced at pon(tS SO) in Fig. 3 and progress simultaneflat four-dimensional proper metric spacetirf¥, ct’) con-
ously at the speed of light away from this point to simultan&aining the rest mas&\/y, E’/c?) at the point (5S°), start
ously reach the distant point O after a long time following tHfrom this point of location of the gravitational field source
introduction of (Mo, E/¢2) at point(S, S°) in Fig. 3, while and progress at the speed of light towards the distant pgint O
the intermediate diagram of Fig. 5 did not appear. This factsimultaneously with the progression at the speed of light of
consolidated with the argument that follows. curvature of(¢p, pépi ) from point(S, S°).

Figure 5 represents a situation where the intrinsic rest However the momeny M, appears within a short seg-
massp M, of the gravitational field source ‘projected’ into thenentA¢p’ containingyp M, projected along the horizontal at
straight line proper intrinsic metric spag¢e’ along the hor- point S and¢E’/¢c? (= ¢M,) appears within a short seg-
izontal and the intrinsic rest mass?’ /¢c? (= ¢My) ‘pro- mentgcAgt’ containinggE’ /¢c® projected along the verti-
jected’ into the straight line proper intrinsic metric tirde cal at point @, at the beginning of the evolution of curved
mensiongcot’ along the vertical, have not established nombsolute intrinsic spacetinep, ¢é¢t ) at the point(S, S9),
uniform proper intrinsic gravitational speed¥(¢r’) along the intrinsic rest masgM, contained in the projective in-
¢p’ andocet’ respectively from their locations. Consequenterval A¢p’ starts to establish non-uniform proper intrinsic
ly the rest masd//, has not established non-uniform propegravitational speed$V’(¢r’) within A¢p’ located at point
gravitational speedg| (') along every radial direction from$S' along the horizontal andE’ /¢c* contained in the projec-
its centre in the proper physical Euclidean 3-spgtand the tive ¢pcA¢t’) starts to establish non-uniform proper intrinsic
rest massZ’/c® (= M) in the proper physical time dimen-gravitational speedsV, (¢r') within ¢cA¢t’ located at point
sionct’ has not established non-uniform proper gravitationg along the vertical.
speedng’( r') alonget’. Even the establishment of non-uniform proper intrinsic

Thus Fig. 5 represents a situation that must be descrilggavitational speedsV (¢r’) progresses at the speed of light
as the presence of absolute gravity and absolute intringic g from point S along the proper intrinsic spacg’ that is
ity, but the absence of relative gravity and relative irgiin evolving along the horizontal and the establishment of non-
gravity, since only projective non-uniform absolute ingic uniform proper intrinsic gravitational speed$’;(¢r’) pro-
gravitational speed$V (¢7) are present along the straighgresses at the speed of light from poirit Slong the proper
line ¢p’ and ¢cgt’ and only non-uniform absolute gravitaintrinsic time dimensiomcgt’ that is evolving along the ver-
tional speedsf/g(f) are present along every radial directiotical. Since the evolution afp’ also starts from point’Sand
from the centre of the rest maa#, in ¥’ and along the properprogresses at the speed of light away from this point aloeg th
time dimension:t’ from the base of?’/c? (= M) in ct’ in  horizontal and the evolution afc¢t’ also starts from point
Fig. 5. The extended flat four-dimensional proper spacetii®& and progresses at the speed of light along the vertical, it
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follows that at some tim¢ of the commencement of evoluspacetime(i,éf) in Fig. 3, where the absolute rest mass
tion of curved absolute intrinsic spacetirfgp, péot ), some (Mo, £2/¢2) of the gravitational field source was suddenly in-
lengths of¢p’ and ¢gcgt’ have evolved along the horizontatroduced, to some near neighbourhood of the p((ﬂ;ﬁ?o) af-
and vertical respectively anglM/, at the point Shas estab- ter a given timel” of introduction of(M,, E/¢2) at the point
lished non-uniform proper intrinsic gravitational speafisg (S, SO), and the &ect of the gravitational field of the suddenly
the whole lengthpp’ that has evolved after the timé and introduced field source can be felt on flat four-dimensional
®E'/pc? at point 3 at the origin of the evolvedcgt’ has es- relativistic spacetiméy, ct) (that has evolved) at every point
tablished non-uniform proper intrinsic speeds (¢r’) along - within such near neighbourhood at tiriiée.
the whole length obcgt’ that has evolved after the timée On the other hand, some distant neighbourhoods of the
Now the establishment of non-uniform proper intrinsipoint(S, SO) have not yet experienced the evolutions of curv-
gravitational speedsV, (¢r’) along the whole length of theed (¢p, dégt), curved(gp’, deot’), flat (¢p, pept) and flat
evolving proper intrinsic spacgp’ at all times bypM, lo- (%, ct), established by the suddenly introduced gravitational
cated at the origin (or base) 6f the evolvingsy’ does not field source at pointS, S°) at the given timé™ after the sud-
allow the evolving¢p’ to remain along the horizontal, buden introduction of the gravitational field source. The flat
causes it to become curved anti-clockwise into the first quasolute spacetimgs, ¢ ) and its underlying flat absolute
rant with respect to 3-observers | as in Fig. 7. Like- intrinsic spacetiméq¢p, ¢é¢t ) of the reference geometry of
wise the establishment of non-uniform proper intrinsio/gra Fig. 3 still exist in those distant neighbourhoods. Conse-
tational speedgV (¢r') along the whole length of the evolv-quently the &ect of the gravitational field of the suddenly
ing ¢cot’ at all times by¢E’/¢pc? located at the origin (or introduced field source will not be felt in those distant ieig
base)S" of the evolvinggcet’, does not allow the evolving bourhoods of pom(S SO) at the given timel” after the sud-
¢cot’ to remain along the vertical, but causes it to becorden introduction of the gravitational field source at point
curved anti-clockwise into the second quadrant with respés, S°).
to 3-observers it as in Fig. 7. It has so far been assumed that the gravitational field
It follows from the foregoing paragraph that there is nsource introduced at the poi§,S°) in (3, éf) in Fig. 3
time lag between the evolution of the curved ‘two-dimeris the only one in our universe. However let us now relax
sional’ absolute intrinsic metric spacetingp, ¢é¢t ) at the this assumption and assume that other existing gravitation
first stage of evolution of spacetirirgrinsic spacetime in a field sources had already established curved absolutasitri
gravitational field and the evolution of the curved two-ditne metric spacetimégp, ¢éét ), curved two-dimensional proper
sional proper intrinsic metric spacetinjey’, cot’) at the intrinsic metric spacetimépp’, pcgt’), flat two-dimensional
second stage. In other words, the evolutions of cuifwgil relativistic intrinsic metric spacetimep, ¢c¢t) and flat four-
pégt ) and curvedgp’, peept’) in Fig. 7 begin simultaneously dimensional relativistic metric spacetir(, ct) at the distant
from the Iocatlon(S SO) of introduction of the gravitational neighbourhoods of the suddenly introduced gravitatioeéd fi
field source source at pointS,S°). Then the ect of the gravitational
(J\Z/U, E/éQ) in the reference geometry of Fig. 3 and progrefiglds of these existing field sources will be felt on flat rela-
simultaneously at the speed of light away from this point ttivistic spacetime, while thefiact of the gravitational field of
wards point O in that figure. the suddenly introduced field source at pc('fEuSO) will not
The evolutions of the projective flat two-dimensional rebe felt on flat relativistic spacetime at those distant nigagir-
ativistic intrinsic metric spacetim@p, ¢c¢t) and its outward hoods of point(S, SO) at the given time th@” of the sudden
manifestation namely, the flat four-dimensional relatigis introduction of the gravitational field source at po@ﬁt SO).
spacetime(>, ct) in Fig. 7, start from the IocatlorﬁS SO) It follows from the foregoing that thefkect of the grav-
at WhICh(MO, E/ %) is introduced in Fig. 3 and progress atational fields of a great multitude of very distant starsl an
the speed of light towards the distant point O, simultanigougalaxies formed billions of years ago have not yet reached th
with the evolutions and progression at the speed of light @dirth. The foregoing also explains why if the Sun is suddenly
the curved ¢p, ¢éot ) and curved ép’, degt’), thereby trans- annihilated, the earth will not be aware of this until about
forming Fig. 3 to Fig. 7 after a long time, without actuallyine seconds required for théect of gravity to propagated
passing through the intermediate Fig. 5. at speed of light from the location of the Sun to the surface of
Thus the evolutions of curved ‘two-dimensional’ absolutée earth.
intrinsic metric spacetim@sp, ¢ét ) and curved two-dimen-  Apart from the evolutions of curved absolute intrinsic
sional proper intrinsic metric spacetirigp’, ¢cot’) and con- metric spacetiméop, ¢péot ), curved proper intrinsic metric
sequently the evolutions of flat two-dimensional relaticis spacetimé¢p’, pcot’), flat relativistic intrinsic metric space-
intrinsic metric spacetimégp, dcgt) and its outward mani- time (¢p, ¢cot) and flat relativistic metric spacetin{&, ct),
festations namely, the flat four-dimensional relativistiet- all of which propagate simultaneously at the speed of light
ric spacetimgX, ct), have progressed simultaneously at the distant places from the location of a suddenly introduced
speed of light from the Iocatio(é, éo) on the flat absolute gravitational field source and their annihilation, whickal
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propagate simultaneously at the speed of light to distmmeeoVéP that appear in those results by the proper intrinsic
places from the location of the suddenly annihilated gragravitational spee@V, (¢r') and proper gravitational speed
tational field source, the perturbation of the source of agréd//(r) respectively, whergV, (¢r') must be related to the
itational field, (such as will arise from sudden decrease moper intrinsic gravitational parameters avif{r’) must be
sudden increase of the rest mass of the gravitational fiedthted to the proper gravitational parameters of the pater
source), will lead to perturbations in curvature§op, pc¢t )  gravitational field.

and(¢p’, pcpt’), as well as perturbations in flat relativistic in- It thus follows that the place to start this section is deriva
trinsic metric spacetimepp, ¢cét) and flat relativistic metric tion of expressions fopV, (¢r') and V, ('), as well as for

spacetiméy, ct) _establ?shed by the gravita_tional field sourceypsolute intrinsic gravitational speed/, (¢7) that will ap-
These perturbations will also propagate simultaneously&at pear in the absolute intrinsic metric tensgy;;, absolute in-
speed of light from the location of the perturbed gravitaab e Riccj tensok2;; and absolute intrinsic line element

field source to distant places. o . of the metric theory of absolute intrinsic gravityNIAG)
Although perturbations in flat relativistic spacetir®, on curved ‘two-dimensional’ absolute intrinsic metric spa

ct) will be very faint at distant places from the perturbed grayme (¢p, dégt ) with respect to 3-observers in the relativistic
itational field source, but it can be measured (as pertumhsti g clidean 3-spack in Fig. 7.

in gravitational length contractions of space interval®lr

jects and of gravitational time dilations of time interyails 5 Relating gravitational speegintrinsic gravitational

principle. (The concepts of gravitational length conti@tt speed to gravitational parametergintrinsic gravita-
and gravitational time dilation in the context of the theofy tional parameters

gravitational relativity (TGR) that operates on the flatarel
tivistic spacetime 3, ct) in Fig. 7, shall be established in thel he geometry of Fig. 5 is a valid geometry at the first stage of
next section.) However nothing in this discussion sugge§ilution of spacetimentrinsic spacetime in a gravitational
that perturbations in curve@p, ¢é¢t ), curved(¢p’, peot’), field. It does not exist in a gravitational field however be-
flat (¢p, pcot) and flat(S, ct) propagate as waves at the sped@USe there was no time for it to be formed, since the sec-
of light. The results and conclusions reached by qualizationd stage of evolution of spacetifmgrinsic spacetime com-
discussion in this sub-section shall be supported quantfi3€nces at the same moment that the geometry of Fig. 5 at
tively by actual calculations elsewhere with further degel the first stage begins to evolve, thereby yielding the geome-
ment. try of Fig. 7 of combined first and second stages of evolution
The next step in this paper is to adapt the new results @&SPacetimgntrinsic spacetime in a gravitational field as the
rived in section 2 of [2] from the local spacetifirgrinsic geometry that exists in every gravitational field, as exyéi

spacetime geometries of Figs. 6 — 9 of that paper, at the d8&ub-section 1.1.

ond stage of evolution of spacetifirgrinsic spacetime in a Now let the ‘one-dimensional’ absolute intrinsic rest mass
long-range metric force field in general, to the gravitaaibn¢m0 of a test particle be in absolute ir)trinsic fall (at increas-
field. Those results are the intrinsic local Lorentz transfdng absolute intrinsic dynamical spegtt;) along the curved
mation @LLT) in terms of proper intrinsic static speed//; absolute intrinsic spaag) towards the absolute intrinsic rest
local Lorentz transformation (LLT) in terms of proper stahass¢M, of the gravitational field source at the origin of
tic speedV/; intrinsic local Lorentz invariances{_Ll) and the curvedpp in our universe in Fig. 5. In perfect symmetry,
local Lorentz invariance (LLI) implied byLLT and LLT re- the symmetry-partner test particle of negative absolutein
spectively; intrinsic time dilation and intrinsic lengtbrdrac- SIC rest mass-¢m; is in absolute intrinsic fall (at increas-
tion formulae in terms of proper intrinsic static spegt/ N9 absolute intrinsic dynamical spegif,;) along the curved
and time dilation and length contraction formulae in terrs gbsolute intrinsic space /" towards the negative absolute

proper static speei. This shall be accomplished in the nexfitrinsic rest mass-¢Mg of the symmetry-partner gravita-
section. tional field source at the origin of the curvedpp* in the

negative universe. However only the absolute intrinsiegra
itational fall of the absolute intrinsic rest magg, of the
test particle in the first quadrant (or in our universe) shell
considered in the derivation hereunder, since there isteo-in
action between the identical geometries in the first andl thir
guadrants (or in the positive and negative universes) ing=ig
Let the absolute intrinsic rest mags, of the test parti-
As stated above, the programme of this section is to adafgin our universe possess absolute intrinsic dynamiesddp
the results of section 2 of [2] in a long-range metric foregV,; upon falling along the curved; to a position P of ‘dis-
field in general to the gravitational field. We must simply reance’¢# from the basé& of ¢\, located at the origin of the
place the proper intrinsic static spaﬁb{ép and proper static curvedg¢p. It will acquire the absolute intrinsic gravitational

2 The theory of relativity/intrinsic theory of relativity
associated with the presence of relative gravitational
field /relative intrinsic gravitational field at the second
stage of evolution of spacetimfintrinsic spacetime in a
gravitational field

12 A. (Adekugbe) Joseph. Particularization of spacefiimninsic spacetime geometries in a metric force field to the gravitational field.



speedgng(ngf), (which is an absolute intrinsic static speed) The absolute intrinsic gravitational potential is depearide

at the position P, of the non-uniform absolute intrinsicuira on the absolute intrinsic gravitational speed as follows

tational speeds established along the curgy ¢ M.
Thus the absolute intrinsic rest mags, of the test par- P e

ticle will possess absolute intrinsic dynamical speé{ and 9P(97) = 2¢Vg(¢r> N ©)

! or
absolute intrinsic gravitational speed’;(¢r) it acquires at o ] )
position P upon falling to this position along the curvggl Also because of the absolute intrinsic Lorentzian metne te
Its absolute intrinsic total energsl’ at the position P is then SO @t point P along the the curved where Egs. (3)-(6) have
given classically in terms of the absolute intrinsic spegils been written with respect to the proper Riemannian observer
andgV, (¢7) as follows (at this point), the proper Riemannian observer obtains the

absolute intrinsic gravitational acceleration (or abs®lin-

_ GoMy

(;5[7 _ 1¢m0¢‘7dg _ lgbmowg(cﬁ)? 3) trinsic gravitational) field at the point P from definition as
2 2 follows
The negative sign of the absolute intrinsic gravitationa e 1 d(6V.(67)2 (oD (dF GO
ergy — 3 ¢1no¢V, (47)? comes from the negativity of gravita- ¢9(¢7) = 3 G ;qgf K (¢d¢(f D __ 5;2 -
tional energy. (7

The expression (3) has been written by a hypothetical The absolute intrinsic gravitational speed/,(¢7) is
‘one-dimensional’ absolute intrinsic observer (with db® ;1 an to be the negative root BE¢ N, /67 in Eq. (5b) be-
intrinsic rest mass) located at the position P along theatling,se of the attractive nature of the gravitational fields It
¢p where Eg. (3) is written. This ‘observer’ will be referred tgy, i reason that the absolute intrinsic gravitatioratep-
as the proper Riemannian observer for brevity. The absolyig 4nq apsolute intrinsic gravitational field possessatieg
intrinsic 1-ol?serve_rs Iocatgd located at other positidosga sign in Egs. (6) and (7). However the negative sign of the ab-
the curved)p are Riemannian observers, as has been adopigfl e intrinsic gravitational speed shall be derived faityn

in an earlier paper, see section 4 of [9]. _ and shown to be the origin of the negative sigpdf ¢) and
Equation (3) takes on the classical mechanics form with o|sewhere with further development.

respect to the proper Riemannian observer for two reaspns: By removing the symbob from Egs. (5a-b)-(7), we ob-

itinvolves absolute (and not relative) intrinsic speed$ @) 5in expressions for absolute gravitational speed, atesolu

the curved absolute intrinsic spagg is locally straight (01 44yitational potential and absolute gravitational aecion
Euclidean) at point P with respect to the proper R'ema””'?é%pectively as follows

observer. Recall from [1] that the curved ‘two-dimensional

absolute intrinsic metric spacetiniep, pépt ) in Fig. 5 pos- V,(#)? = 2G M, /7 (8a)
sesses absolute intrinsic Lorentzian metric tensor atyever

point of it with respect to the proper Riemannian observer YU APSESEN

located at each point of it. The valid absolute intrinsic maet VylP) = 2G Mo/ 7 (80)

tensor on curvedap, péot ) with respect to the proper Rie-

mannian observer is the absolute intrinsic Lorentzian imetr b(F) = —lf/ (7)? = ~ GMy )
tensor and not the absolute intrinsic sub-Riemannian metri 29 7
tensor¢g;; that is valid with respect to every 3-observer (or ©ng L -
every Euclidean observer) in the proper Euclidean 3-space g(7) = ld(v‘] (AT) ) = —d(q)(f)) =— G{\jo (20)
in Fig. 5, as developed in [1]. . 2 dr dr A _
On the other hand, the expression (3) is given in the usual Itis crucial to note that among the absolute intrinsic gravi
Newtonian form as follows tational speedV (¢7), absolute intrinsic gravitational poten-
. tial ¢<i>(gbf) and absolute intrinsic gravitational acceleration
7 — }¢ nod V2 — GoM, ) #g(¢r), defined by Egs. (5b), (6) and (7) at point P on the
2 or curved absolute intrinsic spagg at ‘distance’¢r from the

b_aseé of the absolute intrinsic rest magd/, of the gravita-
ﬁonal field source at the origin of the curvegd, the absolute
intrinsic gravitational speed is the most fundamental hiteo
¢Vg(qbf)2 _ 2G¢M0/¢f (5a) intrinsic parameter, as can be seen directly from the depen-
dence ofp®@(¢7) andpg(¢r) on ¢V, (¢F) in those equations.
o / o Indeed it is by virtue of establishment of non-uniform ab-
V(1) = —\/2GoMo /g7 (50) solute intrinsic gravitational speed (which is an absolnte
where the negative sign of the absolute intrinsic grawitel trinsic static speed) along the straight line absolutéarisit
speed introduced by hand shall be discussed shortly. spacepp along the horizontal by M, and along the straight

A comparison of Egs. (3) and (4) gives the following expre
sion for ¢V, (¢7)?
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line absolute intrinsic time ‘dimensiomégt by ¢E/¢é2 (= the base ot M, in the straight linepp’ along the horizontal
qSJ\ZIO), in the reference geometry of Fig. 3 that curved afrot shown) in Fig. 5, is now at ‘distancer’ from the base
solute intrinsic spacep and curved absolute intrinsic timeof ¢M, along the curved proper intrinsic metric spate
‘dimension’ ¢é¢t in Fig. 4 evolve, and not by virtue of esdn Fig. 7, where it still possesses absolute intrinsic dynam
tablishment of the secondary absolute intrinsic parametial speedsV,; and still acquires absolute intrinsic gravita-
q&é(dﬁ') and ¢g(¢r). Recall that absolute intrinsic statidional speed;SVg(gM). In addition,¢pmq also acquires proper
speed has been isolated as an absolute intrinsic geonhetiigansic gravitational speedV, (¢r’) at ‘distance’sr’ from
parameter along the curvegh and curvedpéét in section 2 the base ofs M, along the curvedy’ in Fig. 7, of the non-
of [1], as illustrated in Fig. 11 of that paper. uniform proper intrinsic gravitational speeds tidt/, estab-

In order to derive expressions for the proper intrinsic gralishes along the curvegdy’.
itational speedV (¢r'), proper intrinsic gravitational poten- It shall quickly be added that as long as the intrinsic rest
tial p®’(¢4r’) and proper intrinsic gravitational acceleratiomass¢m, of a test particle is in intrinsic gravitational fall
¢g'(ér), which correspond to Egs. (5a-b), (6) and (7) for thairectly along the curved proper intrinsic spagg, it is in
respective absolute intrinsic parameters, and expres$iwn absolute intrinsic fall at increasing absolute intrinsjmam-
proper gravitational speéd; (), proper gravitational poten-ical speedsV/,, just as the intrinsic motion of the projective
tial ®’(r’) and proper gravitational acceleratighir’), which intrinsic rest masgm, directly along the straight line proper
correspond to Egs. (8a-b)-(10) for the respective absplate intrinsic spaceyp’ along the horizontal in Fig. 5 is an absolute
rameters, let us revisit Fig. 5 again. intrinsic motion.

It is inherently assumed that the intrinsic rest masg, As follows from the penultimate paragraph, the intrin-
in the projective proper intrinsic spage’ along the horizon- sic rest massym, of the test particle in absolute intrinsic
tal and the intrinsic rest magst’ /¢c? (= ¢M,) in the pro- gravitational fall to the position of ‘distancey’ from the
jective proper intrinsic time dimensiafrgt’ along the verti- base of¢M, along the curved proper intrinsic metric space
cal of the gravitational field source, have not establist@® n ¢p’ (not shown) in Fig. 7, possesses three intrinsic speeds
uniform proper intrinsic gravitational speed¥; (¢r') along namely, absolute intrinsic dynamical spe#ld;, absolute in-
¢p’ andegcgt’ respectively in Fig. 5 and consequently the resinsic gravitational speedV, (¢#) and proper intrinsic grav-
masses\/, in ' and £ /c? (= M) in ¢t’ have not estab- itational speedjV; (¢r’) at this location. Since expression
lished non-uniform proper gravitational speeds along)evefas been derived fapV,(¢r) earlier, our interest now is to
radial direction from the centre af/, in ¥’ and alonget’ derive expression fapV! (¢r').
respectively in that figure. However in realityMy in ¢p’ Now the curved two-dimensional proper intrinsic met-
establishes non-uniform proper intrinsic gravitation@eds ric spacetime ¢y, peet’) with orthogonal curvilinear intrin-
¢V, (¢r') along the straight liney’, causinggy’ to become sjc dimensionssy’ and¢cet’ possesses the Lorentzian met-
curved anti-clockwise into the first quadrant afll’/¢c® in  ric tensor a every point of it with respect to the intrinsic 1-
gcgt’ establishes non-uniform proper intrinsic gravitationglbservers (with intrinsic rest masses)ip’ and 3-observers
speedspV (¢r’) along the straight linecgt’, causingpeét’ in 3. Consequently the intrinsic 1-observer located at ‘dis-
to be curved anti-clockwise into the second quadrant, wiihce’¢:’ from the base oM, along the curvedy’ where
respect to 3-observers in the resulting relativistic Eleain the particle is located, will formulate theory of combined i
3-spacey;, so that the curvedy’ and ¢cgt’ constitute or- trinsic gravity and intrinsic motion with the proper intsic
thogonal curvilinear intrinsic dimensions with respect3to gravitational speedV/(¢r') and its absolute intrinsic dy-

observersirt, as illustrated in Fig. 7. namical speedsV, along ¢’ at his location and write the

h Tt?e abséjolute mtrlgsml resF m.a$§n0 of t.he'testl fgggle proper intrinsic total energy of the intrinsic rest masshaf t
that has undergone absolute intrinsic gravitational " test particle as follows

tance’ ¢7 from the base of the absolute intrinsic rest mass
¢ M, along the curvedp, where it possesses absolute intrin- v L vz _ L V' (/)2 11
sic dynamical speedV/; and acquires absolute intrinsic grav- ¢ 2¢m°¢ d 2¢m0¢ 9 (¢r7) (11)
itational speedV,, (¢7) in the geometry of Fig. 5, retains thisz (11) takes on take the Newtonian form in terms of the

situation in the geometry of Fig. 7. In other words, the agqher (or classical) intrinsic gravitational potentiahtion
solute intrinsic rest masgn, of the test particle at ‘distance’ 4¢ tollows

o7 from the base op, along the curved, (not shown) in
Fig. 7, possesses absolute intrinsic dynamical spégdand PU' = 1 ¢m0¢f/d2 _ GoModmo (12)
acquires absolute intrinsic gravitational speédq (¢7). 2 or’

The proper intrinsic rest masgmn, of the test particle comparison of Egs. (15) and (11) yields the following

(not shown in Fig. 5) that possesses projective absolute dfqressions for proper intrinsic gravitational speed,
trinsic dynamical speedV; and acquires projective absolute

intrinsic gravitational speedV, (¢7) at ‘distance’¢r’ from oV, (¢r')? = 2G oMy / pr’ (13a)
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ngVg’(QS?“’) = —v/2GoMy/or'! (13b) 2.2 Deriving intrinsic gravitational local Lorentz trans-

The negative root ctG'¢ M /¢r’ is chosen in the definition formation and gravitational local Lorentz transfor-
of oV (¢r"), as done in the definition QﬂA/q(W) in Eq. (5b), mation qnd e;tabllshlng mtrmsu? gravitational local
because of the attractive nature of the gravitational field. Lorentz invariance and gravitational local Lorentz
The proper intrinsic gravitational potential is dependent ~ Invariance in a gravitational field
on the proper intrinsic gravitational speed as follows The intrinsic local Lorentz transformation and its inveise
1 ) GoM, terms of proper intrinsic static speed’;, as well as the in-
P’ (¢r') = _§¢Vg/(¢r ) =- o (14) trinsic local Lorentz invariance, intrinsic time dilatiamd in-

o ) . trinsic length contraction formulae they imply, derivedtwi
Also because of the intrinsic Euclidean metric tensor at{ojne aid of the local spacetinietrinsic spacetime geometries
P along the the curvedy’ where Egs. (11)-(14) are writtensf Figs. 6 and 7 and their inverses of Figs. 8 and 9 of [2],
with respect to an intrinsic 1-observer (at this point)stil- o fiat two-dimensional intrinsic metric spacetime within a
trinsic 1-observer obtains the proper intrinsic gravitadl ac- long-range metric force field, in sub-section 2.2 of [2] anel t
celeration (or proper intrinsic gravitational field) at eint o,ard manifestations of those results namely, local hire

P from definition in Euclidean geometry as follows transformation and its inverse in terms of proper statiedpe
1d(6V! (¢17)?) (6P (¢ GoM, V!, as well as local Lorentz invariance, time dilation and
og'(or') = 3 j(b?" == ( d¢(r’ ) =- r,20 length contraction formulae they imply on flat four-dimens-

(15 ional metric spacetime in a long-range metric force fieldjlsh

By removing the symbap from Egs. (13a-b)-(15) one ob-be adapted to the gravitational field in this sub-section.
tains expressions for proper gravitationa| Speed (or \j@ipc The Counterparts in the gravitational field of the local

proper gravitational potential and proper gravitationaded- SPacetimgntrinsic spacetime geometries of Figs. 6-9 of [2]
eration respectively as follows in a long-range metric force field in general must be drawn

from the global geometries of Figs. 7-10 of this paper in a

Vg’(r’)2 = 2G{VI° (16a) gravitational field (just as Figs. 6-9 of [2] have been drawn
r from Figs. 1 and 3 and Figs. 4 and 5 of that paper). This is an
S, 2GM, 7’ easy task since the counterpart local geometries to beederiv
Vo(r') = = V- (160)  trom Figs. 7-10 of this paper are exactly the same as Figs. 6-9
of [2], except that the proper intrinsic static speghd, that
'(r) = —EV/(T/)Q — _GMy (17) appear in Figs. 6-9 of [2] in a long-range metric force field
29 r in general, must be replaced by proper intrinsic gravitatio
and speedhV, (¢r’) in those figures in a gravitational field.
Lo 1AV d@(r) | GMy! We shall for completeness of this paper present the coun-
g'(r') = 2 dr SR AV (18) terpart in a gravitational field of Fig. 6 of [2] in a long-ramg

It is again important to note that among proper intrinslBetriC force field in general as Fig. 11.

gravitational speedV;(¢r’), proper intrinsic gravitational The local geometry of Fig. 11, drawn from the global
potentialp®’(4r') and proper intrinsic gravitational acce|ergeome_3try of ':'9- 7, is valid with respei:t to _S-Qbservers & th
ationgg’ (¢1), defined by Egs. (13b), (14) and (15) at point |59Iat|V|st|c Euclidean 3-spacésand—X*. This is so because

on the curved proper intrinsic spagg’ at ‘distance’s” from f[he anti-clockwise rotation of the proper ir?trin.sic spagqt
the base Sof the intrinsic rest masgM, of the gravitational intervalsdgp’ andgcdgt’ relative to their projective relativis-

field source at the origin of the curves)/, the proper in- UC intrinsic spacetime intervalé¢p and ¢cd¢t by positive
trinsic gravitational speed is the most fundamental, aseanintrinsic angle in Fig. 11 is valid with respect to these 3-

seen directly from the dependence/@¥ () andgg (@) OPServers. _ o
on¢V!(¢r') in those equations The partial intrinsic metric spacetime interval transfarm
f .

Indeed it is by virtue of establishment of non-uniforrjOn that can be derived with respect to 3-observeds in the
proper intrinsic gravitational speeds (which is a proper ifirSt quadrant from Fig. 11, which follows from the derivatio
trinsic static speed) along the straight line proper isicn ©f EQ. (5) from Fig. 6 in [2], is the following
spacepp’ along the horizontal by M, and along the straight
line proper intrinsic time ‘dimensionpcet’ by ¢E' /¢c? (= , , ,
$M,) in the geometry of Fig. 5 that curved prop/er ingtrinsic dgp’ = ddpsecPiy(¢r') — pedgt tan iy (ér');
spacegp’ and curved proper intrinsic time dimensigngt’ (w.r.t. 3 — observers in X)
in Fig. 7 evolve, and not by virtue of virtue of establishment (19)
of the secondary proper intrinsic parametes’(¢r’) and The counterpart in a gravitational field to Fig. 7 of [2] in a
og' (or'). long-range metric force field in general, is depicted in ER).
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Fig. 11: Local spacetinjmtrinsic spacetime geometry derived from the global geometry of Figith mespect to 3-observers in the

relativistic Euclidean 3-spaces in the positive and negative universes.

The local geometry of Fig. 12, drawn from the global geom-
etry of Fig. 8, is valid with respect to 1-observers in the rel

ativistic time dimensionst and —ct*. This is so since the @cdot’ = ddtseciy(dr') — deptan ¢y (dr');
clockwise rotation of the proper intrinsic spacetime inéés (w.r.t. 1 — observers in ct)
dop’ andocdgt’ relative to their projective relativistic intrin-

op andgcde prol dop = depsecduy(or') — deddttan gy (6r);

sic spacetime intervalépp and¢cdgt by a positive intrinsic

angle in Fig. 12 is valid with respect to these 1-observers. (w.r.t. 3 — observers in 33)

(21)

There is an inverse to system (21), which must be derived
from the inverses to Figs. 11 and 12. The inverse to Fig. 11 is
the counterpart in a gravitational field to Fig. 8 of [2] in adp
range metric force field in general. It is depicted in Fig. 13.

The inverse local geometry of Fig. 13, derived from the
inverse global geometry of Fig. 9, is valid with respect to
1-observers in the relativistic time dimensiattsand —ct*.
This is so since the clockwise rotation of the relativistiin-
sic spacetime intervalépp and ¢cdgt relative to the proper
intrinsic spacetime intervalépp’ andgcdét’ by negative in-
trinsic angle in Fig. 13, is equivalent to clockwise rotatio
of the proper intrinsic spacetime intervalgp’ and ¢cdot’

By collecting Egs. (19) and (20) we obtain the full intrinrelative to relativistic intrinsic spacetime intervalgp and
sic metric spacetime interval transformation with resgect ¢pcdgt by positive intrinsic angle, as in Fig. 12. Consequently
3-observers it and 1-observers ia at ‘distance’¢r’ along Figs. 12 and 13 are both valid with respect to 1-observers in
the curved proper intrinsic spage’ from the base Sof the the relativistic time dimensions and—ct*.
intrinsic rest mase M, of the gravitational field source atthe  The partial intrinsic metric spacetime interval transfarm
origin of the curvedpp’ in Fig. 11 and 12 as follows tion that can be derived with respect to 1-observers in the

The partial intrinsic metric spacetime interval transfarm
tion that can be derived with respect to 1-observers in the
first quadrant from Fig. 12, which follows from the derivatio
of Eq. (6) from Fig. 7 in [2], is the following

pcdot’ dot sec prpg(opr') — dop tan ¢pig(or');

(w.r.t. 1 — observers in ct)

(20)
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Fig. 12: Local spacetinjmtrinsic spacetime geometry derived from the global geometry of Figitl3 respect to 1-observers in the
relativistic time dimensions in the positive and negative universes; theleomentary diagram to Fig. 11.
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Fig. 13: The inverse to Fig. 11 with respect to 1-observers in the relatitime dimensions in the positive and negative universes.
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Fig. 14: The inverse to Fig. 12 with respect to 3-observers in the relitidsclidean 3-spaces in the positive and negative universes.

first quadrant (or in the positive universe) from Fig. 13, e¥hi following
follows from the derivation of Eq. (8) from Fig. 8 in [2], is¢h
following

pedpt = pedpt’ sec g (@r') + dop’ tan g, (er');
d¢ﬂ — d¢pl sec ¢¢g(¢,’,/) + ¢Cd¢t/ tan dnpg(qsrl); (WI‘t 3 — observers in Z)

(w.r.t. 1 — observers in ct)

(23)
By collecting Egs. (22) and (23) we obtain the full inverse

22 . 7 > X .
Finally the inverse to Fig. 12 is the counterpart in a gravllr]trlnsm spacetime interval transformation with respecB-

. _ H P H 1 !
tational field to Fig. 9 of [2] in a long range metric force fiel bservers irt and 1-observers inf at ‘distance’¢r” along

S ,
in general. It is depicted in Fig. 14. The inverse local geomh—e curved proper intrinsic spagg’ from the base Sof the

etry of Fig. 14, derived from the inverse global geometry g}t'ri.nsic rest mas&Mol Qf th.e gravitational field source at the
Fig. 10, is valid with respect to 3-observers in the relativi®"'9" of the curvedsy' in Figs. 13 and 14 as follows
tic Euclidean 3-spaces and —X*. This is so because the
anti-clockwise rotation of the relativistic intrinsic spime _ / / .
intervalsd¢p andécdgt relative to the proper intrinsic space- podpt dedgtsec ig(Pr) + dgp' tan ¢yg(9r);
time intervalsdgp’ andgcdgt’ by negative intrinsic angle in
Fig. 14, is equivalent to anti-clockwise rotation of thegeo  dgp = dpp’ sec gy, (pr') + pedgt’ tan iy (¢r');
intrinsic spacetime interval&pp’ and¢cdt’ relative to rela- (w.r.t. 1 — observers in ct)
tivistic intrinsic spacetime intervalépp and ¢cdot by posi- (24)
tive intrinsic angle, as in Fig. 11. Consequently Figs. 1d ahere, as follows from the derived relations (12)-(13a-b) o
14 are both valid with respect to 3-observers in the retivi ),
Euclidean 3-spacE and—X*. dop ) )

The partial intrinsic metric spacetime interval transfarm dedot 8 Phg(¢r') (25)
tion that can be derived with respect to 3-observebsinthe
first quadrant (or in the positive universe) from Fig. 14, g¥hi . , oV, (") ,
follows from the derivation of Eq. (9) from Fig. 9in [2], iséh sin gy (¢r') = e PBq(or’) (26a)

(w.r.t. 3 — observers in X)
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PVy(or')? )y Systems (21) and (24), systems (27) and (28) and sys-
¢c? ) tems (30) and (31) are alternative forms of intrinsic gia@vit
tional local Lorentz transformatioryGLLT) and its inverse
By using Egs. (26a) and (26b) in systems (21) and (24n flat two-dimensional intrinsic metric spacetime in every
we obtain the counterparts in a gravitational field to systegravitational field. They are referred to as intrinsic gtavi
(14) and (15) of [2] in a general long-range metric force fielgbnal local Lorentz transformation and its inverse, aslisha

sec b, (¢r') = (1 — = ¢yy(or') (26b)

respectively as follows be done henceforth for two reasons. First, because they are
oV (1) valid within an intrinsic local Lorentz frame located at iarb
dot' = ¢ryg(or’)(dot — —I——d¢p) trary ‘distance’¢r’ along the curved proper intrinsic metric
(wrt. 1 — observe;zcin o) spacepp’ from the base _othp, Which_c_orres_por_wds_ to ‘dis_—
27) tance’ ¢r along the straight line relativistic intrinsic metric
dop' = ¢ye(er')(dop — ¢V, (or')det) spacepp from the base ofM in Fig. 7. The proper intrinsic
(w.r.t. 3 — observers in X)) gravitational speedV; (¢r') has a constant value within this
and intrinsic local Lorentz frame. Secondly, because theygiert

to the intrinsic theory of relativity associated with theepr

oV, (gr') ence of relative intrinsic gravitational field in intringicetric
— / ! A AN /
dot = ¢yy(or')(det’ + ¢c? dop’) spacetime that involves proper intrinsic gravitationatesp
(w.r.t. 3 — observers in X)) (28) #V,(¢r'), which is a relative intrinsic static speed, as shown
explicitly by systems (27) and (28).
dop = Gry(or')(dop' + oV (6r')dot') Plictty by systems (27) and (25)

There is the counterpart intrinsic local Lorentz transfor-
mation @LLT) and its inverse within local Lorentz frames in
F|na||y by us|ng the express|on (13b) fdﬂ/ ((br) in eVery graVitational f|e|d which involves relative intriﬂﬁy'
Eq. (26a) and (26b) we obtain the following relations for tHeamical speedbv in the context of primed intrinsic special
intrinsic anglepy, (¢r') theory of relativity ¢SR’) on flat two-dimensional proper (or
primed) intrinsic metric spacetimey’, ¢cét’) (in Fig. 5) in
) , oV, (1) 2G oM, , the assumed absence of relative gravitational field and un-
sin ¢y (1) = e\ orer T $Bq(¢1) primed intrinsic special theory of relativitySR) on flat two-
(29q) dimensional relativistic intrinsic metric spacetirtu, pcot)

OV (¢1')? " (in Fig. 7) in a relative gravitational field, to be derivedel
) where with further development.

(w.r.t. 1 — observers in ct)

sec by (or') = (1 —

] 2
gc Either system (21) or its inverse (24) or the more explicit
=(1- ZGM(;) 1/2 _ = ¢ryy(pr) (29b) forms (27) or (28) in terms of proper intrinsic gravitatibna
or'e speed or yet most explicit form (30) or (31) in terms of intrin

sic gravitational paramete®7¢M,/¢r’, leads to intrinsic

Systems (21) and (24) or systems (27) and (28) are then Javitational local Lorentz invarianceGLLI)

given in terms of the intrinsic gravitational parametegrr
2G oMy /pr' pc? respectively as follows

pcrdet* — dop® = ¢pc?dpt’® — dop”? (32)
, , 2G oM, . . L o
dot' = ¢y,(¢r')(det — ——dop) Equation (32) is referred to as intrinsic gravitationaldbc
¢ Lorentz invarianceGLLI) because it has arisen as a conse-

(w.r.t. 1 — observers in ct) (30) duence of the intrinsic gravitational local Lorentz tramsfia-

tion (¢GLLT) or its inverse. There is intrinsic local Lorentz

dop’ = ¢rye(or')(dop — 2G¢J/w° det) invariance $LLI) in the context of intrinsic special theory of
or relativity (¢SR), within intrinsic local Lorentz frames on flat
(w.r.t. 3 — observers in X) intrinsic metric spacetime in a gravitational field, whistir-
and plied by intrinsic local Lorentz transformatiogl(LT) or its
inverse in the context afSR, within intrinsic local Lorentz
_ p , 2GoM, , , frames in every gravitational field, to be developed elseahe
dgt = dry(or)(det + o' pct ') with further development.
(w.r.t. 3 — observers in X) The intrinsic gravitational local Lorentz transformation
(31) (4¢GLLT) of elementary proper intrinsic metric spacetime in-
_ / / 2GoMy tervalsdop’ andpcdgt’ into elementary relativistic intrinsic
dop = dg(er)(dop’ + or! dét’) metric spacetime intervaldop and ¢cdgt of system (21),
(w.r.t. 3 — observers in ct) (27) or (30), is valid within intrinsic local Lorentz frame a
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every point on the flat two-dimensional relativistic ingia the global geometry of Figs. 7 and 8).

metric spacetimé¢p, pcpt) with respect to 3-observers in System (34) is given in terms of the proper intrinsic grav-
the relativistic Euclidean 3-spageand 1-observers in the rel-itational speed by virtue of relation (25b) as follows

ativistic time dimensiort (or with respect to 4-observers on

flat four-dimensional relativistic spacetinig, ct)) in a gravi- dop = dop'(1— ¢Vg'(¢7“')2 )1/2,

tational field of arbitrary strength in Figs. 7 and 8. The nsee P P pc2 '

#GLLT of system (24), (28) or (31) is likewise valid within SV ()2 (35)
intrinsic local Lorentz frame at every point on the flat two- dot = dot'(1— 972)71/2;
dimensional relativistic intrinsic spacetiniép, ¢cgt) with pc

respect to 4-observers on the flat relativistic metric stiaee
(%, ct) in every gravitational field in Figs. 9 and 10. It the
follows that the two-dimensional relativistic intrinsicetnic

spacetime(¢p, pcot) possesses intrinsic Lorentzian metri
tensor at every point and is consequently everywhere flat in 2G oM,

Igw.r.t 3-observers ifx).
And system (35) is given in terms of the intrinsic gravi-
tational paramete2Go M, /pr’ by virtue of Eq. (29b) as fol-

a gravitational field of arbitrary strength, as illustratsdthe dpp = dop'( or' pc2 )1/2?
extended straight lingp and¢cgt in Figs. 7 — 10. (36)
ial intring ot 2GoMy , _
Let us collect the partial intrinsic gravitational local det = dot'(1— )~1/2
Lorentz transformations of elementary intrinsic metriacg- o' pc?

time coordinate intervals with respect to 3-observers & tjy.r.t 3-observers iix).
relativistic 3-spacé: in systems (21) and (24) to have as fol-  Now the intrinsic theory of relativity in the intrinsic met-

lows ric spacetime associated with the presence of relativieaitr
gravitational field in intrinsic metric spacetime, will beade
dép' = secdibg(dr')(dpp — sin by (dr')pedet); manifest in a theory Qf relat|V|_ty in metr_lc spacenm_e due to
. X the presence of relative _gre}vngtlonallﬂe.ld in metric space
ot = secduy(or)(dot + 2 Phg(¢r >d¢p'); time. Consequently the intrinsic gravitational local Liotze
¢c transformation §GLLT) of system (21) and its inverse of
) (33) system (24) within an intrinsic local Lorentz frame on flat
(w.r.t 3-observers if). two-dimensional intrinsic metric spacetime within a gtavi

Now when a hypothetical intrinsic 1-observer in the refigng] field, in terms of the intrinsic angley, (¢r'), will be
ativistic intrinsic metric spaceép underlyingX picks his in- 3de manifest outwardly in gravitational local Lorentzisa
trinsic laboratory rod to measure the relativistic intit®et-  t5rmation (GLLT) and its inverse within the corresponding
ric space interval involved in an intrinsic eventin the t®ia-  |ocal Lorentz frame on flat four-dimensional metric space-
tic intrinsic metric spacetime, in the first equation of 88t {ime within the gravitational field. We must simply remove
(33), he will be able to measure the tetfp sec ¢4 (¢1')  the symbolg from systems (21) and (24) to have their out-

but not the term-¢cdgt tan g1y (¢r’) at the right-hand side yarq manifestations in spacetime respectively as follows
of that equation with his intrinsic laboratory rod. Likewis

when the hypothetical intrinsic 1-observersdgp picks his cdt! = cdtseciy(r') — drtani,(r');
intrinsic laboratory clock to measure the intrinsic metiice

) ) ’ AR : (w.r.t. 1 — observers in ct);
interval involved in the same intrinsic event in the second

equation system (33), he will be able to measure the term dr’ = drsecipy(r’) — cdt tan iy (r');
dot’ sec pihg(or') but not the term(dgp’ /pc) sin ¢ipg(¢r') ' de = rdf; r'sin#'dy’ = rsinfdyp;
with his intrinsic Iaboratory.clqck.. By removing the term§ (w.r.t. 3 — observers in X))
that cannot be measured with intrinsic laboratory rod and in (37)
trinsic laboratory clock from system (35) we have and

dpp = dop cos dipy(¢r'); (34) cdt = cdt' seci)y(r') 4+ dr’ tany(r');

dot = dot’ sec gy (or'); (w.r.t. 3 — observers in X);

_ / / / /.

(W.r.t 3-observers iir). System (34) gives the intrinsic length 4" = I sec Wy (r') + cdt’ tan 3y (1'); (38)
contraction and intrinsic time dilation formulae in termis o rdf = r'd0’; rsinOdp = r'sin 'dy’;
the intrinsic anglepy,(¢r’) with respect to 3-observers in (w.r.t. 1 — observers in ct)
the relativistic Euclidean 3-spacéein the context of the in-
trinsic theory of relativity associated with the presenteeb The appearance of the anglg(r’) in system (37) and

ative intrinsic gravitational field in intrinsic spacetinj@ith (38) conveys the impression that the coordinateandct’ of
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the proper metric spacetim&’, ct’) = (r',r'8’',r'sin '/,
ct’) are curved with non-uniform curvature relative to dimen-
sionsr and ct respectively of the relativistic metric space- "
time (3, ct) = (r,r0,rsinfy, ct) in a gravitational field. It

must be noted however that there is no curvature of the four-
dimensional spacetime or of dimensions of the four-dimen- g,/
sional spacetime in the new geometrical background to the
theory of relativity and gravitation within a four-world @i

ture presented as Figs. 7 - 10 of this paper.

and

Only the proper intrinsic metric spacetime dimensions
¢p’ and ¢cot’ are actually curved relative to their projec- dt
tive relativistic intrinsic metric spacetime dimensiafsand
ocot respectively in Figs. 7 and 8 and their inverses Figs. 9
and 10. The curvature of the dimensions of the physical dr
spacetime implied by systems (37) and (38) is an intrinsic
and not observable (or actual) curvature, which is what the
curvatures of intrinsic spacetime in Fig. 7 - 10 represent.
where

Systems (37) and (38) correspond to systems (20) and ~,(r') = sectpy(r') = (1 —

(21) of [2]. The coordinates of the proper Euclidean 3-space

respectively as follows

(et = 20 g,

(w.r.t. 1 — observers in ct)
Yg(r")(dr — Vg’(r’)dt);
r'df’ = rdf; r'sin@'dy’ = rsinfdy;

(w.r.t. 3 — observers in X)

V/ /
e e+ L gy

(w.r.t. 3 — observers in X)
Yo (r')(dr" + V,(r")dt’);
rdf = r'dd’; rsinOdp = r' sin0'dy’;

(w.r.t. 1 — observers in ct)

Vg/(’f’l)Q/C2)_1/2

(39)

(40)

(41)

Y’ represented by:'', 2’2 and 2’ and of the relativistic Systems (39) - (41) correspond to systems (22)-(24) of [2].

Euclidean 3-spacE represented by!, 2% andz? in systems

And the outward manifestations on flat four-dimensional

(20) and (21) of [2], are replaced respectively by the sphespacetime of systems (30) and (31) are the following respec-

cal coordinate”’, '’ andr’sin #'’ that originate from the tively
centre of the rest masd, of the gravitational field source in
the proper Euclidean 3-spa& (in Fig. 5), whereM is be-
ing assumed to be spherical at presentand andr sin ¢
that originate from the centre of the relativistic magsf the
gravitational field source in the relativistic Euclideasj@ace
3 (in Fig. 7), whereM is also being assumed to be spherical dr’
at present.

dt’

The straight line isotropic proper intrinsic metric space
¢p’ along the horizontal can be taken to lie along any ral!
dial direction from the centre ol/, in X’ with respect to
3-observers it.’ in Fig. 5 and the straight line isotropic rel-  dt
ativistic intrinsic metric spacep along the horizontal can
be taken to lie along any radial direction from the centre of
M in ¥ with respect to 3-observers i in Fig. 7. Itis
for this reason that the outward manifestation in spacetifme
systems (21) and (24) have taken the forms of systems (37)
and (38) respectively, where the unprimed coordinafeand
rsin O of X, along whichgp does not lie, which are hence

dr

non-relativistic coordinates, transform into the corsting Where

Yy (r")

proper (or primed) coordinates, r6’ andr’sin '’ of X’
trivially as 7’6’ = r6 andr’ sin 0’ = r sin fp.

2G M,
Vg (r')(dt — 7,,040 dr);

(w.r.t. 1 — observers in ct)

2G M,
Yo (r')(dr — 1/ - Y dt);

r'df = rdf; r'sin@'dy’ = rsinfdy;

(w.r.t. 3 — observers in X)

2G M,
()@t -+ =),

(w.r.t. 3 — observers in X)

2G M,
() + | ),

rdf = r'd0’; rsinfdp = ' sin6'dy’;

(w.r.t. 1 — observers in ct)

(42)

(43)

(1 =Vy(r')? /)72 = (1= 2G My /r' )~/

(44)

Systems (37) and (38), systems (39) and (40) and sys-
The outward manifestations on flat four-dimensiontégéms (42) and (43) are alternative forms of gravitationehlo
spacetime of the intrinsic gravitational local Lorentasfor- Lorentz transformation (GLLT) and its inverse on flat four-
mation of system (27) and its inverse (28) are likewise giveliimensional spacetime in a gravitational field of arbitrary
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strength. They are called gravitational local Lorentz¢fan and

mation because they involve proper gravitational speed 2GMo .15 ., o

V4 (r') and are restricted within a local Lorentz frames lo-  dr = (1 - —75~) Pdr'; rd =r'd’;

cated at an arbitrary radial distancesom the centre of the rsinfdg = 1 sin 0'dy'; (48)
relativistic mass\/ of the gravitational field source in the rel-

ativistic Euclidean 3-spacE. They pertain to the theory of dt = (1-— QGZJ\QIO )‘1/2dt’

relativity associated with the presence of relative gedighal re

field in metric spacetime. There are also local Lorentz trarishe gravitational length contraction and gravitationaieidi-
formation (LLT) and its inverse, involving transformat®af lation formulae (46) — (48) are valid with respect to 3-obser
affine spacetime coordinates and dynamical speeflrel- ers in the relativistic Euclidean 3-spakten Fig. 7.
ative motion in the context of the special theory of relativ- The theory of relativity on flat four-dimensional relativis
ity (SR) within a local Lorentz frame on the flat relativistidcic metric spacetimé>, ct) associated with the presence of a
spacetimgX, ct) in a gravitational field, to be derived elsegravitational field, within which the gravitational locabten-
where with further development. tz transformation (GLLT) and its inverse (37) and (38) or)(39
Either the GLLT (27), (30) or (42) or its inverse (28), (31&nd (40) or (42) and (43) have been derived; within which
or (43) leads to gravitational local Lorentz invariance {(Bl. the gravitational local Lorentz invariance (45) on flat four
c2dt? — dr? — r?(d6? + sin’ dy?) dimensional metric spacetime in every gravitational fieds h
(45) been established and within which the gravitational length
= Adt”? — dr'”? —172(d0"” + sin® d'?) contraction and gravitational time dilation of system (46)

This is the outward manifestation on flat four-dimensionfft 7) Or (48) has been derived, shall be referred to as theytheo
metric spacetime of the intrinsic gravitational local Luiz Of gravitational relativity and given the acronym (TGR).
invariance ¢GLLI) (32) on flat two-dimensional intrinsic  The TGRis the gravitational counterpart, (involving rela-
metric spacetime. Eq. (45) is referred to as gravitationeal tive gravitational velocity/; () — which is a static velocity)
Lorentz invariance (GLLI) because it has arisen from grafif the special theory of relativity (SR), (involving unifor
tational Local Lorentz transformation (GLLT) or its invers "elative dynamical velocity)). However while the relative
There is also local Lorentz invariance (LLI) in the contekt glynamical velocity is spatially uniform, thereby satisiyi
SR within local Lorentz frames on flat spacetime in a graJf?€ Special principle of relativity of Einstein [10], anduth
tational field to be established elsewhere. warranting the name special theory of relativity, the reéat

The gravitational local Lorentz invariance (GLLI) (45) igravitational velocity (a static velocity);(r') that appears
valid at every point on four-dimensional spacetime in evelfy TGR is not spatially uniform, thereby satisfying the gen-
gravitational field, implying flatness everywhere in a gtavi €ral principle of relativity of Einstein [11]. Thus the thgo
tional field of arbitrary strength of the four-dimensionela- ©f gravitational relativity (TGR) may also be referred to as
tivistic metric spacetimey, ct), as deduced graphically andne general theory of relativity on flat spacetime, going by
illustrated in Figs. 7 and 8 and their inverses Figs. 9 and Etfsteinian nomenclature, but we shall prefer TGR.
earlier. If we could have our way, the special theory of relativity

Finally the intrinsic gravitational length contractioncan@ssociated with dynamical velocity would be referred to as
intrinsic gravitational time dilation formulae in the cent the theory of dynamical relativity (TDR), which can thendak
of the intrinsic theory of relativity associated with theepr Care of the relativity of both uniform and non-uniform revat
ence of intrinsic gravitational field on flat two-dimensibnalynamical velocities. The relativity of non-uniform reles
intrinsic metric spacetime, presented in the alternatwen Velocity motions shall be incorporated into the preseritne
of systems (34), (35) and (36), are made manifest outwar@lgewhere with further development. . _
on flat four-dimensional metric spacetime in the context of The intrinsic theory of relativity on flat two-dimensional
the theory of relativity associated with the presence Oﬁgrarelatlwstlc intrinsic spacetim@pp, ¢cgt) associated with the

tational field in metric spacetime respectively as follows ~Presence of relative intrinsic gravitational field(inp, ocot),
within which the intrinsic gravitational local Lorentz trs

dr = dr’costpy(r'); rdf =r'dt’; formation (GLLT) and its inverse of systems (21) and (24)
rsinfdp = r'sin0'dy’; (46) or systems (27) and (28) or systems (30) and (31) have been
dt = dt'seci,(r') f:leriv_ed; within which the intrinsic gravitati(?nal local tfmt_z _
e no invariance ¢GLLI) (32) has been established and within
r = (1- Vy (') YW2dr!s rdf = 'de'; which the intrinsic gravitational length contraction antfin-
c? ’ ' sic gravitational time dilation formulae of system (34)5)3
7sin 0dp = 1’ sin 0'dy’; (47) or (36) have been derived, is the intrinsic theory of gravita
VI(r)? tional relativity (#TGR). It is the gravitational counterpart of
dt = (1—-2=)"2at the intrinsic special theory of relativity)GR).

C
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The theory of gravitational relativity (TGR) on flat foursstage of evolution of spacetirfigtrinsic spacetime in a grav-
dimensional relativistic metric spacetinig, ct) in a gravi- itational field.
tational field of arbitrary strength in Figs. 7 and 8 and their [t must be remembered that the relativistic magsn X
inverses Figs. 9 and 10, is mere outward manifestation of fseot the source of the proper gravitational sp&g@-') in
intrinsic theory of gravitational relativity{TGR) on flat two- 3. Rather the proper intrinsic gravitational spegt, ()
dimensional relativistic intrinsic metric spacetirfip, ¢cét) along the curved proper intrinsic metric spage, which is
underlying (%, ct) in those figures. Once a result 8TGR projected invariantly as proper intrinsic gravitationakeed
has been derived on flat intrinsic spacetit@® , ¢cot), the ¢V (¢r’) into the relativistic intrinsic metric spacgp along
corresponding result of TGR on flat four-dimensional spaagre horizontal, is made manifest in proper gravitationakesp
time (X, c¢t) can be written straight away, essentially by drogf;(r') in 3 in Fig. 7. Moreover the relativistic mass/
ping the symbols from the result ofyTGR. This procedure, (which shall be identified as the inertial mass and passive
which has been demonstrated above, has been demonstigiggtational mass ultimately), is not a gravitational diel
betweenySR and SR in [3]. source. Hence it does not establish relativistic grawitetl
The “relativity” aspect of the commonly used terminolspeedV,(r) in .
ogy “relativity and gravitation”, when applied in the prese  Now the proper gravitational spedd (1) is a property
context, refers to a theory of relativity on flat spacetime asf space, established in space by the source of a gravigtion
sociated with the presence of gravitational field, whicthes tfield, irrespective of whether a test particle is presenpace
theory of gravitational relativity (TGR), while the “grde or not. A particle or object of any mass located at a point P
tion” aspect of the “relativity and gravitation” termin@g, in space where the proper gravitational speetlig”), ac-
refers to the theory (or law) of gravity on flat four-dimenquiresV7/(r') but does not move relative to any observer at
sional relativistic metric spacetim{&, ct) in Fig. 7, obtained thjs speed. If it also possesses a dynamical velatitgla-
from the transformations with the aid of GLLT and its inversgye to an observer while moving through point P, then it will
(42) and (43) of the classical (or Newtonian) theory (or lavige observed to move at the velocitynly relative to the ob-
of gravity. This is analogous to the special theory of refatiserver, despite the gravitational spdédr”) it has acquired.
ity and relativistic mechanics, where relativistic medbaris The gravitational speed established at a point in space
classical mechanics transformed with the aid of LLT and &nnot be observed or measured. It does not give rise to flow
inverse in the context of SR. of space and consequently it does not give rise to translatio
in space of a material particle or object that acquired it, as
2.2.1 Clarifications of the concepts of relative gravita- mentioned above. Further more, the gravitational speed at
tional field, relative gravitational speed and rela- a point in space is the same with respect to all observers or
tivity associated with relative gravitational speed frames of reference. It is hence an absolute parameter from
(or field) the point of view of the special (or dynamical) theory of rel-

ativity. How come then the concepts of relative gravitagion

Let us for completeness and for the emphasis it desengsaed and relativity associated with gravitational speed (
adapt the clarifications of relative metric force fieldsate®e ow come the theory of gravitational relativity)?

static speed and relativity associated with relativestgieed In order to answer the question ending the foregoing para-

ina Iong-rgnge mgtriq force_field, done in SUP'S?C“O” 2'?’&raph, let us revisit the length contraction and time dilati
[2], to relative gravitational field, relative gravitatiahspeed formulae (47) and (48). Although the proper gravitational
and relativity associated with relative gravitational epere- speed/”/ (') at a point in space cannot be observed or mea-
ferred to as theory of gravitational relativity (TGR) abovgured agnd although its squa]v’g(r’)2 cannot be observed or

hereunder. " N 9N/

Now the proper gravitational spedd (') that appears m/ea/sgreg,_t?g qtjantltldi — Vo (r)*/e) 2ar’ and (1 5
in the theory of gravitational relativity (TGR) found in i Vo (7')"/¢")~"/"di’ can be observed and measured. This fol-
sub-section is a property of space, established in the prog¥'s from the fact th"j‘v.q ()" isrelated to the cIa§S|§:aI/92rav-
Euclidean 3-spack’ at radial distance’ along every radial ational potentiab(r’) as in Eq. ,(17)' The quantity; (1')*,
direction from the centre of the rest maks, of a gravita- like the gravitational potentiab(r’), at a point in space, can-
tional field source in>’ in the geometry of Fig. 5, at theMOt be observed or measured. )
first stage of evolution of spaceifitrinsic spacetime in a As shall also be shown formally elsewhere with further
gravitational field. It transforms invariantly into propgrav- development, the speedn the factors(1 — Vy(r')?/c)/?
itational speed/; (') at the corresponding radial distance and(1—V;(r')?/c*)~1/2,is a gravitational speed like (")
along every radial direction in the relativistic Euclidean it divides (and not the dynamical speed of light). In other
spacey from the centre of the relativistic mase of the words, these factors shall appear(as- V,(r')?/c2)'/? and
gravitational field source i, in the geometry of Fig. 7, ac-(1 — V/(r')?/c2)~/2 with further development, wheteg, is
cording to the yet to be proved relation (2b), at the secotite maximum over all gravitational speeds that can be es-
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tablished in space or that can be acquired by particles aniitides in a strict sense) atfidirent positions in the proper
objects, including massless gravitons, with a magnitude Ediclidean 3-spacE’, which transforms invariantly as proper
3 x 10% m/s; (the speed of light being the maximum over aljravitational speeds in the relativistic Euclidean 3-gp&c
dynamical speeds of particles and objects, including raassiwithin the gravitational field. Fig. 5 is devoid of relative
photons, with equal magnitude ®fx 102 m/s). gravitational speed but contains absolute gravitatiopeéd.
. Ve )\ 1 nont Henceitis a diagram in the absence of relative gravity (er ab
Now the quantitieg1 — A )? = Cg(cg Yy (r')?)2 sence of TGR). The possibility of the relativity of other ghy
Vy/(’;/ﬁ)*% = L2 - V/(T/)2)f% can be mea- cal parameters, such as mass, electric and magnetic fialds, e
% ‘o, ! ’ ergy, fluxes, temperature, entropy, potentials, etc, irsémese
ﬁ)é the variations of their observed (or relativistic) magdes
ith proper gravitational speed and consequently with-posi
in space within a relative gravitational field, on thd fla
r-dimensional relativistic metric spacetiméE?, ct)
(in Fig. 7) (or in the context of TGR), shall be investigated

and (1 —

sured, since the ﬂ“erencecg — Vg’(r’)Q, being equivalent to
difference of gravitational potentials, can be measured. it t
follows that the length contraction and time dilation formu}
lae (47) and (48) can be observed and measured. Thus?%
allowing an event that involves proper time interdal and 0
proper space intervalg’, r'df’ andr’ sin #’dy’ to occur at
different positions in space within a gravitational field, theelsewhere. o ) )

observed (or relativistic) time intervat and the observed (or . Expected_ly, it will be possible to d_erlve the trans_forma-
relativistic) dimension of 3-spacé- of the same event will ioNS Of physical parameters and physical constants, ictdss
vary with position in space, while the observed dimensiof8d SPecial-relativistic non-gravitational and classgrav-
rdf andr sin d, of the event will be the same at all positiond@tional laws on flat spacetime within a gravitational field
in space within the gravitational field, according to sys?.erﬁ‘"th the aid of the gravitational local Lorentz transforioat

(47) and (48). The variation with the magnitude of the propglaLLT) and its inverse O_f ;ystems _(39) anq (40), in the con-
gravitational speed; (') and consequently with position intext of the theory of relativity associated with the preseat

space within a gravitational field of the observed (or reigti 9ravitational field in spacetime (or in the context of the-the
tic) time intervaldt and the observed (or relativistic) intervaP"y Of gravitational relativity (TGRY)). This will be analogs

of spacelr of an event, is the concept of relativity associatd@ the Lorentz transformations of parameters and natusa la
with the presence of gravitational field in spacetime. on flat spacetime in the context of the special theory of rela-

In brief, the relativity associated with proper gravitaia tivity.
speed in an external gravitational field (that is, the theo:rjy ) _ ) , . .
of gravitational relativity (TGR)) is relativity with pogon 3 1he ‘two-dimensional’ metric theory of absolute in-
in space within the field (and not relativity with observer or insic gravity on curved ‘two-dimensional’ absolute
frame of reference). Identical clocks located afatient po-  NUrINSIC spacetime

sitions of diferent radial distances from the centre of a As has been shown in section 3 of the preceding paper [2]'
gravitational field source in the relativistic Euclidearasp the ‘two-dimensional’ absolute intrinsic Riemann geometr
¥, which are made synchronous at an initial time, will N@n curved ‘two-dimensional’ absolute intrinsic metric spa
remain synchronous with the passage of time, by virtue tghe (¢p, pégt) with respect to 3-observers in the underly-
the relativity of time associated with the proper gravilatil |ng physica| proper Euclidean 3_spaﬁé3 So|e|y in F|g 4
speed (or by virtue of the presence of the theory of gravig- Fig. 11 of [1], at the first stage of evolution of space-
tional relativity (TGR)). time/intrinsic spacetime in a long-range metric force field,
Relativity of proper gravitational speed likewise refass remains unchanged on the curvegp, ¢pé¢t) with respect to
variation of magnitude of proper gravitational speed with p3-observers in the relativistic physical Euclidean 3-sp&é
sition in space within a gravitational field. In other words, in Fig. 1 of [2] at the second stage.
refers to the fact that the proper gravitational spe‘e’yt(g/l) The foregoing implies that the absolute intrinsic line el-
and V/(r3) at two positions of dferent radial distances; ements, (61) and (62), the implied absolute intrinsic met-
andr; respectively from the centre of the gravitational fieleic tensorgg;; (63) and (64) and the absolute intrinsic Ricci
source have dierent magnitudes. It does not refer to Var'tensor¢f%ij of Egs. (67) and (68) of [1] on curved ‘two-
ation of the magnitude of a gravitational speed with the ogimensional’ absolute intrinsic metric spacetitiig), pégt)
server or frame of reference. As mentioned earlier, thegroRyithin a long-range metric force field, which are valid with
gravitational speed at a point in space is the same with césp@spect to 3-observers in the proper physical Euclidean 3-
to all observers or frames of references. spaceFE’3 solely in Fig. 4 or Fig. 11 of that paper, are equally
In the light of the foregoing, a relative gravitational figdd valid on curved ¢p, pé¢t) with respect to 3-observers in the
the one that establishes non-zero proper gravitation&dsperelativistic Euclidean 3-spackE in a gravitational field in
in space. That is, one that establishes proper gravitdtioRay. 7 of this paper. Recall that the proper and relativistic
speeds of dferent magnitudes (no matter how small in maghysical Euclidean 3-spaces, denotedisy and E* respec-
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OV, (97)?

tively in [7,1,2], have been re-denoted By and X respec-

tively for convenience in Figs. 5 - 10 of this paper. The prope 1= o2 0

physical Euclidean 3-space was also denoted iy [3-6]. 0Gi; = 0 _ 1 (56)
Let us adapt Egs. (61) and (62), Egs. (63) and (64) and gng(ngf)Q

Eqgs. (67) and (68) of [1], written with respect to 3-obsesver 1= he2

in the proper Euclidean 3-spad&?® in Fig. 4 or Fig. 11 of and

[1], within a long-range metric force field in general in that .

paper, to the gravitational field with respect to 3-obsesver PVy(o7)? 0

the relativistic physical Euclidean 3-spaten Fig. 7 of this X Y

paper. We must simply replace the absolute intrinsic angle $R;; = 0 _ AC L (57)

and the absolute intrinsic curvature parametethat appear ¢Vg(¢f)2

in those equations and in Fig. 4 of [1] by the corresponding 1- o2

absolute intrinsic anglenﬁg(gbf) and absolute intrinsic cur-

vature parameteqﬁl%g(gﬁf) in a gravitational field to have as Let USA then ,apP'y the expre_ssions (5a) or (5b), deriyed
follows for ¢V, (¢r) earlier in this paper in Egs. (55) - (57) to obtain

(dp3)?, dgi; andqﬁ]—?,;j explicitly in terms of absolute intrinsic
(dp3)? = cos® ¢ o (67)pé? (dgt)? — sec? ¢¢g(¢7z)(d¢ﬁ)2 gravitational parameters as follows

(49) ' 52
. 2GoMy . . - do
or (a0s)? = (1 = 25 0c* aoi)* - — T (s
) . R ) R d A\ 2 1-— -
(103 = (1 = oy (o) o g - —E0 - (50) 4
g L 2G Mo 0
2 n ~ f 62
- Dby (&) 0 X Pro
o = (% L0 ) ey Dis; = o (59)
0 —sec” ¢ihy (¢F) B oo
or PrPe?
A L — ghy(o7)2 0 and
$Gij = 0 _ o (52) 2Gp M, 0
1 — ¢ky(¢7)? A  prpe2
- T P2
and oR;; = 0 _ 2G¢My /qbrfbc (60)
. 2G oM,
Ry = ( —sin? gy (1) 0 > (53) G e
1] N N
0 — tan? ¢y (¢7) Although Egs. (49)-(57) are important in their own right,
or the forms (58)-(60), given explicitly in terms of the abgelu
intrinsic parameter@G oM,/ o+, are the final forms and the
*Qﬁffg(cﬁf‘)z 0 forms that shall be found most useful in the metric theory of
Do I (AR)2 absolute intrinsic gravity, with the acrony@MAG, on the
OR;j = Pkg(oF) (54)
T s curved ‘two-dimensional’ absolute intrinsic metric sp@oe
1= ohg(o7) (¢p, pédt ), which is valid with respect to all 3-observers in

the underlying relativistic Euclidean 3-spakein Fig. 7, at

Then upon isolating the absolute intrinsic static speed A3 . L .
o . : ; t 2 second stage of evolution of spacetimeinsic spacetime
an absolute intrinsic geometrical parameter in section 2.0

e . " in a gravitational field.
[1], the absolute intrinsic metric tensor, the absolutéristc . ; N s A
Ricci tensor and the absolute intrinsic line element were re The relationships amongy,(¢7), dkq(¢7), @Ve(¢7)

written alternatively in terms of absolute intrinsic statpeed 21d2G¢Mo/¢r that follow from Egs. (49)-(60) shall be ex-

in that section, as Egs. (81), (82) and (83) respectively pf [Pressed linearly as follows

Those equations are the following respectively in terms of A ) V(672 2GoM

absolute intrinsic gravitational speed in a gravitatidieit sin® gy (¢F) = ok (¢F) = 0 fb(;r) = ¢7j;é20
g

(dop)? (55) The approach applied in the derivation of Egs. (49)-(60)
st/g(@:) in [1], based on the results of the graphical analysis of ab-
$é2 solute intrinsic Riemannian metric spak&’ in [7], must be

(61)

(s = (1= P08 yoc2 ain? -

1—
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described as graphical approach, as is obvious. Howevenf §l], must be used to convepig;; to ¢g;;. Those relation-
pair of absolute intrinsic tensor equations was derivechfraships shall be re-written here as follows

the graphical analysis of the absolute intrinsic Riemamnia

metric spacel/?, which were adapted to the curved ‘two- ¢Joo = 1/¢d50; ¢d11 = —¢911; ¢Gij = ¢Gij = 0; i # j
dimensional’ absolute intrinsic metric spacetiag, pcot ) (64a)
in Fig. 4 of [1] and re-written as Egs. (34) and (38) of [1]. bG11 = —1/dgoo (64b)
They are given in terms of starred absolute intrinsic metric
tensor¢g;; and starred absolute intrinsic Ricci tens;m%g‘j

The starred absolute intrinsic metric tense§: of
as follows 5¢§m

Eqg. (62) transforms to the following absolute intrinsic met
ric tensor without star labelg;; by virtue of system (64a)

095 —oR;; = &y (4LEL)  (62)
OR}; — Ohg(¢7)0g}; = O (63) 1= ¢hy(07)? 0
?gij = 0 _ Al (67)
where the absolute intrinsic curvature paramesey(¢#) in 1 — ¢ky(or)?

a gravitational field has been used in Eq. (63).

Eqg. (62) is a tensorial statement of intrinsic local Eucli
ean invariancegLEl) on the curved ‘two-dimensional intrin-
sic metric spacetimépp, pégt ) partially with respect to 3-
observers in the proper Euclidean 3-spateand partially
with respect to 1-observers in the proper time dimensibim
Fig. 4 of [1], at the first stage of evolution of spacetiintin-
sic spacetime in a long range metric force field. Egs. (62)
(63) are equally valid on the curvédy, ¢éot ) partially with
respect to 3-observers in the relativistic Euclidean 3:8p

d[ he absolute intrinsic metric tensor without star labelabd/
with respect to 3-observers in the relativistic physicatlils
ean 3-spac& solely in Fig. 7.

While intrinsic local Euclidean invariancepl(EIl) ex-
pressed by Eq. (60) obtains on the curved ‘two-dimensional’
absolute intrinsic metric spacetiniep, pé¢t ) with respect
atr(?bd?.—observers in the relativistic Euclidean 3-spacand 1-

observers in the relativistic time dimensienin Fig. 7, it is
intrinsic local Lorentz invariance that obtains on the aav

Y, and partially with respect to 1-observers in the relativi ¢p, ¢cgt) with respect to 3-observers in the Euclidean 3-

tic time dimensionct in Fig. 7 of this paper, at the seconc?pacez solely in that figure, as robustly demonstrated in [1]

stage of evolution of spacetifigtrinsic spacetime in a grav—Wlth re.spe.ct to 3-observers in proper Euclidean 3Tsp}(ce
itational field. solely in Fig. 4 of that paper. Thus in order to obtain an ab-

Equations (62) and (63) are amenable to :simultaneouss'::(ﬂl—.Ute mtrmsm Ricci tensor without star lahﬂ.%i-j’ V\fh'Ch IS
. . L . valid with respect to 3-observers i solely, like ¢g;;, we
gebraic solution, giving the following

must apply intrinsic local Lorentz invariance 60p, ¢éot ),

Ak R a2\ which is given as follows by simply replacing the Euclid-

¢9; = ( ¢kgf¢r) 9is ean metric tensof;; by the Lorentzian metric tensag; in

_ 1 — ky(d7)? 0 ) (64) Eq. (60) .
0 1 — gky(pr)? ¢gij — ¢Rij = mij (¢LLI) (68)
oRY = — ¢k9(<f572)25ij The absolute intrinsic Ricci tensor without star labl;
“ 1 — phy ()2 that follows from Egs. (65) and (66) is the following
_ ¢]%g(¢f)2 _(bl% ((b’ﬁ)Q 0
1- ¢]27 (¢r)? » ! ()2
g bh (67)2 (65) PRi; = 0 _ Oky(0r) (69)
g

0 - L= ¢kg(r)?
o o Equations (65) and (67) obtained by solving the pair of
The validity of the starred absolute intrinsic tensogg; and  apsolute intrinsic tensor equations (60) and (61) by follow
PR;; on curved ¢p, pégt ) partially with respect to 3-observ-ing the steps from those equations to Eq. (67) are the same
ers in¥ and partially with respect to 1-observersdhin as Egs. (57) and (59) of [1], derived graphically (by actuall
Fig. 7, implies that the componentgg, and¢ R, are valid drawing the spacetiniatrinsic spacetime diagrams and ob-
with respect to 1-observers im, while the componentgg;; taining intrinsic coordinate projections) in [1]. By apjsiy
and¢R;, are valid with respect to 3-observersdin the chain of relations (59) to Egs. (65) and (67), one obtains
Having obtained Egs. (64) and (65), then the derived figgs. (49)-(60) again in the absolute intrinsic covarianste
lationships among the components of the starred absolutesipproach to the ‘two-dimensional’ metric theory of abselut
trinsic metric tensogg;; and the absolute intrinsic metric tenintrinsic gravity ¢MAG), involving the solution of the pair

J
sor without star labepg;;, presented as Eqs. (65a) and (65l0f absolute intrinsic tensor equations(62) and (63).
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The approach to the derivation of the absolute intrinsiae.
line element (50), the absolute intrinsic metric tensor) (59
and absolute intrinsic Ricci tensor (60), of the metric the.
ory of absolute intrinsic gravityd(MAG), on curved ‘two-
dimensional’ absolute intrinsic metric spacetifiag, ¢péet ),
with respect to 3-observers in the relativistic physicatliel
ean 3-spac& in Fig. 7, by solving the pair of absolute in-
trinsic covariant tensor equations (62) and (63) and follow
ing the steps from those equations to Eq. (69), along with
the chain of relations (61), must be described as absolute in
trinsic covariant tensor approach #AG, as mentioned at
the end of the foregoing paragraph. Although the absolute
intrinsic tensor approach has been isolated from the graphi
calanalytical approach (within which Egs. (62) and (63) were
derived in [7,1]), the absolute intrinsic tensorial apmtoés
a valid approach, but which cannot completely stand on its
own, since the chain of relations (61) and the fact of intdns
local Lorentz invariancedLLI) expressed by Eq. (68), which
are used in the tensorial approach have been derived within
the graphical approach.

The absolute intrinsic metric tenseg;; of Eq. (59) shall
find useful application in formulating absolute intrinsamM
of gravity and absolute intrinsic non-gravitational laws o
the curved ‘two-dimensional’ absolute intrinsic metriasp-
time (¢, pégt ) with respect to 3-observers in the relativistic
Euclidean 3-spac® in Fig. 7 among other useful purposes,
elsewhere with further development.

Finally the extension of the results derived within a singu-
lar gravitational field in this section to the situations oég
ence of two, three and larger number of gravitational field
sources, whose relativistic (or inertial) masses are randif
scattered in the relativistic Euclidean 3-spaceis straight
forward, by virtue of the theory of superposition of two,ghr
and larger number of curved absolute intrinsic metric space
times (or absolute intrinsic Riemannian metric spacetjmes
developed in [7,1]. However we shall not go into those in this

paper.
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