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Abstract 
 
 

A theoretical method for the computation of zero-point-energy converters has been presented as 
dynamic finite element method (DFEM) in [Tur 10a], [Tur 10b], but in these articles, only the method 
of computation has been described, without taking realizable parameters for an experimental setup into 
account. The way to calculate a realistic system for an experimental setup is developed here. 
 

Therefore, the essential aspect is the question, how to control the speed of propagation of the 
interacting fields, which are responsible for the force, which drives the zero-point-energy converter. In 
the work presented here, these are the fields of the electromagnetic interaction, because for our 
example, a capacitor and a coil have to be adjusted in a way, that the frequency of an electromagnetic 
oscillation corresponds to the frequency of a mechanical oscillation. It depends on the precision of this 
adjustment, whether zero-point-energy is converted or not. 
 
 
1. The method of dynamic finite elements “DFEM” 
The DFEM-method was introduced in [Tur 10a] and [Tur 10b]. The first mentioned article explained 
the theoretical background, and the second one displayed an example, how to use this algorithm.  

For the case of electromagnetic interaction, zero-point-energy converters can be calculated according 
to the classical rules of electrodynamics. The only difference between the classical FEM-engineering-
methods and the new DFEM for zero-point-energy converters is the fact, that DFEM takes the finite 
speed of propagation of the fields of the electromagnetic interaction into account, which is a 
responsible for the forces between the different parts of the engine. Whereas the classical FEM 
engineering-calculations are based on the approximation, that the speed of propagation of the 
electromagnetic field is infinite, the DFEM calculations take the finite speed of propagation of the 
interaction into account. This is necessary because of the theory of relativity, which does not allow 
infinite speed by principle. 

For classical purpose, the approximation of infinite speed of propagation of the interacting fields looks 
quite good, but in reality, this approximation is the reason, why classical electrodynamics is unable to 
compute or to understand zero-point-energy converters by principle. From the point of view of 
classical engines, the approximation of infinite speed of propagation sounds indeed sensible. If we 
imagine an electromotor, in which the attractive forces between stator and rotor have to act over a 
distance of 10s cm , the propagation of the fields with the speed of light, as we expect it from the 
theory of relativity, will cause a time delay of only 
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On this background it looks absolutely normal, that engineers construct electromotors without taking 
the time delay in the range of fractions of nano-seconds into account. 

But if we remember, that the approximation of infinite speed of propagation prevents engineers from 
understanding zero-point-energy converters, the situation appears totally different. From this point of 



DFEM-Berechnung eines realistischen Raumenergie-Konverters, Claus W. Turtur 

 
Seite 2 von 20xxxx

view, the approximation prevents mankind from making use of a new source of energy, which is 
absolutely free from environmental pollution and furthermore inexhaustible. 

Of course it seems difficult to construct electromotors when taking the finite speed of propagation of 
the electromagnetic interaction (i.e. fields) into account. If the fields of the electromagnetic force 
propagates within the empty space, the computation of an electromotor should take fractions of nano-
seconds into account as mentioned above - in order to discover a way, how to convert an utilize zero-
point-energy. It is not surprising, that many colleagues regard this problem as too difficult or too 
useless, to work on its solution. Because of this, it is not surprising, that many colleagues do not take 
the possibility of the conversion of zero-point-energy into account at all. In order to demonstrate, that 
this problem can be solved by principle, the example in [Tur 10b] has been built up on a handy speed 
of propagation, in order to make it numerically easy. For the introduction of the computation-method 
as a basic research, this was sufficient, but it is not sufficient for an experimental verification. A 
practical setup, which can be experimentally analyzed, requires our ability, to take influence on the 
speed of propagation of the forces of the interaction, which drives the motor. For a real setup, the 
speed of propagation has to be much slower than the speed of light, in order to give us the possibility 
to handle the propagation-delay. From transmission line theory, the speed of propagation of the 
electrical impulses in wires is well known [Bau 10], [Kow 10], [Stö 10]), and it is slower than the 
speed of light. In modern computer-industry, this is already taken into account for the construction of 
modern semiconductor circuits. 

If we can find a way, how we can control the speed of propagation of the electromagnetic interaction, 
we can get away from the dilemma of the fractions of nano-seconds according to (1). If we can 
decrease the speed of propagation of the interaction by several orders of magnitude relatively to the 
speed of light, we can get a time-delay for the propagation of the interaction-force, on which we can 
construct real engines. This is the aim of work, presented here. 

 
 

2. How to control the speed of propagation of the interacion 
From transmission line theory, we know the speed of propagation of the interacting-fields to be (in a 
two wire transmission 
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(2)

In order to get the speed of propagation as low as technically achievable, we need a setup with a large 
inductance and a large capacitance. 

Fortunately, a setup with an inductance and a capacitance is a oscillating circuit, which is known very 
well, so that we can lead back our calculations to well-known facts [Tuc 10]. In order to arrange our 
example as clear as possible, we want to build it up on the example of [Tur 10b], which consists of 
two electrically charged bodies, forming the capacitor. We just have to add a coil (see Fig.1). For the 
sake of simplicity, we just want to alter the shape of the electrodes of the capacitor, which have been 
spheres. But not it is easier, to take two parallel plates, which might be connected with a helical spring. 
In figure 1, the speed of propagation of the electric field was determined by the vacuum, along which 
the field propagates. This situation is changed completely, as soon as we add the coil, because the coil 
and the capacitor are an oscillating circuit - and the circuit controls the speed of propagation of the 
electric signal within the wire – which limits the speed of propagation for our technical setup. This 
leads us to the setup shown in figure 2. 

Fig. 1: 
Two bodies, which are connected 
by a spring, can perform a 
harmonic oscillation. If the bodies 
are capacitor-plates, the setup can 
be used to convert zero-point 
energy. 
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Abb. 2: 
A coil together with the capacitor-
plates 1m , 2m  forms an electric 

oscillation circuit, which is 
responsible for the oscillation of the 
electrical charge. But the coulomb 
forces between the capacitor-plates 
are influenced by their mechanical 
oscillation. 

 

The crucial limit for the finite time delay of the forces of interaction is now the speed of propagation 
of the electrical charges within the wire, but not the speed of propagation of the fields within the 
vacuum. This is important, because it decides about the speed of propagation of the interactions, 
responsible for the functioning principle of the conversion of zero-point-energy. 

The illustration according to figure 2 corresponds to the notation of mechanicians. The notation of 
electricians follows rather to the illustration according to figure 3. 

 

Fig. 3: 
From the electrical point of view, the setup 
is a LC-oscillation circuit, which allows 
the capacitor-plates to oscillate 
mechanically, so that the capacity of the 
capacitor permanently varies as a function 
of time.  
Nevertheless the oscillation of the 
electrical charge is dominantly determined 
by the LC-oscillation circuit, as marked 
with a double arrow in grey colour. 

 

As can be seen in figure 3, the oscillation of the electrical charge is determined by the LC-oscillation 
circuit. Consequently the electrical field strength between the capacitor-plates follows the LC-
oscillation circuit. Thus the electrostatic (Coulomb-) force between the plates is determined by the 
speed of propagation of the electrical charge in the green wire, from which the coil is made. The 
electrical field between the capacitor-plates is responsible for the attractive or repulsive forces between 
the plates. The behavior of these forces can thus be controlled by adjusting the inductance L  and the 
capacitance C  to the technical requirements of the setup. This is now our way, how we influence and 
control the speed of propagation of the interactive forces. 

 
 

4. The Algorithm for the simulation of the fields and bodies in motion 
The source code of the DFEM-algorithm on which the research work presented here is based, is 
printed completely in the appendix. It is written in Delphi-Pascal [Bor 99]. The Physic’s background, 
on which this algorithm was developed, is explained in sections 4 and 5. 

We now follow the development of the simulation-algorithm (of the oscillation) step-by-step. The very 
first step just analyzes a harmonic oscillation within a simple LC-oscillation circuit. For this very first 
step, we will not take the motion of the capacitor-plates into account, and we neglect the Ohm’s 
resistance of the wire, from which the coil is made. This very simple setup has the purpose, that we 
can check the results of the DFEM-algorithm by comparison with the classical oscillation circuit. 
Please see figure 4.  

 

Fig. 4: 
Simple classical LC-oscillation circuit as a preparation for 
our development of the DFEM-algorithm as described in the 
text. The simple setup can be checked with classical 
electrodynamics, in order to assure the correctness of the 
results. There is only one loop according to Kirchhoff’s rules, 
namely “ACBLA”. 
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For the computation of the discharge-procedure of the capacitor with finite speed, we can easily follow 
the classical considerations, which are based on the differential-equation of the classical LC-oscillation 
circuit. Therefore we apply Kirchhoff’s voltage law, according to which the sum of all voltages within 
one closed loop is zero: 

1

1
0

0

There the voltage over the capacitor and the voltage over the coil is:

according to the definition of the capacitance

according to the induction-law:
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We want to solve the differential-equations by numerical iteration, because we want to prepare 
ourselves for the crucial case, in which the capacitance will be variable as a function of time. This 
case, which is the goal of our considerations, can not be solved analytically. The solution of the 
harmonic LC-oscillation is “part 1” of the source-code in the appendix. The initial conditions are well 
known, and we start our calculation at the moment 0t  . From there on the time is running 
continuously and steps of t . The initial conditions consist in an electric charge being brought onto 
the capacitor plates, namely  0Q t C U    and  0 0Q t    as well as  0 0Q t   . 

The course of time is simulated as an iteration, step-by-step. Every step begins with the second 
derivative, influencing    Q t I t  , because the discharge current of the capacitor induces a voltage into 
the coil. 
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(7)

(8)

(9)

By this means, the behaviour of the electrical charge is calculated as a function of time, step-by-step, 
according to the typical behaviour of an LC-oscillation circuit. Our considerations are determined by 
the finite speed, with which the electrical charge is propagating along the wire. Here, the differential-
equations of the oscillation circuit is a comfortable way to realize the computer simulation of the 
propagation speed. By the way, the result of our iteration is identical with the classical solution of 
differential equation (6), so that it is not necessary to display the result graphically, because it is 
known generally. 

 

The next step of our development is dedicated to Ohm’s resistance of the coil, due to its copper wire. 
If the setup shall be verified experimentally, it would not be enough to calculate an idealized zero-
point-energy converter without Ohm’s resistance. In reality our setup has to convert enough zero-
point-energy, that it will be sufficient to compensate real losses in the wire. For the development of the 
differential-equation for this situation, which still follows simple classical considerations, we have a 
look to figure 5. 

 

Fig. 5: 
Simple classical LC- oscillation circuit, taking losses due to 
Ohm’s resistance of the wire into account, from which the coil 
is made. 

We again apply Kirchhoff’s voltage rule and say, that the sum of all voltages within our closed loop is 
zero:  
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Due to these equations, we have two replace the differential equations of (7), (8) and (9) by 
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(17)

Again we develop our solution as an iteration step-by-step during time, and again we come to the same 
result as the well-known classical computation, which is based on an analytical solution of the 
differential-equation. As generally known, Ohm’s resistance has the consequence to decrease the 
propagation speed of the charge a little bit. 

Remark: Please take notice, that in equation (16) the first derivative Q  occurs on the left side as well 
as on the right side. For the DFEM-algorithm, equation (16) has been reformed in order to dissolve it 
to Q  (as can be seen in the source-code). 

For the example of the numerical values 110.126331 , 8.85419 10 2000andL Henry C Farad R      at an 

initial charge of the capacitor of   80 3 10Q t C    (corresponding with a capacitor voltage of 

338.82 Volt ),  as well as the initial conditions  0 0Q t    and  0 0Q t   , we come to the result as 

displayed in figure 6, which is the same for our algorithm and for the classical solution. Up to now, 
our DFEM-algorithm is developed only for the reproduction of generally known results, which has the 
purpose to verify its correctness.  

Fig. 6: 
Reproduction of a 
LCR-oscillation 
circuit with additional 
attenuation. 
The envelope curves 
in blue and in green 
represent the 
exponential decrease 
of the amplitude as a 
function of time. 

By the way, the numerical values of the system-parameters are chosen with regard to a clear 
understanding of the current, and not with regard to the following applications of the algorithm in 
section 5. 
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5. DFEM-computation of the zero-point-energy converter from section 3 
Within section 4, the preparation of our DFEM-algorithmus was verified successfully. Thus we can 
now come to the application of this algorithm, which is the LCR-oscillation circuit, with additional 
mechanical oscillation of the capacitor-plates according to figure 7. It differs from figure 2 and figure 
3 because of the Ohm’s resistance which is present now. 

 

Fig. 7: 
LCR- oscillation circuit, which does not follow an attenuated 
oscillation, because the variable capacitor does something different. 
Depending on the adjustment of the system parameters, energy can be 
converted between the zero-point-energy, electrical energy and 
mechanical energy. The direction, into which this conversion works, 
depends extremely sensitive on the adjustment of the mechanical 
oscillation and the electrical oscillation relatively to each other.  
Due to the time dependent variation of the capacitance C=C(t), the 
differential equation can not longer be solved analytically, so that the 
iteration of the DFEM-algorithm is necessary. 

The essential change with regard to the classical oscillation of figure 5 and figure 6 is the fact, that we 
now added a helical spring between the capacitor-plates, which causes a mechanical oscillation of 
these plates. Thus we now have to introduce this mechanical oscillation into our DFEM-algorithm. 
This requires some further expressions in our differential equation. 

As we know, the differential equation of the mechanical oscillation is very similar to the differential 
equation of the electrical oscillation circuit. This allows us, to develop the differential equation of the 
mechanical oscillation in close analogy with equation (7), (8) and (9), with some supplements: 

     
  

   
     

2

1 2
0

1

1

1

2 4π 2

based on the spring-force and Coulom'sforce
with =mass and Hooke's spring-constant.

Two steps of integration now lead us to
and

i
i i

i

i i

i i i

Q tD CD
x t x t

m m m Dx t

x t x t x t

x t x t x t t







           

   

   



  



 

(18)

(19)

(20)

The capacitor plates are mounted symmetrically with regard to the origin of coordinates, so that their 
positions are  ix t  and  ix t . Thus we write Coulomb’s force between the capacitor-plate as 

  

2

2
0

1

4π 2
C

i

Q
F

x t
 


, because the distance between the capacitor plates is  2 ix t .  

For the calculation of the force of the helical spring, we have to use a totally different length, namely 
the alteration of the spring length relatively to the spring without load. If CD  length of the unloaded 
spring, the alteration of its length relatively to CD  can be written as  2 iCD x t  , not forgetting the 

algebraic sign of  ix t . If we regard the motion of the capacitor-plates a symmetrically with regard to 

the origin of coordinates, (where the coordinate-system is fixed in the middle of the capacitor, as 
shown in figure 7), each half of the spring follows exactly half of  2 iCD x t  , so that the force of the 

spring, acting on each of the capacitor plates is  
2F i

CD
F D x t

     
 

, as written in  equation (18). 

The mechanical parameters in the equations (18), (19) und (20) follow the mechanical mass of the 
capacitor plates and the spring force. The variation of the electrical charge  Q t  follows the electrical 

oscillation circuit. Thus,  Q t  in equation (18) is to be put into the formulas of the equations (15), (16), 

(17). By this means, that electric oscillation circuit influences the mechanical oscillation. But in the 
opposite direction, the mechanical oscillation of the capacitor plates influences the electrical 
oscillation circuit, because the mechanical distance between the capacitor plates also oscillates. 
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Indeed, this approach allows us, to convert zero-point-energy into classical energy back and forth. It 
also can be happen, that mechanical energy is converted into zero-point-energy and at the same time 
zero-point-energy is converted into electrical energy. Every imaginable configuration of energy 
conversion back and forth is possible. We will see this very clear, when we read the following 
explanations with regard to the DFEM-algorithm. 

 

Let us start to put realistic parameters into the DFEM-algorithm: 
 
For the capacitor: 
▪ surface of the capacitor plates: 10 10CA cm cm   

▪ distance between the capacitor plates: 2Cd mm  
It would be possible to realize the capacitor by stretching a thin plastic foil with metal covering, on a 
frame of adequate thickness. 
▪ dielectric between the capacitor plates: 3r   

This leads to a capacity of 0
C

r
C

A
C

d
     . 

 
For the coil (cylindrical coil): 
▪ length of the coil 8Sl cm   

▪ radius of the coil 5SR cm ,  cross-section of the coil 2πS SA R   

▪ number of windings 34600n   
▪ magnetic core with permeability 12534r   

This leads to an inductivity of 2
0

S
r

S

A
L n

l
    . 

 
For Ohm’s resistance of the copper wire, from which the coil is made: 
▪ specific resistance of copper 81.7 10Cu m        [Koh 96] 

▪ thickness of the wire 0.2dD mm   cross-section of the wire 
2

π
2
d

D
D

A
    
 

 

  length of the coil’s wire 2πD SL R n   

This leads us to an Ohm’s resistance of the copper wire of the coil D
Cu

D

L
R

A
  . 

 

 
For the mechanical oscillation of the capacitor plates: 

▪ density of the plastic foil 
3

1.5F
Kg

cm
   

▪ thickness of the plastic foil 10Fd m  

▪ density of the aluminium film on the plastic foil 
3

2.7Al
Kg

cm
   

▪ thickness of the aluminium film on the plastic foil 2Ald m  

▪ Hooke’s spring constant of the foil 1.00H
N

D
m

  

  mechanical mass of the capacitor plates C Al Al C F Fm A d A d        
 
 
For the inertial conditions of the electric oscillation circuit: 
▪ charge on the capacitor at the begin of the oscillation   100 2 10Q C   

  voltage on the capacitor at the begin 
10

10

2 10
1.50588

1.328 10
C

Q C
U Volt

C F






  

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Of course these parameters can and should be varied within realistic limits. The values which are 
written here, are the basis for the computation of figure 8, where the purple curve describes the 
oscillation of the electric charge  Q t  in units of 910nC Coulomb , and the blue curve describes the 

mechanical oscillation of the capacitor plates as  ix t  in units of 310mm m . 

In order to adjust the system in a way that it converts zero-point-energy, both resonances have to be 
adjusted to each other, the resonance of the electric circuit and the resonance of the mechanical 
oscillation. Only if this “Double-resonance” is achieved, the conversion of zero-point-energy is 
possible. 

If we remember, that the adjustment of one simple resonance can be difficult (such as for instance in a 
radio station), we understand the difficulties to adjust the “Double-resonance” which requires not only 
the adjustment of two resonances, but also the adjustment of both of them to each other. Thus we must 
realize, that the operation of a zero-point-energy converter not only requires an appropriate setup, but 
also a very difficult adjustment-procedure of the “Double-resonance”.  

Thus an alteration of the system parameters acts very critical and sensitive on the operation of the 
zero-point-energy converter. Already very small alterations of some parameters can cause huge 
effects. Even our DFEM-algorithm requires the adjustment of several of the parameters with a 
precision of 4-5 significant figures, otherwise it would give weird results. On this background we now 
understand the technical difficulties and efforts, which many people have with operation of zero-point-
energy converters. Not the manufacturing of the zero-point-energy converter is the central difficulty, 
but the proper adjustment to operate it. For instance Coler’s converter has been built up many times, 
but the adjustment was not reproduced until today. With out DEFM-algorithm is should be possible to 
compute, how the Coler-converter has to be adjusted [Hur 40], [Mie 84], [Nie 83]. 

Figure 8 shows an operation of our system with appropriate adjustment of the system parameters. 
(Their values are as stated above.) In this example, the amplitude of the mechanical oscillation 
increases only very slightly, but the amplitude of the electrical oscillation increases remarkably. But 
there is no classical energy supply with the setup, so that the energy for the increase of the amplitudes 
can only originate from the zero-point-energy of the quantum-vacuum. 

 

 

Fig. 8: 
Oscillations of the 
both resonances 
connected with 
each other: 
In blue colour, we 
see the mechani-
cal oscillation of 
the capacitor 
plates, and in red 
colour we see the 
electrical charge 
inside the capaci-
tor plates.  
Both amplitudes 
increase without 
being supplied 
with classical 
energy. 

A numerical evaluation of the DFEM-data, as presented in figure 8, leads us to the result, that the 
classical energy in the system is increasing. (And the new classical energy is originating from the 
zero-point energy of the quantum-vacuum, because there is no other energy supply connected with our 
setup.) 
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● At the time 0At   the system contains the energy, which it has got from the initial conditions. It is:

  - mechanical energy at the beginning 8
, 1.981001 10mech AW Joule   

  - electrical energy at the beginning    10
, 5.71700 10elektr AW Joule   

● At the time 10.59secEt  , the system contains more classical energy, which now is:  

  - mechanical energy at the end 8
, 1.981246 10mech EW Joule   

  - electrical energy at the end 9
, 3.712196 10elektr EW Joule   

● This means that both types of classical energy increased during the time 10.59secE At t   without 

being supplied from some classical energy source: 12
, , 2.44 10mech mech E mech AW W W Joule      

       9
, , 3.1404 10elektr elektr E elektr AW W W Joule      

● The sum of the energy gain thus is  93.1429 10elektr mechW W Joule     . 

This is the amount of energy, which has been converted from the-zero-point energy of the quantum 
vacuum into classical energy, because there is no other energy source within our setup. 

 

6. Crucial: Adjustment of the parameters and the dimensions of the system 
It looks like the manufacturing of the zero-point-energy converter is not the most difficult point, but its 
operation is even more difficult. The problem is the adjustment of the system parameters, as we can 
understand from section 5. To demonstrate this more clearly, we can now perform small variations of 
the parameters within the DFEM-algorithm. Let us start with a small variation of Hooke’s spring 
constant, which explains the only difference between figure 8 and figure 9: 

▪ Hooke’s spring constant 1.00H
N

D
m

   Fig.8 

▪ Hooke’s spring constant 0.99H
N

D
m

   Fig.9 

All other parameters remained unchanged as a given in section 5. 
 

 

Fig. 9: 
Other than in 
figure 8, we now 
do not observe a 
continuous 
conversion of 
zero-point-
energy, but we 
now observe a 
conversion back 
and forth.  
At the beginning, 
classical energy is 
converted into 
zero-point-
energy, but in the 
second half of the 
graph, the 
situation turns 
around. 
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Other than in figure 8, we observe in figure 9 the decrease of the mechanical energy. The electrical 
energy decreases rather visible in figure 9 during the first half on the analysis, but this decrease of the 
amplitudes causes a variation of the operation of the system by itself, so that the loss of classical 
energy can not be continued stable. After about 5 seconds, classical electrical energy is gained back 
from the zero-point-energy. 

The fact, that the energy conversion phenomenon is not constant during time goes back to 
imperfections in the adjustment of the system parameters. The more precise the system parameters are 
adjusted, the longer we observe a continuous behaviour of the energy conversion, this means, the 
longer our system can run stable.  

A possibility to get rid of this asynchronous behaviour of the resonances, which have to be adjusted to 
each other, is a periodical reset of the system, which can be given as a small amount of control-energy 
(for instance as a short electrical pulse), which brings the system back into a well defined initial state 
from time to time (example: [Kep 10], [Hor 10]).   

In order to demonstrate, how the energy-conversion can be brought into different directions, just 
following the adjustment of the system parameters, table 1 was calculated. Please see the algebraic 
sign of the conversion from line to line. 
 

 INPUT: System-Parameters  OUTPUT: System-Reaction  

line spring constant permeability  mechanW  elektrW  Remark 

1 1.00H
N

D
m

  12534r     122.44 10 J   93.129 10 J   see fig.8 

2 1.00H
N

D
m

  12770r     122.44 10 J   121.103 10 J    

3 1.00H
N

D
m

  12430r     122.44 10 J   104.23 10 J    

4 0.99H
N

D
m

  12534r     123.24 10 J   112.84 10 J   see fig.9 

Table 1: Reaction of the energy-converter-system on variations of the system-parameters 

 

Obviously, even very small variations of the system parameters can have such huge effect, that they 
even may change the direction of the energy conversion. In table 1 we find: 

In line 1  increase of mechanical energy,    and  increase of electrical energy 
In line 2  increase of mechanical energy,    and  increase of electrical energy 
In line 3  increase of mechanical energy,    but   decrease of electrical energy 
In line 4  decrease of mechanical energy,   and  decrease of electrical energy 

Arbitrary combinations are possible, which even do not have to remain constant during time. Their 
behaviour depends extremely sensitive on the quality of the adjustment of the system parameters. 

 

7. The speed of propagation of the fields of the interactions 
In our example, the important interaction is the electromagnetic one. The electric charge, which is 
responsible therefore, determines with its motion along the wire, the speed of propagation of the 
interaction. The distance for this motion is the length of the wire, from which the coil is made. If we 
follow transmission line theory, the speed of propagation of the voltage-pulses (same as the field-
pulses) within the wire will be the crucial speed responsible for the electromagnetic interaction, 
because it is responsible for the limitation of the speed of interaction, because it is the slowest 
component in the system. And this speed of interaction is not the vacuum speed of light, but the speed 
of motion of the (charge induced) voltage-pulses along the wire. We are curious to estimate this speed 
now. 
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● The length of the wire, from which the coil is made, can be calculated from the number of windings 
and the length of each winding (where we use the symbols and the values from section 5): 
Length of the wire in the coil 2π 2π 0.05 34600 10870D SL R n m m      . (21)

(In reality, the wire is a bit longer, because the outer windings have a radius which is a bit larger.) 
 

● The duration for the propagation of the signal is known from the frequency of the oscillation, 
respectively from the duration per each period T . During the duration of one period of the oscillation, 
the electrical charge is moving once forth and once back, this is twice the length of the wire DL . By 
evaluating the figures 8 and 9, we find:   in fig.8  101 periods of electrical oscillation 
      in fig.0  100.5 periods of electrical oscillation 

The difference of half a period also causes the difference in energy conversion, and it has its reason 
from the influence of the electrical circuit and the mechanical circuit onto each other. Thus, for our 
estimation, we can use the arithmetic average of both: 

Duration per period 10.59sec. sec.
0.105112

100.75
T

Perioden Periode
   (22)

 

● The speed of propagation of the charge along the wire, which defines the speed of propagation of 
our system, then is 

42 2 10870
206.8 6.89 10

0.105112sec. sec.
DL m km

v c
T

 
     . (23)

It is only a small fraction of the speed of light. On the one hand this demonstrates, how strongly the 
speed of propagation of the interaction fields can be influenced, and how the speed of propagation of 
these fields can be brought into a range, within which we can operate. But on the other hand, the result 
also displays very clearly, how sensitive the speed of propagation acts on the conversion of zero-point-
energy. Thus it is necessary to determine this speed directly from the system. Therefore the differential 
equations of the oscillations are not only convenient but really necessary. Not the length of the wire is 
of main importance, but many other physical values of the system. (Just have the permeability of the 
magnetic core inside the coil as an example therefore in mind.) 

 

 

8. The gain of classical electrical power  
In order to extract electrical power from the system, which is now operating as a self-running engine, 
we introduce a ballast resistor into the circuit, as drawn in figure 10. 

Fig. 10: 
A ballast resistor ballastR  has been added to our zero-point 

energy circuit, which is connected in series with the 
copper wire of the coil and its Ohm’s resistance R . 
The ballast resistor permanently extracts energy from the 
zero-point-energy converter. 
Within our DFEM-algorithm, it is sufficient to add the 
resistances R  and ballastR  linear. 

If the ballast resistor is chosen to be 334ballastR k  , the system parameters from section 5 and figure 8 

will lead us to an energy gain of 112.32 10P Watt  . The ballast resistor has been chosen in such a way, 
that the amplitude of the electrical voltage (over the capacitor) is kept constant, in order to maintain 
constant operation during time. The capacitor voltage has an amplitude of 1.50CU Volt . 
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The electrical power has been calculated as integral average value. Because of Kirchhoff’s voltage 
law, the electrical current is the same in all electrical elements of the circuit. Thus the computation of 
the converted power goes back to the formulas  

 

2 2

10.59sec
2

0

10.59sec

extracted energy

mean value of converted power

ballast ballast

ballast

P U I R I R Q

E R Q t dt

E
P

     

  

 





 . 
(24)

 

The converted power, as we calculated it, is rather small, and thus we want to increase it. This is 
indeed no problem, because the maximum of the voltage over the capacitor (i.e. the amplitude of the 
voltage) is only 1.50CU Volt . This can be enhanced very easy. If we enhance the capacitor voltage 

only up to 2.00CU Volt  (amplitude) and then adjust the system parameters as good as necessary, we 
get a remarkable enhancement of the power. Please see the following comparison: 

 

►  1.50CU Volt , 1.000
N

D
m

 ,   100 2.000 10Q C   at 334LastR k      (with 12534r  ) 

112.32 10ballastP Watt    extraction by the ballast resistor and 129.6 10circuitE Joule   in the capacitor 
Thus the power being converted from the zero-point-energy under this operation is 

12
11 119.6 10

2.32 10 2.41 10
10.59sec.

circuit
ballast

E Joule
P Watt Watt

t


 

     


. 

 

►  2.00CU Volt , 1.341
N

D
m

 ,   100 2.665 10Q C   at 230ballastR k   (with 12539r  ) 

101.278 10ballastP Watt    extraction by the ballast resistor and 81.16 10circuitE Joule   in the 
capacitor 
           plus 129.13 10mechE Joule   mechanically 

Thus the power being converted from the zero-point-energy under this operation is 
8

10 91.16 10
1.278 10 1.22 10

10.59sec.
circuit mech

ballast
E E Joule

P Watt Watt
t


  

     


 
 

►  Obviously an enhancement of the capacitor voltage-amplitude from 1.5 Volt to 2.0 Volt even leads 
to an enhancement of the converted power by more than a factor of 50. This shows us, how much 
optimization is possible. 

Abb.11: 
Electrical and mechanical oscillation 
of our setup at a capacitor voltage-
amplitude of UC=2.00 Volt. 
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Interestingly, an enhancement of the ballast resistor (same as a decrease of this resistor) does not 
enhance the power being extracted from the quantum-vacuum (as we would expect from 

2
ballastP R I  ). The opposite is the case, because the ballast resistor also influences (and disturbs) the 

“Double resonance”. In our example the ballast resistor was adjusted with regard to a maximization of 
the extraction of power from the quantum-vacuum. 

For the optimization of the operation-mode of the zero-point-energy converter has to be adjusted for 
each experiment individually, depending on the available materials and dimensions, the present work 
contains the source-code of the DFEM-algorithm, so that every dexterous experimentalist can 
optimize the setup for his or her own purpose. But please keep in mind, that an enhancement of the 
capacitor-voltage always increases the attractive forces between the capacitor-plates, which makes it 
necessary to enhance also the stiffness of the spring between the capacitor-plates (which can be the 
stiffness of the capacitor-plates themselves), in order to avoid a contact between the both capacitor 
plates. This is a very sensitive aspect with regard to this setup. 

The capacitor should not have the too small capacitance. This makes it necessary to mount the 
capacitor-plates not too far away from each other. This can be done rather easy by the use of two 
pieces of a thin plastic foil, which can be stretched on both sides of a wooden or plastic frame. The 
metallic plates can just consist of thin metallic films on the surface of the plastic foils. On this 
background, you can understand the computation of the mass of the capacitor plates as well as the 
Hooke’s spring constant of these capacitor-plates in the source-code of the algorithm (see also fig.12). 
The pre-stress of the plastic foil determines their spring constant. 

Fig. 12: 
Suggestion for an experimental setup of a capacitor 
with flexible plates, which have a rather small 
distance between each other in order to get a not too 
small capacity. 

 

 

Resumée 
Summarizing what we learn from this work, it can be said, that the speed of propagation of the 
interacting forces in electro-magnetic engines can be controlled in a rather wide range, so that it is 
possible, to build efficient electro-magnetic zero-point-energy converters. The basic principles have 
been explained in the work presented here, together with an example for their illustration. 

However, the adjustment of the system parameters is a considerable problem. It is necessary to adjust 
these parameters extremely precise relatively to each other and also within the system, because several 
resonances have to be adjusted to each other. This teaches us, that the adjustment of the parameters 
might be even more difficult, than the manufacturing of the zero-point-energy converter itself. 
Trigger-pulses, which do not consume much energy, might be a good help for a zero-point-energy 
converter to run stable. 
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 Appendix: The source code of the DFEM-algorithm 
 

 
Program Harmonischer_Oszillator_im_DFEM; 
{$APPTYPE CONSOLE} 
uses 
  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs; 
 
Var epo,muo     : Double;  {Constants of nature} 
    v           : Double;  {Propagation-speed of the charges} 
    CA,CD,C     : Double;  {Capacitor: surface and distance of the plates, capacity} 
    GG3         : Double;  {equilibrium position of the flexible plates, part 3} 
    SP3         : Double;  {distance of the plates with initial voltage} 
    UC,UL{,UR}  : Double;  { voltage of the capacitor, coil, resistor} 
    SN,SL,SA,SR : Double;  {coil: windings, length, cross-section, Radius} 
    L           : Double;  {inductivity of the coil} 
    DL          : Double;  {length of the copper wire} 
    epr,mur     : Double;  {Epsilon_r und Mü_r for capacitor and coil} 
    rho,R       : Double;  {specific resistance of the copper wire} 
    AD          : Double;  {cross-section of the copper wire} 
    Q,Qp,Qpp    : Array[0..200000] of Double;  {charge and derivatives as a function of time} 
    x,xp,xpp    : Array[0..200000] of Double;  {deflection of the capacitor-plates} 
    dt          : Double;  {time step-by-step} 
    N           : LongInt; {number of time-steps} 
    i           : LongInt; {counter} 
    Abstd       : Integer; {plot-counter} 
    rhoAL,rhoFol: Double;  {density of aluminium and plastic foil} 
    dAL,dFol    : Double;  {thickness of aluminium and plastic foil } 
    D           : Double;  {spring constant} 
    m           : Double;  {(mechanical) mass of the capacitor plates} 
    omfol,fFol  : Double;  {oscillation frequency} 
    F           : Double;  {force between the capacitor plates} 
    Stern1      : Double;  {variable} 
    Fc,Fd       : Double;  {coulomb force and spring force} 
    MacheFiles  : Boolean; {data-storage yes/no ?} 
    om          : Double;  { Omega} 
    Rlast       : Double;  {ballast resistor} 
 
Procedure Wait; 
Var Ki : Char; 
begin 
  Write('<W>'); Read(Ki); Write(Ki); 
  If Ki='e' then Halt; 
end; 
 
Procedure Excel_Datenausgabe(Name:String); 
Var fout  : Text;    {prepare data for Excel} 
    Zahl  : String; 
    lv,j  : Integer; {variable} 
    A0    : Double;  {Amplitude} 
begin  { prepare data for Excel:} 
  Assign(fout,Name); Rewrite(fout); {File open} 
  For lv:=0 to N do  {from "plotanf" to "plotend"} 
  begin 
    If (lv mod Abstd)=0 then 
    begin 
{    the first argument is the time:} 
      Str(lv*dt*1e6{nafo_sec.}:14:10,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {uns commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Write(fout,chr(9));  {Data-separation } 
{     the first function is the voltage:} 
      Str(Q[lv]/C{Volt}:14:7,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Write(fout,chr(9));  { Data-separation } 
{     second function: envelope} 
      A0:=Q[0]/C/sin(arctan(sqrt(1/L/C-R*R/4/L/L)/(R/2/L)));      {klassische} 
      Str(A0*exp(-R/2/L*lv*dt){Volt}:20:10,Zahl);                 {Formeln} 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
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        If Zahl[j]='.' then write(fout,','); 
      end; 
      Writeln(fout,'');    {line-separation } 
    end; 
  end; 
  Close(fout); 
end; 
 
Procedure Excel_andere_Ausgabe(Name:String); 
Var fout  : Text;    {prepare data for Excel} 
    Zahl  : String; 
    lv,j  : Integer; {variable} 
begin  {prepare data for Excel:} 
  Assign(fout,Name); Rewrite(fout); {File open} 
  For lv:=0 to N do  {from "plotanf" to "plotend"} 
  begin             
    If (lv mod Abstd)=0 then 
    begin 
{     the first argument is the time:} 
      Str(lv*dt*1e6{nano_sec.}:14:10,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Write(fout,chr(9));  {Data- separation } 
{     first Funktion:   } 
      Str(x[lv]{Volt}:20:14,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Write(fout,chr(9));  {Data-separation } 
{     second Funktion:   } 
      Str(Q[lv]*1E6{Volt}:20:14,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Writeln(fout,'');    {line-separation } 
    end; 
  end; 
  Close(fout); 
end; 
 
Procedure Excel_Raumenergieausgabe(Name:String); 
Var fout  : Text;    {prepare data for Excel} 
    Zahl  : String; 
    lv,j  : Integer; {variable} 
begin  {prepare data for Excel:} 
  Assign(fout,Name); Rewrite(fout); {File open} 
  For lv:=0 to N do  {from "plotanf" to "plotend"} 
  begin 
    If (lv mod Abstd)=0 then 
    begin 
{     the first argument is the time:} 
      Str(lv*dt*1e6{nano_sec.}:14:10,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 

      Write(fout,chr(9));  {Data-separation} 
{     the first function is the voltage:} 
      Str(x[lv]{Volt}:14:7,Zahl); 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 
        If Zahl[j]='.' then write(fout,','); 
      end; 
      Writeln(fout,'');    {line-separation } 
    end; 
  end; 
  Close(fout); 
end; 
 
Procedure Excel_eine_Kolumne(Name:String); 
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Var fout  : Text;    {prepare data for Excel} 
    Zahl  : String; 
    lv,j  : Integer; {variable} 
begin  { prepare data for Excel:} 
  Assign(fout,Name); Rewrite(fout);  {File open} 
  For lv:=0 to N do  {from "plotanf" to "plotend"} 
  begin 
    If (lv mod Abstd)=0 then 
    begin 
      Str(x[lv]{Volt}:20:14,Zahl); {write the array to be plotted here.} 
      For j:=1 to Length(Zahl) do 
      begin   {use commata} 
        If Zahl[j]<>'.' then write(fout,Zahl[j]); 

        If Zahl[j]='.' then write(fout,','); 
      end; 
      Writeln(fout,'');    {line-separation} 
    end; 
  end; 
  Close(fout); 
end; 
 
Function Plapos(z:LongInt):Double;  {Iterative determination of the plate’s position.} 
Var xs    : Double; {initial value} 
    sw    : Double; {Stepp-width} 
    an,ab : Boolean; 
begin 
  xs:=0; 
  If z=0 then xs:=CD/2;   {the position of the plates is at +/-xs.} 
  If z>0 then xs:=x[z-1]; {this can eventually be taken from the last step.} 
  sw:=xs/20; 
  Repeat 
    sw:=sw/10; 
    an:=false; ab:=false; 
    Repeat 
      Fc:=1/4/pi/epo*q[z]*q[z]/(2*xs)/(2*xs); 
      Fd:=D*(xs-CD/2);  {deflection of the spring with regard to CD.} 
      If Fc+Fd>0 then begin xs:=xs-sw; an:=true; end; 
      If Fc+Fd<0 then begin xs:=xs+sw; ab:=true; end; 
      If xs<=1e-10 then 
      begin 
        Writeln ('Capacitor plates touch each other. Coulomb-force too strong. STOP.'); 
        Wait; Wait; Halt; 
      end; 
    Until (an and ab); 
  Until (sw<xs/1e14); 
  Plapos:=xs; 
end;                           
 
Procedure Amplituden_anzeigen; 
Var i             : Integer; 
    schreibe      : Boolean; 
    SteigX,SteigQ : Boolean; 
    BildX,BildQ   : Array[0..200] of Double; 
    zvx,zvQ       : Integer; 
    eq,lq,ex,lx   : Double; 
    Wmech1,Wmech2,Wel1,Wel2:Double; 
begin 
{ first that x-Amplitudes:} 
  SteigX:=false; If x[1]>x[0] then SteigX:=true; 
  schreibe:=false;  zvx:=0; 
  Writeln('     I:   t/[sec.]  |           x/[m]         |        Q[i]'); 
  For i:=1 to N do 
  begin                      
    If SteigX then 
    begin 
      If x[i]<x[i-1] then begin schreibe:=true; SteigX:=Not(SteigX); Write('X-Max:'); end; 
    end; 
    If Not(SteigX) then 
    begin 
      If x[i]>x[i-1] then begin schreibe:=true; SteigX:=Not(SteigX); Write('X-Min:'); end; 
    end;       
    If schreibe then 
    begin 
      Writeln(i:6,': ',i*dt:7:5,' | ',x[i],' |',Q[i]); {Wait;}    
      BildX[zvx]:=x[i]; zvx:=zvx+1;     
    end;  
    schreibe:=false; 
  end; 
  zvx:=zvx-1;      
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{ then the Q-Amplitudes:} 
  SteigQ:=false; If Q[1]>Q[0] then SteigQ:=true; 
  schreibe:=false;  zvQ:=0; 
  Writeln('     I:   t/[sec.]  |           x/[m]         |        Q[i]'); 
  For i:=1 to N do 
  begin 
    If SteigQ then 
    begin 
      If Q[i]<Q[i-1] then begin schreibe:=true; SteigQ:=Not(SteigQ); Write('Q-Max:'); end; 
    end; 
    If Not(SteigQ) then  
    begin 
      If Q[i]>Q[i-1] then begin schreibe:=true; SteigQ:=Not(SteigQ); Write('Q-Min:'); end; 
    end; 
    If schreibe then 
    begin 
      Writeln(i:6,': ',i*dt:7:5,' | ',x[i],' |',Q[i]); {Wait;} 
      BildQ[zvQ]:=Q[i]; zvQ:=zvQ+1; 
    end; 
    schreibe:=false; 
  end; 
  zvQ:=zvQ-1; 
{ overview over "amplitudes":} 
  Writeln('pos., amplitudes :  '); 
  i:=2;  ex:=BildX[i]-BildX[i-1]; 
  Repeat 
    Writeln(i,': ',BildX[i]-BildX[i-1]); 
    lx:=BildX[i]-BildX[i-1]; 
    i:=i+2; 
  Until (i>=zvx); 
  Writeln('charges , amplitudes   :'); 
  i:=2;  eq:=BildQ[i]-BildQ[i-1]; 
  Repeat 
    Writeln(i,': ',BildQ[i]-BildQ[i-1]); 
    lq:=BildQ[i]-BildQ[i-1]; 
    i:=i+2; 
  Until (i>=zvQ); 
  Write('total alteration, X  -Amplitude: '); 
  If Abs(lx)>Abs(ex) then Write('+'); 
  If Abs(lx)<Abs(ex) then Write('-'); 
  om:=pi*zvx/N/dt; Writeln('ang.frequency omega= ',om); 
  Writeln(Abs(lx-ex)); 
  Wmech1:=m/2*(ex*ex)*om*om; Wmech2:=m/2*(lx*lx)*om*om; 
  Writeln('Mechanical  energy  at Begin : ',Wmech1,' Joule'); 
  Writeln('Mechanical  Energy  at End :   ',Wmech2,' Joule'); 
  Writeln('Mechan. Energy-alteration  : ',Wmech2-Wmech1,' Joule'); 
  Write('total change, charge -Amplitude: '); 
  If Abs(lq)>Abs(eq) then Write('+'); 
  If Abs(lq)<Abs(eq) then Write('-'); 
  Writeln(Abs(lq-eq)); 
  Wel1:=L/2*(eq*eq)*om*om; Wel2:=L/2*(lq*lq)*om*om; 
  Writeln('Elektrical  Energy  at Begin : ',Wel1,' Joule'); 
  Writeln('Elektrical  Energy  at End :   ',Wel2,' Joule'); 
  Writeln('Elektr. Energy-alteration  : ',Wel2-Wel1,' Joule'); Writeln; 
  Writeln('Sum: total energy-gain     : ',Wmech2-Wmech1+Wel2-Wel1,' Joule'); Writeln; 
end; 
 
Procedure Leistung_berechnen;  {over the ballast resistor "Rlast", Integral average} 
Var i   : Integer; 
    P   : Double;              {power in the time interval dt} 
    Eges: Double;              {total power over the total time} 
begin 
  Eges:=0; 
  For i:=0 to N do 
  begin 
    P:=+Rlast*Qp[i]*Qp[i];           
    Eges:=Eges+P*dt;                 
  end; 
  Writeln('Eges= ',Eges, ' Joule in ',N*dt,' sec.'); 
  Writeln('=> power    Pmean  = ',Eges/(N*dt),' Watt'); 
end; 
 
 
 
 
Begin {main program} 
{ Initialization of the values: } 
{ General: } 
  epo:=8.854187817E-12{As/Vm}; {Magnetic Field constant} 
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  muo:=4*pi*1E-7{Vs/Am};       {Elektric Field constant } 
  v:=Sqrt(1/muo/epo){m/s};     {speed of light} 
  Abstd:=1;                    {how many points shall be plotted ?} 
{ Kondensator: } 
  CA:=0.1*0.1{m²}; CD:=0.002{m};  {capacitor-Geometrie, plate’s surface & distance} 
  epr:=3;                                                 {Dielectric isinde capacitor} 
  C:=epo*epr*CA/CD;                            {capacity without voltage} 
{ Spule: } 
  SN:=34600; SL:=0.08{m}; SR:=0.05{m}; SA:=pi*SR*SR{m²};               {coil’s-Geometry} 
{}mur:=12534;                          {core material to adjust the frequency} 
  L:=muo*mur*SN*SN*SA/SL;                                                   {inductance} 
  rho:=1.7E-8{Ohm*m};       {Spez. resistance of copper, Kohlrausch,T193} 
  AD:=pi*0.0002*0.0002{m²};                           {cross-section of the copper wire} 
  R:=rho*2*pi*SR*SN/AD{Ohm};                       {Ohm`s resistance of the copper wire} 
  DL:=SN*2*pi*SR;                                            {length of the copper wire} 
{mechanical oscillations of the capacitor plates:} 
  rhoAL:=2700{kg/m³};    {density of Aluminium} 
  rhoFol:=1500{kg/m³};   {density of plastic foil} 
{}dAL:=2e-6{m};          {thickness of Aluminium-capacitor plates} 
  dFol:=10e-6{m};        {thickness of the plastic foil} 
{}D:=1.0{N/m};           {Hooke’s spring constant of the capacitor plates} 
  m:=CA*dAL*rhoAL+CA*dFol*rhoFol; {(mechanical) mass of the Aluminium-capacitor plates} 
  omFol:=Sqrt(D/m);        {mechanical frequency of the capacitor plates} 
  fFol:=omFol/2/pi;        {mechanical frequency of the capacitor plates} 
{ extraction of electrical power:} 
  Rlast:=0;    {Ohm}                                          {electrical ballast resistor} 
  {start of the electrical oscillation: } 
{}Q[0]:=2E-10{C}; Qp[0]:=0; Qpp[0]:=0;                    {initial charge on the capacitor} 
  UC:=Q[0]/C{V};             {initial voltage of the capacitor} 
  dt:=3.53E-4{sec.};                                                           {Time-steps} 
  N:=30000;                                                    {total number of Time-steps} 
{ start of the mechanical oscillation: } 
  x[0]:=Plapos(0);       {Iterative determination of the position of the capacitor plates.} 
  GG3:=x[0]; {equilibrium position of the flexible plates, part 3, Federkraft=Coulombkraft} 
  SP3:=CD/2;        {distance of the plates with regard to mechanical prestress} 
  F:=1/4/pi/epo*Q[0]*Q[0]/(2*x[0])/(2*x[0]);            {Anziehung nach dem Coulomb-Gesetz} 
                                               {the position of the plates is at CD/2+x[i]} 
  xp[0]:=0; xpp[0]:=0;                        {initial conditions of the plates motion t=0} 
  MacheFiles:=true;             {should we write the results for Excel ?} 
  {screen outputs of initial data:} 
  Writeln('DFEM-computation of LC - oscillation:'); Writeln; 
  Writeln('epo=',epo:20,';  muo=',muo:20,';  v=',v:20); 
  Writeln('C=',C:20,' Farad;     L=',L:20,' Henry'); 
  Writeln('Klass. Elek. Osc. frequ. fo=2*pi/Sqrt(L*C)=',2*pi/Sqrt(L*C),' Hz'); 
  Writeln(' ==> duration per period T=1/fo=',2*pi*Sqrt(L*C),' sec.'); 
  Writeln('Ohm`s resistance of the copper-wire:',R,' Ohm'); 
  Writeln('length of the copper wire:',DL,' Meter'); 
  Writeln('cross-section of the copper wire:',AD*1e6:10:5,' mm^2'); 
  Writeln('Volume of the coil: ',DL*AD*1E6:10:5,' cm^3'); 
  Writeln(weight of the coil: ',DL*AD*1E6*8.92:10:5,' Gramm');  {Dichte Cu: 8.92 g/cm^3} 
  Writeln('initial voltage of the capacitor:',UC:12:5,' Volt'); 
  Writeln('total amount of time: ',N*dt,' sec. in ',N,' Schritten'); 
  Writeln; Writeln(’mechanical oscillation of the capacitor plates:'); 
  Writeln('mass of the capacitor plates m= ',m*1000:10:5,' Gramm'); 
  Writeln('frequency of the capacitor plates: fFol= ',fFol:10:7,' Hz.'); 
  Writeln('attractive formce of capacitor plates: Kraft F= ',F,' N'); 
  Writeln('initial deflection of capacitor plates: F/D= ',F/D,' m'); 
  Writeln('position of the unloaded capacitor plates: ',CD/2); 
  Writeln('position of the loaded capacitor plates: X[0]: ',X[0]); 
  Writeln('precision of the plates position, Differenzkraft: ',Fc+Fd,' N'); 
  Writeln('initial plates position, part 3: ',SP3:10:7,' m'); 
  Writeln('capacity of the of the unloaded capacitor:  C= ',epo*epr*CA/CD,' Farad'); 
  Writeln('capacity of the of the loaded capacitor: C[0]= ',epo*epr*CA/(2*x[0]),' Farad'); 
  Writeln('enhancement of the capacity: ',epo*epr*CA*(1/2/x[0]-1/CD),' Farad'); 
  Writeln('duration of computation: ',N*dt,' sec.'); 
  Writeln;    {Wait;} 
 
{ Begin of the algorithm.} 
  Writeln('1.part -> classical harmonic oscillation, without attenuation:'); 
  Writeln('  t/[sec.]  |  Uc/[V] | '); 
  For i:=1 to N do 
  begin 
    UC:=Q[i-1]/C; UL:=-UC; 
    Qpp[i]:=UL/L; 
    Qp[i]:=Qp[i-1]+Qpp[i]*dt; 
    Q[i]:=Q[i-1]+Qp[i]*dt; 
{   Writeln(i*dt:11:9,' | ',Q[i]/C:7:2,' |'); } 
  end; 
  If MacheFiles then Excel_Datenausgabe('Teil_01.dat'); Writeln; 
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{---------------------------------------------------------------} 
  Writeln('2.part -> classical harmonic oscillation, with Ohm’s attenuation:'); 
  Writeln('  t/[sec.]  |  Uc/[V] | ');    { R:=2000; {enhanced resistance for testing} 
  For i:=1 to N do 
  begin 
    Qpp[i]:=-1/L/C*Q[i-1]-R/2/L*Qp[i-1]; 
{   Qp[i]:=(Qp[i-1]+Qpp[i]*dt)/(1+R/L*dt); }  {alternative simple approximation} 
    Qp[i]:=Qp[i-1]+(Qpp[i]-R/2/L*Qp[i-1])*dt;    {vgl. s=1/2*a*t^2} 
    Q[i]:=Q[i-1]+Qp[i]*dt; 
{   Writeln(i*dt:11:9,' | ',Q[i]/C:7:2,' |'); } 
  end; 
  If MacheFiles then Excel_Datenausgabe('Teil_02.dat'); Writeln; 
 
{---------------------------------------------------------------} 
 
  Writeln('3.part -> oscillation with zero-point-energy conversion'); 
{ Writeln('  t/[sec.]  |           x/[m]         |        Q[i]'); } 
  x[0]:=SP3;       {mechanical starting position of the capacitor plates} 
  For i:=1 to N do 
  begin 
    Fd:=-D*(x[i-1]-CD/2);                              {spring force} 
    Fc:=-Q[0]*Q[0]/4/pi/epo/(2*x[i-1])/(2*x[i-1]);     {Coulomb- force} 
    xpp[i]:=(Fc+Fd)/m;                                 {acceleration} 
    xp[i]:=xp[i-1]+xpp[i]*dt; 
    x[i]:=x[i-1]+xp[i]*dt; 
    If x[i]<=1e-10 then 
    begin 
      Writeln (‚'Capacitor plates touch each other. Coulomb-force too strong. STOP.'); 
      Wait; Wait; Halt; 
    end; 
    C:=epo*epr*CA/(2*x[i]); 
    Qpp[i]:=-1/L/C*Q[i-1]-(R+Rlast)/2/L*Qp[i-1]; 
    Qp[i]:=Qp[i-1]+(Qpp[i]-(R+Rlast)/2/L*Qp[i-1])*dt; 
    Q[i]:=Q[i-1]+Qp[i]*dt; 
{   Writeln(i*dt:11:9,' | ',x[i],' |',Q[i]);} 
  end; 
  If MacheFiles then Excel_andere_Ausgabe('Teil_03.dat'); Writeln; 
  Amplituden_anzeigen; 
  Leistung_berechnen; 
 
{---------------------------------------------------------------} 
 
  Wait;   Wait; 
End. 
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