
One More Step Towards Generalized
Graph-Based Weakly Relational Domains

Sven DE SMET a

a Student at Ghent University

Abstract. This paper proposes to extend graph-based weakly relational domains
to a generalized relational context. Using a new definition of coherence, we show
that the definition of a normal form for this domain is simplified. A transitive clo-
sure algorithm for combined relations is constructed and a proof of its correctness
is given. Using the observed similarity between transitive closure of a combined
relation and the normal form closure of a graph-based weakly relational domain,
we extract a mathematical property that a relational abstract domain must satisfy in
order to allow us to use an algorithm with the same form as the transitive closure
algorithm to compute the normal form of a graph-based weakly relational domain.

Keywords. Abstract interpretation, Transitive closure, Weakly-relational domains,
Verification

Introduction

With the accelerating invasion of the real world by computing machines, we increas-
ingly depend on the correctness of the programs they execute. Since manual verification
requires a significant amount of resources, we must resort to automatic verification.

Abstract interpretation is a mathematical model that can be used for software veri-
fication [1,2]. Graph-based relational abstract domains allow to apply simple, relational
abstract domains to composite systems. For a motivating example and references to re-
lated work, see [3]. In this paper we explore to what extent graph-based relational ab-
stract domains can be generalized.

To this end we first construct a transitive closure algorithm for combined relations1.
We next formulate a constraint system in a general, relational context and propose a
mathematical property that I believe will allow to adapt the transitive closure algorithm
to construct a normal form closure algorithm for constraint systems. The normal form
closure algorithm is an essential component to construct a graph-based weakly-relational
domain.

1For a different algorithm for computing the transitive closure of combined relations, see [4].

1. A Recursive Transitive Closure Algorithm

1.1. Preliminaries

This section briefly reviews the basic definitions of relations. Readers familiar with rela-
tions may want to skip to definition 1.7.

Definition 1.1 (Relation). For two sets A and B, every subset of A × B represents a
relation from A to B. A relation from A to A is a relation on A.

Definition 1.2 (Range and domain). For a relation R from a set A to a set B, we define
the range of R, denoted asRR, as the set of elements b ∈ B for which an element a ∈ A
can be found such that (a, b) ∈ R. Similarly, we define the domain of R, denoted as
DR, as the set of elements a ∈ A for which an element b ∈ B can be found such that
(a, b) ∈ R.

Relations will be denoted with a bold face font while sets that act as ranges or do-
mains of relations will be denoted with a blackboard font.

Definition 1.3 (Join operation). Given three sets, A, B and C, a relation RA,B from A
to B and a relation RB,C from B to C. Applying the join operation • on the relations
RA,B and RB,C results in a relation RA,B •RB,C from A to C where for each a ∈ A and
c ∈ C we define that (a, c) ∈ RA,B •RB,C iff an element b ∈ B can be found such that
(a, b) ∈ RA,B and (b, c) ∈ RB,C.

Definition 1.4 (Relation exponentiation). For a natural number n, a set A and a relation
R on A the relation Rn is defined as

Rn ,

[
1A n = 0

Rn−1 •R n ≥ 1
(1)

where 1A denotes the identity relation on A, defined as 1A = {(a, a)|a ∈ A}.

Definition 1.5 (Transitive closure). For a set A and a relation R on A, the transitive
closure R? of R is defined as

R? ,
+∞
∪

s=0
Rs (2)

Note that this operation is idempotent:

Lemma 1.1. For every relation R, we have R? = (R?)?.

Definition 1.6 (Transitively closed). A relation R is transitively closed iff R = R?.

Since the transitive closure operation is idempotent, the transitive closure of any
relation is transitively closed.

Definition 1.7 (Combined relation). For

• a finite set of indices L = {j1, j2, . . . , jn} with n ∈ N,

• a set Si for each index i ∈ L where all sets Si are mutually disjoint, i.e. Si ∩ Sj =
∅ for each pair of indices (i, j) ∈ L2 and

• a relation Pi,j ⊆Si × Sj for each pair of indices (i, j) ∈ L2

the combined relation C(L,S,P) is the union of the relations on the pairs of indices,
i.e.2

C(L,S,P) ,
L2

t
(i,j)

Pi,j (3)

a relation on
L
t
i
Si.

If p is a combined relation with p = C(L,S,P) then we will also use the notation
pi,j to denote Pi,j for pairs of indices (i, j) ∈ L2.

The sets and relations may be parametrised and infinite (or both).

1.2. Problem Statement

Problem 1.1. Given a combined relation C(L,S,P) and an algorithm to compute the
result of the operations (for every (i, j, k) ∈ L3)

• R •Q for relations R from Si to Sj and Q from Sj to Sk ,
• R ∪ Q for relations R and Q from Si to Sj and
• R? for a relation R on Si

we want to find an efficient algorithm that computes a representation of the transitive
closure C(L,S,P)? of the combined relation.

1.3. Solution

This section provides a complete description of the main ideas that lead to a novel solu-
tion of the problem described in section 1.2. The main result of this section is summa-
rized by algorithm 1. Technical details are deferred to the appendix.

Since an algorithm to compute the union and join of a combined relation can easily
be constructed from the union operation and join operation of the constituent relations,
the resulting algorithm to compute the transitive closure of the combined relation will
allow to use the combined relation itself as a constituent relation for a larger problem. Our
strategy will therefore be to first solve the case with only two indices and to subsequently
apply the solution recursively.

1.3.1. The Special Case of Two Indices

Let us first consider the case with only two indices, L = {i, j}. To simplify the notation
we use the shorthands I for Si and J for Sj . To analyse the problem, we will make use of
the restriction of a relation:

2 t denotes the disjoint union operation. For a triple of sets (A, B, C) the statement A t B = C is equiva-
lent to (A ∪ B = C)∧ (A ∩ B = ∅).

Definition 1.8 (Restriction). For a relation R from a set A to a set B, we define the
restriction R|CD of R to (C,D) with C⊆A and D⊆B as R ∩ C× D.

Note that any relation can be decomposed into a disjoint union of relations on a
partition of its domain and range:

Lemma 1.2 (Disjunct union decomposition). For a relation R from a set A to a set B,
subsets A1 and A2 of A that partition3 A and subsets B1 and B2 of B that partition B we
have R = R|A1

B1
t R|A1

B2
t R|A2

B1
t R|A2

B2
.

Let us use the more succinct notation K for C(L,S,P)?, the transitive closure of
the combined relation. Since K must be defined through its constituent relations we
will search for an expression for the relations K|II, K|IJ, K|JI and K|JJ in terms of Pi,i,
Pi,j , Pj,i and Pj,j so that lemma 1.2 allows us to use these relations as the constituent
relations of the combined relation K:

K = K|II t K|IJ t K|JI t K|JJ =
{I,J}2
t

(a,b)
K|ab (4)

To find these expressions, note first that the following lemma provides an alternative way
to characterise a relation as transitively closed:

Lemma 1.3. For a relation R on a set A, we have R? = R iff R •R = R and 1A⊆R.

So when is K transitively closed? Let us try to use lemma 1.3 on K to determine the
required constraints:

K •K = (
{I,J}2
t

(a,b)
K|ab) • (

{I,J}2
t

(a,b)
K|ab)

=
{I,J}4
∪

(a,b,c,d)
K|ab •K|cd

(5)

In the last transition we have made use of

Lemma 1.4. The join operation • distributes over the union operation.

Since I ∩ J = ∅ and the join R • Q of relations for which RR ∩ DQ = ∅ is
the empty relation, we can eliminate the terms for which b 6= c so that the expression
simplifies to

K •K =
{I,J}3
∪

(a,f,d)
K|af •K|

f
d (6)

a union of eight relations. If we now compare this expression to expression (4) of K
obtained through lemma 1.2 we see that each relation in our expression for K can be

3a pair of sets (A, B) partitions a set C iff A t B = C

identified with the union of two relations in our expression for K•K since the sets I and
J partition I ∪ J:

K|II = K|II •K|II ∪ K|IJ •K|
J
I

K|IJ = K|II •K|IJ ∪ K|IJ •K|
J
J

K|JI = K|JJ •K|
J
I ∪ K|JI •K|

I
I

K|JJ = K|JJ •K|
J
J ∪ K|JI •K|

I
J

(7)

Note that

Lemma 1.5. For any transitively closed relation R on a set A, every restriction R|BB
with B⊆A is transitively closed as well: R|BB = (R|BB)?.

Since we will choose K such that it is transitively closed, lemma 1.3 and 1.5 allow
us to rewrite K|II •K|II as K|II and K|JJ •K|

J
J as K|JJ.

Note also that

Lemma 1.6. The join operation • is associative.

Since K|II is transitively closed, we know that 1I⊆K|II and thus, using lemma 1.4,
that K|IJ⊆K|II •K|IJ. The second equation in (7) further implies that K|II •K|IJ⊆K|IJ.
Combining both gives K|IJ = K|II • K|IJ. In the same way we can derive that K|IJ =
K|IJ •K|

J
J. We can therefore conclude that K|IJ has the form

K|IJ = K|II •YI
J •K|

J
J (8)

with YI
J a relation that must yet be determined. It can readily verified that the combi-

nation of lemma 1.3, 1.5 and 1.6 ensures that a relation of this form satisfies the second
equation of (7).

Similarly, we can derive that K|JI has the form

K|JI = K|JJ •Y
J
I •K|

I
I (9)

The remaining constraints of (7) that represent the relations on I and J can now be written
as

K|II = K|II ∪ (K|II •YI
J •K|

J
J •Y

J
I •K|

I
I)

K|JJ = K|JJ ∪ (K|JJ •Y
J
I •K|

I
I •YI

J •K|
J
J)

(10)

Because K|II and K|JJ are transitively closed, we have 1I⊆K|II and 1J⊆K|JJ so that
we can derive from equation (10) that YI

J •K|
J
J •Y

J
I ⊆K|II and YJ

I •K|II •YI
J⊆K|JJ.

Since we require that K = C(L,S,P)? we must have C(L,S,P)⊆K and
by decomposing the relation on disjoint ranges and domains we see that Pi,i⊆K|II,
Pi,j ⊆K|IJ, Pj,i⊆K|JI and Pj,j ⊆K|JJ. Combining this information with the equations

(8) and (9) further gives Pi,j ⊆YI
J and Pj,i⊆YJ

I . Based on the derived forms (8), (9)
and (10), and the fact that we expect that K is the smallest relation (w.r.t. inclusion) that
satisfies the constraints we therefore propose

Theorem 1.1. If we choose the expressions

K|II = (Pi,i ∪ Pi,j •P?
j,j •Pj,i)?

K|JJ = (Pj,j ∪ Pj,i •P?
i,i •Pi,j)?

K|IJ = K|II •Pi,j •K|JJ

K|JI = K|JJ •Pj,i •K|II

(11)

for K|II, K|IJ, K|JI and K|JJ then K|II t K|IJ t K|JI t K|JJ = C(L,S,P)?.

Proof. The expressions for K|IJ and K|JI satisfy the constraints (8) and (9) with YI
J =

Pi,j and YJ
I = Pj,i.

To show that the expression for K|II satisfies equation (10) it suffices to show
that YI

J • K|JJ • YJ
I ⊆K|II, or equivalently, that Pi,j • (Pj,j ∪ Pj,i • P?

i,i • Pi,j)? •
Pj,i⊆ (Pi,i ∪ Pi,j • P?

j,j • Pj,i)?. Notice that by expanding the definition of the tran-
sitive closure operation and by distributing the join operation over the union opera-
tions, we can write each side of the expression as a union of expressions of the form
Pa1,b1 • Pa2,b2 • . . . • Pan,bn

where the sequence of subscripts (as, bs) ∈ {i, j} with
s ∈ 1..n must obey specific rules. We can consider the possible pairs (i, i), (i, j), (j, i)
and (j, j) as the four symbols of an alphabet and the sequences of symbols that corre-
spond to expressions that are included in the union as the words of a language. To de-
rive the language rules from the expression, note that the relation join operation • cor-
responds to the concatenation operation ./ for words, the relation union operation ∪
corresponds to the alternation operation | for words, while the transitive closure op-
eration results in the Kleene star operation ? that designates a word that is replicated a
number of times. We can thus represent all the words for the language for the expression
(Pi,i ∪ Pi,j •P?

j,j •Pj,i)? as the regular expression ((i, i) | (i, j) ./ (j, j)? ./ (j, i))?.
We can then construct a finite deterministic automaton that recognizes the words from
this language with well-known techniques (see figure 1(a)). We can similarly construct a
regular expression ((j, j) | (j, i) ./ (i, i)? ./ (i, j))? and automaton (figure 1(b)) for the
expression (Pj,j ∪ Pj,i • P?

i,i • Pi,j)?. This automaton is symmetric to the automaton
for (Pi,i ∪ Pi,j •P?

j,j •Pj,i)?: the only difference is that the initial and final (accepting)
states are swapped.

The regular expression for Pi,j •(Pj,j ∪ Pj,i•P?
i,i•Pi,j)?•Pj,i can be constructed

from the regular expression for (Pj,j ∪ Pj,i • P?
i,i • Pi,j)? by adding the prefix (i, j)

and suffix (j, i): (i, j) ./ ((j, j) | (j, i) ./ (i, i)? ./ (i, j))? ./ (j, i). This results in an
automaton (figure 1(c)) that includes the main states of the automaton for (Pj,j ∪ Pj,i •
P?

i,i •Pi,j)? as a sub-automaton. It can then be seen that any path from the initial to the
final state through the automaton for Pi,j •(Pj,j ∪ Pj,i •P?

i,i •Pi,j)? •Pj,i corresponds
to a word for which a path in the automaton for (Pi,i ∪ Pi,j • P?

j,j • Pj,i)? exists that
corresponds to the same word: it suffices to require that the first edge is an edge that
emits (i, j) and the last edge is an edge that emits (j, i). All expressions that occur in the

union expansion of Pi,j • (Pj,j ∪ Pj,i •P?
i,i •Pi,j)? •Pj,i therefore also occur in the

union expansion of (Pi,i ∪ Pi,j •P?
j,j •Pj,i)?. We can thus conclude that the expression

for K|II satisfies equation (10). We can similarly show that K|JJ satisfies equation (10).

β

(j, j)

α
(j, i)

(i, j)

(i, i)

(a)
((i, i) | (i, j) ./ (j, j)? ./ (j, i))?

ξ

(i, i)

φ
(i, j)

(j, i)

(j, j)

(b)
((j, j) | (j, i) ./ (i, i)? ./ (i, j))?

ρ

(j, j)

χ(j, i)

ω

(j, i)

(i, j)

(i, i)

τ
(i, j)

(c) (i, j) ./ ((j, j) | (j, i) ./ (i, i)? ./ (i, j))? ./ (j, i)

Figure 1. Finite state automata for the recognition of the specified regular expressions. The initial state is
indicated by a double border, while the final (accepting) state is indicated by a greyed background.

Since 1I⊆K|II and 1J⊆K|JJ we also know that 1I ∪ J⊆K, thereby satisfying the
second requirement for lemma 1.3.

Since the resulting K satisfies the required constraints that ensure it is transitively
closed by lemma 1.3 and C(L,S,P)⊆K, we have C(L,S,P)?⊆K. Since for every
edge k ∈ K a path with edges in Pi,i t Pi,j t Pj,i t Pj,j with the same endpoints
must exist by construction, we have K = C(L,S,P)?.

1.3.2. More than Two Indices

We can now apply the derived expressions recursively using algorithm 1. In this algo-
rithm,

• SplitEvenly is a function that splits a set of n indices into two sets with bn
2 c and

bn+1
2 c indices,

• a combined relation RI,J with a pair (I, J) of index sets as subscripts is a com-
bined relation where only domains corresponding to the indices in I and ranges
corresponding to the indices in J are considered,

• the union operation applied to a pair of combined relations is evaluated by ap-
plying the union operation to the constituent relations for corresponding indices
and

• the join operation applied to a combined relation RI,J from indices I to J and
SJ,K from indices J to K is defined by setting

I×K

∀
(i,k)

(RI,J • SJ,K)i,k =
J
∪
j
Ri,j • Sj,k (12)

Algorithm 1 Ψ(P: CombinedRelation; F : IndexSet): CombinedRelation
if |F | > 1 then

(L,R) , SplitEvenly(F)
S, Ψ(PL,L, L)
T, Ψ(PR,R, R)
KL,L , Ψ((S ∪ PL,R •T •PR,L), L)
KR,R , Ψ((T ∪ PR,L • S •PL,R), R)
KL,R ,KL,L •PL,R •KR,R

KR,L ,KR,R •PR,L •KL,L

else
KF,F ,P?

i (with {i} = F)
end if
return KF,F

1.4. Analysis

Let us first assume that the number of indices is a power of two. A single call to the
recursive closure algorithm for a set with n = 2m indices then results in

• four recursive calls to the algorithm for index sets each with size n
2 ,

• 2 union operations on combined relations on n
2 indices resulting in a total of

φ(n) , 2(n
2)2 union operations on constituent relations and

• 8 join operations on combined relations from n
2 indices to n

2 indices resulting in
8(n

2)2 evaluations of equations of the form (12), which in turn results in a total
of ζ(n) , 8(n

2)3 join operations and τ(n) , 8(n
2)2(n

2 − 1) union operations on
constituent relations

if n > 1 or a single transitive closure operation on a constituent relation if n = 1. This
allows to derive the total number of required operations:

Theorem 1.2. Applying the recursive transitive closure algorithm to a combined relation
with a set of n = 2m indices results in the execution of

• n3 − n2 join operations for constituent relations
• n3 − n2(3

2 log2 n+ 1) union operations for constituent relations
• n2 transitive closure operations for constituent relations
• 1

3 (n2 − 1) invocations of the recursive algorithm

This leads to a time complexity of O(n3). This also holds when the number of
indices is no power of two (we can then consider the next higher power of two).

1.5. Application Example: Transitive Closure with a Polyhedral Abstraction

To apply the transitive closure operation while restricting the representable relations to a
polyhedral abstraction, we must determine the abstractions of the required operations:

• The join operation for two polyhedral relations S (from s to t) and T (from t to
u) can be obtained directly using the definition:

S •T = {(i, k) | (i, j) ∈ S∧ (j, k) ∈ T}

= πSs×Su
((S× Su) ∩ (Ss ×T))

(13)

where π denotes the projection operation.
• The abstract union operation is the lowest polyhedral upper bound (i.e., the con-

vex hull) of the union of input relations.
• To obtain the result of the transitive closure of a constituent polyhedral relation P

on a set S, we consider the set of distance vectors of the relation:

{z | z = y − x∧ (x, y) ∈ P} (14)

This set is the projection of a polyheder on the coordinates of z. Using the Farkas
lemma we can immediately derive a set of linear functions that are non-negative
for all the vectors in this set. Since a function that is non-negative for a set of vec-
tors will also be non-negative for linear combinations of these vectors, the linear
functions will also be valid for the indirect distance vectors that result from the
transitive closure of the relation. Since 1Ss ⊆P? we can obtain a generating set
of the non-negative functions for P? by duplicating the linear part obtained using
the distance vector set and allowing an additional positive constant difference.

2. A Recursive Constraint System Closure Algorithm

2.1. Preliminaries

In [3] sets of tuples that are defined by a set of pairwise constraints in the form of con-
straint matrices are considered. In this section we consider an extension of this concept
in its most general, relation form:

Definition 2.1 (Constraint system). A constraint system m on a (finite) set of indices L
is a combined relation C(L,S,P) that represents the set

Γ(m) = {x ∈
L
×
k

Sk|
L2

∀
i,j

(xi, xj) ∈ Pi,j} (15)

for a chosen total order4 of the indices in L.

4the chosen order is only a formal requirement for choosing an order of occurence of the sets in the cardinal

product
L
×
k

Sk and thus the ordering of elements within the tuple

The constraints in a constraint system are not independent with respect to the set
of tuples it represents. From two relations Pi,j and Pj,k one can deduce that for an
x ∈ Γ(m) the pair of elements (xi, xk) must not only obey the explicit constraints
(xi, xk) ∈ Pi,k, but also the implicit constraints (xi, xk) ∈ Pi,j •Pj,k for every j ∈ L
because a common xj must exist in order to satisfy both constraints simultaneously. We
can define an operation that allows to derive all these implicit constraints:

Definition 2.2 (Constraint system transition operation). Given index sets I , J andK and
two combined relations p = C((I, J),S,P) and q = C((J,K),S,Q) on a number of
mutually disjoint sets Si with i ∈ I ∪ J ∪ K. Applying the constraint transition operation
N on the relations p and q results in a relation pNq where for any pair (i, k) ∈ I ×K
we define that for a pair (a, c) ∈ Si×Sk we have (a, c) ∈ (pNq)i,k iff (a, c) ∈ pi,j •qj,k

for each index j in J .

Note that the transition operation is structurally similar to the join operation for
combined relations.

The transition operation provides a new combined relation representing constraints
that must be satisfied in addition to the explicit constraints that are given. These implicit
constraints may lead to further implicit constraints. Since we also want to consider im-
plicit constraints that occur through multiple steps of the transition operation we define
a constraint system exponentiation operation:

Definition 2.3 (Constraint system exponentiation). Given a constraint system repre-
sented by a combined relation p = C(L,S,P) and a natural number n > 0, the con-
straint system pN(n) is defined as

pN(n) =

[
p n = 1

pN(n−1)Np n > 1
(16)

The combined relation that represents the explicit constraints as well as all implicit
constraints obtained through any number of exponentiation steps explicitly can then be
defined as:

Definition 2.4 (Transitive constraint system closure). For a constraint system repre-
sented by a combined relation p = C(L,S,P), the transitive constraint system closure
p‡ of p is defined as

p‡ =
+∞
∩

s=1
pN(s) (17)

Note that this operation is idempotent:

Lemma 2.1 (Idempotence of transitive constraint system closure). For every constraint
system represented by a combined relation p = C(L,S,P), we have p‡ = (p‡)‡.

The implicit constraints obtained through the repeated application of the transition
operation are not the only implicit constraints that exist with respect to the set of tuples
represented by the constraint system. For the case where i = j in the definition of con-
straint system, the pair (xi, xj) must not only satisfy the explicit and implicit constraints

discussed above, but also the implicit constraint xi = xj , because both expressions rep-
resent the same component of a single tuple. We will define a constraint system where
all such constraints are explicit as coherent:

Definition 2.5 (Coherent). A constraint system represented by a combined relation p =

C(L,S,P) is coherent iff
L

∀
k
p|Sk

Sk
⊆1Sk

.

A constraint system can easily be made coherent without changing the set of tuples
it represents by intersecting the combined relation with the maximal coherent combined
relation mL = C(L,S,M), defined by

Mi,j =

[
1Si

i = j

Si × Sj i 6= j
with (i, j) ∈ L2 (18)

Since we are interested in finding a normal form of the representation of the con-
straint system, we define a closure that also takes these implicit constraints into account:

Definition 2.6 (Constraint system closure). For a constraint system represented by a
combined relation p = C(L,S,P), the constraint system closure p† of p is defined as

p† = (p ∩mL)‡ (19)

From this definition, it follows immediately that the constraint system closure results
in a coherent relation.

Theorem 2.1 (Normal form). For two constraint systems represented by combined rela-
tions p and q we have Γ(p) = Γ(q) iff p† = q†.

Definition 2.7 (Closed constraint system). A constraint system represented by a com-
bined relation C(L,S,P) is closed iff C(L,S,P) = C(L,S,P)†.

A closed constraint system is interesting because all constraints are explicit in the
constituent relations. Interesting operations on the represented sets can then be imple-
mented using pointwise extensions of the operations on the constituent relations.

Due to the idempotency of the constraint system closure operation, the constraint
system closure of any relation is a closed constraint system. We are therefore interested
in an algorithm that computes the constraint system closure.

2.2. Problem Statement

Problem 2.1. Given a constraint system represented by a combined relation C(L,S,P)
and an algorithm to compute the result of the operations (for every (i, j, k) ∈ L3)

• R •Q for relations R from Si to Sj and Q from Sj to Skand
• R ∩ Q for relations R and Q from Si to Sj

we want to find an algorithm that computes a representation of the constraint system
closure C(L,S,P)† of the constraint system.

2.3. Solution

2.3.1. The Case of Two Subsets of Indices

Let us first consider the case where the index set L is partitioned into subsets I and J , i.e.
L = I t J . Since the recursion must work at the level of indices rather than at the level
of nodes, we will consider a restriction of combined relations to a subset of the index set:

Definition 2.8 (Index Set Restriction). Given a combined relation p = C((I, J),S,P)
from index set I to J , we define the index set restriction of p to (G,H) with G⊆ I and
H ⊆ J as

p||GH = p|
G
t
g

Sg

H
t
h

Sh

(20)

a combined relation from indices G to H .

We will use a lemma similar to lemma 1.2 to decompose the relation into a disjoint
union of relations on a partition of its domain and range index sets:

Lemma 2.2. For a combined relation p = C((I, J),S,P) from index set I to J , subsets
I1 and I2 of I that partition I and subsets J1 and J2 of J that partition J we have
p = p||I1

J1
t p||I1

J2
t p||I2

J1
t p||I2

J2
.

Let us use the more succinct notation w for C(L,S,P)†, the closure of the given
constraint system. To find an expression for the relations w||II , w||IJ , w||JI and w||JJ we
use a lemma that serves the purpose that lemma 1.3 did for the case of transitive closure:

Lemma 2.3. For a coherent constraint system represented by a combined relation p, we
have p† = p iff p = pNp.

The expression for wNw in terms of the decomposed combined relation can be
written as

wNw = (
{I,J}2
t

(a,b)
w||ab)N(

{I,J}2
t

(a,b)
w||ab)

=
{I,J}2
t
a,d

{I,J}
∩
t

w||at
t
Nw||td

(21)

Just like for the transitive closure case we can now find the required constraints by iden-
tifying the corresponding combined relations:

w||II = w||II
I
Nw||II ∩ w||IJ

J
Nw||JI

w||IJ = w||II
I
Nw||IJ ∩ w||IJ

J
Nw||JJ

w||JI = w||JJ
J
Nw||JI ∩ w||JI

I
Nw||II

w||JJ = w||JJ
J
Nw||JJ ∩ w||JI

I
Nw||IJ

(22)

Note that we have a lemma analogous to lemma 1.5:

Lemma 2.4. For any closed constraint system represented by a combined relation p on
a set of indices I , every index set restriction p||JJ with J ⊆ I is a closed constraint system
as well: p||JJ = (p||JJ)†.

Since this implies that w||II is coherent we know that

w||II
I
Nw||IJ =

I×J
∪
i,j

I
∩
k
(w||II)i,k • (w||IJ)k,j

⊆
I2

∪
i,j

(w||II)i,i • (w||IJ)i,j

⊆
I2

∪
i,j

(w||IJ)i,j = w||IJ

(23)

and from the second expression in (22) we immediately have w||IJ ⊆w||II
I
Nw||IJ so that

w||IJ = w||II
I
Nw||IJ . In the same way, it can be shown that w||IJ = w||IJ

J
Nw||JJ . A similar

derivation can be made for w||JI so that we know that the expressions for w||IJ and w||JI
must have a form

w||IJ = (w||II
I
NzI

J)
J
Nw||JJ = w||II

I
N(zI

J

J
Nw||JJ) = w||II

I
NzI

J

J
Nw||JJ

w||JI = (w||JJ
J
NzJ

I)
I
Nw||II = w||JJ

J
N(zJ

I

I
Nw||II) = w||JJ

J
NzJ

I

I
Nw||II

(24)

where zI
J and zJ

I are relations that must yet be determined.

Note that we did not immediately remove the braces, because the operations
I
N and

J
N

do not associate in general. This is caused by the fact that in order to prove associativity,

we must be able to reorder the quantifiers in the definition of
I
N with the quantifiers in the

definition of
J
N. Since the quantifiers in the definition are of a different type this cannot

be done in general. For the join operation this poses no problem because only one type
of quantifier is involved in its definition. However, in order to proceed as we did with
the transitive closure algorithm, we must be able to ensure that a string of transitions
results in the same relation regardless of the order in which the transitions are applied.
To this end, we propose that the associativity of the transition operation is taken as the
mathematical property that is required for the normal form closure algorithm.

This naturally leads to the question Is it possible to find required or sufficient con-
ditions for an abstract domain of a basic pairwise relation such that the transition oper-
ation is associative for a constraint system that is built on relations described with this
abstract domain?

3. Acknowledgements

I thank Sean Rul for helping me discover the connection between the transitive closure
of combined relations and the normal form closure of graph-based weakly-relational do-

mains. I also thank Sven Verdoolaege and anonymous reviewers for their helpful com-
ments which will further improve this paper.

Initial research that provided the starting point for this paper was supported in part
by a PhD grant of the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen)5 and a BOF/GOA project6 and was also morally
supported by the Flexware (IWT/060068) project.

5from 01/01/2008 to 31/08/2009
6from 01/07/2006 to 31/12/2007

A. Appendix: proofs

A.1. Lemma 1.6

The join operation • is associative.

Proof. Consider four sets, A, B, C and D, and a relation P from A to B, a relation Q
from B to C and a relation R from C to D, then

(s, r) ∈ ((P •Q) •R)

=
C
∃
c
((s, c) ∈ (P •Q))∧ ((c, r) ∈ R)

=
C
∃
c
(

B
∃
b
((s, b) ∈ P)∧ ((b, c) ∈ Q))∧ ((c, r) ∈ R)

=
C
∃
c

B
∃
b
((s, b) ∈ P)∧ ((b, c) ∈ Q)∧ ((c, r) ∈ R)

=
B
∃
b

C
∃
c
((s, b) ∈ P)∧ ((b, c) ∈ Q)∧ ((c, r) ∈ R)

=
B
∃
b
((s, b) ∈ P)∧ (

C
∃
c
((b, c) ∈ Q)∧ ((c, r) ∈ R))

=
B
∃
b
((s, b) ∈ P)∧ ((b, r) ∈ (Q •R))

= (s, r) ∈ (P • (Q •R))

(25)

for any (s, r) ∈ A× D.

A.2. Lemma 1.4

The join operation • distributes over the union operation.

Proof. Consider two sets S and T (that must not necessarily be finite) and the relations
Rs from A to B with s ∈ S and Qt from B to C with t ∈ T . Then

(a, c) ∈ (
S
∪
s
Rs) • (

T
∪
t
Rt)

=
B
∃
b
((a, b) ∈

S
∪
s
Rs)∧ ((b, c) ∈

T
∪
t
Rt)

=
B
∃
b
(

S

∃
s
(a, b) ∈ Rs)∧ (

T

∃
t
(b, c) ∈

T
∪
t
Rt)

=
B
∃
b

S×T

∃
(s,t)

(a, b) ∈ Rs ∧ (b, c) ∈ Rt

=
S×T

∃
(s,t)

B
∃
b
(a, b) ∈ Rs ∧ (b, c) ∈ Rt

=
S×T

∃
(s,t)

(a, c) ∈ Rs •Rt

= (a, c) ∈
S×T
∪

(s,t)
Rs •Rt

(26)

for any (a, c) ∈ A× C.

A.3. Lemma 1.1

For every relation R, we have R? = (R?)?.

Proof. It is clear that R?⊆ (R?)? since R? is the second term in
+∞
∪

s=0
(R?)s = (R?)?.

Furthermore, (R?)?⊆R? since for every term (R?)s in
+∞
∪

s=0
(R?)s we have a join of

s times R?. By applying the definition of the transitive closure operation and using the
distributivity of the join operation w.r.t. the union operation we see that (R?)s consists
of a union of terms of the form Rt1 •Rt2 • . . . •Rtn = R

Pn
q=1 tn . Each such term is

included in R? so that (R?)?⊆R?.

A.4. Lemma 1.2

For a relation R from a set A to a set B, subsets A1 and A2 of A that partition7 A and
subsets B1 and B2 of B that partition B we have R = R|A1

B1
t R|A1

B2
t R|A2

B1
t R|A2

B2
.

Proof. By definition of the restriction operation, we have

R|A1
B1
∪ R|A1

B2
∪ R|A2

B1
∪ R|A2

B2

= (R ∩ A1 × B1) ∪ (R ∩ A1 × B2) ∪ (R ∩ A2 × B1) ∪ (R ∩ A2 × B2)
(27)

As a relation from A to B, R must be a subset of A×B. Since A1 and A2 partition A and
B1 and B2 partition B, we can derive that A1×B1, A1×B2, A2×B1 and A2×B2 partition
A× B. Each element (a, b) ∈ R will therefore be contained in one of the partitions, and
will thus be contained in one of the four terms that is combined by the union operations.

7a pair of sets (A, B) partitions a set C iff A t B = C

We thus know that R⊆R|A1
B1
∪ R|A1

B2
∪ R|A2

B1
∪ R|A2

B2
. Since each term is intersected

with R we also know that R|A1
B1
∪ R|A1

B2
∪ R|A2

B1
∪ R|A2

B2
⊆R.

A.5. Lemma 1.3

For a relation R on A, we have R? = R iff R •R = R and 1A⊆R.

Proof. We show the equivalence for a set R on any set A by showing either characteri-
sation implies the other:

• ⇐ : Since R = R •R implies Rn = R for any natural number n > 0 we have
R? = 1A ∪ R. Since 1A⊆R we thus have R? = R.

• ⇒ : If R? = R we have 1A⊆R since 1A⊆R?. We now show that if R? = R
we also have R •R = R by showing that R •R⊇R and R •R⊆R:

∗ R•R⊇R: Since 1A⊆R? we have 1A •R?⊆R? •R?. Since R? = 1A •R?

we thus have R? •R?⊇R?.
∗ R •R⊆R: Since • distributes over ∪ we have

R? •R? = (
+∞
∪

n=0
Rn) • (

+∞
∪

m=0
Rm) =

N2

∪
(n,m)

Rn •Rm (28)

Any relation in this union is also contained in the union that we obtain by
applying the definition of transitive closure to R? since for any pair (n,m) of
natural numbers Rn •Rm = Rn+m as a consequence of the associativity of
•.

A.6. Lemma 1.5

For any transitively closed relation R on a set A, every restriction R|BB with B⊆A is
transitively closed as well: R|BB = (R|BB)?.

Proof. Let C = A \ B, then B and C partition A. If R is transitively closed we can use
lemma 1.3 to show that R|BB = (R|BB)? by deriving that R|BB = R|BB •R|BB and 1B⊆R|BB.
Since R is transitively closed we have 1A⊆R so that 1A|BB = 1A ∩ B × B = 1B
allows us to infer 1B = 1A|BB⊆R|BB by restricting 1A⊆R to (B,B). We now show that
R|BB = R|BB •R|BB by showing that R|BB⊇R|BB •R|BB and R|BB⊆R|BB •R|BB.

• R|BB⊇R|BB •R|BB:

(
{B,C}2
∪

(x,z)
R|xz)2|BB =(

{B,C}3
∪

(x,y,z)
R|xy •R|yz)|BB

=
{B,C}3
∪

(x,y,z)
R|xy |BA •R|yz |AB

=
{B,C}3
∪

(x,y,z)
R|x ∩ B

y ∩ A •R|
y ∩ A
z ∩ B

=
{B,C}
∪
y

R|By •R|
y
B

(29)

By lemma 1.3 we also have R •R = R so that

(
{B,C}2
∪

(x,z)
R|xz)2|BB =(

{B,C}2
∪

(x,z)
R|xz)|BB

=R|BB

(30)

such that

{B,C}
∪
y

R|By •R|
y
B = R|BB (31)

Therefore, R|BB •R|BB⊆R|BB.
• R|BB⊆R|BB•R|BB: Since 1B⊆R|BB we have R|BB = 1B•R|BB⊆R|BB•R|BB.

A.7. Theorem 1.2

Applying the recursive transitive closure algorithm to a combined relation with a set of
n = 2m indices results in the execution of

• n3 − n2 join operations for constituent relations
• n3 − n2(3

2 log2 n+ 1) union operations for constituent relations
• n2 transitive closure operations for constituent relations
• 1

3 (n2 − 1) invocations of the recursive algorithm

Proof. If the first call is at level 0 of the recursion, then we have 4l calls at level l ≤ m.
Each of these calls at level l is applied to index sets with size 2m−l.

• The total number of join operations can then be written as

m−1∑
l=0

4lζ(2m−l) =
m−1∑
l=0

4l8(
2m−l

2
)3 =

m−1∑
l=0

22l+3+3(m−l−1) =
m−1∑
l=0

23m−l

= 22m
m−1∑
l=0

2m−l = 22m(2m − 1) = n3 − n2

(32)
• The total number of union operations can be written as

m−1∑
l=0

4l(φ(2m−l) + τ(2m−l))

=
m−1∑
l=0

4l(2(
2m−l

2
)2 + 8(

2m−l

2
)2(

2m−l

2
− 1))

=
m−1∑
l=0

22l+1+2(m−l−1) + 22l+3+2(m−l−1)(2m−l−1 − 1)

=
m−1∑
l=0

22m−1 + 22m+1(2m−l−1 − 1)

=
m−1∑
l=0

22m−1 + 23m−l − 22m+1 = 22m(
m−1∑
l=0

2m−l − 3
2

)

= n2(2m − 1− 3
2

log2 n) = n3 − n2(
3
2

log2 n+ 1)

(33)

• The total number of transitive closure operations can be written as 4m = n2.
• The total number of invocations of the algorithm can be written as

m−1∑
l=0

4l =
4m − 1
4− 1

=
1
3

(4m − 1) =
1
3

(n2 − 1) (34)

A.8. Lemma 2.1

For every constraint system represented by a combined relation p = C(L,S,P), we have
p‡ = (p‡)‡.

Proof. In the same way as in the proof for lemma 1.1 we can show that each term in
the intersection resulting from expanding the definition of the transitive closure of either
side of the equation p‡ = (p‡)‡ also occurs in the other side.

A.9. Lemma 2.2

For a combined relation p = C((I, J),S,P) from index set I to J , subsets I1 and
I2 of I that partition I and subsets J1 and J2 of J that partition J we have p =
p||I1

J1
t p||I1

J2
t p||I2

J1
t p||I2

J2
.

Proof. Since

p = p||I1
J1
t p||I1

J2
t p||I2

J1
t p||I2

J2

= (p|
I1t
g

Sg

J1t
h

Sh

) t (p|
I1t
g

Sg

J2t
h

Sh

) t (p|
I2t
g

Sg

J1t
h

Sh

) t (p|
I2t
g

Sg

J2t
h

Sh

)

= p

(35)

and

(
I1t
g
Sg) t (

I2t
g
Sg) =

I1 t I2t
g

Sg =
I
t
g
Sg

(
J1t
h

Sh) t (
J2t
h

Sh) =
J1 t J2t

h
Sh =

J
t
h
Sh

(36)

the lemma follows from applying lemma 1.2.

A.10. Lemma 2.3

For a coherent constraint system represented by a combined relation p, we have p† = p
iff p = pNp.

Proof. Let p = C(I, S,P). Since p is coherent we have p⊆m. Then

• p = pNp⇒p† = p since p† = (p ∩m)‡ = p‡ and p = pNp implies that
p‡ = p because all terms in the intersection of the expansion of p‡ are equal to
p and

• p = pNp⇐p† = p because if p† = p then

∗ p⊆pNp since pNp is the second term in the intersection of the expansion of
p† = p and

∗ p⊇pNp since

pNp =
I2

∪
i,j

I
∩
k
pi,k • pk,j

⊆
I2

∪
i,j

pi,i • pi,j

⊆
I2

∪
i,j

pi,j = p

(37)

because for all i ∈ I we have pi,i⊆1Si
due to coherence.

A.11. Lemma 2.4

For any closed constraint system represented by a combined relation p on a set of indices
I , every index set restriction p||JJ with J ⊆ I is a closed constraint system as well: p||JJ =
(p||JJ)†.

Proof. Since a closed constraint system is coherent we have
I

∀
k
p|Sk

Sk
⊆1Sk

so that
J

∀
k
p|Sk

Sk
⊆1Sk

because J ⊆ I , and therefore p||JJ is coherent too. We can thus use lemma

2.3 to show that p||JJ = (p||JJ)† by showing that p||JJ = p||JJNp||JJ .
Let K = I \ J so that I = J t K.

• p||JJ ⊆p||JJ
J
Np||JJ : Using the definition of the transition operation we have

(
A2

t
a,b

p||ab)
N(2)

||JJ = p||JJ
J
Np||JJ ∩ p||JK

K
Np||KJ (38)

and since p is closed we also have

(
A2

t
a,b

p||ab)
N(2)

||JJ =
A2

t
a,b

p||ab ||JJ = p||JJ (39)

so that p||JJ ⊆p||JJ
J
Np||JJ .

• p||JJ ⊇p||JJ
J
Np||JJ :

p||JJ
J
Np||JJ =

J2

∪
i,j

J
∩
k
(p||JJ)i,k • (p||JJ)k,j

⊆
J2

∪
i,j

(p||JJ)i,i • (p||JJ)i,j

⊆
J2

∪
i,j

(p||JJ)i,j = p||JJ

(40)

since p||JJ is coherent.

References

[1] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. (1977) 238–252

[2] Cousot, P.: The verification grand challenge and abstract interpretation. In Meyer, B., Woodcock, J., eds.:
Verified Software: Theories, Tools, Experiments. Volume 4171 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2008) 189–201 10.1007/978-3-540-69149-521.

[3] Miné, A.: A few graph-based relational numerical abstract domains. (2002)
[4] Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its applications. Int. J.

Parallel Program. 24(6) (1996) 579–598

