
 

High Energy and Particle Physics         August 6, 2011                                                             

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To 

view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter 

to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, 

USA. 

 

   Random numbers generated by orbifold fixed points  

 

 

 

 

 

     E.Koorambas 

           8A Chatzikosta, 11521 Ampelokipi, Athens, Greece  

      Email: elias.koor@gmail.com 
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Our suggestion may open a window for extra dimensions predicted by experiments. 
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1. Introduction 

Orbifolds, originally introduced as „V –manifolds‟ by Satake in the 1950s [1], and named  by 

Thurston in the 1970s [2], [3], are useful generalizations of manifolds: locally they look like 

the quotient of Euclidean space by the action of a finite group. The concept of orbifolds has 

gained increasing popularity recently due to its application in many questions of theoretical 

physics such as [4], [5], [6], [7]. 

‘‘In various fields of interest, situations often arise in which the mathematical model utilizes 

a random sequence of numbers, events, or both. In many of these applications it is often 

advantageous to generate, by some deterministic means, a sequence which appears to be 

random, even if, upon closer and longer observation, certain regularities become evident. 

Monte Carlo experiments, for instance, have benefited greatly from computer programs for 

generating random numbers [20].’’ 

 

This paper describes random numbers generated by recurrence modulo2 over the Galois field 

of orbifold fixed points. Random numbers are generated by modulo 2 linear recurrence 

techniques, long used to generate binary codes for communications [8], [7], [9], [10], [11].  

The idea of using finite fields in quantum theory has been discussed by several authors (see 

e.g., References [12-17]). 

 

2. Random numbers generated by the orbifold fixed points 

In the 1
2/S   orbifold, we compactify one extra dimension on a circle

1S , and we identify 

points under a 2 group action generated by  

:g a a            (1) 

The emerging fundamental domain of the 1
2/S   orbifold is a 3 space bounded by the 

orbifold‟s fixed points, i.e. the two points that are invariant under the orbifold action: 

1 20,a a L            (2) 

where L is the extra dimension radius. The orbifold 1
2/S  , depicted in Figure1, is 

topologically the unit interval [0, 1] with the two fixed points corresponding to the endpoints 

of the interval. 

  

Figure 1: The orbifold 1
2/S   
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Furthermore, let 1S  be the manifold with the action of the finite group 2 . The Euler-

characteristic of the quotient space 1 1
2/O S  can be computed by the Lefshetz formula 

[18]: 

2
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          (3) 

where 1 1
2/O S   the quotient space and 

ga  the fixed point set of g .  Here, we define an 

Euler-characteristic for the finite group 2Z  acting on the assembly of
1 1 1
1 2 .... nS S S     

manifolds as follows: 
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where ( 1 1
1 1 2/O S Z  … 1 1

2/n nO S Z  ) the sequence of the quotient space and 1 2( , ,..., )
g g g

na a a

the fixed point n -tuple [1] . 

Random numbers can be generated by recurrence modulo two over the Galois field of 

orbifold fixed points elements. This is achieved in the following steps.   

First, starting with the Galois Field of two orbifold fixed points elements GF (2) is the 

smallest finite field. The two orbifold fixed points are 0, 1 being the addition and 

multiplication identities respectively. The field‟s addition operation is given by the Table.1 

  

Table.1 Addition  

+ 0 1 

0 0 1 

1 1 0 

 

 

and the multiplication operation by the following Table.2 

 

 

[1]
 Note: By following [19] the orbifold fixed point n-tuple is defined as follows: a) Any n-tupe 0 1( ,...., )nx x   

orbifold fixed point is a function f  with {0,...., 1}domf n  and ( )ix f i  b) The Cartesian product of the 

orbifold  0 1 1.... nO O O    is the set of all n-tuples f such that ( ) if i O ,for 0 1i n   . 
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Table.2 Μultiplication 

* 0 1 

0 0 0 

1 0 1 

 

 

As a consequence of modular arithmetic which forms the basis of finite fields, these two 

orbifold fixed points elements and these operations constitute a system with many of 

important properties of familiar number system: additional and multiplication are 

commutative and associative, multiplication is distributive over addition, addition has an 

identity element (0) and an inverse element for every element. Multiplication has an identity 

element (1) and an inverse for every element but (0). 

The addition and multiplication operation in GF (2) are also bitwise operators XOR and AND 

respectively. 

Many familiar and powerful tools of mathematics work in GF (2) just as well as integers and 

real numbers. Since modern computers also represent data in binary code, GF (2) is an 

important tool for studying algorithms on these machines that can be defined by series of 

bitwise operators. 

Next, by following [20], let { }ka a be the sequence of 0 and Ls orbifold fixed points 

generated by the linear recurrence relation 

 

1 1 2 2 .... (mod2)k k k n k na c a c a c a             (5) 

 

For any given set of integers ( 1,2,..., )ic i n , each having the orbifold fixed points values 0 or 

1, we require 1nc  , and say that the sequence has degree n. 

 

For fixed ic , the recursion ka  is determined solely by the n-tuple 1 2( , ,...., )k k k na a a   of 

terms preceding it. Similarly 1ka   is a function solely of 1 1( , ,...., )k k k na a a   . Each such n-

tuple of fixed orbifold points, thus, has a unique successor governed by the recursion formula 

(5). The period p of a is clearly the same as the recurrence period of an n-tuple of fixed 

orbifold points. The period p  of a linear recurring sequence cannot be greater than 2 1n  , for 

the n-tuple (0,0,....,0) is always followed by (0,0,....,0) . For 2 1np   , the necessary and 

sufficient condition is that the polynomial 

 
2

1 2( ) 1 .. nf x c x c x x              (6) 

 

be primitive over GF (2) [8], [9].  

 

As the function ( )f x  is a primitive nth degree polynomial over GF (2), the sequence 

{ }ka a  is a maximal – length linearly recurring sequence modulo 2. Such sequences have 

been studied, and used as a code in communications and theoretical information studies [10], 
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[11]. The following properties of sequence (5) are of immediate interest to the scope of this 

paper [8], [9]. 

 

[1]  1

1

1
2

2

p
n

k
k

p
a 




           (7) 

 

[2]For every distinct set of (0, 1) integers 1 2, ,...., ns s s not all zero, there exists a unique 

integer : (0 1)u u p   such that for every k, 1 1 2 2, ,...., (mod2)k k n k n k us a s a s a a    . This 

is often referred to as the “cycle-and add” property [20]. 

[3] For every non-zero (0, 1), a binary n-vector  1 2( , ,...., )ne e e  occurs exactly once per n 

consecutive binary digits of a . 

 

Note that properties [1] and [2] flow directly from the fact that each possible non-zero binary 

n-tuple  1 2( , ,...., )k k k na a a    must occur exactly once per cycle if the period of a is

2 1np   .  For the purposes of this paper, it is convenient to use a slightly different version 

of fixed orbifold points sequence a . We define ak
’ 
as follows: 

 

 ( 1) 1 2ka
k ka a               (8) 

 

We see that if ka  takes on the fixed orbifold point values 0 and 1, then ka   takes the values 

+1 and -1, respectively. The properties [1], [2] and [3], then, take the form: 

 

[1‟]  
1

1
p

k
k

a


             (9) 

 

[2‟]For every distinct set of (0, 1) integers 1 2, ,...., ns s s not all zero, there exists a unique 

integer : (0 1)u u p   such that 1 2
1 2, ,...., nss s

k uk k k na a a a     . 

 

[3‟]With the exception of the all ones vector, every 1  binary n-vector 1 2( , ,...., )n    occurs 

exactly once per period as n consecutive element in a . 

 

Let ( )g x be the 1 -valued Boolean function of (0, 1) fixed orbifold point variables

1 2, ,...., nx x x . For any  1 2( , ,...., )ns s s s , 0is  or 1, fixed orbifold points define  

  

 1 1 2 2 ..../ 2( , ) 2 ( 1) n ns x s x s xns x                       (10) 

This 2n function of x is the Redemacher-Walsh function [5] from an orthonormal basis for 

extra-dimensional 2n -space. From this follows that  ( )g x  has components ( )G s given by 

 

/ 2( ) 2 ( ) ( , )n

x

G s g x x s                     (11) 

 

 

That is, ( )G s  is the projection of ( )g x  on ( , )s x , normalization so that 
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2 ( ) 1
s

G s                       (12) 

 

Similarly, we have 

 

 / 2( ) 2 ( ) ( , )n

s

g x G x x s                     (13) 

 

We now consider the effect of setting j k jx a  in ( )g x . As a function of k a binary 1   

sequence | |k   is generated: 

 

1 21 1 ....
1 2( )( 1) ( ) ... nk n k n ss ss a s a

k k k k n
s s

G s G s a a a   
                      (14) 

 

By property [2‟], we now have the fourth property basic on  [20]; 

 

 

[4] ( )
0

(0) ( )k k u s
s

G G s a 


                     (15) 

 

where the mapping ( )u s  of all binary n-vectors onto  0,1,..... 1p   is one-to-one.  

 

Let  ka a be the (0, 1) orbifold fixed points sequence generated by an nth degree maximal-

length R linear recurrence modulo 2, as described previously. We define a set of numbers of 

the form  

 

1 20 ,... ( 2)k qk r qk r qk r Ry a a a base                       (16) 

 

where r is a randomly chosen integer, 0 2 1nr    and R n .  

 

That is, ky  is the binary expansion of a number whose representation is  R  consecutive 

digits. Successive ky  are spaced q digits apart [20].  For reasons essential to the analysis, we 

restrict q n  and  ,2 1 1nq   . We can then express ky  by  

1

2
R

t
k qk t R

t

y a
 



                     (17) 

 

Such numbers always lie in the interval (0 1)ky  . Because of property [2], the randomness 

of the choice of r  is equivalent to the statement that the initial value 0y is a random choice 

[20]. It is convenient to work with a transformed set of numbers kw  rather than ky . This 

transformed set of numbers is defined as follows: Let  ka a   be the1  sequence 

corresponding to  k   , and define  

 

1

2
R

t
k qk t R

t

w   


                     (18) 
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We see that ky  and kw  are related by  

 

1 2 2R
k kw y                       (19) 

 

there is thus a translation between kw  and ky [20].  

 

3. Conclusion  

We conclude that, random numbers can be generated by recurrence modulo 2 over the Galois 

field of orbifold fixed points GF (2).  Since our 3-dimensional space bounded by orbifold‟s 

fixed points, these random numbers can be used to generate binary codes that may 

correspond to the extra dimensions signature [21], [22], [23].  This proposal may open a 

window for ruled out extra dimensions by experiments. 
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