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Abstract

We present a general way that allows to construct systematically an-
alytic calculi for a large family of non-Archimedean many-valued logics:
hyperrational-valued, hyperreal-valued, and p-adic valued logics charac-
terized by a special format of semantics with an appropriate rejection
of Archimedes’ axiom. These logics are built as different extensions of
standard many-valued logics (namely,  Lukasiewicz’s, Gödel’s, Product,
and Post’s logics). The informal sense of Archimedes’ axiom is that any-
thing can be measured by a ruler. Also logical multiple-validity without
Archimedes’ axiom consists in that the set of truth values is infinite and
it is not well-founded and well-ordered. We consider two cases of non-
Archimedean multi-valued logics: the first with many-validity in the in-
terval [0, 1] of hypernumbers and the second with many-validity in the
ring Zp of p-adic integers. On the base of non-Archimedean valued log-
ics, we construct non-Archimedean valued interval neutrosophic logics by
which we can describe neutrality phenomena.
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1 Introduction

The development of fuzzy logic and fuzziness was motivated in large measure
by the need for a conceptual framework which can address the issue of uncer-
tainty and lexical imprecision. Recall that fuzzy logic was introduced by L.
Zadeh in 1965 (see [58]) to represent data and information possessing nonsta-
tistical uncertainties. Florentin Smarandache had generalized fuzzy logic and
introduced two new concepts (see [51], [52], [53]):

1. neutrosophy as study of neutralities;

2. neutrosophic logic and neutrosophic probability as a mathematical model
of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown,
incompleteness, inconsistency, redundancy, contradiction, etc.

Neutrosophy proposed by Smarandache in [53] is a new branch of philoso-
phy, which studies the nature of neutralities, as well as their logical applications.
The notion of neutrality is explicated within the framework of neutrosophic logic
introduced by Smarandache in [51], [52].
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In this paper we consider neutrosophic logic as a generalization of non-
Archimedean valued logic, where the truth values of ∗[0, 1] are extended to
truth triples of the form 〈t, i, f〉 ⊆ (∗[0, 1])3, where t is the truth-degree, i the
indeterminacy-degree, f the falsity-degree and they are approximated by non-
standard subsets of ∗[0, 1], and these subsets may overlap and exceed the unit
interval in the sense of the non-Archimedean analysis.

Neutrosophic logic is an alternative to all the existing logics, because it
represents a mathematical model of uncertainty on non-Archimedean structures.
It is a non-classical logic in which each proposition is estimated to have the
percentage of truth in a subset t ⊆ ∗[0, 1], the percentage of indeterminacy in
a subset i ⊆ ∗[0, 1], and the percentage of falsity in a subset f ⊆ ∗[0, 1]. Thus,
neutrosophic logic is a formal frame trying to measure the truth, indeterminacy,
and falsehood simultaneously, therefore it generalizes:

• Boolean logic (i = ∅, t and f consist of either 0 or 1);

• n-valued logic (i = ∅, t and f consist of members 0, 1, . . . , n− 1);

• fuzzy logic (i = ∅, t and f consist of members of [0, 1]).

In simple neutrosophic logic, where t, i, f are singletons, the tautologies have
the truth value 〈∗1, ∗0, ∗0〉, the contradictions the value 〈∗0, ∗1, ∗1〉. While for
a paradox, we have the truth value 〈∗1, ∗1, ∗1〉. Indeed, the paradox is the only
proposition true and false in the same time in the same world, and indeterminate
as well! We can assume that some statements are indeterminate in all possible
worlds, i.e. that there exists “absolute indeterminacy” 〈∗1, ∗1, ∗1〉.

Dezert suggested to develop practical applications of neutrosophic logic
(see [54], [55]), e.g. for solving certain practical problems posed in the domain
of research in Data/Information fusion.

In the next sections, we shall consider the following non-Archimedean struc-
tures:

1. the nonstandard extension ∗Q (called the field of hyperrational numbers),

2. the nonstandard extension ∗R (called the field of hyperreal numbers),

3. the nonstandard extension Zp (called the ring of p-adic integers) that we
obtain as follows. Let the set N of natural numbers be the index set and
let Θ = {0, . . . , p− 1}. Then the nonstandard extension ΘN\U = Zp.

Further, we shall set the following logics on non-Archimedean structures:

• hyperrational valued  Lukasiewicz’s, Gödel’s, and Product logics,

• hyperreal valued  Lukasiewicz’s, Gödel’s, and Product logics,

• p-adic valued  Lukasiewicz’s, Gödel’s logics.

Recall that non-Archimedean logical multiple-validities were considered by
Schumann in [45] – [49].
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2 Hyper-valued logics

Assume that ∗Q[0,1] = QN
[0,1]/U is a nonstandard extension of the subset Q[0,1] =

Q ∩ [0, 1] of rational numbers, where U is the Frechet filter that may be no
ultrafilter, and σQ[0,1] ⊂ ∗Q[0,1] is the subset of standard members. We can
extend the usual order structure on Q[0,1] to a partial order structure on ∗Q[0,1]:

1. for rational numbers x, y ∈ Q[0,1] we have x ≤ y in Q[0,1] iff [f ] ≤ [g] in
∗Q[0,1], where {α ∈ N : f(α) = x} ∈ U and {α ∈ N : g(α) = y} ∈ U ,

i.e., f and g are constant functions such that [f ] = ∗x and [g] = ∗y,

2. each positive rational number ∗x ∈ σQ[0,1] is greater than any number
[f ] ∈ ∗Q[0,1]\σQ[0,1],

i.e., ∗x > [f ] for any positive x ∈ Q[0,1] and [f ] ∈ ∗Q[0,1], where [f ] isn’t
constant function.

These conditions have the following informal sense:

1. The sets σQ[0,1] and Q[0,1] have isomorphic order structure.

2. The set ∗Q[0,1] contains actual infinities that are less than any positive
rational number of σQ[0,1].

Define this partial order structure on ∗Q[0,1] as follows:

O∗Q 1. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] ≤ [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U .

2. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] < [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U

and [f ] 6= [g], i.e., {α ∈ N : f(α) 6= g(α)} ∈ U .

3. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] = [g] if
f ∈ [g].

This ordering relation is not linear, but partial, because there exist elements
[f ], [g] ∈ ∗Q[0,1], which are incompatible.

Introduce two operations max, min in the partial order structure O∗Q:

1. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = [f ] if and
only if [f ] ≤ [g] under condition O∗Q,

2. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], max([f ], [g]) = [g] if and
only if [f ] ≤ [g] under condition O∗Q,

3. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = max([f ], [g]) =
[f ] = [g] if and only if [f ] = [g] under condition O∗Q,
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4. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible
under condition O∗Q, then min([f ], [g]) = [h] iff

{α ∈ N : min(f(α), g(α)) = h(α)} ∈ U .

5. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible
under condition O∗Q, then max([f ], [g]) = [h] iff

{α ∈ N : max(f(α), g(α)) = h(α)} ∈ U .

It is easily seen that conditions 1 – 3 are corollaries of conditions 4, 5.
Note there exist the maximal number ∗1 ∈ ∗Q[0,1] and the minimal number

∗0 ∈ ∗Q[0,1] under condition O∗Q. Therefore, for any [f ] ∈ ∗Q[0,1], we have:
max(∗1, [f ]) = ∗1, max(∗0, [f ]) = [f ], min(∗1, [f ]) = [f ] and min(∗0, [f ]) = ∗0.

Now define hyperrational-valued  Lukasiewicz’s logic M∗Q:

Definition 1 The ordered system 〈V∗Q,¬L,→L,∨,∧, ∃̃, ∀̃, {∗1}〉 is called hyper-
rational valued  Lukasiewicz’s matrix logic M∗Q, where

1. V∗Q = ∗Q[0,1] is the subset of hyperrational numbers,

2. for all [x] ∈ V∗Q, ¬L[x] = ∗1− [x],

3. for all [x], [y] ∈ V∗Q, [x]→L [y] = min(∗1, ∗1− [x] + [y]),

4. for all [x], [y] ∈ V∗Q, [x] ∨ [y] = ([x]→L [y])→L [y] = max([x], [y]),

5. for all [x], [y] ∈ V∗Q, [x] ∧ [y] = ¬L(¬L[x] ∨ ¬L[y]) = min([x], [y]),

6. for a subset M ⊆ V∗Q, ∃̃(M) = max(M), where max(M) is a maximal
element of M ,

7. for a subset M ⊆ V∗Q, ∀̃(M) = min(M), where min(M) is a minimal
element of M ,

8. {∗1} is the set of designated truth values.

The truth value ∗0 ∈ V∗Q is false, the truth value ∗1 ∈ V∗Q is true, and
other truth values x ∈ V∗Q\{∗0, ∗1} are neutral.

If we replace the set Q[0,1] by R[0,1] and the set ∗Q[0,1] by ∗R[0,1] in all above
definitions, then we obtain hyperreal valued matrix logic M∗R.

Definition 2 Hyper-valued Gödel’s matrix logic G∗[0,1] is the structure 〈∗[0, 1],
¬G, →G, ∨, ∧, ∃̃, ∀̃, {∗1}〉, where

1. for all [x] ∈ ∗[0, 1], ¬G[x] = [x]→G
∗0,

2. for all [x], [y] ∈ ∗[0, 1], [x] →G [y] = ∗1 if [x] 6 [y] and [x] →G [y] = [y]
otherwise,

3. for all [x], [y] ∈ ∗[0, 1], [x] ∨ [y] = max([x], [y]),

4. for all [x], [y] ∈ ∗[0, 1], [x] ∧ [y] = min([x], [y]),
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5. for a subset M ⊆ ∗[0, 1], ∃̃(M) = max(M), where max(M) is a maximal
element of M ,

6. for a subset M ⊆ ∗[0, 1], ∀̃(M) = min(M), where min(M) is a minimal
element of M ,

7. {∗1} is the set of designated truth values.

The truth value ∗0 ∈ ∗[0, 1] is false, the truth value ∗1 ∈ ∗[0, 1] is true, and
other truth values [x] ∈ ∗(0, 1) are neutral.

Definition 3 Hyper-valued Product matrix logic Π∗[0,1] is the structure 〈∗[0, 1],
¬Π, →Π, &Π, ∧, ∨, ∃̃, ∀̃, {∗1}〉, where

1. for all [x] ∈ ∗[0, 1], ¬Π[x] = [x]→Π
∗0,

2. for all [x], [y] ∈ ∗[0, 1], [x]→Π [y] =

{
∗1, if [x] 6 [y],
min(∗1, [y]

[x] ), otherwise;

3. for all [x], [y] ∈ ∗[0, 1], [x]&Π[y] = [x] · [y],

4. for all [x], [y] ∈ ∗[0, 1], [x] ∧ [y] = [x] · ([x]→Π [y]),

5. for all [x], [y] ∈ ∗[0, 1], [x]∨ [y] = (([x]→Π [y])→Π [y])∧ (([y]→Π [x])→Π

[x]),

6. for a subset M ⊆ ∗[0, 1], ∃̃(M) = max(M), where max(M) is a maximal
element of M ,

7. for a subset M ⊆ ∗[0, 1], ∀̃(M) = min(M), where min(M) is a minimal
element of M ,

8. {∗1} is the set of designated truth values.

The truth value ∗0 ∈ ∗[0, 1] is false, the truth value ∗1 ∈ ∗[0, 1] is true, and
other truth values [x] ∈ ∗(0, 1) are neutral.

3 p-Adic valued logics

Let us remember that the expansion

n = α−N ·p−N+α−N+1 ·p−N+1+. . .+α−1 ·p−1+α0+α1 ·p+. . .+αk ·pk+. . . =
+∞∑
k=−N

αk · pk,

where αk ∈ {0, 1, . . . , p − 1}, ∀k ∈ Z, and α−N 6= 0, is called the canonical
expansion of p-adic number n (or p-adic expansion for n). The number n is
called p-adic. This number can be identified with sequences of digits: n =
. . . α2α1α0, α−1α−2 . . . α−N . We denote the set of such numbers by Qp.

The expansion n = α0 + α1 · p + . . . + αk · pk + . . . =
∞∑
k=0

αk · pk, where

αk ∈ {0, 1, . . . , p − 1}, ∀k ∈ N ∪ {0}, is called the expansion of p-adic integer
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n. The integer n is called p-adic. This number sometimes has the following
notation: n = . . . α3α2α1α0. We denote the set of such numbers by Zp.

If n ∈ Zp, n 6= 0, and its canonical expansion contains only a finite number
of nonzero digits αj , then n is natural number (and vice versa). But if n ∈ Zp
and its expansion contains an infinite number of nonzero digits αj , then n is an
infinitely large natural number. Thus the set of p-adic integers contains actual
infinities n ∈ Zp\N, n 6= 0. This is one of the most important features of non-
Archimedean number systems, therefore it is natural to compare Zp with the
set of nonstandard numbers ∗Z.

Extend the standard order structure on N to a partial order structure on
Zp.

• for any x, y ∈ N we have x ≤ y in N iff x ≤ y in Zp,

• each finite natural number x is less than any infinite number y, i.e. x < y
for any x ∈ N and y ∈ Zp\N, y 6= 0.

Define this partial order structure on Zp as follows:

OZp
Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions
of two p-adic integers x, y ∈ Zp. (1) We set x < y if the following three
conditions hold: (i) there exists n such that xn < yn; (ii) xk ≤ yk for all
k > n; (iii) x is a finite integer, i.e. there exists l such that xm = 0 for all
m ≥ l. (2) We set x = y if xn = yn for each n = 0, 1, . . . (3) Suppose that
both x and y are infinite integers. We set x ≤ y if we have xn ≤ yn for
each n = 0, 1, . . . and we set x < y if we have xn ≤ yn for each n = 0, 1, . . .
and there exists n0 such that xn0 < yn0 .

Now introduce two operations max, min in the partial order structure on Zp:

1 for all p-adic integers x, y ∈ Zp, min(x, y) = x if and only if x ≤ y under
condition OZp ,

2 for all p-adic integers x, y ∈ Zp, max(x, y) = y if and only if x ≤ y under
condition OZp ,

3 for all p-adic integers x, y ∈ Zp, max(x, y) = min(x, y) = x = y if and only if
x = y under condition OZp

.

The ordering relation OZp
is not linear, but partial, because there exist el-

ements x, z ∈ Zp, which are incompatible. As an example, let p = 2 and let
x = − 1

3 = . . . 10101 . . . 101, z = − 2
3 = . . . 01010 . . . 010. Then the numbers x

and z are incompatible.

Thus,

4 Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions of
two p-adic integers x, y ∈ Zp and x, y are incompatible under condition
OZp

. We get min(x, y) = z = . . . zn . . . z1z0, where, for each n = 0, 1, . . .,
we set

1. zn = yn if xn ≥ yn,

2. zn = xn if xn ≤ yn,
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3. zn = xn = yn if xn = yn.

We get max(x, y) = z = . . . zn . . . z1z0, where, for each n = 0, 1, . . ., we set

1. zn = yn if xn ≤ yn,

2. zn = xn if xn ≥ yn,

3. zn = xn = yn if xn = yn.

It is important to remark that there exists the maximal number Nmax ∈ Zp
under condition OZp

. It is easy to see:

Nmax = −1 = (p− 1) + (p− 1) · p+ . . .+ (p− 1) · pk + . . . =
∞∑
k=0

(p− 1) · pk

Therefore

5 min(x,Nmax) = x and max(x,Nmax) = Nmax for any x ∈ Zp.

Now consider p-adic valued  Lukasiewicz’s matrix logic MZp .

Definition 4 The ordered system 〈VZp ,¬L,→L,∨,∧, ∃̃, ∀̃, {Nmax}〉 is called p-
adic valued  Lukasiewicz’s matrix logic MZp

, where

1. VZp = {0, . . . , Nmax} = Zp,

2. for all x ∈ VZp
, ¬Lx = Nmax − x,

3. for all x, y ∈ VZp
, x→L y = (Nmax −max(x, y) + y),

4. for all x, y ∈ VZp , x ∨ y = (x→L y)→L y = max(x, y),

5. for all x, y ∈ VZp
, x ∧ y = ¬L(¬Lx ∨ ¬Ly) = min(x, y),

6. for a subset M ⊆ VZp
, ∃̃(M) = max(M), where max(M) is a maximal

element of M ,

7. for a subset M ⊆ VZp , ∀̃(M) = min(M), where min(M) is a minimal
element of M ,

8. {Nmax} is the set of designated truth values.

The truth value 0 ∈ Zp is false, the truth value Nmax ∈ Zp is true, and other
truth values x ∈ Zp\{0, Nmax} are neutral.

Definition 5 p-Adic valued Gödel’s matrix logic GZp is the structure 〈VZp ,
¬G, →G, ∨, ∧, ∃̃, ∀̃, {Nmax}〉, where

1. VZp
= {0, . . . , Nmax} = Zp,

2. for all x ∈ VZp , ¬Gx = x→G 0,

3. for all x, y ∈ VZp
, x→G y = Nmax if x 6 y and x→G y = y otherwise,

4. for all x, y ∈ VZp
, x ∨ y = max(x, y),
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5. for all x, y ∈ VZp
, x ∧ y = min(x, y),

6. for a subset M ⊆ VZp , ∃̃(M) = max(M), where max(M) is a maximal
element of M ,

7. for a subset M ⊆ VZp
, ∀̃(M) = min(M), where min(M) is a minimal

element of M ,

8. {Nmax} is the set of designated truth values.

4 Non-Archimedean valued BL-algebras

Now introduce the following new operations defined for all [x], [y] ∈ ∗Q in the
partial order structure O∗Q:

• [x]→L [y] = ∗1−max([x], [y]) + [y],

• [x]→Π [y] = ∗1 if [x] ≤ [y] and [x]→Π [y] = min(∗1, [y]
[x] ) otherwise,

notice that we have min(∗1, [y]
[x] ) = [h] iff there exists [h] ∈ ∗Q[0,1] such

that {α ∈ N : min(1, y(α)
x(α) ) = h(α)} ∈ U , let us also remember that the

members [x], [y] can be incompatible under O∗Q,

• ¬L[x] = ∗1− [x], i.e. [x]→L
∗0,

• ¬Π[x] = ∗1 if [x] = ∗0 and ¬Π[x] = ∗0 otherwise, i.e. ¬Π[x] = [x]→Π
∗0,

• ∆[x] = ∗1 if [x] = ∗1 and ∆[x] = ∗0 otherwise, i.e. ∆[x] = ¬Π¬L[x],

• [x]&L[y] = max([x], ∗1− [y]) + [y]− ∗1, i.e. [x]&L[y] = ¬L([x]→L ¬L[y]),

• [x]&Π[y] = [x] · [y],

• [x]⊕ [y] := ¬L[x]→L [y],

• [x]	 [y] := [x]&L¬L[y],

• [x] ∧ [y] = min([x], [y]), i.e. [x] ∧ [y] = [x]&L([x]→L [y]),

• [x] ∨ [y] = max([x], [y]), i.e. [x] ∨ [y] = ([x]→L [y])→L [y],

• [x] →G [y] = ∗1 if [x] ≤ [y] and [x] →G [y] = [y] otherwise, i.e. [x] →G

[y] = ∆([x]→L [y]) ∨ [y],

• ¬G[x] := [x]→G
∗0.

A hyperrational valued BL-matrix is a structure L∗Q = 〈∗Q[0,1], ∧, ∨, ∗, ⇒,
∗0, ∗1〉 such that (1) 〈∗Q[0,1],∧,∨, ∗0, ∗1〉 is a lattice with the largest element
∗1 and the least element ∗0, (2) 〈∗Q[0,1], ∗, ∗1〉 is a commutative semigroup with
the unit element ∗1, i.e. ∗ is commutative, associative, and ∗1 ∗ [x] = [x] for all
[x] ∈ ∗Q[0,1], (3) the following conditions hold

[z] ≤ ([x]⇒ [y]) iff [x] ∗ [z] ≤ [y] for all [x], [y], [z];
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[x] ∧ [y] = [x] ∗ ([x]⇒ [y]);

[x] ∨ [y] = (([x]⇒ [y])⇒ [y]) ∧ (([y]⇒ [x])⇒ [x]),

([x]⇒ [y]) ∨ ([y]⇒ [x]) = ∗1.

If we replace the set Q[0,1] by R[0,1] and the set ∗Q[0,1] by ∗R[0,1] in all above
definitions, then we obtain hyperreal valued BL-matrix L∗R. Matrices L∗Q, L∗R

are different versions of a non-Archimedean valued BL-algebra. Continuing in
the same way, we can build non-Archimedean valued  L-algebra, G-algebra, and
Π-algebra.

Further consider the following new operations defined for all x, y ∈ Zp in the
partial order structure OZp :

• x→L y = Nmax −max(x, y) + y,

• x→Π y = Nmax if x ≤ y and x→Π y = integral part of y
x otherwise,

• ¬Lx = Nmax − x, i.e. x→L 0,

• ¬Πx = Nmax if x = 0 and ¬Πx = 0 otherwise, i.e. ¬Πx = x→Π 0,

• ∆x = Nmax if x = Nmax and ∆x = 0 otherwise, i.e. ∆x = ¬Π¬Lx,

• x&Ly = max(x,Nmax − y) + y −Nmax, i.e. x&Ly = ¬L(x→L ¬Ly),

• x&Πy = x · y,

• x⊕ y := ¬Lx→L y,

• x	 y := x&L¬Ly,

• x ∧ y = min(x, y), i.e. x ∧ y = x&L(x→L y),

• x ∨ y = max(x, y), i.e. x ∨ y = (x→L y)→L y,

• x →G y = Nmax if x ≤ y and x →G y = y otherwise, i.e. x →G y =
∆(x→L y) ∨ y,

• ¬Gx := x→G 0.

A p-adic valued BL-matrix is a structure LZp
= 〈Zp, ∧, ∨, ∗, ⇒, 0, Nmax〉.

5 Non-Archimedean valued predicate logical lan-
guage

Recall that for each i ∈ [0, 1], ∗i = [f = i], i.e. it is a constant function. Every
element of ∗[0, 1] has the form of infinite tuple [f ] = 〈y0, y1, . . .〉, where yi ∈ [0, 1]
for each i = 0, 1, 2, . . .

Let L be a standard first-order language associated with p-valued (resp.
infinite-valued) semantics. Then we can get an extension L′ of first-order lan-
guage L to set later a language of p-adic valued (resp. hyper-valued) logic.

In L′ we build infinite sequences of well-formed formulas of L:

ψ∞ = 〈ψ1, . . . , ψN , . . . 〉,
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ψi = 〈ψ1, . . . , ψi〉,

where ψj ∈ L.

A formula ψ∞ (resp. ψi) is called a formula of infinite length (resp. a formula
of i-th length).

Definition 6 Logical connectives in hyper-valued logic are defined as follows:

1. ψ∞ ? ϕ∞ = 〈ψ1 ? ϕ1, . . . , ψN ? ϕN , . . .〉, where ? ∈ {&,→};

2. ¬ψ∞ = 〈¬ψ1, . . . ,¬ψN , . . .〉;

3. Qxψ∞ = 〈Qxψ1, . . . ,QxψN , . . .〉, Q ∈ {∀,∃};

4. ψ∞ ? ϕ1 = 〈ψ1 ? ϕ, ψ2 ? ϕ, . . . , ψN ? ϕ, . . .〉, where ? ∈ {&,→}.

Definition 7 Logical connectives in p-adic valued logic are defined as follows:

1. ψ∞ ? ϕ∞ = 〈ψ1 ? ϕ1, . . . , ψN ? ϕN , . . .〉, where ? ∈ {&,→};

2. ¬ψ∞ = 〈¬ψ1, . . . ,¬ψN , . . .〉;

3. Qxψ∞ = 〈Qxψ1, . . . ,QxψN , . . .〉, Q ∈ {∀,∃}.

4. ψ∞ ? ϕi = 〈ψ1 ? ϕ1, . . . , ψi ? ϕi, ψi+1 ? ⊥, ψi+2 ? ⊥, . . . , ψN ? ⊥, . . . 〉,
where ? ∈ {&,→}.

5. suppose i < j, then ψi ? ϕj = 〈ψ1 ? ϕ1, . . . , ψi ? ϕi, ψi+1 ? ⊥, ψi+2 ? ⊥,
. . . , ψj ?⊥〉, where ? ∈ {&,→}.

An interpretation for a language L′ is defined in the standard way. Extend
the valuation of L to one of L′ as follows.

Definition 8 Given an interpretation I = 〈M, s〉 and a valuation valI of L,
we define the non-Archimedean i-valuation valiI (resp. ∞-valuation val∞I ) to be
a mapping from formulas ϕi (resp. ϕ∞) of L′ to truth value set V i (resp. ∗V )
as follows:

1. valiI(ϕ
i) = 〈valI(ϕ1), . . . , valI(ϕi)〉.

2. val∞I (ϕ∞) = 〈valI(ϕ1), . . . , valI(ϕN ), . . . 〉.

For example, in p-adic valued case val∞I (ψ∞ ? ϕi) = 〈valI(ψ1 ? ϕ1), . . . ,
valI(ψi ? ϕi), valI(ψi+1 ? ⊥), valI(ψi+2 ? ⊥), . . . , valI(ψN ? ⊥), . . . 〉, where
? ∈ {&,→}.

Let L∗V be a non-Archimedean valued BL-matrix. Then the valuations valiI
and val∞I of L′ to non-Archimedean valued BL-matrix gives the basic fuzzy logic
with the non-Archimedean valued semantics.

We say that an L∗V -structureM is an i-model (resp. an ∞-model) of an L′-
theory T iff valiI(ϕ

i) = 〈1, . . . , 1〉 (resp. val∞I (ϕ∞) = ∗1) on M for each ϕi ∈ T
(resp. ϕ∞ ∈ T ).
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6 Non-Archimedean valued basic fuzzy proposi-
tional logic BL∞

Let us construct a non-Archimedean extension of basic fuzzy propositional logic
BL denoted by BL∞. This logic is built in the language L′ and it has a non-
Archimedean valued BL-matrix as its semantics.

Remember that the logic BL has just two propositional operations: &, →,
which are understood as t-norm and its residuum respectively.

The logic BL∞ is given by the following axioms:

(ϕi → ψi)→ ((ψi → χi)→ (ϕi → χi)), (1)

(ϕi&ψi)→ ϕi, (2)

(ϕi&ψi)→ (ψi&ϕi), (3)

(ϕi&(ϕi → ψi))→ (ψi&(ψi → ϕi)), (4)

(ϕi → (ψi → χi))→ ((ϕi&ψi)→ χi), (5)

((ϕi&ψi)→ χi)→ (ϕi → (ψi → χi)), (6)

((ϕi → ψi)→ χi)→ (((ψi → ϕi)→ χi)→ χi), (7)

⊥i → ψi, (8)

(ϕ∞ → ψ∞)→ ((ψ∞ → χ∞)→ (ϕ∞ → χ∞)), (9)

(ϕ∞&ψ∞)→ ϕ∞, (10)

(ϕ∞&ψ∞)→ (ψ∞&ϕ∞), (11)

(ϕ∞&(ϕ∞ → ψ∞))→ (ψ∞&(ψ∞ → ϕ∞)), (12)

(ϕ∞ → (ψ∞ → χ∞))→ ((ϕ∞&ψ∞)→ χ∞), (13)

((ϕ∞&ψ∞)→ χ∞)→ (ϕ∞ → (ψ∞ → χ∞)), (14)

((ϕ∞ → ψ∞)→ χ∞)→ (((ψ∞ → ϕ∞)→ χ∞)→ χ∞), (15)

⊥∞ → ψ∞. (16)

These axioms are said to be horizontal. Introduce also some new axioms that
show basic properties of non-Archimedean ordered structures. These express a
connection between formulas of various length.

46



1. Non-Archimedean multiple-validity. It is well known that there ex-
ist infinitesimals that are less than any positive number of [0, 1]. This
property can be expressed by means of the following logical axiom:

(¬(ψ1 ↔ ψ∞)&¬(ϕ1 ↔ ⊥∞))→ (ψ∞ → ϕ1), (17)

where ψ1 = ψ1, i.e. it is the first member of an infinite tuple ψ∞.

2. p-adic multiple-validity. There is a well known theorem according to
that every equivalence class a for which |a|p ≤ 1 (this means that a is a
p-adic integer) has exactly one representative Cauchy sequence {ai}i∈ω
for which:

(a) 0 ≤ ai < pi for i = 1, 2, 3, . . .;

(b) ai ≡ ai+1 mod pi for i = 1, 2, 3, . . .

This property can be expressed by means of the following logical axioms:

((pi+1 − 1	 pi − 1)→L ψ
i+1)→L

(ψi+1 ↔ (p− 1⊕ · · · ⊕ p− 1︸ ︷︷ ︸
pi

⊕ψi), (18)

(ψi+1 ↔ (

pi︷ ︸︸ ︷
k ⊕ · · · ⊕ k)⊕ ψi)→L

((((. . . (pi+1 − 1	 pi − 1)	 . . . )	 pi − 1)︸ ︷︷ ︸
0<p−k≤p

	¬Lk)→L ψ
i+1), (19)

(ψi+1 ↔ (

pi︷ ︸︸ ︷
k ⊕ · · · ⊕ k)⊕ ψi)→L

(ψi+1 →L (((. . . (pi+1 − 1	
pi − 1)	 . . . )	 pi − 1)︸ ︷︷ ︸

0≤(p−1)−k≤p−1

	¬Lk)), (20)

(ψi+1 →L pi − 1)→L (ψi+1 ↔ ψi), (21)

(ψi+1 ↔ ψi) ∨ (ψi+1 ↔ (ψi ⊕ pi · 1)) ∨ . . .
∨(ψi+1 ↔ (ψi ⊕ pi · p− 1)), (22)

where p− 1 is a tautology at the first-order level and pi − 1 (respectively
pi+1 − 1) a tautology for formulas of i-th length (respectively of (i+ 1)-th
length); ψ1 = ψ1, i.e. it is the first member of an infinite tuple ψ∞; ¬Lk is
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a first-order formula that has the truth value ((p−1)−k) ∈ {0, . . . , p−1}
for any its interpretations and k is a first-order formula that has the truth
value k ∈ {0, . . . , p−1} for any its interpretations; 1 is a first-order formula
that has the truth value 1 for any its interpretations, etc. The denoting
pi · k means k ⊕ · · · ⊕ k︸ ︷︷ ︸

pi

.

Axioms (17) – (22) are said to be vertical.

The deduction rules of BL∞ is modus ponens: from ψ, ψ → ϕ infer ϕ.

The notions of proof, derivability `, theorem, and theory overBL∞ is defined
as usual.

Theorem 1 (Soundness and Completeness) Let Φ be a formula of L′, T
an L′-theory. Then the following conditions are equivalent:

• T ` Φ;

• valiI(Φ) = 〈1, . . . , 1︸ ︷︷ ︸
i

〉 (resp. val∞I (Φ) = ∗1) for each L∗V -model M of T ;

Proof. This follows from theorem 4 and semantic rules of BL∞. 2

7 Neutrosophic sets

Let U be the universe of discourse, U = {u1, u2, . . . , un}, with a generic element
of U denoted by ui. A vague set A in U is characterized by a truth-membership
function tA and a false-membership function fA,

tA : U → [0, 1],

fA : U → [0, 1],

where tA(ui) is a lower bound on the grade of membership of ui derived from
the evidence for ui, fA(ui) is a lower bound on the negation of ui derived from
the evidence against ui, and tA(ui) + fA(ui) 6 1. The grade of membership
of ui in the vague set A is bounded to a subinterval [tA(ui), 1 − fA(ui)] of
[0, 1]. The vague value [tA(ui), 1 − fA(ui)] indicates that the exact grade of
membership µA(ui) of ui may be unknown. But it is bounded by tA(ui) 6
µA(ui) 6 1−fA(ui), where tA(ui)+fA(ui) 6 1. When the universe of discourse
U is continuous, a vague set A can be written as

A =
∫
U

[tA(ui), 1− fA(ui)]/ui, ui ∈ U.

When U is discrete, then

A =
n∑
i=1

[tA(ui), 1− fA(ui)]/ui, ui ∈ U.

Logical operations in vague set theory are defined as follows:
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Let x and y be two vague values, x = [tx, 1 − fx], y = [ty, 1 − fy], where
tx ∈ [0, 1], fx ∈ [0, 1], ty ∈ [0, 1], fy ∈ [0, 1], tx + fx 6 1 and ty + fy 6 1. Then

¬Lx = [1− tx, fx],

x ∧ y = [min(tx, ty),min(1− fx, 1− fy)],

x ∨ y = [max(tx, ty),max(1− fx, 1− fy)].

8 Neutrosophic set operations

Definition 9 Let U be the universe of discourse, U = {u1, u2, . . . , un}. A
hyper-valued neutrosophic set A in U is characterized by a truth-membership
function tA, an indeterminacy-membership function iA, and a false-membership
function fA

tA 3 f : U → ∗[0, 1],

iA 3 f : U → ∗[0, 1],

fA 3 f : U → ∗[0, 1],

where tA is the degree of truth-membership function, iA is the degree of indeter-
minacy-membership function, and fA is the degree of falsity-membership func-
tion. There is no restriction on the sum of tA, iA, and fA, i.e.

∗0 6 max tA(ui) + max iA(ui) + max fA(ui) 6 ∗3.

Definition 10 Let U be the universe of discourse, U = {u1, u2, . . . , un}. A
p-adic valued neutrosophic set A in U is characterized by a truth-membership
function tA, an indeterminacy-membership function iA, and a false-membership
function fA

tA 3 f : U → Zp,

iA 3 f : U → Zp,

fA 3 f : U → Zp,

where tA is the degree of truth-membership function, iA is the degree of indeter-
minacy-membership function, and fA is the degree of falsity-membership func-
tion. There is no restriction on the sum of tA, iA, and fA, i.e.

0 6 max tA(ui) + max iA(ui) + max fA(ui) 6 Nmax +Nmax +Nmax = −3.

Also, a neutrosophic set A is understood as a triple 〈tA, iA, fA〉 and it can
be regarded as consisting of hyper-valued or p-adic valued degrees.

As we see, in neutrosophic sets, indeterminacy is quantified explicitly and
truth-membership, indeterminacy-membership and falsity-membership are in-
dependent. This assumption is very important in many applications such as
information fusion in which we try to combine the data from different sen-
sors. Neutrosophic sets are proposed for the first time in the framework of
neutrosophy that was introduced by Smarandache in 1980: “It is a branch of
philosophy which studies the origin, nature and scope of neutralities, as well as
their interactions with different ideational spectra” [51].
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Neutrosophic set is a powerful general formal framework which generalizes
the concept of the fuzzy set [58], interval valued fuzzy set [56], intuitionistic
fuzzy set, and interval valued intuitionistic fuzzy set.

Suppose that tA, iA, fA are subintervals of ∗[0, 1]. Then a neutrosophic set
A is called an interval one.

When the universe of discourse U is continuous, an interval neutrosophic set
A can be written as

A =
∫
U

〈tA(ui), iA(ui), fA(ui)〉/ui, ui ∈ U.

When U is discrete, then

A =
n∑
i=1

〈tA(ui), iA(ui), fA(ui)〉/ui, ui ∈ U.

The interval neutrosophic set can represent uncertain, imprecise, incomplete
and inconsistent information which exist in real world. It can be readily seen
that the interval neutrosophic set generalizes the following sets:

• the classical set, iA = ∅, min tA = max tA = 0 or 1, min fA = max fA = 0
or 1 and max tA + max fA = 1.

• the fuzzy set, iA = ∅, min tA = max tA ∈ [0, 1], min fA = max fA ∈ [0, 1]
and max tA + max fA = 1.

• the interval valued fuzzy set, iA = ∅, min tA, max tA, min fA, max fA ∈
[0, 1], max tA + min fA = 1 and min tA + max fA = 1.

• the intuitionistic fuzzy set, iA = ∅, min tA = max tA ∈ [0, 1], min fA =
max fA ∈ [0, 1] and max tA + max fA 6 1.

• the interval valued intuitionistic fuzzy set, iA = ∅, min tA, max tA, min fA,
max fA ∈ [0, 1], max tA + min fA 6 1.

• the paraconsistent set, iA = ∅, min tA = max tA ∈ [0, 1], min fA =
max fA ∈ [0, 1] and max tA + max fA > 1.

• the interval valued paraconsistent set, iA = ∅, min tA, max tA, min fA,
max fA ∈ [0, 1], max tA + min fA > 1.

Let S1 and S2 be two real standard or non-standard subsets of ∗[0, 1], then
S1 +S2 = {x : x = s1 +s2, s1 ∈ S1 and s2 ∈ S2}, ∗a+S2 = {x : x = ∗a+s2, s2 ∈
S2}, S1 − S2 = {x : x = s1 − s2, s1 ∈ S1 and s2 ∈ S2}, S1 · S2 = {x : x =
s1 · s2, s1 ∈ S1 and s2 ∈ S2}, max(S1, S2) = {x : x = max(s1, s2), s1 ∈ S1 and
s2 ∈ S2}, min(S1, S2) = {x : x = min(s1, s2), s1 ∈ S1 and s2 ∈ S2}.

1. The complement of a neutrosophic set A is defined as follows

• the  Lukasiewicz complement:

¬LA = 〈∗1− tA, ∗1− iA, ∗1− fA〉, tA, iA, fA ⊆ (∗[0, 1])U ,

¬LA = 〈Nmax − tA, Nmax − iA, Nmax − fA〉, tA, iA, fA ⊆ (Zp)U ,
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• the Gödel complement:

¬GA = 〈¬GtA,¬GiA,¬GfA〉, tA, iA, fA ⊆ (∗[0, 1])U ,

¬GA = 〈¬GtA,¬GiA,¬GfA〉, tA, iA, fA ⊆ (Zp)U ,

where ¬GtA = {¬Gx : x ∈ tA}, ¬GiA = {¬Gx : x ∈ iA}, ¬GfA =
{¬Gx : x ∈ fA},
• the Product complement:

¬ΠA = 〈¬ΠtA,¬ΠiA,¬ΠfA〉, tA, iA, fA ⊆ (∗[0, 1])U ,

¬ΠA = 〈¬ΠtA,¬ΠiA,¬ΠfA〉, tA, iA, fA ⊆ (Zp)U ,

where ¬ΠtA = {¬Πx : x ∈ tA}, ¬ΠiA = {¬Πx : x ∈ iA}, ¬ΠfA =
{¬Πx : x ∈ fA}.

2. The implication of two neutrosophic sets A and B is defined as
follows

• the  Lukasiewicz implication:

A →L B = 〈∗1 − max(tA, tB) + tB ,
∗1 − max(iA, iB) + iB ,

∗1 −
max(fA, fB) + fB〉, tA, iA, fA, tB , iB , fB ⊆ (∗[0, 1])U ,

A→L B = 〈Nmax−max(tA, tB)+tB , Nmax−max(iA, iB)+iB , Nmax−
max(fA, fB) + fB〉, tA, iA, fA, tB , iB , fB ⊆ (Zp)U ,

• the Gödel implication:

A →G B = 〈tA →G tB , iA →G iB , fA →G fB〉, tA, iA, fA, tB , iB ,
fB ⊆ (∗[0, 1])U ,

A →G B = 〈tA →G tB , iA →G iB , fA →G fB〉, tA, iA, fA, tB , iB ,
fB ⊆ (Zp)U ,

where tA →G tB = {x : x = s1 →G s2, s1 ∈ tA and s2 ∈ tB},
iA →G iB = {x : x = s1 →G s2, s1 ∈ iA and s2 ∈ iB}, fA →G fB =
{x : x = s1 →G s2, s1 ∈ fA and s2 ∈ fB},

• the Product implication:

A→Π B = 〈tA →Π tB , iA →Π iB , fA →Π fB〉, tA, iA, fA, tB , iB , fB ⊆
(∗[0, 1])U ,

A→Π B = 〈tA →Π tB , iA →Π iB , fA →Π fB〉, tA, iA, fA, tB , iB , fB ⊆
(Zp)U ,
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where tA →Π tB = {x : x = s1 →Π s2, s1 ∈ tA and s2 ∈ tB},
iA →Π iB = {x : x = s1 →Π s2, s1 ∈ iA and s2 ∈ iB}, fA →Π fB =
{x : x = s1 →Π s2, s1 ∈ fA and s2 ∈ fB},

3. The intersection of two neutrosophic sets A and B is defined as
follows

• the  Lukasiewicz intersection:

A&LB = 〈max(tA, ∗1 − tB) + tB − ∗1, max(iA, ∗1 − iB) + iB − ∗1,
max(fA, ∗1− fB) + fB − ∗1〉, tA, iA, fA, tB , iB , fB ⊆ (∗[0, 1])U ,

A&LB = 〈max(tA, Nmax − tB) + tB −Nmax,max(iA, Nmax − iB) +
iB −Nmax,max(fA, Nmax − fB) + fB −Nmax〉, tA, iA, fA, tB , iB ,
fB ⊆ (Zp)U ,

• the Gödel intersection:

A&GB = 〈min(tA, tB),min(iA, iB),min(fA, fB)〉, tA, iA, fA, tB , iB ,
fB ⊆ (∗[0, 1])U ,

A&GB = 〈min(tA, tB),min(iA, iB),min(fA, fB)〉, tA, iA, fA, tB , iB ,
fB ⊆ (Zp)U ,

• the Product intersection:

A&ΠB = 〈tA · tB , iA · iB , fA · fB〉, tA, iA, fA, tB , iB , fB ⊆ (∗[0, 1])U ,

A&ΠB = 〈tA · tB , iA · iB , fA · fB〉, tA, iA, fA, tB , iB , fB ⊆ (Zp)U ,

Thus, we can extend the logical operations of fuzzy logic to the case of
neutrosophic sets.

9 Interval neutrosophic matrix logic

Interval neutrosophic logic proposed in [51], [52] generalizes the interval valued
fuzzy logic, the non-Archimedean valued fuzzy logic, and paraconsistent log-
ics. In the interval neutrosophic logic, we consider not only truth-degree and
falsity-degree, but also indeterminacy-degree which can reliably capture more
information under uncertainty.

Now consider hyper-valued interval neutrosophic matrix logic INL defined
as the ordered system 〈(∗[0, 1])3, ¬INL, →INL, ∨INL, ∧INL, ∃̃INL, ∀̃INL, {〈∗1,
∗0, ∗0〉}〉 where

1. for all 〈t, i, f〉 ∈ (∗[0, 1])3, ¬INL〈t, i, f〉 = 〈f, 1− i, t〉,

2. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (∗[0, 1])3, 〈t1, i1, f1〉 →INL 〈t2, i2, f2〉 =
〈min(∗1, ∗1− t1 + t2),max(∗0, i2 − i1),max(∗0, f2 − f1)〉,
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3. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (∗[0, 1])3, 〈t1, i1, f1〉 ∧INL 〈t2, i2, f2〉 =
〈min(t1, t2),max(i1, i2),max(f1, f2)〉,

4. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (∗[0, 1])3, 〈t1, i1, f1〉 ∨INL 〈t2, i2, f2〉 =
〈max(t1, t2),min(i1, i2),min(f1, f2)〉,

5. for a subset 〈M1, M2, M3〉 ⊆ (∗[0, 1])3, ∃̃(〈M1, M2, M3〉) = 〈max(M1),
min(M2),min(M3)〉,

6. for a subset 〈M1, M2, M3〉 ⊆ (∗[0, 1])3, ∀̃(〈M1, M2, M3〉) = 〈min(M1),
max(M2),max(M3)〉,

7. {〈∗1, ∗0, ∗0〉} is the set of designated truth values.

Now consider p-adic valued interval neutrosophic matrix logic INL defined
as the ordered system 〈(Zp)3, ¬INL,→INL, ∨INL, ∧INL, ∃̃INL, ∀̃INL, {〈Nmax,
0, 0〉}〉 where

1. for all 〈t, i, f〉 ∈ (Zp)3, ¬INL〈t, i, f〉 = 〈f, 1− i, t〉,

2. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (Zp)3, 〈t1, i1, f1〉 →INL 〈t2, i2, f2〉 =
〈Nmax −max(t1, t2) + t2, max(0, i2 − i1),max(0, f2 − f1)〉,

3. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (Zp)3, 〈t1, i1, f1〉 ∧INL 〈t2, i2, f2〉 =
〈min(t1, t2),max(i1, i2),max(f1, f2)〉,

4. for all 〈t1, i1, f1〉, 〈t2, i2, f2〉 ∈ (Zp)3, 〈t1, i1, f1〉 ∨INL 〈t2, i2, f2〉 =
〈max(t1, t2),min(i1, i2),min(f1, f2)〉,

5. for a subset 〈M1, M2, M3〉 ⊆ (Zp)3, ∃̃(〈M1, M2, M3〉) = 〈max(M1),
min(M2),min(M3)〉,

6. for a subset 〈M1, M2, M3〉 ⊆ (Zp)3, ∀̃(〈M1, M2, M3〉) = 〈min(M1),
max(M2),max(M3)〉,

7. {〈Nmax, 0, 0〉} is the set of designated truth values.

As we see, interval neutrosophic matrix logic INL is an extension of the
non-Archimedean valued  Lukasiewicz matrix logic.

10 Hilbert’s type calculus for interval neutro-
sophic propositional logic

Interval neutrosophic calculus denoted by INL is built in the framework of the
language L′, but its semantics is different.

An interpretation is defined in the standard way. Extend the valuation of
L′ to the valuation for interval neutrosophic calculus as follows.

Definition 11 Given an interpretation I = 〈M, s〉 and a valuation val∞I of L′,
we define the hyper-valued interval neutrosophic valuation val∞,INLI (·) to be a
mapping from formulas of the form ϕ∞ of L′ to interval neutrosophic matrix
logic INL as follows:

val∞,INLI (ϕ∞) = 〈val∞I (ϕ∞) = t(ϕ∞), i(ϕ∞), f(ϕ∞)〉 ∈ (∗[0, 1])3.
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Definition 12 Given an interpretation I = 〈M, s〉 and a valuation val∞I of L′,
we define the p-adic valued interval neutrosophic valuation val∞,INLI (·) to be a
mapping from formulas of the form ϕ∞ of L′ to interval neutrosophic matrix
logic INL as follows:

val∞,INLI (ϕ∞) = 〈val∞I (ϕ∞) = t(ϕ∞), i(ϕ∞), f(ϕ∞)〉 ∈ (Zp)3.

We say that an INL-structure M is a model of an INL-theory T iff

val∞,INLI (ϕ∞) = 〈∗1, ∗0, ∗0〉

on M for each ϕ∞ ∈ T .

Proposition 1 In the matrix logic INL, modus ponens is preserved, i.e. if ϕ∞

and ϕ∞ →INL ψ
∞ are INL-tautologies, then ψ∞ is also an INL-tautology.

Proof. Consider the hyper-valued case. Since ϕ∞ and ϕ∞ →INL ψ
∞ are INL-

tautologies, then

val∞,INLI (ϕ) = val∞,INLI (ϕ∞ →INL ψ
∞) = 〈∗1, ∗0, ∗0〉,

that is val∞,INLI (ϕ∞) = 〈∗1, ∗0, ∗0〉, val∞,INLI (ϕ∞ →INL ψ
∞) = 〈min(∗1, ∗1 −

t(ϕ∞) + t(ψ)) = ∗1,max(∗0, i(ψ∞) − i(ϕ∞)) = ∗0,max(∗0, f(ψ∞) − f(ϕ∞)) =
∗0〉. Hence, t(ψ∞) = ∗1, i(ψ∞) = f(ψ∞) = ∗0. So ψ∞ is an INL-tautology. 2

The following axiom schemata for INL were regarded in [57].

ψ∞ →INL (ϕ∞ →INL ψ
∞), (23)

(ψ∞ ∧INL ϕ∞)→INL ϕ
∞, (24)

ψ∞ →INL (ψ∞ ∨INL ϕ∞), (25)

ψ∞ →INL (ϕ∞ →INL (ψ∞ ∧INL ϕ∞)), (26)

(ψ∞ →INL χ
∞)→INL ((ϕ∞ →INL χ

∞)→INL (27)
((ψ∞ ∨INL ϕ∞)→INL χ

∞)),

((ψ∞ ∨INL ϕ∞)→INL χ
∞)↔INL (28)

((ψ∞ →INL χ
∞) ∧INL (ϕ∞ →INL χ

∞)),

(ψ∞ →INL ϕ
∞)↔INL (¬INLϕ∞ →INL ¬INLψ∞), (29)

(ψ∞ →INL ϕ
∞) ∧INL (ϕ∞ →INL χ

∞)→INL (ψ∞ →INL χ
∞), (30)
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(ψ∞ →INL ϕ
∞)↔INL (31)

(ψ∞ ↔INL (ψ∞ ∧INL ϕ∞))↔INL

(ϕ∞ →INL (ψ∞ ∨INL ϕ∞)).

The only inference rule of INL is modus ponens.

We can take also the non-Archimedean case of axiom schemata for the axiom-
atization of INL, because INL is a generalization of non-Archimedean valued
 Lukasiewicz’s logic (see the previous section). This means that we can also set
INL as generalization of non-Archimedean valued Gödel’s or Product logics.

11 Conclusion

The informal sense of Archimedes’ axiom is that anything can be measured
by a ruler. The negation of this axiom allows to postulate infinitesimals and
infinitely large integers and, as a result, to consider non-wellfounded and neu-
trality phenomena. In this book we examine the non-Archimedean fuzziness, i.e.
fuzziness that runs over the non-Archimedean number systems. We show that
this fuzziness is constructed in the framework of the t-norm based approach. We
consider two cases of the non-Archimedean fuzziness: one with many-validity in
the interval [0, 1] of hypernumbers and one with many-validity in the ring Zp of
p-adic integers.

Hyper-valued (resp. p-adic valued) interval neutrosophic logic INL by which
we can describe neutrality phenomena is an extension of non-Archimedean val-
ued fuzzy logic that is obtained by adding a truth triple 〈t, i, f〉 ∈ (∗[0, 1])3

(resp. 〈t, i, f〉 ∈ (Zp)3) instead of one truth value t ∈ ∗[0, 1] (resp. t ∈ Zp) to the
formula valuation, where t is a truth-degree, i is an indeterminacy-degree, and
f is a falsity-degree.
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