
Proving the Theorem of Wigner by an Exercise in Simple Geometry

Manfred Buth

Bataverweg 35, D22455 Hamburg
e-mail: manfred-buth@t-online.de

Abstract

The leading idea of this paper is to prove the theorem of Wigner with concepts and methods inspired

by geometry. The exercise mentionned in the title has two functions: On the one hand it can serve as a

pedagogical text in order to make the reader acquainted with the essential features of the theorem and its

proof. On the other hand it will turn out to be the core of the general proof.

1 Introduction

The theorem of Wigner [1] is an important result of quantum mechanics, and this is its message: If one describes
a physical system by the states of a Hilbert space and afterwards changes to another representation, then the
invariance of transition probability is not only necessary for the correspondence with the experimental results but
also su�cient for the existence of a transformation of the Hilbert space, which is either linear and unitary or
antilinear and antiunitary. Apart from this physical meaning the theorem of Wigner can be understood as a purely
mathematical theorem being concerned with Hilbert spaces. In this sense it is presented in this paper. In section
2 some notions are introduced, before in section 3 the assumptions and assertions of the theorem of Wigner can
be written down. The exercise already announced in the title will be carried out in section 4. It is referred to
a�ne geometry in three dimensions and will give an introduction to the essential ideas of the theorem. On the
other hand it is the core of the general proof given in section 5. In section 6 the proof is compared with two other
proofs that can be found in the literature.

2 Some conceptual preliminaries

Rays in a Hilbert space are one dimensional subspaces. A ray mapping σ is a bijective mapping from the set of
all rays onto itself. In order to de�ne the ray function u for two rays r and s �rst of all the expression

u(e, f) :=
< e, f >< f, e >

< e, e >< f, f >

is de�ned for two elements e and f generating the two rays r and s. Since u(e, f) is independent of the special
choice of e and f , the ray function u is de�ned for the rays r and s by setting

u(r, s) := u(e, f)

Orthogonality between two rays r and s is de�ned by the condition

u(r, s) = 0.

3 Assumptions and assertions of the theorem

The theorem of Wigner is presented in the following version:

Let be given a Hilbert space H over the �eld of complex numbers and a ray mapping σ. Moreover in H there
may be an orthonormal basis B over a set I of indices. Then the following assertions are valid.

(a) If σ as well as its inverse mapping σ−1 conserves the orthogonality of rays, then there is a mapping ϕ from
H to itself that can be described by the relations

x′i = rif(xi) i ε I

between the coordinates xi of an element x of H and the coordinates x′i of the image x′ of x under ϕ. The
factor ri is a complex number and f an automorphism on the �eld of complex numbers.

(c) If additionally the invariance of the ray function u is assumed, then

x′i = f(xi) i ε I

In both cases the ray mapping σ is reproduced by the mapping ϕ. If the automorphism f is the identity, then ϕ
is linear and unitary. If f is the transition to the complex conjugate, then ϕ is antilinear and antiunitary.
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4 An exercise in elementary geometry as the kernel of the proof

4.1 A construction based on the conservation of orthogonality

In this section H may be a three dimensional vector space over the �eld of real numbers. The three basis vectors
e1, ei, ej of B generate three rays k1, ki, kj that are constituting an orthonormal coordinate system K with
coordinates x1, xi, xj . If orthogonality is conserved under the ray mapping σ and its inverse σ−1, then K is
mapped by σ into a corresponding coordinate system K ′. On the rays k′1, k

′
i, k
′
j of K ′ three unit vectors e′1, e

′
i,

e′j are chosen, arbitrarily for the time being. The choice of the sign factors of the e′i shall be held open until to
the end of the proof. The coordinates in K ′ may be x′1, x

′
i, x
′
j .

Now a construction in H can be performed.

Let E be the plane with the de�ning equation x1 = 1. In K ′ the plane E′ may be de�ned by x′1 = 1. Then a
mapping ϕ from E to E′ is introduced by the following prescription: An arbitrary element e of E is connected
with the origin of K by the ray s. Since s is not orthogonal to k1, the image s′ of s cannot be orthogonal to k′1,
because otherwise σ−1 would not conserve orthogonality. Thus s′ intersects E′ in an element e′. This element
shall be the image e′ of e. Vice versa to each element e′ of E′ uniquely an element e can be constructed. Hence
ϕ is bijective.

4.2 Investigation of the mapping ϕ

In order to investigate the mapping ϕ a straight line g on E may be given by the equation

aixi + ajxj + a = 0 with a2i + a2j > 0

The plane h given by the equation
aixi + ajxj + ax1 = 0

is connecting g with the origin of K. On the other hand h is orthogonal to the ray generated by the vector

v = aiei + ajej + ae1

and thus consists of all rays orthogonal to v. Hence h is mapped by σ into a plane h′ intersecting E′ in a line g′,
which yields the equation

a′ix
′
i + a′jx

′
j + a′ = 0 with a′2i + a′2j > 0

By construction line g′ is the image of g under ϕ. Hence ϕ is a collineation from E to E′.

Variation of the parameter a will lead to a class of straight lines g all of whom being parallel to one another. The
corresponding lines g′ in E′ are also parallel to one another, because otherwise a contradiction to the bijectivity
of σ could be inferred. Hence the mapping ϕ is a collineation, which respects parallelity. Since the same is true
for the inverse mapping ϕ−1, three points can be found in E that don't lie on a straight line, such that their
images are not lying in a straight line, too.

4.3 Investigation of the mapping ϕ to be continued

On the base of these propositions the fundamental theorem of a�ne geometry could be applied. But as, perhaps,
the reader might not be familiar with this theorem, the single steps of the argumentation are given explicitly.

On a line g′ parallel to the axis k′i all elements have the same coordinate x′i. The original line g of g′ is parallel
to ki. All elements on it have the same coordinate xi. Thus x′i only depends on xi and likewise x′j only on xj .
Hence

ϕ : x′i = fi(xi) x′j = fj(xj)

with two functions fi and fj .

The line g′ connecting the points a′(1, 0, 0) and b′(1, ri, rj) in E′, which are the images of a(1, 0, 0) and b(1, 1, 1)
in E, satisfy the relation

yi = x′i/ri = x′j/rj = yj

while the original g of g′ connecting the points a(1, 0, 0) and b(1, 1, 1) yields the equation

xi = xj

Hence
ϕ : yi = f(xi) yj = f(xj) with yi = x′i/ri yj = x′j/rj

with a sole function f . Because of a′ = ϕ(a) and b′ = ϕ(b) two special values of f are f(0) = 0 and f(1) = 1.
The straight line with the equation xj = λxi + µ is passing over to the straight line with an equation that can
be written as yj = λ′yi + µ′. Hence

f(λxi + µ) = λ′f(xi) + µ′

Special cases are
f(µ) = µ′ for xi = 0
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f(λ) = λ′ for xi = 1 µ = 0

with the result
f(λxi + µ) = f(λ)f(xi) + f(µ)

Using the variables a und b this can be written as

f(a+ b) = f(a) + f(b) for xi = 1 a = λ b = µ

f(a · b) = f(a) · f(b) for µ = 0 a = λ b = xi

Hence f is an automorphism of the �eld of real numbers.

Now the mapping ϕ can be extended to the whole space H by the simple prescription:

ϕ : e(x1, xi, xj)→ e′(r1f(x1), rif(xi), rjf(xj)) with r1 = 1

Of cause ϕ is an a�ne mapping, which reproduces σ.

4.4 The �nal part of the exercise

This all can be inferred only from the invariance of orthogonality thus justifying the assertion (a) of section 3 in a
special case. In order to prove assertion (b) additionally the invariance of the function u is assumed. Application
to u(ei, e1 + xiei) will yield

|xi|2/(1 + |xi|2) = |rif(xi)|2/(1 + |rif(xi)|2)
Thus

|rif(xi)| = |xi|
For the special case xi = 1 this means

|rif(1)| = |1|
Hence the condition reduces to |ri| = 1. One can get rid of the remaining sign factor by multiplying e′i with a
suited factor.

5 The general proof of the theorem

In order to prove the theorem of Wigner only a few parts of the exercise in section 3 are to be generalized.

First of all the �eld of real numbers, which was until now only preferred for the sake of illustration, can be
substituted by the �eld of complex numbers. For this purpose one only needs to substitute 'real number' by
'complex number' and 'sign factor' by 'phase factor'.

In the Hilbert space H the elements ei of the orthonormal basis B generate rays ki playing the role of coordinate
axes in a coordinate system K with coordinates xi. The rays ki are mutually orthogonal, and hence their images
k′i under σ, too. On each axis k′i a unit vector e′i is chosen. All e′i together constitute a coordinate system K ′

with coordinates x′i. The 'plane' E shall be the set of all elements of H with x1 = 1 and 'plane' E′ the set of all
elements with x′1 = 1.

A ray s connecting an arbitrary element e of E with the origin of K is not orthogonal to k1. The image s′ of s
cannot be orthogonal to k′1, because otherwise σ−1 would not conserve orthogonality. Thus s′ intersects E′ in
an element e′. This element shall be the image e′ of e.

If the ray mapping σ is con�ned to rays s that are generated by linear combinations of the three basis elements e1,
ei, ej , then these rays are orthogonal to all other elements of the basis B. Hence the image s′ of s is generated
by a linear combination of e′1, e

′
i, e
′
j . That is to say, σ is a ray mapping between two vector spaces of dimension

three. Although these spaces might be di�erent from each other, the exercise of the last section can be applied
in order to investigate the mapping ϕ. The result is

ϕ : x′i = f(xi)

with an automorphism f of the �eld of cmplex numbers. If the automorphism f is the identity, then ϕ is linear
and unitary. If f is the transition to the complex conjugate, then ϕ is antilinear and antiunitary. In both cases
the ray mapping σ is reproduced by the mapping ϕ. This completes the proof.

6 Comparison with other proofs

The beginning of the proof given in the last two sections is similar to the corresponding part in the proof of
S. Weinberg [2]. But in contrast to the strategy that was pursued here the proof of Weinberg determines the
phase factors already at an early stage. Thus Weinberg has to �ght with a lot of problems as for instance with
the discrimination and investigation of several cases. If the text written down in [2] is taken together with all
footnotes and all calculations, whose explications are lacking, then the proof is rather complicated.

The proof of K.J. Keller et al. [4] and the ansatz persued in the present paper have in common that they associate
an investigation of Hilbert spaces with analytical geometry and not, as usual, with functional analysis. But the
combination with projective geometry in arbitrary dimensions seems to be a detour, especially because the main
theorem of projective geometry can be reduced to the corresponding theorem of a�ne geometry. In the present
paper it has been shown that simple geometry in three dimensions is su�cient for a proof of Wigner's theorem.
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