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Abstract 

            A mathematical derivation of geometry is rigidly rotating disk 

dust, taking into account special relativity.  Based on this formula are 

defined geometric forms a rotating disk, sphere and torus. 
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            In 1909, Ehrenfest proposed a thought experiment, in which 

the disc rotates at a relativistic speed. He showed that such a disc 

cannot be absolutely rigid according to Born [1].  Still don't have the 

formula for calculating the geometry of the disk [1-5].     

            Let's consider a disk that rotates relative x = 0, y = 0, z = 0 

around the z axis with an angular acceleration – w (Fig.1).   

     

Fig. 1.  At rotation disc with any angular velocity W curve length remains 
constant, OB = s = r. 
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           Speed of each element of a circle moves on a tangent, 

hence, concerning the motionless observer who is in the beginning 

of coordinates perimeter of a circle decreases. The distance from the 

origin to the element of the disc remains constant. As a result, for a 

stationary observer, the disc must change shape, deform.  

In view of symmetry, it suffices to consider the change in shape of a 

disc in the plane X, Z (Fig. 1). 

           Any point (B) at a distance -       ,   from the center of 

rotation moves with linear velocity -       and relative to the 

observer describes a circle with perimeter: 

                                                                    (1) 

If the distance to a point B - is equal in rest    , at rotation of a disk 

concerning the motionless observer, the condition should be 

satisfied: 

                                      √      ⁄  

            Hence, considering (1), we obtain 

                                   √      ⁄ , 

Or (c=1): 

                                  √      . 

Hence, 

                                   √      
 ⁄            (2)        

Here: 

                                 -distance from the axis to point B at rest; 
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                          x - Distance from the axis of rotation to the same 

point on the disc when it rotates relative to a stationary observer at 

the center of the disk; 

                          w- Angular velocity of the disk. 

           We introduce the parameter r to describe the curve 

connecting the origin to any point on the circumference of the disk.  r 

- is numerically equal to the length of the curve, and the length of the 

curve does not change during the rotation disk.  

From (2) we have: 

                                    
 

√      
                     (3) 

           Now we need to find the dependence of the position of a point 

on the Z-axis rotating circle, depending on the - x (r).   

            The differential of arc length s=f (x (r)) is equal to: 

                           √     ⁄         ⁄      

            But ds = dr, therefore, 

                          ⁄         ⁄                (4) 

  

                           √       ⁄                 (5) 

            We find from (3): 

                             ⁄           
 

 ⁄⁄        (6) 

 

   Then: 

                         √            ⁄       (7) 
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           From equation (3) for any point on the disk are: 

 

                            √      ⁄                      (8) 

And: 

                                   
 

 ⁄⁄               (9) 

 

             After substituting (8) and (9) in (7) and discarding small 

quantities higher than the fourth order, we obtain: 

                              √  
  

                        (10) 

Solution of the integral:  

                            
√ 

  
                       (11) 

                        (      √      ⁄ ) 

Where R is the radius of the disc.   

           The equation shows that the rotating disk is turned off in a 

“cup”. Rotating sphere has also reshaped its form (Figure 2), and 

rotation of the torus (fig. 3) in addition to the deformation "raises" 

torus above the horizontal plane.  
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Fig. 2.  Change of the form of sphere. 

 

Fig. 3.  Rotation of the torus in addition to the deformation "raises" torus 
above the horizontal plane. 
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