Generalized Fermat's Last Theorem (4) $R^n = y_1^6 - y_2^6$ Chun-Xuan Jiang P. O. Box 3924, Beijing 100854, P. R. China jcxuan@sina.com ## **Abstract** In this paper we prove $R^n=y_1^6-y_2^6$ has no nonzero integer solutions for $n\geq 2$. In 1978 using this method we had proved Fermat's last theorem [1]. But on the afternoon of July 19, 1978 this proof was disproved by Chinese mathematics institute of Academia Sinica. We define the supercomplex number [1,2,3] $$W = \sum_{i=1}^{6} x_1 J^{i-1} \tag{1}$$ where J denotes 6-th root of unity, $J^6 = 1$. From (1) we have $$W^{n} = \left(\sum_{i=1}^{6} x_{i} J^{i-1}\right)^{n} = \sum_{i=1}^{6} y_{i} J^{i-1}$$ (2) From (2) we have the modulus of supercomplex number $$R^{n} = \begin{vmatrix} x_{1} & x_{6} & x_{5} & x_{4} & x_{3} & x_{2} \\ x_{2} & x_{1} & x_{6} & x_{5} & x_{4} & x_{3} \\ x_{3} & x_{2} & x_{1} & x_{6} & x_{5} & x_{4} \\ x_{4} & x_{3} & x_{2} & x_{1} & x_{6} & x_{5} \\ x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & x_{6} \\ x_{6} & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} \end{vmatrix} = \begin{vmatrix} y_{1} & y_{6} & y_{5} & y_{4} & y_{3} & y_{2} \\ y_{2} & y_{1} & y_{6} & y_{5} & y_{4} & y_{3} \\ y_{3} & y_{2} & y_{1} & y_{6} & y_{5} & y_{4} \\ y_{4} & y_{3} & y_{2} & y_{1} & y_{6} & y_{5} \\ y_{5} & y_{4} & y_{3} & y_{2} & y_{1} & y_{6} \\ y_{6} & y_{5} & y_{4} & y_{3} & y_{2} & y_{1} \end{vmatrix}$$ (3) y_i are homogeneous and irreducible polynomials. We define the stable group [1,4] $$G = \{g_2, g_6\}. \tag{4}$$ where $$g_2 = \begin{pmatrix} 123456 \\ 123456 \end{pmatrix}, \quad g_6 = \begin{pmatrix} 123456 \\ 165432 \end{pmatrix}.$$ We have $$x_1 \rightarrow x_1, \quad x_4 \rightarrow x_4, x_2 \xrightarrow{g_6} x_6, x_3 \xrightarrow{g_6} x_5,$$ $$y_1 \to y_1, \quad y_4 \to y_4, y_2 \xrightarrow{g_6} y_6, y_3 \xrightarrow{g_6} y_5$$ (5) x_1, x_4 and y_1, y_4 are stable elements. x_i and $y_i (i = 2, 3, 5, 6)$ are non-stable elements. y_2 , y_6 and y_3 , y_5 are the same polynomials. **Theorem 1**. From (3) we have a Fermat equation group $$y_i(i=3,4,5,6)=0$$ (6) $$R^6 = y_1^6 - y_2^6 \tag{7}$$ If (6) has nozero integer solutions, then (7) has nozero integer solutions and vice versa. If (6) has no nozero integer solutions, then (7) has no nozero integer solutions, and vice versa. We have that (6) has only trivial solutions [1,5]. $$y_i(x_1, 0, \dots, 0) = 0, \quad i = 3, 4, 5$$ (8) We have $$y_2(x_1, 0, \dots, 0) = 0$$ (9) Hence we prove that (7) has no nozero integer solutions. Euler proves that (7) has no nozero integer solutions. Hence (6) has no nozero integer solutions. From (3) there are six Fermat's equation groups. For example $$y_i = 0 \quad (i = 1, 4, 5, 6)$$ (10) $$R^6 = y_3^6 - y_2^6 \tag{11}$$ (10) and (11) have only trivial solutions $$y_i(0,\dots,0) = 0, \quad i = 1,2,3,4,5,6.$$ (12) **Theorem 2.** Suppose $n \ge 2$. From (3) we have a Fermat's equation group $$y_i(i=3,4,5,6)=0$$ (13) $$R^n = y_1^6 - y_2^6 \tag{14}$$ We have that (13) has only trivial solutions $$y_i(x_1, 0, \dots, 0) = 0$$ (15) We have $$y_2(x_1, 0, \dots, 0) = 0.$$ (16) Hence (14) has no nozero integer solutions. Using our method [1-8] it is able to prove the Beal conjecture [9]. ## References - [1] Chen-xuan Jiang, A general proof of Fermat's last theorem, July 1978, Mimeograph papers. - [2] Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. Inter. Acad. Press, 2002, 299-306, MR2004c:11001.(http://www.i-b-r.org/docs/jiang.pdf) (http://www.wbabin.net/math/xuan13.pdf) (http://vixra.org/pdf/1004.0027v1.pdf) - [3] Chun-Xuan Jiang, The Diophantine equations $a^2 \pm mb^2 = c^n$, $a^3 \pm mb^3 = d^2$ and $y_1^4 \pm my_2^4 = R^2$, Unpublished. - [4] Chun-Xuan Jiang, The application of stable groups to biological structure, Acta Math. Sci. 5, 3(1985) 243-260. - [5] Z. I. Borevich and I. R. Shafarevich, Number theory. Academic Press, New York, 1966. - [6] Chun-Xuan Jiang, Generalized Fermat's last theorem (2) $R^n = y_1^4 y_2^4$. Unpublished. - [7] Chun-Xuan Jiang, Generalized Fermat's last theorem (1) $R^n = y_1^3 + y_2^3$. Unpublished. - [8] Chun-Xuan Jiang, Generalized Fermat's last theorem (3) $R^n = y_1^5 + y_2^5$. Unpublished. - [9] R. Daniel Maulidin. A generalized of Fermat's last theorem: The Beal conjecture and prize problem. Notices of the AMS, 44[1997] 1436-1437.