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0. ABSTRACT. 

 
These papers  show  a  calculus relation  (50)  of  complete elliptic integral  K(k) with minimum 15 

precise decimals  and the possibility  to obtain a more precisely  relation.. It results by application 

Landen’s method,  of  geometrical-arithmetical average, not for obtain  a  numerical value but  to 

obtain  a compute algebraically relation  after 5 steps  of a geometrical transformation,  called 

“CENTERED  PROCESS”. 

 The frequency is the is the physical quantity which can be measured today with maximum 

precision. Therefore, length unity definition ( standard metre from Sèvres-Paris) was replaced, in 

1983, by multiples of an oscilation wavelength (krypton 86  radiation), abd the time unit was redefined 

by multiples of periods of a certain oscillation. The calculus of the frequencies of different technical 

systems, especially non-linears, could not be raised, unfortunately, at the same desired precision level.  

 The complete elliptical integral of the first kind K(k) could offer the solution for precise 

determination of the frequencies of some non-linear systems, but  the ascending power series trough it 

is expressed is low convergent.  Therefore, some numerical methods appeared, such as Landen 

method, or geometrical-aritmetical average, which offers a precise ( numerical) value of  K for a given 

k, values that are tabulated, with various number of exact decimals-  9 in Abramovitz [20] s.a.[19]. 

 The Autor’s idea was to obtain not  the numerical value of K(k), but an algebrical expression  

(computing relation) from which can result with an imposed precison ( whatever high wanted), the 

integral value for any k value, and not only for those existing in tables, avoiding this way the 

sometimes necessary interpolations. For unlimited precisions, this computing relation is K(k) = /2R( 

k ) ,  and, for minimum 15 exact decimals, is shown that only 5 steps are needed, so  R5( k ) is the 

perfect square. 
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    The calculation algorithm shown in this work, which is at the same time, a new geometrical 

transformation, named  “centering” - because for N   the eccentric trigonometrical circle , with 

numerical excentricity  k  0 ,  is transforming in the circle with zero numerical eccentricity  (kN = 0), 

therefore centric - establish the step-by-step transformations, over two, three or four steps and can 

establish, furthermore, the transformations over more steps.  For example, the previous relation R5  

give the dependence between the step 5 with those obtained after step 1, namely over 4 steps. 

Similarly,  R9  can be obtained, where R A5   and p G5  ,  but the precisions obtained this 

way by far exceed practical demands. 

 
1.  Introduction 

  The integrals  with R z w dz( , ) ,  form where  R is a rational function of two arguments and w
2 

 =  P(z)  is a third or fourth degree polynom, are named elliptical. Any eliptical integral can be arranged in 

one of the three forms named of first kind, of second kind or of third kind. 

The real elliptical integrals of the first kind, noted  F( k,  ) and of second kind, noted  E (k,  ), are 

the integrals defined, in normal trigonometrical for, respectively, normal ( standard) form Legendre form by 

the expressions:   



( 1 )               F( , k) 
d

k

dx

x k x





 

1 1 12 2
0

2 2 2
0


 

 
sin ( )( )

sin

= u,              of first kind and  

( 2 )               E( ,k)   1 2 2

0

 k dsin  



= 
1

1

2 2

2

0




k x

x
dx

sin

  ,                         of second kind  

 The trigonometric form results from the standard one by variable changing: 

 ( 3 )              x = sin   

 The k parameter, underunitary in abolute value, is named the modulus  of these integrals, as, on the 

other hand, of the elliptical Jacobi functions in Gudermann’s notation. 

( 4 )        sn (u, k) = sin ,   cn (u, k) = cos  si   dn (u, k) = 1 2 2 k sin    and represents, at the same 

time, the numerical excentricity  ( e    k )  of the excentric circular supermathematical functions. 

[1 ,... ,14 ],  and the expression 

( 5 )             k’ = 1 2 k = p   is named the complementary modulus noted in this work also with p 

 For the superior lomits of the real integrals   =  /2  respectiveley,  sin   = 1 we obtain the 

complete ellipticalintegrals of the first kind  K(k) (1’)  or of second kinde  E(k) . 

( 1’ )           F( /2, k )   K( k )   
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 The  development in acending power series of the function  K(k) is 
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

2
1

1

2

13

2 4

135

2 4 6

2 1

2

2 2 2 4 2 6 2 2    











( ) (
.

.
) (

. . .

. . .
) ... [

( )!!

( )!!
] ...k k k

n

n
k n

 = 


2
F(

1

2

1

2
1 2, ; ;k ) 

and presents a very low convergence for  k  < 1.  In the second experssion   F(  , ; ;z )  is the function, or 

the hypergeometric series, with Gauss notation, where  Re(    ) = 0  The series is convergent in the 

whole unitary radius circle (trigonometrical TC), except the  z = k
2
 = 1 [21] point, where neither the 

following calculus relation is not available 

 In 1826 , Adrien Marie Legendre ( 1752-1833 ) in “Traite des functions elliptiques et des integrales 

Euleriennes” which represented the synthesis of 40 years of researches in the elliptic and eulerian integrals 

field, presented the tables of the  F ( , k ) si E ( , k ) integrals values, given for all for all the values of the 

angle   from degree to degree and for 90 values of k, corresponding for the angle.   

( 7 )            M = arcsin k ,                        ( angle noted in literature as   M ) also from degree to degree, 

therefore  16.200 results with ten exact decimals for     0 4, /   and with nine exact decimals for 

    / , /4 2 ; the calculations being done by himself with 14, respectiveley 12 exact decimals. [ 23 ]. 

The numerical calculus problems regarding the elliptical integrals and functions are easier treated with the 

theta-elliptical  functions[28]. They are defined as sums of the q parameter of Jacobi [20]- for q  1- 

            For example,   
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 At the monthly communications ofthe Academy of Berlin in 1883, Weierstrass presented the 

possibility to increase the precision for calculating the q parameter by Landen method, by stopping to a 

single iteration, and he obtained what in this work is called the numerical excentricity k after the first step, 

from the centering transformation which will be presented further. With actual notation, from the present 

work, which refers to circle radius R1 and the real excentricity  e1, all of them after one step of centering 

transformation, the numerical excentricity  k1 is  
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and by reversing of this series  ( 10 ) the q parameter is obtained, which is the infinite series [22] 
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 Weierstrass foresaw the possibility to furthermore increase the precision of q, by continuing the 

calculus algorithm, but he didn’t continued this way, preferring other ways. 

 

2.   The  radial-excentric function  rexθ 

Is the supermathematical excentrical function (SMF) [ see .8 and 9 ]  defined in the work[1]  as a 

function of variable at excenter   and re-defined in the work  [ 2 ]  as an adimmensional and multiple 

function with important applications [7], [14],also in the works  [12] and [13] as function of variable at center 

 . 

  It is an excentric trigonometrical function or elementary excentric circular function (ECF) which 

can represent the equations of all  known plane curves and of other new ones, resulted after the introduction 

in mathematics of SMF; These new curves are named excentrics[ 3], [4], [5], [6], to differentiate them from 

the old ones, named from now, centrics. In this way, to each knwn centric form, as circle, ellipse, hyperbola, 

etc corresponds an infinity of plane excentric curves. The situation is similar in the spaces with more 

dimmensions. The extremely large possibilities to express this function derive from its trigonometrical 

expressions, which represents, at the same time, the distnce between two points in the plane, in polar 

coordinates: one being situated on the trigonometric circle (TC), of centric polar coordinates  W ( , R=1)  

or of the excentric polar coordinates  W( ,  = rex( ,E)) - depending on how the origin O of the 

coordinate axis system is chosen in the center of the circle TC or in the excenter E- and the second, named  

excenter, of the polar coordinates   

E (  , e = k ), in the circle’s plane.  If the ECF are defined on circele with radiuses  R  1,  the points will be 

noted with  Mi , and on the CT with Wi . 

 The two algebrical (trigonometrical) experssions of the rex function each of them  with two 

determinations ( 1- the main-one, corresponding  to the sign + in the front of rhe square root and 2- the 

second-one) are: 

( 12  )       rex1,2   = R [-e.cos(  )  1 2 2e sin  ], as a function of the excentrical variable    and 

( 12’ )      rex 1,2 = R [   1 22

1 2e ecos( ),   ], as a function of the excentrical variable  1.2. 

 The rex function has the property of first degree homogenity because, being o function of the circle’s 

radius (R = 1 of TC and  R i of  any other circle ) and his excentricity  (e = k on TC and Ri on other circles, 

but with the same numerical excentricity k ) - for   = 0 - f (R = 1, e ), by multiplying the variables with the 

scalar  Ri  > 0  we obtain 

( 13 )    f (R i . R, e . R i) = Ri f (R = 1,e ) as results also from  (12) and (12’). 

 In this worl, only the main determinations will be used, abandoning these indices. The indices that will 

appear will refer to the number of the step (i = 1...N) of the centering geometrical transformation. 

 For   = 0,  /2 ,   and e = k  we obtain the real values: minimal (m) ,  weighted (p) and  maximal   

(M) and the numerical ones ( in respect to the radius) k and k’ of  rex  .  In the initial  stage, on TC, because 

the radius R = 1, all the real values are equal with the numeric ones. 

( 14 )     m = 1 - e = 1 - k ,  p = 1 12 2   e m M k. = k’  and, respectiveley,  M = 1 + e = 1 + k 

 For a circle with a certain radius Ri , the real excentricity ei , the maximum M i , the weight p i  and 

the minimum mi are real quantities and the numarical excentricity ki , 
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                      are real quatities.  The real quantities are  

( 16 )    mi = Ri - ei = Ri (1 - ki ),  pi = m Mi i.  = R ei i

2 2 = Ri 1 2 ki ,  Mi = Ri + ei = Ri (1 + ki ) 



 We can easily observe that   M = 

I

sup  rex   si m = 
I

inf  rex  , so   rex    belongs  to the class 

of the functions with a variation bordered by a fixed number  V   = M - m = 2 e  and, by consequence, o 

such of function is the differnce of two non-descending function and vice-versa.[ 24, pag. 19 ].   

  

3.  Expressing some means by  rex   functions 

  Noting with  A
+
 the arithmetical mean ( semisum) of two positive numbers, with A

- 
(semidifference)  

or the arithmetical mean where minimum m change the sign ( m    - m )  and with  G their geometrical 

mean 

( 17 )           A
+
(m, M) = R = 1,  A

-
 (-m, M) = e = k  and  G ( m, M ) = p = k’, in the initial moment, on the 

trigonometrical circle TC of R=1 and for any other circle with parameters  Ri , ei si pi  , they are  

( 18 )         A i


 (mi , Mi) = Ri,   A i


(-mi, Mi) = ei ,   and   Gi ( mi ,Mi ) = pi = m Mi i  

A perpendicular raised in the excenter E (e,  )   K (k, 0) cross the trigonometric circle TC in the 

point  W and 

( 19 )        EW  = rex (  /2, e = k ) =   ( /2, k ) = ( )( )1 1 k k = m M.  = 1 2 k  = k’ = p ,    

and from the points K i cross the TC in the points Wi  for  

( 19’ )        K Wi i = rex (  /2, ki ) =  ( )( )1 1 k ki i = 1 2 ki  = k’i = pi / Ri  and from the excenters  E i  

cross the inner circles in the  Mi for   

( 20 )         E Mi i  = R i rex ( /2, ki ) = ( )( )R e R ei i i i  = R i 1 2 ki = R i k’i = p i  

 p  being named weight , or weighted geometrical mean value, of weight 1, of the rex , function, because it 

represents the geometrical mean of the extreme values than takes the excentrical radial function  rex . 

 The quantity which is obtained by forming the arithmetical and geometrical means of the values of 

two quantities, then forming the arithmetical and geometrical means of these means, and repeating the 

operations until the means obtained by this way become equal, is named arithmetic-geometric average (or 

mean) of the two values. In this case, such averages can be obtained by two ways: by chosing as initial 

quantities the extreme values m and M of the  rex   function we can obtain the caracteristical quatities  R 

and e specific to SMF on a circle of radius R=1, or Ri , wich we will mane internal means  - by example (17) 

and (18)- and the means of the same kind, wich permit the leap from a circle to another with other radius, or 

from an orbit to another, making the connection between two consecutive orbits, named external means  and 

which are (see. Fig.1 ) 

 (  21 )            A 1


(R, p)  = (1+ 1 2 k )/2 = R1  and   A 1


( R, -p ) = ( 1- 1 2 k )/2 = e1 , so 

PE 1 : The radius of an orbit is equal with the semisum of the radius and the weight of external orbit (the 

biggest) and  

PE 2 : The excentricity of an orbit is equal with the semidifference of the radius and the weight of the 

external orbit.  

The two arithmetical means can be wrote concentrated as following: 

( 22 )                 R1 ,e1 = A 1


( R,  p ) = ( 1  1 2 k )/2. and give the two main quantities of a circular 

orbit, teh radius and excentricity, and serve to calculate the extremes of the orbit. 

( 23 )               m1,M1 = (R1   e1 ), m1 = 1 2 k = p si   M1 = R = 1  and of the weighti  

( 24 )               p1 = G1(m 1, M 1) = m M1 1. = 1 1 2.  k -as internal mean after the first leap (step).  

The relations (21) si (22) give the dependence between the quantities from the initial orbit (TC : R = 

1, e = k si p = k’= 1 2 k ) and those of the following orbit, of indice 1. The real radius and excentricity of 

the new orbit are:  

( 25 )              R1 =A 1


( R, p ) ,     e 1 = A 1


( R, -p ) ,     so, another property of the transformation is  

PE 3:The sum of the real excentricity and the radius from a specific orbit is equal with the radius of the 

biggest circular orbit. .This radius belongs to the previous orbit at the leap from a bigger orbit to a smaller 

one, and to the next orbit when the leap is reversed, from small to high.. These are the two possible 

transformations: direct, or impanding to the center, respectiveley, reversed, or expanding. 



( 26 )                 M 1 = R1 + e 1 = R = 1, because  A
+
 ( A

+
1 , A

- 
1 ) =  A 

1

 + A 1


= R = 1, a main property of 

ECF, which will be used further. But, the sum (26) express the value of  M1, so 

PE 4 : when leaping from an orbit to another, the maximum of the orbit with the smaller radius is equal, in 

value, with the radius of the orbit with the bigger radius. This is also the property on horizontal, or on x axis, 

of the geometrical transformed of ECF rex, wheb leaping from an orbit to another. On the other hand, 

because   

                        A 


( A
+

1, A
-
1 )  =  A

+
1 - A

-
1 = p = k’                                      results 

( 27 )                m1  =  R 1 - e 1  =  p  =  k’                                                        and  

PE 5 : the minimum of the orbit of smaller radius ( m i+1 ) is equal with the weight  pi of the orbit of bigger 

radius.. Because the weight is oriented in the vertical direction y (  = /2) we will nwme this property as 

being on “the vertical” of the transformation. 

 We can easily observe that  

( 28 )              M 1 - m 1 = 2 e 1 = 1 - p = 1 - k’ = 1- 1 2 k = V   1  and the new weight will result as   

( 29 )              p 1 = G1 ( m1 , M1 ) = G1 ( p, R ) = 1 1 2.  k  = 1 24  k  = p  = k ' , so  

                      p 1

2
= p sau ( R1k’1 )

2
 = Rk’ R1  = 

1 1

2

2  k
  and          p1  = 1 28  k  

 The values of the function rexi ( / 2) , or the succesive weights, raise in variable ratio geometrical 

progression, property that derive also from the fact that  p
2 

1 = R
2
 1 - e

2
 1 = ( R1 - e 1)(R1 + e1 ) =M 1. m 1 =  

R p = p , for the first step, because  R = 1. For the next steps, considerring (24) 

( 30 )               p i+1 = Gi+1( mi+1 , Mi+1 ) = p Ri i.  si  (Ri+1 k’i+1 )
2
 = k’iRi.Ri  = k’iRi

2
   from where  

( 31)                  k’i =  [
R

R

i

i

1 k’i+1 ]
2
  sau ki

'
= 1 2 ki  = 

p

R

i

i

1   and the algorithm of leaping from an orbit to 

another becomes transparent. 
 

4. The excentric geometric transformation and the centering geometric transformation  

The leaps from an orbit to another can take place in two senses. In direct transformation, the rotations 

of  Wi points on TC  take place in the left sense from  W (k) -the initial point- to the final point WN (kN = 0 ) 

and through which the leaps from  W in Mi take place from the initial orbit TC (of start, of R = 1) on the 

inner of this  (with smaller radiuses,  Ri < 1), from the point  W (k ), passing trough the points  Mi (ei) until 

the final point MN ( eN =0; RN ), through which the excentricities of the orbits descends, by leaps, to the value 

e N = kN  = 0 and which we name it, by this reason, CENTERING. 

The centering is a circular, conformal transformation, composed from a homothety of ratio            

 h = Ri + 1/ R i  combined with a rotation of angle    = i i 1  =  arcsin(p i+1 / R i=1) - arcsin (p i / R i )  = 

arcsin k’ i+1  -  arcsin k’ i. = arcsin ( k’ i=1 1 2 k i'  - k’i 1 1

2 k i'  )  The centrations set transfer the initial 

point W from TC  in M N from the circle with  R N radius, situated on  y axis for  N  . We will note the 

centration’s final circular orbit with RN , wich is, obviously, a constant, by one side -being the radius of a 

circle- and on the other side, a variable R ( k ) ,because it depends on the excentricity e = k  (chosen as equal 

with the modulus of the eliptical integrals) and which from the transformation starts. Therefore,   

( 32 )            R N = R ( k ) ,  for   N   .   independently from the initial position of  W on TC, his 

transformed after the first leap, the  M 1 point, will be placed on a parabola with the focal point in the origin 

O, the vortex on x axis in the point  V ( ½, 0 ) and passing trough the point B ( 0, 1 )   W N N   CT. It 

results that the centering transformation does not modify the position of  W( k = 0 ) point, -which remains 

itself- and therefore  R ( k = 0 )  = 1 and K ( 0 ) =  /2. The initial point  A ( 1, 0 )  W ( k = 1 ) after the 

first transformation arrives in V ( 0,5 ; 0 ) and by the next transformations it leaves not the x axis, so in the 

final it arrives in O ( 0, 0 ) , that means that the radius  R(k =1 ) of the last circle of centration transformation 

will be zero ( R(1) = 0 ) si K (1) =  . 

  The transformation in reverse sense, from TC to circular orbits with bigger and bigger radiuses (Ri 

> 1), when the excentricity of the orbits will also rise from k to  kN = 1, for N   , we will call it, from 

these reasons, EXCENTRICAL geometrical transformation. 



 In both these transformations, we start from TC with cu e = k, with values different from the values 

0 or 1, previously discussed, we pass trough the real excentricities ei, with diiferent values from the numerical 

ones ki , and, in the final of each transformation, we will reach again the egalization of these ones with the 

and with the value 1, in the case of excentric transformation. In the centering case, the two final points  WN  

and MN will be situated on the same vertical  (N  =   / 2) ; the initial point  W, corresponding to the angle 

at centre    = arccos k , suffering exclusively rotational transformations, in leaps, in  sinistrorum sense on 

CT, trough the intermediary points  Wi (  i = arccos k i  = arcsin k’i ) , until in the final point  WN( de N  = 

 /2). The set of all the rotations being of angle  M  = arcsin k = arccos k’..  

 The points WN and MN  has the same argument  N   =   / 2 but the modulus ( orbit radiuses) are  

R = 1 and, respectively,  R N = R( k ). 

  The ECF expressed on circles with radiuses  Ri   1, i = 1 ... N, has the definitory points which are 

noted with Mi  and they are the transformed trough the homotety  Hi ( O, hi ) -of center of homotety in the 

origin O and homotety ratio hi - of the points  W i from TC 

( 26 )              hi  = R i / R   = ei / e, for a centering transformation, on the orbit i of radius  Ri  of the point Mi , 

to who is corresponding the W i point from CT with R = 1. In the centerinfg transformation, the Wi points 

exclusively rotate, staying on TC, and meanwhile the M i points rotate and are those who jump from an orbit 

to another, with different radiuses. Therefore, the transformation from W in M1 take place trough a rotation 

 1 1O,  (on TC from W in W1) followed by a translation or an homotety H1 (O, h 1) from  W1 in M1 .All 

the rotations being of de same center O, the product of two rotations will be also a rotation, and the rotations 

set forms a commutative group in respect with the composing operation. The rotations product trough which 

W is transfered in WN  is 

( 33 )                 1 2 3   N  =   ( , / )O N  2 =   ( O, M  ), for N   

 The homoteties being of the same center O, their set forms an isomorph commutative group with the 

multiplicative group of non-zero real numbers. The product of two or more homoteties will be also an 

homotety. 

( 34 )               H1  H2 H3      HN = H (O, h = hi ) = H [O, h = R (k )]         

 By writing the property ( 26 ) of ECF beginning with the first orbit and finishing with the last one, in 

the first column, and in the second column the same normalized relations or adimmensional, by dividing with  

Ri radiuses results 

                              e 1 + R 1 = R = 1 ,    1 + k 1  = R / R 1 =  1 / R 1 

                         e 2 + R 2  = R 1    ,   1 + k 2   = R 1 / R 2 

                         e 3 + R 3 = R 2    ,   1 + k 3  = R 2 / R 3  

( 35 )                    e 4 + R 4 = R 3    ,    1 + k 4 = R 3 / R 4  

                 ............................................................. 

                  e i + R i = R i - 1  ,    1 + k i = R i -1 / R i 

                        ............................................................. 

                  e N + R N = R N-1,    1 + k N = R N-1 / R N 

 By making the normalized relations product, from the second column, we obtain        

( 26 )            ( )1
1




 ki

i

N

 = 1 / R N     or    R N =1 / ( )1
1




 ki

i

N

 and for  i   results R(k)                                                                  

( 27 )               R( k ) = 1 / ( )1
1






 ki

i

   from where, on the basis of relation  ( 9) , we obtain one of the 

known forms [ 19 ], [ 20 ], [ 21 ] of the complete eliptic integral of the first kind  

( 38 )               K (k ) = 


2
1

1

( )




 ki

i
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R = 1              p = 0,199 

e = k = 0,98           s = 0,98 

R 1 = 0,599     p1 =0,4460 

e1 = k 1 = 0,40005  s1 = 0, 67 

R 2 = 0,523     p 2 = 0,5171 

e 2 =0,0767        s2 =  0, 1466 

R 3 = 0,519     p 3 =0,51995 

e 3  = 0,0028       s3 = 0,0053 

R 4 = 0,599      p 4 = 0,51996 

e 4 = 0,000004 s4 = 0,000000 
 

 

Fig. 1.  The rexθ function on 4 orbits 

 In these relations, for i = 1 results k 0 = k  and   k i will have the expression  

( 39 )            k i = e i / R i = 
1 1

1 1

1

2

1

2

 

 





k

k

n

n

, like we can deduce also from the relation  (22 ) . 

 From this relation, far a large number of steps, we will obtain an algebrical expression much too 

large, being adequate only in the case when a computer programme is achieved, because it has a very simple 

algorithm. 

 On the base of   PE 1 ... PE 4 properties and considerring  ( 30 ) 

( 40 )               M i+1 = R i  ,      m i+1 = p i ,  so, from the sum and the difference of these relations, we obtain 

( 41 )               2 R i+1 = R i + p i ,      2 e i+1 = R i -- p i   and  R i+1 = A
+
 i = A

+
 ( R i , p i  ) 

                       p i+1 = R pi i  = G i = G ( R i , p i ) , and for a double leap, as by example, from TC to the 

second orbit ( for i = 0 ) or from the second orbit to the fourth, for  i = 2    etc. 

( 42 )     2 R i + 2  = R i+1 + p i+1 = ( R i + p i ) / 2 + p Ri i      or    4 R i+2 = R i + p i + 2 R pi i  

             2 e i + 2  = R i+1 – p i+1 = ( R i  + p i ) / 2 - R pi i      or    4 e i + 2 =  R i + p i - 2 R pi i  

 From  ( 42 ) we obtain  

( 43 )     R i + 2 = 

R pi i









2

2

= 
A Gi i

 











2

2

 and  e i + 2 = 
R pi i







2

2

= 
A Gi i

 











2

2

 

( 44 )            ( e, R ) i + 2 = 
R pi i

2

2









  = 

A Gi i

















2

2

    also shortly written    

( 45 )            p i + 2 = R pi i 1 1. = R p
R p

i i
i i4

2


 = 

R p
R pi i

i i



2
= G Ai i


 = A Gi i

 .  

 If in ( 44 ) we make    i     i + 2       i + 4    we obtain 

( 46 )            ( e, R ) i + 4 = 
R pi i 











2 2

2

2


= 

A Gi i


















2 2

2

2


   and      p i + 4 = A Gi i



2 2.   

 For i = 1  in ( 44 )  respectively in ( 45 ) we obtain the square roots of the sets from the third orbit 

( 47 )    R3 =  ( A1


+ G1  ) / 2 = ( R1  + p1  ) / 2 = ( 

1 1

2

2  k
 + 1 2 k ) / 2 =  

( 48 )             p3  = 
R p

R p1 1
1 1

2


 =  

and for  i = 1 in ( 46 ) results the radius of the  5-th orbit  



( 49 )               R 5 =  1

4
3 3

2

R p = 
1

4 2 2

2 2

4

2

A G A G
AG














                      so  

( 50 )               K ( k ) 


2 5R
   where is noted   

( 49’)               G = p k1

28 1        and      A = R1 = 
1 1

2

1

2

2 4 


k G
 

5.  Conclusions 

The relations ( 49 and 50 ) here obtained, with the graphs presented in figure 2 respectively, 3, are 

much simpler then other similar relations, which doesn’t ensures the minimum15 exact decimals precision, a 

precision that is practically observed by comparising the results with those of tables. From a practical point of 

view, in the mechanical engineering domain, it can be assimilated with an exact relation for determining the 

natural frequency of some non-linear dynamical systems. It can be memorized, in the memory of the 

computers, instead of the K(k) values tables, having the great advantage that the space allocated in the 

memory is much reduced. 

The presented transformation can be considerred also as a linear transformation Transformarea 

prezentata poate fi considerata si ca o transformare liniara ( fuchsiene ), after  H. Poincare, with double fixed 

point, which is the point C ( -1, 0) from TC, named parabolical transformation. From this point of view, the 

transformation is achieved by succesive change of the center as excenter for the next orbit: O E1, O 1 E 

2 , etc, until  O N E N, for eN0. 

In this case, a new property of the transformation occurs: 

( 51 )           R j + e j

j

1

  = 1             from where, at limit, results                R N = 1 - ei

i

N




1

 

Also, the Landen transformation is valid: 

( 52 )   ( 1 + k
’ 

i )( 1 + k i + 1 ) = 2       sau     ( 1 + cos Mi ) ( 1 + sin Mi1 ) = 2  
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Fig. 3 The complete eliptical integral of the first kind 

K (k ) 

Fig. 2   The radius of the final centering geometrical 

transformation R N ( k ) for k = 5                                                                 

We can see in figure 1 that  RN is the value that is taken by the function rex in the point   . By the 

existance of a subinterval, named contraction interval , by the existance of this point, from Lagrange’s 

theorem of average, or from the finite growings theorem, was occupied D. Pompeiu, and some important 

examples offunctions and their contractions intervals were presented by Miron Nicolescu. In this domain, 

studies regarding the generalization of of the notion of divided difference of a function and the  properties of 

average of these ones were studied by  Tiberiu Popoviciu.  

A numerical example, for a very large modulus  ( k = 0, 98 ), chosen intentionally for that a larger 

number of transformations being distinctives, is presented further. It corresponds to the curves from fig 1. 



The 

Orbit 

i 

RADIUS OF 

THE ORBIT 
R 1+1 = ( RI +pi ) / 

2 

        W     E     I   G     H      T 
 

R E A L   N U M E R I C A L 
p i = R i. k’i                   

 

E  X  C  E  N  T  R I  C  I  T  Y 
R  E  A  L      N U M E R I C A L 

e i+1 = ( R i - p i ) / 2 k i = e i /  R i 
 

0 1 0, 1989974 0, 1989974 0, 98 0, 98 

1 0, 59949870 0, 4460898 0, 7441047 0, 4005013 0, 66806030 

2 0, 52279420 0, 5171365 0, 9891780 0, 0767044 0, 14672000 

3 0, 51996530 0, 5199576 0, 9999852 0, 0028288 0, 00544403 

4 0, 51996114 0, 5199614 1 0, 0000038 0, 00000730 

N=5 0, 51996140 0, 5199614 1 0 0 

 

6. Bibliography  
[ 1]   Şelariu, M. E.,             FUNCŢII  CIRCULARE  

EXCENTRICE, 

Com.Conf. Vibr.în Constr. de Maşini, 

Timişoara,1978,  pag. 101..108,                                                            

[ 2] Şelariu, M. E.,             FUNCŢII CIRCULARE EXCENTRICE 

 şi EXTENSIA LOR 

Bul. Şt. şi Tehn. al IPTVT, Seria Mecanică, 

Tom.25 (39 ), Fasc. 1 - 1980, pag. 189 ...196. 

[ 3] Şelariu, M. E.,             THE  DEFINITION OF THE  ELLIPTIC  

ECCENTER  WITH  FIXED  

ECCENTER, 

Com. V-a Conf. Naţ. Vibr.în Constr. de 

Maşini, Timişoara,  1985, pag.175...182 

[ 4] Şelariu, M. E.,             ELLIPTIC  ECCENTRICS   WITH  

MOBILE  ECCENTER,   

Com. V-a Conf. Naţ. Vibr. în Constr. de 

Masini, Timişoara, 1985, pag. 183 ... 188 . 

[ 5]  Şelariu, M. E.,             CIRCULAR   ECCENTRICS  and   

HYPERBOLIC  ECCENTRICS , 

Com. V-a Conf. Vibr. în Constr. de Maşini, 

Timişoara, 1985, pag. 189 ...194. 

[ 6] Şelariu, M. E.,             ECCENTRICS   LISSAJOUS  FIGURES, Com. V-a Conf. Vibr. în Constr. de Maşini, 

Timişoara, 1985, pag. 195 ... 202. 

[ 7] Şelariu, M. E.,             APLICAŢII   TEHNICE  ale 

FUNCTIILOR CIRCULARE 

EXCENTRICE, 

Com. Conf  PUPR, Timişoara, 1981,  

pag. 142 ... 150. 

 

[ 8] 

 

Şelariu, M. E.,             

FUNCŢIILE  SUPERMATEMATICE 

CEX şi SEX SOLUŢIILE UNOR 

SISTEME  

  OSCILANTE NELINIARE,                          

Com. VI-a Conf. Naţ. Vibr. în Constr.                                                                                                                  

de Maşini, Timişoara,1993, 

 

 

[ 9] 

 

Şelariu, M. E.,             

 

SUPERMATEMATICA, 

Com.celei de a VII-A Conf. Internaţ. de 

Inginerie Managerială şi Tehnologică, 

Timisoara, iunie 1995, 

Vol.9 MATEMATICA 

APLICATA,pag.41...64 

 

[10

] 

 

Şelariu, M. E.,             

FORMA TRIGONOMETRICĂ  

a SUMEI şi a DIFERENŢEI 

NUMERELOR COMPLEXE, 

Com.celei de a VII-A Conf. Internaţ. de 

Inginerie Manegarială  şi  Tehnologică, 

Timişoara iunie 1995, 

 

[11

] 

Şelariu, M. E.,             

Ajiduah, 

Crist.,  

Bozantan, 

Emil, 

Filipescu, A. 

 

INTEGRALELE     UNOR    FUNCŢII   

SUPERMATEMATICE, 

 

Com. Celei de a VII-a Conf. Intern. de 

Inginerie 

Managerială şi Tehnologică, Timişoara, 

iunie,1995, 

Vol 9 : Matematică Aplicată pag. 73...82. 

 

[12

] 

 

Şelariu, M. E.,             

 

MIŞCAREA CIRCULARĂ 

EXCENTRICĂ,       

Com.celei de a VII-A Conf. Internaţ. de  

Inginerie Managerială şi  Tehnologică, 

Timisoara, iunie 1995, 

Vol.7 :MECATRONICĂ, DISPOZITIVE şi 

ROBOŢI INDUSTRIALI, pag. 85...102. 

 

[13

] 

 

Şelariu, M. E.,   

Fritz, Georg , 

Meszaros, A. 

   

ANALIZA    CALITĂŢII    

MIŞCĂRILOR   PROGRAMATE CU  

FUNCŢII   SUPERMATEMATICE,                              

Com.celei de a VII-A Conf. Internaţ. de 

Inginerie 

  Managerială şi  Tehnologică, Timişoara, 

iunie 1995,  Vol.7: MECATRONICA, 

DISPOZITIVE 

  şi ROBOŢI INDUSTRIALI,  pag. 163...184. 

   Com.celei de a VII-A Conf. Internaţ. de  



[14

] 

Şelariu, M. E.,             RIGIDITATEA  DINAMICĂ 

EXPRIMATĂ CU  FUNCŢII   

SUPERMATEMATICE, 

Inginerie Managerială şi  Tehnologică, 

Timişoara iunie1995, 

Vol.7 :MECATRONICĂ, DISPOZITIVE şi  

ROBOŢI INDUSTRIALI, pag.185...194. 

 

[15

] 

 

Staicu, Fl., 

Şelariu, M. E.,             

   

 EXPRIMAREA  CICLOIDELOR   CU 

FUNCŢIA  REX, 

Com.celei de a VII-A Conf. Internaţ. de  

Inginerie Managerială şi  Tehnologică, 

Timişoara iunie1995, 

Vol.7 :MECATRONICĂ, DISPOZITIVE şi  

ROBOŢI INDUSTRIALI, pag. 195 .... 204. 

 

[16

] 

 

Dragomir, L.,          

UTILIZAREA  FUNCŢIILOR   

SUPERMATEMATICE în CAD/CAM: 

SM – CAD / CAM 

Nota I : SM - CAD / CAM în 2D. 

Com.celei de a VII-A Conf. Internat. de 

Inginerie Managerială şi  Tehnologică, 

 Timişoara, iunie 1995, 

Vol.9: MATEMATICĂ APLICATĂ, pag. 83 

... 90 

[17

] 

Şelariu, Şerban          UTILIZAREA  FUNCŢIILOR 

SUPERMATEMATICE în CAD/CAM. 

SM-CAD/CAM 

Nota II : SM - CAD / CAM in 3D., 

Com.celei de a VII-A Conf. Internat. de 

Inginerie Managerială şi  Tehnologică, 

Timişoara, iunie 1995, 

Vol.9: MATEMATICĂ APLICATĂ, pag. 

91...96. 

[18

] 

Petrişor, 

Emilia. ,       

ON   THE   DYNAMICS   OF THE   

DEFORMED   STANDARD   MAP, 

WORKSHOP  DYNAMICS   DAYS'94, 

Budapest, June, 15-18. 

[19

] 

Janke-Emde-

Losch,              

TAFELN    HOHERER     

FUNCTIONEN,                                

Sechste Auflage, 

B.G.Teubner Verlagsgesellschaft, Stuttgart, 

1960. 

 

[20

] 

Abramowitz 

Milton    

Stegun A. 

Irene           

HANDBOOK OF MATHEMATICAL 

FUNCTIONS. WITH FORMULAS, 

GRAPHS 

AND MATHEMATICAL TABLES, 

 

National Bureau of Standards Applied M 

Series 55, Issued June 1964 

 

[21

] 

Rijic.I.M.,                  

Gradstein I. 

M. 

TABELE de INTEGRALE, SUME, SERII 

şi PRODUSE, 

Ed.Tehnică, Buc., 1955. 

 

[22

] 

Weber H.,                ELLIPTISCHE FUNCTIONEN und 

ALGEBRISCHE  ZAHLEN. 

ACADEMISCHE  VORLESUNGEN, 

Ed. Fridrich Vieweg und Sohn, Braunschweig, 

1891 

[23

] 

Krilov A. N               LECŢII de CALCULE prin  

APROXIMAŢII,                              

Ed. Tehnica, Buc., 1957 

[24

] 

Badescu R.,   

 Maican C-tin.                                                                                                                        

INTEGRALE UTILIZATE în 

MECANICĂ, FIZICĂ, TEHNICĂ şi 

CALCULUL LOR, 

Ed. Tehnica, buc., 1968 

[25

] 

Schoenberg J. 

Isaac.               

PRIVELIŞTI    MATEMATICE.    Centrul 

de Cercetări Matematice, Universitatea 

din Wisconsins-Madison,  

Trad. în l. română de A. Haimovici, 

Ed. Tehnica, Buc., 1989 

[26

] 

Hort W.,              DIE DIFFERENTIALGLEICHUNGEN 

DES INGENIEURS, 

Ed. Springer, Berlin,1914. 

[27

] 

Stoilow S. TEORIA FUNCŢIILOR de o 

VARIABILĂ COMPLEXĂ, 

Ed. de Stat Did. şi Ped.,Buc.1962 

 

[28

] 

 

Mumford 

David            

TATA LECTURES ON THETA I, II. 

PROGRESS IN MATHEMATICS ,  

Vol. 28,  43, 

With the colaboration of C.Musili, M. 

Nori, E. Previato, M. Stillman and H. 

Umemura, 

 

Ed.  Birkhauser, Boston, Basel, Stuttgart  

1983, 1984, ( Trad. din l. rusă.) 

 

 

[29

] 

 

Popoviciu 

Elena   

TEOREME  DE  MEDIE  DIN  

ANALIZA  MATEMATICA şi 

LEGATURA  LOR   

CU TEORIA  INTERPOLARII. 

 

Ed. Dacia, Cluj, 1972 

 


