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Abstract

For over a century, the elusive nature of the outcome of the M/M experiment has

baffled generations of physicists from all around the world. Indeed, the analysis

has revealed some subtleties. I have already, for some time, had, intuitively, all

the pieces of the puzzle in my mind but didn't know how to correctly join them. 

I tried twice without success but now, everything leads me to believe I could

finally assemble the whole picture. So, I go back to the subject in a detailed way

that seems to me absolutely clear and unambiguous.

To fully appreciate what happens in a M/M type of experiment, we should make a brief
foray into the realm of light aberration since both are intimately connected as will be shown.
Fig. 1 is a graphical representation showing a fixed light emitting source, and the aberration
angle φ as seen by a distant observer traveling with velocity v at an angle θ in relation to the
emitted light wave front 
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Fig. 1

where the aberration angle φ is given by equation (1) bellow
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But, as is already widely known, there is no light aberration when the source and
observer are co-moving. Were it not so, there would arise perceptible topographic errors
when objects at a distance on the ground were observed during different times and
engineering would be in serious trouble. And this fact is of crucial importance in
understanding the outcome of experiments of the M/M type. 
In Fig. (2) we have split the speed v into two components, vo and vs corresponding

respectively to the speed of the observer and the speed of the source. A glance at 
fig (2) shows what comes about when the source starts moving in the same direction.
We see that as vs increases, the relative velocity starts decreasing and v in Eq. (1) 

has to be substituted by (vo - vs) and Eq. (1) now reads:
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When finally vs becomes equal to vo, the tilt angle φ in Eq. (2) becomes zero and light

aberration is completely absent.
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Let's see, now, what happens to the observed light rays. 
In the presence of aberration, the value of c' in Figs.(1,2) is given by
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which expands to a second order in v as c vo cos θ( )⋅+

vo
2

2 c
2

⋅

c cos θ( )
2

⋅ c−( )⋅− (4)

2



r. c. maximo

But, on a co-moving system (Fig 3) the tilt angle φ as seen above goes to zero and  
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as can be inferred by direct inspection of Fig.(3) and is a first order effect. The second 
order term in (4) has vanished. Note that this must be so since otherwise light aberration
would be still present in the co-moving system.
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Given a distance L between source and observer we can derive the phase shift for a
freely propagating wave. From here on I will use v, the system speed, in place of vo.  
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There are only three relevant situations to be considered in our analysis:

Situation 1:   the ensemble and the light beam are moving in the same direction 
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Situation 2:   the ensemble and the light beam are moving in opposite  directions
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situation 3:   the ensemble and the light beam are moving in orthogonal directions
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The well known Sagnac effect takes advantage of the phase difference for situations 1 and
2 simultaneously. A simple Sagnac device is made in the form of two semi-circular paths
with origin in the light source and ending in a phase comparator. It makes for a very
sensitive first order turn detector now widely used in navigation. It becomes obvious that a
linear configuration Fig.(4) would give the same results were it not for the difficulty of
measuring the phase difference between two points separated by a linear distance equal to
2 L.
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Eq.(8) is the well known Sagnac formula in an extended arc or linear form.
On the other hand, the Michelson & Morley experiment compares the phase of an
emitted wave with the phase of its reflected back one Fig.(5) and this makes for the 
sum of the outgoing and the incoming phases. In other words, a positive shifted and
a negative shifted phase: 
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As here demonstrated and Eq.(9) makes clear, this type of experiments are bound to give 
an absolute null result for any angle θ of relative displacement.
 
Eq.(8) is pointing to the fact that the absolute velocity of the Earth may be measured if
someone is able to idealize some means of measuring the phase difference between the
extremities of a linear Sagnac device.

Criticisms are welcome
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