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Abstract: 

Making use of the laws of physical transactions, we study symmetrical many-points systems. Relation of 
group-theory to physical transactions in such symmetrical systems is dealt with. Studying perturbations 
in the stability states in the attractor-maps for transactions, approximate values of the observables are 
to be predicted for such systems. Further, Abstraction Theory is typified with respect to studying the 
properties of irreducible representations, if any, inside a given such group.  

 

Introduction: 

In previous papers , the laws of physical transactions, in the light of Theory of Abstraction have been 

formulated. The mother equation (F=�� �����  ) describes the physical transactions taking place between 

two given points or between a given set of points in the vicinity of a concerned environment. A given 
point is influenced by its environment. On the other, it influences its concerned environment. A given 
point has some intrinsic properties. A group of such points form a field of extrinsic properties. The field 
of extrinsic properties, in turn, may influence the intrinsic characters of each of the individual points. 

A set of points with same or of a similar-set of properties may be considered to belong to a given same 
group. For any given system, there can be one or a number of stability-states or symmetries. Further, 
each of such symmetries may have perturbations, affecting the average value of observable quantities. 
Measures of such perturbations are a useful way of finding approximate functions for systems when we 
know the exact transaction-functions for similar systems. 

 

 

Average value of observables: 

Let, f (λ, D) be a transaction function for a system, where λ is the difference in concentrations of a given 
observable quantity between two given points of transaction and D the distance between the points. 
Let, �	,�
� ���....,�
 be the complete orthonormal set of eigenfunctions for an operator Ô corresponding 
to some observable quantity in the system. f can be expanded such that: 
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where �	� �
� ��� � � �
 are the eigenvalues corresponding to the eigenfunctions. 

Considering the complex conjugate of the transaction-function f in equation (1), we have, �� �� � �	��	�� ���
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Using these equations, after integrating over all co-ordinate space, we get: ������� � �	��	�	��	�� �	��� � �
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In this equation, we have got rid of all the terms of the type�� ��!�! "� ��! ��, as these are all zero 
because of the orthogonality of the eigenfunctions. Only when # � $, are all the terms non-zero and 
these are the ones we have retained. The integrals on the right side of equation (3) are each equal to 
one because of the normality condition. Therefore, we write, ������� � �	��	�	 � �
��
�
�� � � ��
��
�� 

When the system is in the state f, the average value (ā) of the observable k is given by the right-hand 
side of the previous equation, such that, % � ��������������������������� � � � �&� 
 

Relation of group theory to physical transactions in symmetrical systems: 

Say a given dynamic system has a given set of symmetries or stability points. For all points having similar 
intrinsic properties within such a system, the probability densities of occurrence are equal and must 
remain unaltered, being all in a similar environment. Thus the energy and Hamiltonian for the system 
must not change. If '(  is the energy corresponding to the eigenfunction��(�, we may write: )�(� � '(�(� 
If a symmetry operation (*+) is performed on the system, we have, *+�)�(� � *+�'(�(� 
But since *+ does not affect ) or ', we may write, )��*+�(�� � '( ��*+�(�� 



The function *+��(�is therefore an eigenfunction of ) with the same eigenvalues as��(�. We can therefore 
conclude, if the state is non-degenerate, for normalized functions, *+�(� � ,��(�������������������� � � �-� 
If a state (�(
) is degenerate with two or more eigenfunctions corresponding to a given energy, the 
energy can remain the same under the symmetry operation provided the original eigenfunction is 
transformed into a linear combination of the degenerate functions. For a .-fold degenerate state, 
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where 12
 are the coefficients of the linear combination. They form representation matrices expressing 
the effect of the symmetry operations on the set of degenerate eigenfunctions �(
 . The representation 
is irreducible. 

This result is important as it relates the eigenfunctions of a system to its symmetry. It limits the forms of 
the eigenfunctions a symmetrical system can have.   
 

Properties of Irreducible Representations of A Group: 

The sum of the squares of the dimensions of the irreducible representations of a group is equal to the 
order of the group, in accordance with group-theory. The characters of the irreducible representations 
of a group behave as orthogonal vectors in an h-dimensional space; 6 being the order of the concerned 

group. If we label the character of the 789 symmetry operation in the :89 irreducible representation ;(�*�, this means that, 0;(�*��;<�*�= � >�? :@��A B ����������������� � �C� 
If we are dealing with complex characters, this equation would read 0D;(�*�E��;<�*�= � >� 
If  A � �, then, 0D;(�*�E
�= � 6����������������� � �F� 
Combining equations (7) and (8), we get, 0;(�*��;<�*�= � 6G(< ���������������� �H� 
where G(<  is the Kronecker delta. 

Equation (9) expresses a necessary and sufficient condition that a representation is irreducible. 



As the character of a given matrix remains the same after a similarity operation, for a particular 
similarity operation *, the sum of the characters of all the irreducible representations, we obtain from a 
reducible representation, is equal to the character of the reducible representation, such that, ;�*� �0#(;(�*�(  

where #(  is the number of times the :89 irreducible representation occurs in the reducible 
representation. 

Multiplying this equation for ;(�*� and summing over all operations, we get, 0;�*�;<�*�= �00#(;(�*�;<�*�=( �������������� ��>� 
Substituting equation (9) into the right-side of equation (10), we have: 0;�*�;<�*�= � 6#< 

#< being the only remaining coefficient because the right-side of equation (10) is zero if A B �, #< � �60;�*�;<�*�= ��������������� ���� 
A reducible representation can be broken down into irreducible representations. Equation (11) gives a 
method of finding the number of times each irreducible representation occurs in a reducible 
representation. 

 

Stability states in The Attractor-Maps For A Many-Points System: 

Let a given system have (N) stability states or symmetries. (N) equals the number of types of intrinsic 
properties inside the system, i.e., N equals the number of groups inside the system. One possibility for 
the product-function for transactions may be written as, �I � �	�����
����������� � �
�J�? 
where �	, �
, ��,..., �
 are the intrinsic transaction-functions for the groups 1, 2, 3,...,N, respectively. 

As each of the stability states are otherwise indistinguishable (all being stability states), exchange of the 
co-ordinates of the stability states 1 and 2 amongst the intrinsic property groups will yield an equally 
good function, �II � �	�����
����������� � �K�J�� 
The number of functions of this type that can be written is N!, allowing for all possible exchanges of the 
co-ordinates of the stability states. The Slater determinant for an N-stability system is, 
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where 
	LKM is a normalization factor. 

 

Time Independent Perturbations: 

Perturbation may be a useful way of predicting approximate functions for systems when we know the 
exact transaction-functions for similar systems. Let us consider a system for which we know the 

transaction-function �(Oand corresponding energy�'(O. These functions satisfy the equation, )O�(O � '(O�(O 
Let, there be a small perturbation that changes the functions to �( ; the energies change to '(. Let, the 
Hamiltonian for the perturbed system be Ĥ. We can then write: )�( � '(�( �������������� ���� 
As the perturbation tends to zero, �( tends to �(O. We can therefore write, �( � �(O �0#(<�<O<P( �������������� ��&� 
where #(<  are constants. 

Substituting equations (14) into equation (13), and rearranging, we get, Q) R '(S�(O �0#(<<P( Q) R '(S�<O � > 

We write the Hamiltonian as the sum of two parts, the unperturbed Hamiltonian )Oand a perturbation 

term�)I; i.e.,�) � )O � )I. Substituting this relation into the last equation, we get, Q)O � )I R '(S�(O �0#(<<P( Q)O � )I R '(S�<O � > 

As, )O�(O � '(O�(O and )O�<O � '<O�(O, the last equation becomes,�Q'(O � )I R '(S�(O �0#(<<P( Q'<O � )I R '(S�<O � > 

Multiplying by �(O� from the left and integrating over all space, we get, '(O� ��(O� �(O�� �� ��(O�)I�(O�� R '(� ��(O� �(O�� �0'<O#(<<P( � ��(O� �<O�� �0#(<<P( � ��(O�)I�<O��
R0'(#(<<P( � ��(O� �<O�� � > 



Because of the orthonormality of the �(O,we can write, � ��(O� �(O�� � ��� � ��(O� �<O�� � >� 
which transforms the last equation into, '(O R '( � T((I �0#(<<P( T(<I � >���������������� � ��-� 
where, T(<I � "�(O�)I�<O�� 
Multiplying from the left by �UO�; where � B A and after manipulation, we get, #(UQ'UO R '(S � TU(I � #(UTUUI � 0 #(<<P(�U TU<I � > 

We now consider that the energies for the perturbed system, '(  and the coefficients #(<  can be written 

in terms of series in which successive terms become smaller, such that, '( � '(O � '(I � '(II �V 
 

#(< � #(<I � �#(<II �V ? 
where a single prime denotes a first-order term, a double prime denotes a second order term and so on. 

Placing these last conditions into equation (15) and taking out the first-order terms (as two first-order 
terms multiplied together constitute a second-order term and so on), we get, '(I � T(<I � � ��(O�)I�<O���������� � ��5� 
 

 

Formation of Poles: 

Each of the intrinsic properties contained inside a system will, for obvious reasons (in accordance with 
the Theory of Abstraction) transact in such a manner so as to be distributed as much as possible. This 
will give rise to two sets of transactions: 

1. The transaction of the points themselves in every direction, including towards each other. This 
gives rise to an additional effect in the direction between two given points as compared to all 
the other directions. This is due to the fact that in the direction between the points, there is an 
effect due to both the points, while in all other directions (considering a two-point system) the 
effect is due to one point only as shown in fig.1 

                                                    



                                               fig.1: effect between points 
This gives rise to an ‘attraction‘ between the points. 
 

2. As a given intrinsic property transports in such a manner so as to be distributed as much as 
possible, the effect of ‘repulsion’ is generated. Let us consider two clusters of charges, either 
both positive or both negative. Not only the charge tends to be distributed in all directions, but 
also the type of charge. Presence of same type of charges will thus give rise to an effect of a field 
of repulsion in the vicinity of the clusters. 
 
Thus we see that formation of poles and attraction between unlike poles and repulsion between 
like ones may be explained using the Theory of Abstraction. Here, we have examined only the 
qualitative aspects, while the quantitative aspects may be determined as detailed in my earlier 
paper , in view of the laws of physical transactions. 

 

 

Conclusion: 

Abstraction Theory is made use of to study symmetrical many-points systems. The intrinsic properties of 
each of the constituents of the system need to be treated in accordance. We may relate each of the 
concerned points inside the given system to various groups, as per their intrinsic properties. A group of 
such points i.e., a system having individual intrinsic properties inside it may be regarded as a point with 
its own intrinsic properties (a function of its constituent intrinsic properties) when it is considered as a 
part of some larger system. This way, the intrinsic properties of each of the smallest points may 
influence a system or even a group of systems. A group of such individual points may give rise to a field 
of extrinsic properties, affecting each of the individual points. 

Considering the symmetries or the stability states inside a given group or inside a given system as being 
similar in the fact that they are all basically states of stability, the irreducible representations, if any, 
inside a given system may be studied. Perturbations regarding a given average observable value may be 
predicted in a similar way. 

 


