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Abstract

The non-observation of the Higgs boson and supersymmetry in the most recent
high energy physics data, suggests to consider the conjectured Planck mass
plasma as a potential alternative. In it supersymmetry is replaced by the
assumption that the vacuum of space is densely filled in equal numbers with
positive and negative Planck mass particles, and the Higgs field by the
gravitational field of interacting large positive with likewise large negative mass
quasiparticles of the Planck mass plasma, giving these positive-negative mass
configurations a small positive gravitational field mass. From this configuration
the Dirac equation can be derived, with the fermions of the standard model
composed of large positive and negative masses.



The theory of bound states made up from interacting positive with negative
masses, where the positive mass is larger than the absolute value of the negative
mass, had been studied by H6nl and Papapetrou [1], and in an extension of
Hamilton’s mechanics by Bopp [2]. These studies were motivated by Schrddinger
who showed that the negative energy and hence mass states of the Dirac
equation, lead to a luminal “Zitterbewegung” (quivering motion) of a Dirac
particle [3].

It was shown by Bopp the presence of negative masses can be accounted in
a Lagrange function which also depends on the acceleration. The equations of the
motion are there derived from the variational principle:

5[ L(d. 4. 8,)dt =0 (1)
or from
5[ A(x,.u,,U,)ds =0 (2)

where u,=dx_ /ds, U ,=du,/ds, ds=(-p°)"dt, p=v/c, X, =(X,%,X,ict), and
where L=A(1-4%)"?dt. With the subsidiary condition

F=u=-c (3)
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One obtains from (2)
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where A is a Lagrange multiplier. In the absence of external forces, A can only
depend on u?. The simplest assumption is a linear dependence

A =—k, —(1/ 2)k,u (5)
whereby (4) becomes
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24u, +2A0, +kU, =0 (7)



Differentiating the subsidiary condition one has
uaua :O’ uaua +l.]§ :O' uau;i +3uaua :O (8)
by which (7) becomes
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It has the integral (summation over v)

2,1=k0—§k1u2 (10)

where ko appears as a constant of integration. By inserting (10) into (6) the
Langrange multiplier is eliminated and one has

%{(ko_gkluf)ua—'_klua}zo (11)

Writing (11) as follows:

dpP,
ds

=0, B=(—2kuu, +, (12)

where P, are the components of the momentum-energy four-vector. For k;=0 one
has pa=koua,, which by putting ko=m is the four-momentum of a spinless particle
with rest mass m. The mass-dipole moment is therefore given by

P, =k, (13)
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as can be seen from the conservation of angular momentum
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—J =0 14
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where

J.s =[x Pl +[p,ul,, (15)

and where [x,P],, =x,P,—x,P,. For a particle at rest (P«=0, k=1, 2, 3) one has

Ju =[p,uly = Py, —pu,, kl1=1,2,3 (16)

which is just the spin angular momentum.



The energy of a pole-dipole particle at rest, and for which u=icy, is
determined by the fourth component

] . 3. .
P, =|mc=|(k0—5kluf)c;/ (17)

For the transition to quantum mechanics one needs the equation of motion
in canonical form. There we separate the space and time derivative, whereby
L=—Ads/dt =L(r,r,i). Setting c=1 we have

L =—(k, +%k1u§)(1—v2)1’2
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one has to compute the Hamilton function
From s=0L/ov one obtains
S= ! 3 l:\./2+((v.V)2vj:|

, (21)
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by which together with (18) ves can be expressed in terms of v and s. In these
variables the angular momentum conservation law (14) assumes the form

rxP +vxs =const (22)

with the vector s equal the mass dipole moment. For the Hamilton function (20)
one then finds

H=v-P+k,(1-Vv?)"* —(1/ 2k,)1—V?)*? [sz —(s-v)2] (23)

Putting
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where a={a,«,} are the Dirac matrices, one finally obtains the Dirac equation
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where

H=oPR +a,P, +a,P,+a,m

(26)
Qi +a,a, =20,
with the mass given by
m =k, —(1/ 2k )(1-V*)**[s* = (s-V)° | (27)

This result can be directly applied to the Planck mass plasma where
positive and negative mass quasiparticles form gravitational bound Dirac particle
fermions [4].
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Fig. 1: Pole-dipole particle configuration.

Following Honl and Papapetrou [1], we analyze the simple classical
mechanical two body pole-dipole model shown in Figure 1. It consists of a
positive mass m* and a negative mass m’. In a two body problem with both
masses positive and with an attractive force in between, the two bodies can
execute a circular motion around their center of mass. In case one of the masses
is negative, but with both together having a positive mass pole mo=m*-|m’|, the
circular motion persists, except that the center of mass is no more in between the
masses, even though it is still located on the line connecting m* and m™. As a
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consequence, the pole-dipole particle executes a rotational motion which causes
the spin. This motion has the same property as the “Zitterbewegung” derived by
Schrodinger.

If [m*| > |m’|, the distance of m™ from the center of mass is larger than for
m*, and we assume that m* is at a distance r., with m™ at a distance r¢+r.

Furthermore, if mo<<m®™~|m’|, one has r<<r.. Definingy, =@-Vv2/c?)™"?, with
V,=r®o where ® is the angular velocity around the center of mass,

andv_=(1-v?>/c*)™. Withv_=(r, +r)ew, momentum conservation leads to

m'y. o=m |y (r+r) (28)
For r<<r. and henceforth putting y, =y one can expand:

rro’y’

y. =yl+-S = +r) (29)

For the mass dipole moment one has

p:m*r:|m’|r:wrC (30)

With the help of (29) and for y>>1 one finds

r=py>/m, (31)
and for the energy

E/c?=m=m'y—|m |y_=pylr, (32)
and finally, for the angular momentum (putting or¢~C):
J=[myrZ—|m |y (r, +1)* |o=—pyc=—mer, (33)

The correct spin angular momentum is obtained from the Dirac equation
for r,=n/2mc. From (31) and (32) one has

m=m,/y (34)

In a co-rotating of the pole-dipole particle the gravitational interaction energy is
positive, the gravitational interaction energy is positive and for m"—|m™ |<<fm*|,
given by
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E=mc =- (35)
r r
and according to (34) the mass in a system at rest
+ 2
eacliug (36)
yr
With p=|m*|r given by (30) andr, =7/2mc, one obtains from (32)
2y|m*|r. =h (37)
which can be used to eliminate r from (36), with the result that
m=2G|m* [’ /ac=2|m* |’ /m’ (38)

where m, =hc/G is the Planck mass.

This is the gravitational field mass of a positive mass interacting with a likewise
negative mass. It replaces the mass a zero rest mass fermion acquires in the
standard model by the Higgs mechanism.

Equation (38) can also be written as follows:

ﬂZZLMJ (39)

m, m,

In the Planck mass plasma [4] the largest gravitationally unbound quasiparticle
is a roton with a mass |m* |= 0.1m,. There, m/m, =10’3mp, about equal the mass of

the GUT unification scale.
Rewriting (39) as follows

N U3
|m” | _ o3 [ﬂj (40)

m, m,

one obtains the values for the masses |m*|of which a given fermionic elementary
particle is made up. For baryons one has m~100GeV, hence with mp~10lgGeV

that m/m_ ~107°, whereby |m* |~5x10“GeV .



More generally, one can see from (39) that the assumption of negative
masses can bridge the huge gap in between the Planck mass and the typical
masses of elementary particles.
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