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Abstract  

The non-observat ion of the Higgs boson and supersymmetry in the most  recent 

high energy physics data,  suggests to consider the conjectured Planck mass 

plasma as a potent ial alternat ive.  In  it  supersymmetry is replaced by the 

assumption that  the vacuum of space is  densely filled in equal numbers with 

posit ive and negat ive Planck mass part icles,  and the Higgs field by the 

gravitat ional field o f interact ing large posit ive with likewise large negat ive mass 

quasipart icles of the Planck mass plasma, giving these posit ive -negat ive mass 

configurat ions a small posit ive gravitat ional field mass.  From this configurat ion 

the Dirac equat ion can be der ived, with the fermions of the standard model  

composed of large posit ive and negat ive masses.  
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 The theory of bound states made up from interact ing posit ive with negat ive 

masses,  where the posit ive mass is larger than the abso lute value of the negat ive 

mass,  had been studied by Hönl and Papapetrou  [1],  and in an extension o f 

Hamilton’s mechanics by Bopp [2].  These studies were motivated by Schrödinger  

who showed that  the negat ive energy and hence mass states of the Dirac 

equat ion,  lead to  a luminal “Zit terbewegung” (quiver ing mot ion) of a  Dirac 

part icle [3]. 

 It  was shown by Bopp the presence of nega t ive masses can be accounted  in 

a Lagrange funct ion which also depends on the accelerat ion. The  equat ions of the 

motion are there derived from the var iat iona l pr inciple:  

( , , ) 0k k kL q q q dt            (1) 

or from 

( , , ) 0a a ax u u ds             (2) 

where / ,a au dx ds
 

/ ,a au du ds  
2 /2(1 ) ,tds dt   v / ,c 

 1 2 3( , , , ),ax x x x ict   and 

where 
2 1/2(1 )L dt   .  With the subsidiary condit ion  

2 2

aF u c              (3) 

One obtains from (2)  

( )
0

a a a

d F d

ds u ds u x

     
   

   
        (4) 

where λ is  a Lagrange mult iplier.  In the absence o f external forces,  Λ can only 

depend on 2

au .  The simplest  assumpt ion is a linear dependence  

2

0 1(1/ 2) ak k u              (5) 

whereby (4) becomes 

 12 0a a

d
u k u

ds
             (6) 

or 

12 2 0a a au u k u             (7) 
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Different iat ing the subsidiary condit ion one has  

0,a au u 
 

2 0,a a au u u   3 0a a a au u u u         (8) 

by which (7) becomes  

2

1 1

3
2 3 2 0

2
a a a

d
k u u k u

ds
               (9) 

It  has the integral (summat ion over  )  

2

0 1 ν

3
2

2
k k u             (10) 

where k0  appears as a constant  of integrat ion. By insert ing (10) into (6) the 

Langrange mult iplier is eliminated and one has  

2

0 1 1

3
( ) 0

2
a a

d
k k u u k u

ds


 
   

 
        (11) 

Writ ing (11) as fo llows:  

0,adP

ds
   2

0 1 ν 1

3
( )

2
a a aP k k u u k u           (12) 

where Pa  are the components of the momentum-energy four-vector.  For k1=0 one 

has pa=k0ua ,  which by put t ing k0=m  is the four-momentum of a spinless  part icle 

with rest  mass m. The mass-dipo le moment is therefore given by  

1a aP k u            (13) 

as can be seen from the conservat ion of angular momentum  

0
d

J
ds

             (14) 

where  

[ , ] [ , ]J   x P p u          (15) 

and where [ , ] x P x P     x P .  For a part icle at  rest (P k=0, k=1, 2,  3) one has  

[ , ] ,kl kl k l l kJ p u p u  p u   k,l=1, 2, 3       (16) 

which is just  the spin angular momentum.  
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 The energy o f a  pole-dipo le part icle at  rest ,  and for which u= icγ,  is  

determined by the fourth component  

2

4 0 1 ν

3
( )

2
imc i k k u c  P          (17) 

 For the t ransit ion to  quantum mechanics one needs the equat ion o f mot ion 

in canonical form.  There we separate the space and t ime der ivat ive,  whereby 

/ ( , , )L ds dt L   r r r .  Sett ing c=1 we have  

2 2 1/2

0 1

2

2 2

4 2 1/22 1/2

1
( )(1 v )

2

1

(1 v )(1 v )

a

a

L k k u

u

   

  
   

       

v v
v

    







   (18)
 

From 

L d L L

dt

  
  
  

P s
v v v

         (19) 

one has to  compute the Hamilton funct ion  

H L    v P v s
          (20) 

From /L  s v  one obtains
 

 

 

2

3 2
2

3
2

1

1

(1 v )
(1 v )

(1 v )
( )

k

  
   

     
 

 
   

v v v
s v

v s v s v

 
       (21) 

by which together with (18) v s

 

can be expressed in terms of v  and s.  In these 

var iables the angular momentum conservat ion law (14) assumes the form  

 r P + v s = const           (22) 

with the vector s equal the mass dipo le moment .  For the Hamilton funct ion (20) 

one then finds  

2 1/2 2 3/2 2 2

0 1(1 v ) (1/ 2 )(1 v ) ( )H k k          v P s s v
     (23) 

Putt ing     
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2 1/2 4(1 v )

i










 

P
r

v a           (24) 

where 
4{ , }  a  are the Dirac matrices,  one  finally obtains the Dirac equat ion  

0H
i t





 


          (25) 

where  

1 1 2 2 3 3 4

2v v v

H P P P m

  

   

    

   

 
         (26) 

with the mass given by 

2 3/2 2 2

0 1(1/ 2 )(1 v ) ( )m k k       s s v        (27) 

 This result  can be direct ly applied to  the Planck mass plasma where 

posit ive and negat ive mass quasipart icles form gravitat ional bound Dirac part icle 

fermions [4]. 

       y 
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Fig.  1: Pole-dipo le part icle configurat ion.  

 Fo llowing Hönl and Papapetro u [1],  we analyze the simple classica l 

mechanical two body pole-dipo le model shown in Figure 1.  It  consists o f a  

posit ive mass m
+
 and a negat ive mass m

-
.  In a two body problem with both 

masses posit ive and with an at tract ive force in between, the two bodies can 

execute a circular motion around their center of mass.  In case one of the masses 

is negat ive,  but  with both together having a posit ive mass pole m 0 =m
+
- |m

-
| ,  the 

circular motion persists,  except  that  the center of mass is no more  in between the 

masses,  even though it  is st ill located on the line connect ing m
+
 and m

-
.  As a 
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consequence, the pole-dipo le part icle executes a rotat ional motion which causes 

the spin.  This motion has the same property as the “Zit terbewegung” der ived by 

Schrödinger.  

If |m
+
|  > |m

-
| ,  the distance of m

-
 from the center of mass is larger than for 

m
+
,  and we assume that  m

+
 is at  a distance r c,  with m

-
 at  a distance r c+r.  

Furthermore, if m0<<m
+
~|m

-
| ,  one has r<<r c.  Defining 2 2 ~1/2(1 v / )c    ,  with 

v cr   where ω is the angular velocity around the center of mass,  

and 2 2 1/2v (1 v / )c 

   .  With v ( )cr r    ,  momentum conservat ion leads to  

| | ( )c cm r m r r  

            (28) 

For r<<r c and henceforth putt ing    one can expand:  

2 2

2
(1 .....)cr r

c

 
              (29) 

For the mass dipo le moment  one has 

| |
| | c

m m
p m r m r r

 



 
  




          (30) 

With the help of (29) and for γ>>1 one finds  

2

0/cr p m            (31) 

and for the energy  

2/ | | / cE c m m m p r   

           (32) 

and finally,  for the angular momentum (putt ing ωr c~c):  

2 2

0| | ( )c cJ m r m r r p c mcr    


             (33) 

 The correct  spin angular momentum is obtained from the Dirac equat ion  

for / 2cr mc .  From (31) and (32) one has 

0 /m m             (34) 

In a co-rotat ing o f the po le-dipo le part icle  the gravitat ional interact ion energy is 

posit ive,  the gravitat ional interact ion energy is posit ive  and for | | | |m m m    , 

g iven by 
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2
2

0

| |Gm m G m
E m c

r r

  

           (35) 

and according to  (34) the mass in a system at  rest  

2
2 | |G m

mc
r



           (36) 

With | |p m r
 g iven by (30) and / 2cr mc ,  one obtains from (32) 

2 | | cm r              (37) 

which can be used to  eliminate r from (36),  with the result  that  

3 3 22 | | / 2 | | / pm G m c m m           (38) 

where /pm c G  is the Planck mass.  

This is the gravitat ional field mass o f a  posit ive mass interact ing with a likewise 

negat ive mass.  I t  replaces the mass a zero rest  mass fermion acquires in the 

standard model by the Higgs mechanism.  

Equat ion (38) can also be written as  follows: 

3

| |
2

p p

m m

m m

 
   

 

          (39) 

In the Planck mass plasma [4] the largest  gravitat ionally unbound quasipart icle 

is a roton with a mass | | 0.1 pm m .  There,  3/ 10p pm m m ,  about  equal the mass of 

the GUT unificat ion scale.  

Rewrit ing (39) as follows  

1/3

1/3| |
2

p p

m m

m m




 
   

 

          (40) 

one obtains the values for the masses | |m
of which a given fermionic elementary 

part icle is made up. For baryons one has m~100GeV, hence with 19~10pm GeV  

that 19/ 10pm m  ,  whereby 
12| | 5 10m GeV  .  
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 More generally,  one can see from (39) that the assumption of negat ive 

masses can br idge the huge gap in between the Planck mass  and the typica l 

masses of elementary part icles.  
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