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Academically, among students, an apparent paradox may arise when one tries to interpret the
second law of thermodynamics within the context of the quantum mechanical wave function collapse.
This is so because a quantum mechanical system suddenly seems to undergo, from a less restrictive
state constructed from a superposition of eigenstates of a given operator, to a more restrictive state:
the collapsed state. This paper is intended to show how this picture turns out to be a misconception
and, albeit briefly, furtherly discuss the scope of Max Born’s probabilistic interpretation within the
second law of thermodynamics.

THE BOLTZMANN FORMULA: A SOURCE OF
MISCONCEPTION FOR A RECKLESS VISION

[1] At a first glance, one may think the wave function
collapse violates the second law of thermodynamics, since
a quantum system prepared as a superposition of eigen-
states of a given operator suddenly undergoes to a more
restrictive state. But this is not the case, in virtue of the
fact that a superposition and a eigenstate are states on
equal footing. The use of the Boltzmann formula:

S = k lnw, (1)

for the entropy S of a thermodinamically closed system,
where k = 1.38 × 10−23 JK−1 is the Boltzmann con-
stant, leads, at a first glance, to the impression that the
entropy should have a greater value before the collapse,
under an erroneous assumption that the initial number,
w0, of microstates, w, should be greater than the final
number of microstates, wf , in virtue of the needed
quantity of eigenstates, w0 > 1, used to construct the
wave function before the collpse, in contrast to the
apparent wf = 1 after the collapse. We will see that the
converse occurs. Furthermore, one should, firstly, define
the thermodinamically closed system as consisting of
two subsystems: the quantum object subsystem plus the
classical apparatus subsystem.

A SIMPLE SOLUTION FOR THIS APPARENT
PARADOX

[2] Consider a quantum subsystem Ψ: prepared as a
superposition of the n eigenstates {φk}, with 1 ≤ k ≤ n,
of a given operator Φ with finite non-degenerated spec-
trum:

Ψ = a1φ1 + · · ·+ anφn =
n∑

k=1

akφk, (2)

where:

ak =
∫

V

φ∗kΨdV, (3)

is the inner product with which the Hilbert state space
is equipped. The * denotes the complex conjugation and
dV the elementar volume of the physical space V of a
given representation.

Up to the measure, before the interaction between a
classical apparatus subsystem, designed to obtain ob-
servable eingenvalues of the operator Φ, and a quantum
subsystem Ψ given by eqn. (2), there exists just one mi-
crostate of the global system consisted by apparatus sub-
system plus quantum subsystem, since these two subsys-
tems are not initially correlated and the initial microstate
of the quantum subsystem Ψ is just the unique state Ψ as
well the initial microstate of the classical apparatus sub-
system is the unique one in which it has no eigenvalue
registered.

Hence, in virtue of the initial independence of the
subsystems, the initial microstate of the global thermod-
inamically closed system has multiplicity w0 = 1×1 = 1,
being the initial entropy of the global system given by:

S0 = k ln 1 = 0, (4)

in virtue of the eqn. (1).
One may argue the initial state of the classical appara-

tus subsystem has got a multiplicity greater than 1, since
this subsystem seems to have internal modes compatible
with an empty memory. We emphasize this is not the
case, since the state of the memory defines the apparatus
state, being this state an empty one in spite of any ap-
paratus internal modes before an accomplished measure.
The same comment is valid for the quantum subsystem,
since the state of this subsystem is Ψ, previously defined
by the superposition of a Φ operator eigenstates, {φk},
being the object Ψ an unique one. These objects, by def-
inition, are initially constrained to these defined states,
and one does not need to take into account the differ-
ent manners by which these subsystems should equally
evolute to their respective initial states.

Once a measure is accomplished, there will exist n pos-
sible eigenvalues to be registered within the memory of
the classical apparatus subsystem, viz., since there are
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n different final situations for the global system, where
n is the number of non-degenerated eigenvectors of the
Φ operator. A reckless short-term analysis would lead to
the conclusion that the final number of microstates of the
global system, wf , should be wf = n, since it seems to
be the number of ways by which a final collapsed state is
reached. But such a conclusion is wrong, since the final
state is not simply a collapsed one with a label on it.
Differently from a case in which a pair of unbiased dice
is thrown, where a particular result of a throw of dice is
not physically different from any other result, except for
the labels on them, a given collapsed state encapsulates
physical content. Each collapsed state is a different final
state with its characteristic multiplicity, and one should
not enroll the possible collapsed states within a same
bag with wf = n possible collapsed elements. Compar-
ing with the throw of dice case, if you erased the dice
numbers, their labels, you could not infer the difference
between the results, but the physical content within the
collapsed wave function result would lead one to infer
the difference between different results, between differ-
ent outcomes of collapse of Ψ.

• Different physical characteristics implying different
outcomes for the wave function collapse define evo-
lutions from the initial global system to new states
of the global system, instead of different configura-
tions for a same final state.

In the throw of dice example, the different outcomes are
different configurations of a same final state. If the col-
lapsed wave function was a state with n different possi-
ble configurations for this same collapsed state, the final
number of microstates would be wf = n, but this is not
the case.

For the collapsed states, the multiplicities of the pos-
sible final results are not necessarily the same, since they
depend on the outcome probabilities of their respective
eigenvalues. Let p be the label of the eigenvalue with
the least reliable (6= 0) [3] outcome probability. The out-
come probability of a given eigenvalue is given by the
Max Born’s rule, from which the least probability, of the
p-labeled eigenvalue, is simply given by a∗pap, where [see
eqn. (3)]:

a∗pap =
∣∣∣∣∫

V

φ∗pΨdV
∣∣∣∣2 6= 0. (5)

Applying a frequential interpretation for the probabil-
ity, the least multiplicity of microstates is Na∗pap, where
N is the quantity of state-balls within an a posteriori
interpreted quantum-subsystem-urn (we are emphasizing
that the interaction with the classical apparatus subsys-
tem permits a classical [4], under the frequential sense, a
posteriori, interpretation of probabilities, since any quan-
tum effects of probabilistic superposition of amplitudes

cease after the collapse, permitting a frequential interpre-
tation via Born’s rule). Such a frequential interpretation
requires N → ∞, i.e., infinitely many measures to be
accomplished on identical quantum subsystems by the
classical apparatus subsystem, but we will back to this
point later.

The least final entropy of the global system, related
to the outcome probability of the p-labeled eigenvalue,
reads:

Sf = k ln
(
Na∗pap

)
. (6)

From the eqns. (4) and (6), the least possible entropy
variation turns out to be:

∆S = Sf − S0 = k ln
(
Na∗pap

)
. (7)

From the eqn. (7), we infer that the second law of ther-
modynamics holds iff :

Na∗pap ≥ 1⇒ a∗pap ≥
1
N
, (8)

since N > 0. Now, we will prove the following theorem:

Theorem: The second law of thermodynamics holds for
the wave function collapse under a frequential interpre-
tation via Max Born’s rule and, once accomplished the
collapse, the collapse is an irreversible phenomenon.

Proof : • Suppose the converse, i.e., that the sec-
ond law of thermodynamics does not hold for the wave
function collapse under a frequential interpretation via
Max Born’s rule. In virtue of eqn. (7), one has:

∆S = Sf − S0 = k ln
(
Na∗pap

)
< 0⇒ Na∗pap < 1. (9)

Since ap 6= 0 [5], N ≥ 1/(a∗pap) violates the condition
stated by the eqn. (9). But N → ∞, in virtue of the
frequential interpretation, hence N > 1/(a∗pap), and the
eqn. (9) is an absurd. We conclude the second law of
thermodynamics holds within the terms of this theorem.
The proof the collapse is an irreversible phenomenon
follows as a corollary of this theorem. In fact:

N > 1/(a∗pap)⇒ Na∗pap > 1 ∴

∆S = k ln
(
Na∗pap

)
> 0, (10)

and the collapse of the wave function is an irreversible
phenomenon, being ∆S > 0 the entropy variation of the
thermodinamically closed system: quantum subsystem
plus classical apparatus subsystem. •
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[3] If ap = 0, the respective eigenstate φp, within the su-
perposition representing Ψ [see eqn. (2)], turns out to be
an impossible collapsed state. Such consideration would
be totally void, since the final microstate associated to it
would never occur, being ∆S = k ln 0 − k ln 1 = −∞ [see
eqns. (1) and (4)] a violation of the second law of thermo-
dynamics, in accordance with the impossibility of a final
microstate with ap = 0.

[4] Here, the classical designation resides within the count-
ing process after the collapse. We are not saying the final
collapsed state leads to a classical interpretation of the
quantum object, we are enphasizing that the dialectics af-
ter the collapse to interpret frequency of a given collapsed
state is the classical one via Born’s rule. One does not
count quantum waves, but the discret signals of a collapsed
object. Surelly, alluding, e.g., to the double-slit canonical
example, the diffraction pattern on the screen has not a
discrete counterpart, but the points on the screen, when
the intensity of the source is reduced, have and may be
counted.

[5] Remember the reliability defining the p-labeled eigenstate,
see eqn. (5) again and its inherent paragraph.


