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Abstract

We study the moments E[d7 ;] of the k-th nearest neighbor distance
for independent identically distributed points in %". In the earlier litera-
ture, the case @ > n has been analyzed by assuming a bounded support
for the underlying density. The boundedness assumption is removed by
assuming the multivariate Gaussian distribution. In this case, the nearest
neighbor distances show very different behavior in comparison to earlier
results. In the unbounded case, it is shown that E[d7 ;] is asymptotically
proportional to M ™! log”_l_“/2 M instead of M~%/™ as in the previous
literature.
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1 Introduction

Consider a set of independent identically distributed (i.i.d.) random variables
(X;)M, with a common density p(x) on R". We study the moments of the
nearest neighbor distance

Eldy ] (1)

in the limit M — oco. The quantity (1) appears commonly in the literature
on random geometric graphs, where directed and undirected nearest neighbor
graphs are analyzed as special cases of more general frameworks [9, 10, 13]. In
this paper, the nearest neighbor distance serves as the quantity of interest with
the hope that in the future, the ideas can be represented in a more abstract
form.

The expectation (1) is also of interest in its own right and tends to appear
under various scientific contexts. A significant application is found in the non-
parametric estimation of Rényi entropies, where asymptotic analysis provides



theoretically sound estimators [5, 6, 8]. Moreover, nearest neighbor distances
and distributions play a major role in the understanding of nonparametric esti-
mation in general [1, 4]. Finally, it should be mentioned that quantities related
to (1) are encountered in physics, especially statistical mechanics and the theory
of gases and liquids [11, 3].

In the earlier literature, it has been shown that under general conditions (T
denotes the Gamma function)

Eldf ] — Vn“/”r(kljglj;/n) / p(x) =/ dx

in the limit M — oo if 0 < a < n [12, 2]. However, the case a > n is quite
different and usually a boundedness condition must be imposed on the support
of p(x). As the contribution of this paper, we analyze what happens if a > n,
while p(x) is unbounded. To simplify matters, we examine only the multivariate
Gaussian distribution

p(z) = (2m) /22l

with the long term goal of extending the results to more general classes of
densities. It turns out that the asymptotic behavior is very different to the case
0 < a < n. We show that in the limit M — oo,

=27y, [ (1
M log®>T =" MYE[dS ] — 7”/ <>d ;
(M log )EdY 1] T A

where the definition of g depends on n, k and « (see Section 3).

2 Definitions

We start with some basic definitions. V,, denotes the volume of the unit ball
B(0,1) in ®" in the Euclidean norm (which will be used all the time in this
paper). I(:) refers to the indicator function of a random event. For a vector
z € R, ) denotes component j of that vector. The volume of a set A with
respect to the Lebesgue measure is denoted by A(A). If g(r) is a function defined
on an open subset of R, we denote the derivative of g by Dg.

(X;)M, is taken as an i.i.d. sample with X; € R". Each X; follows a common
density p(x); our work concerns the Gaussian case

pla) = (2m) /2 2ol (2)
The first nearest neighbor of X; is defined by
Ni, 1] = argminlngM,j;éi”Xj — Xl
and by recursion, the k-th nearest neighbor is

NTi, k] = argming ;< s jg i, n0i.1],... N k-1 1 X5 = Xall



The corresponding k-th nearest neighbor distance is d; x = || X n[ix) — Xill. The
goal of the paper is to analyze
E[d}] (3)

in the limit M — oo with everything else fixed. Because the sample is indepen-
dent identically distributed (i.i.d), we set ¢ = 1.

Throughout the paper there will be constants, which depend on some vari-
ables, but not on the others. Such variables are denoted by ¢(...), where inside
the parentheses we indicate the dependency. Strictly speaking, ¢ is a function
of some variables, but in the standard convention, it will be called a constant.
During the course of our proofs, several different unknown constants will emerge.
To keep them separate, lower indices (in the form ¢;) are used.

General error terms, which can be bounded but not written in closed form,
will be denoted by R (or R; with a lower index 7). After the appearance of each
such term, we write an equation of the form

IRl < (. )f(..),

where c is a constant and f is a function of M or some other variables. Inside
proofs, the Big-Oh notation will be invoked as another way to express unknown
but negligible terms.

3 Main Results and Previous Work

The analysis of nearest neighbor distances can be viewed as part of the general
framework of random geometric graphs. In this field, results are established for
quantities of the form

§(X1, (X)),

where £ has some locality properties. By imposing higher levels of abstraction,
very general functions can be analyzed as long as locality arguments are avail-
able. We refer to [9, 10, 13] as a starting point to understand the issues arising
in the field.

However, abstract theories do not directly give exact information about the
asymptotic behavior of the moments (3). The step towards concretizing the
results concerning nearest neighbor graphs was taken in [12]. The following has
been proven:

Theorem 1. Suppose that 0 < a < n, p(x) is a density with

/’ p(z) = dx < 0o

and

/¢wme<m



for some r >n/(n —a). Then

M/ Bl l,k}_>Vn / T/np(x)l Mz
in the limit M — oo. T'(:) refers to the Gamma function. If o > n, the limit
holds if p(x) is bounded from below and above on a bounded convex set X.

As a downside, Theorem 1 has the convexity requirement on X if o > n.
Furthermore, it does not provide a rate of convergence. These issues have
been addressed by the concrete approach in [2], where it was shown that if
infex p(z) > 0 and p(x) has a bounded gradient on X', then under rather weak
conditions on the space X, we have

Ma/nE[d(lxk] _ Vfoz/nr(k + a/n)

o S [ ptay e o)

for any p > 0 removing the convexity requirement.
As a common factor between the results, observe that in the case a > n,
two requirements must be satisfied:

1. The set X must be bounded.
2. infyex p(z) > 0.

In this paper we ask, what happens when neither 1. nor 2. hold but « > n (the
case @ = n is not addressed). The early works in random geometry took the
uniform distributions as a case of special interest. Analogously, we choose the
Gaussian density

p(z) = (2m)~"/2e 21l

as our target of study.

It turns out that the behavior for o« > n is very different to Theorem 1 for
the Gaussian distribution. As the main contribution of the paper, we prove the
following.

Theorem 2. Suppose that Equation (2) holds and o > n. Then

nme/2=lpy, (e (1]
M log®/?t =" MY E[d —>7"/ <>d )

i the limit M — oo with
o) = [ e wnrds,
0

where f~1 refers to the inverse function of

F(t) = t"/ v dy.
B(0,1)



The main difference to Theorem 1 is that now E[df,] is of order M (log M)"~*/2~1

instead of M ~®/™. Theorem 2 can be further developed by analyzing the rate of
convergence and possible applications. This remains a topic of future research.
Another open question is the extension to a general density p, which the author
believes is possible. This could possibly unify the case with boundary effect [7]
and the more general unbounded case

4 Outline of the Proof

We will use the small ball probability
wq (1) = / p(y)dy
B(z,r)

due to its useful distribution free properties. In fact, [2] shows that the distribu-
tion of the quantity wx, (dy,) does not depend on the density p and moreover,
tends to take values of order M ~!. Another useful fact is that conditionalization
on X; does not change the distribution of wx, (dy ). We approximate

wx(r) _ (271,)711/2/ e*%HZ/HQdy
B(z,r)

= (271')_"/2/ e~ 3 \f|\2—xT(y—z)—%Hy—muzdy
B(z,r)

~ p(a) / " Vdy = p(a)r” / e vy (4)
B(0,r) B(0,1)

assuming that e=2"” is close to 1. By a change of variables (rotation inside the
last integral in (4)) we have

we (1) zp(a:)r”/ e*’“”gﬂ”y(l)dy.
B(0,1)

Now if we take f(t) = t" fB(o ) e_tym

we solve - :
—1 (=" we (r
f ( p(z) )

]

dy, then [lz||"w.(r) ~ p(z)f(|lz|r) and

T

[~ refers to the inverse of f. By substituting d; x in place of r and [|X;| in
place of ||z||, we get conditionally on X;

|X1||"wx1(d1,k))“
p(X1)

X

(
Eldf ] = E[E] | X1 ]]-
The argument for f~! looks rather complicated. However, because the condi-
tional distribution of wx, (dy %) does not depend on the density p(x) or Xy, it
would be sufficient to somehow control the dependency on Xj.



Our strategy can be summarized as dividing " into the three regions Sy,
S and S3 together with decomposing

B[}, = /S Bl ,|X) = alp(a)dz + /S Bl o|X) = alp(a)dz

+ [ E[d} | X1 = z]p(x)dz.
S3

The three sets depend on a variable 0 < ¢ < 1 and the number of samples
M. We think € > 0 as a parameter, which at the end of the analysis is set to
approach zero after first taking the limit M — oco. As a sidenote, it should be
clear at this point that the parameters (n,k,«) are assumed to stay fixed all
the time.

The motivation for S; might be seen in the idea of performing a Taylor
expansion of f~1(-)® at zero, which might render the analysis into the well-
known case [2]. Keeping in mind that wx, (d1 x) is of order of magnitude M !,
we take (the definition applies for any n > 1)

log”/QM}
eM
={zeR": |z|| < \/2log M — nloglog M + 2loge}; (5)

S1={xeR": px)>

then for large M, || X:| = O(y/log M) and

[ X1 " wx, (dik)
p(X1)

by substituting wx, (d1x) = ﬁ to analyze the order of magnitude. If € is small,
then this shows that the argument of f~! is small suggesting that a Taylor
expansion might be possible. However, during the course of the proof, it turns
out that points in Sy contribute little in comparison to the set

= O(e)

elog™? M < log™'2 M

= "o <
So={zreR 7 <p(x) < i

}- (6)

In this case, a Taylor expansion does not seem possible. Fortunately, we are
able to show that conditionally on X; € S5, the variable

_ Mp(X1)

Y
log"/? M

(7)

is approximately uniformly distributed on [, e 1] and moreover, it is indepen-
dent of wx, (d1). This is useful, because for large M, || X1| ~ /2log M and
we get

Y
(2log M)e/2

-1 (2"/2wx1(d1,k) «
‘Xl S SQ] (8)

Eldy | X1 € So] = E|



Because the probability P(X; € S3) turns out to admit a convenient asymptotic
expression, it is possible to use Equation (8) to estimate the quantity

/ E[dtll,k|X1 = x]p(x)dm = E[dik|X1 S Sg]P(Xl € 52)
Sa

In addition to S; and Ss, there is the set

log™/? M
Sy={zeR": p(x)< %}. 9)

However, similarly as S7, nearest neighbor distances corresponding to X; € S3
turn out to have a neglible effect if € is small.

5 Auxiliary Results

In this section, we give some results and applications for wx, (d1, ), where

wg (1) :/B( )p(a?)dx.

The following result characterizes the distribution of wx, (d; ), which conve-
niently does not depend on X; or the density p(z).

Lemma 1. Given X1, the conditional density of wx, (d1 k) is given by

i) =ple) = (M T e, (10)

Moreover,
'k + a/n)T'(M)

Elwx, (di )X = T(k)D(M + a/n)’ (11)

Proof. In [2], it has been shown that d; ; has the conditional density
_oy (M1 k—1(7_ M—k—1
P(dy g € [r1,m2)| X1 =2) =k k wa (1) (1—wy () dw, (7).
[r1,72]

Here dw,(r) refers to the Lebesgue-Stieltjes measure, where w,,(r) is considered
a function of r. Because w,(r) is differentiable, we have

P(dl,k €[7"1,7"2”X1 :;L’)
(M -1 o (V11 — o (PNM=* =1 Do (P
_k( k )/[] =) (1= we(r) T Dug (r)dr. - (12)

By monotonicity of w,(r) we have

P(wx, (d1k) € [wx, (r1),wx, (r2)]|[X1 = ) = P(d1 1, € [r1,72]| X1 = ).



Using the change of variables y = w,(r) in (12) now yields

P(wx, (d1k) € [wx, (1), wx, (r2)]| X1 = z)

M -1 _ Lk
("7 P )My,
[UJJ;(T1),W1(7‘2)]

which is sufficient to verify (10). The moments are computed using the formula
for Beta functions

/0 N1 — ) dt = m (a,b>0)

together with

k L(k)T(M — k)
O
It is useful to observe that for any 8 > 0,
(M + B) 8 B—1
— =M M 1

to understand better the moments (11). The following is useful for technical
reasons:

Lemma 2. Assume that Equation (2) holds. Then for 0 <r <1 and x € R,
wy(r) = ep(x)r”
for some constant c¢(n) > 0.

Proof. We compute straightforwardly:

wm(r) — (27T)—n/2/ e—%HyHQdy
B(z,r)

_ (gﬂ)fn/zef%nww/ e =)~ vzl g,
B(z,r)
1
2

> plae [ ey ©
B(z,r) 2

Vap(z)r™.

O
The moments E[df ;| X1] do not get too large if | X1 || does not get too large:
Lemma 3. Assume that (2) holds. Then for x € R, M > 2k and a > 0

Eld7 | Xy = o] < ¢([|lz]|* +1)

for some constant c(n, k, «).



Proof. If (X;)M, is partitioned into k parts and from each we take the small-
est distance to Xy, then df; is smaller than the maximum of these distances.
Consequently, it is also smaller than the sum of the distances and by the i.i.d.
assumption, for any z € R™

E[d§ | X, = 2] < kE i X, — ||
[d} | X1 = 2] < [%Kr(n&n_l)/kII ]

S RE[[[Xs — 2] < cE[|Xa||* + [[]|]

for some constant c(k,«). Observing that the o moments of Xy are finite
completes the proof. O

Next we show that the a-moments are at most of order (p(z)M)=/™ if
the quantity inside the parentheses does not get too small. The result is an
application of Lemmas 1-2.

Lemma 4. Assume that Equation (2) holds and fix any 6 > 0. Then if p(z) >

W, we find a threshold Mo(n, k, «, ) such that for all M > My, we have

almost surely,
E[dS )| X1 = 2] < e(p(x)M) /"

for some constant c(n, k, «).
Proof. We decompose

EBldy y| X1 = 2] = Eldf ; I(d1x < 1)| X1 = 2] + E[d} p I(d1x > 1)| X1 = 2] (14)
We consider next the first term in the right side. By Lemma 2,

mn
di'

wx, (d1 k)

¢
p(X1)

(for some constant c¢1(n)) and using this we have by Lemma 1 together with
Equations (13) and (15),

I(dip, <1) < (15)

Eldf p I(dyx < 1)| X1 = 1]
dn a/n
:E[(lak) wx, (dy k)a/nl(dlk <1)|X1 = ]
wx, (dl,k) ’ ,
< &M p(x) " Elwx, (di )" X0 = 2
< calpl@)b)~" (16)

for some constant ca(n, k, ). We have proven the claim for the first term in
(14). For the second term, we apply Holder’s inequality:

Bld I(dy g > )] X1 = 2] < \[P(dis > 11X = 2)\[EI@ X0 = 2] (17)



wy(r) is a strictly increasing function with respect to r. Using this fact and the
inequalities k(Mk_l) < MF and 1 —w < ™% together with Lemma 1, we have

P(de > 1|X1 =x)= P(le (dl,k) > wX1(1)|X1 = LL‘)

M -1\ [*
= k< > / WL —w)M Ry
k wa (1)

1
S Mk:/ wk—le—(]\/[—k—l)wdw
wz (1)
E o M—k-1
M
= () / W le Y dw
M—=k—=1) Ja-k-1)w.(1)
E o M—k-1
M / —w+(k—1) log
= — e v 8Ydw. (18
(M — k- 1) (M—k—1)wa (1) (18)
Now
wz(1) > e1p(x) (19)
by Equation (15) and if & > 1,
1
I < — log(1l+2(k—1)). 20
o < gy + log(1 +2(k ~ 1) (20)

The previous equation can be proven by moving the terms in the right side
to the left and finding the zero point of the first derivative. The derivation is
not very relevant the main point being the slow increase of the logarithm in
comparison to the term w. Using the two facts (19) and (20), we have

P(de > 1‘X1 = 1’)

M kM
< ( ) / e~ 3wt (k—1)log(1+2(k=1)) 4.,
M—=k—=1) Jeip(e)y(m—k-1)

—o( 420k — 1))t (M ’ (e~ Fp@(T-k-1) _ o~ 3M)
M-k-1
< czemaerP(@M (21)

for some c3(n, k) assuming that M > 2k + 2. By the assumptions of the lemma

n/2 S
p(x) > MTM, which implies

||| < v/2log M —nloglog M — 2log§ — nlog(2m) < v/3log M
after some threshold My(n,d) and M > My. By Lemma 3 we then have
E[d5|X1 = 2] < cylog® M (22)

for some constant c4(n, k, ) (assuming trivially M > 1). Equations (21) and
(22) together with (17) now imply

Eld$  1(dyx > 1)| X, = 2] < Jezege saP@M 1og2/2 pp (23)

10



The assumption p(z)M > (SIOg"/2 M implies that for any j > 0,

e—%clp(x)M< i 8],]‘
—10i (p(x) M)

showing that in the limit M — oo, (23) approaches zero faster than (p(x)M)~®/™
in Equation (16). O

We formalize the argument in Section 4, which connects w,, (1) to the function
f
Lemma 5. Assume that Equation (2) holds. Then

)" w, (r) = p(x) f(l|zllr) — R

f(t) _ tn/ ety(l)dy
B(0,1)

0< R < p(a)r® f(||z[lr).

f is defined and continuous on [0,00) and it has the range [0,00). It is also
strictly increasing implying the existence of an inverse function f=1 :[0,00)
[0, 0).

with

and

Proof. The proof involves extracting the error term and bounding it.

]|, () = (271')7”/2”1‘”"/ ool gy
B(z,r)

= @) Ay [ ety
B(0,1)

= e A (faleye 1 [ ey
B(0,1)

:mmNMMf/ e vy — A (24)
B(0,1)
with
A:pumuww/“ e (1 — o %) gy (25)
B(0,1)

The main task is to bound A. This is achieved by the mean-value theorem: for
lyll <1 and r >0,

1 e 3 = L2y et <2
for some ¢ € [0, 00]. This inequality implies that

0<A<p@)allrs? [ ey
B(0,1)

< pla)(lalirye® [ ey = p(o) f( ).

B(0,1)

11



In the last inequality, the vectors have been conveniently rotated. The same
rotation shows that in (24), we have

p(w)(llxllr)”/ e vy = p(x) f(l|r).

B(0,1)
O
For t > 0, we define
g(t) :/ wh e 71 (wt)dw. (26)
0

We show that ¢ approaches zero at least as fast as t*/™ and grows at most
logarithmically if ¢+ — co. The same holds for f=1(¢)*:

Lemma 6. The function (26) satisfies

0<gt)+f < et/

(

on (0,1] for some constant c(n,k,«). On

1 t)a <
(1,00) we have
0<g(t)+ /7)<

c(1 +log™ t).

Proof. 1. Bounds on f~!

Consider ¢ € (0,1). For any

we have

This implies that
ot 1/n
-1
t) < | — .
A (Vn)
Next assume that ¢ > 1. Take z > 2logt + A + 1 with
1
A=\BO,1)Nn{zeRr: =2 > 5})—1.

Then

f(z) > A/ e logt gy,
B(0,1)N{z: M >1}

> A elostdy = t.
B(0,1)N{z: 2M>1}

12



This means that
f7Ht) < 2logt+ A+ 1.

The outcome for f=1(¢)® follows by recalling that (a + b)* < 2%(a® + b*) for
any a,b > 0.

2. The function g
We proceed to bounds on the function g. We take t € (0,1). Then using the
results for f~! yield

1/t o
g(t) = / whlem =1 (wt)*dw + / whlem F 1 (wt) *dw
0 1/t
1/t 00
< clto‘/"/ wh=ira/ne=wgy, 4 ¢ / Wwle™ @ log® (24 w)(2 + t))dw
0 1/t
1/t 00
< czta/”/ Wh=te/ne=w gy, 4 e log®(2 4+ t) / W le ™Y dw
0 1/t
o
) / whlem 1og™(2 + w)dw
1/t
=0 +1+13 (27)

for some constants ¢;(n, a) and ca(n, ). The shorthand notation I; (i = 1,2, 3)
was adopted for the three terms. The argument (2 +¢)(2+ w) for the logarithm
was chosen in order to ensure that the upper bound can be assumed to hold
also for t > 1.

Now

o0
L < Cgta/n/ wh—ira/ne=wgy, (28)
0

Also, for example by partial integration (the point being the fast decrease of
e,

I < Elege ™Vt R log™(2 + 1) < est®/™ (29)

for some constant c3(n, k, ). Of course, the last inequality is not tight, because
e~/ approaches zero very fast in the limit t — 0, but nevertheless it fits our
purpose. Similarly, using log(2 + w) < w for w > 1 gives

|I5] < 02/ whtamle=w iy < eytt/m (30)
1/t

(for some c4(n, k, ) by the same proof as for I. In summary, Equations (27)-
(30) show that for 0 <t < 1,

g(t) < est™/™

13



for some constant c5(n, k,«). There is still the case ¢ > 1. We again use the
decomposition (27):

1/t
I < (:2151*’“/ dw=t"F
0
I, < colog®(2+ t)/ W le ™Y dw
0
I3 < CQ/ wk_le_“’logo‘(Z + w)dw
0

The only term that grows with respect to t is I, which grows proportionally to
log®(2 + t); in the final claim, we use t instead of 2 + . O

6 Region 5
Recall that region Sy is defined by

logn/2 M}
eM
={zeR": |z|| < /2log M —nloglog M + 2loge — nlog(2m)}.  (31)

Si={zeR": p(z) >

It may happen that S; is an empty set; from now on we always assume that
M is large enough in comparison to ¢! and n in order to ensure that S; is
non-empty with a positive volume. Similar convention is adopted for the sets
S2 and 53.

As stated in Section 4, 0 < € < 1 is a fixed constant until the end, where the
limit € — 0 is taken after the limit M — oo. We define (assuming that a > n)

_1 2nloglogM

i* = [log ]+ 1.

a—n

[[] refers to the integer part of the number inside the bracket. As our proof
strategy, S1 is divided into smaller subsets, which are easier to control with the
tools we have available this far:

~ *logn/Q . ].Ogn/2
L — T : e T KL i+1
Si=fren: 218 My < gmlos A,
={zeR": |z| € [a;,bi)} (32)

(0 < i < i*) with

a; = \/210gMfnloglogM72(i+1)log2+2logefnlog(27r)
bi = \/2log M — nloglog M — 2ilog2 + 2log e — nlog(2n).

14



The remaining part is denoted by
Sic =51 \U_yS.

The following bounds the nearest neighbor distance when X; € 5’1, Without
losing generality, we prove the claim after some threshold My, which is natural
as in any case later the limit M — oo is taken. As a somewhat subtle detail, we
will generally adopt this way of expressing our statements in those cases, where
proving the claim for all M > 0 is not an obvious task.

Lemma 7. Assume that (2) holds and oo > n. Then there exists a threshold
Moy(n, k, o, €) > 0 such that for 0 < i <i* and M > My,

) 1 n—a/2-1 M
Edf | X1 = z]p(x)dx < gil—a/m) ea/m—126____ 7
81 ' M

for some constant c(n, k, ).

Proof. By Lemma 4,

E[d§ 41X, = alp(a)de < e, M~/ / D)=/

S1,i

log™/? M el
< 21(1—a/n)clM—a/n ( g ) )\(L@M)

gl,i

eM

logn/27Q/2 M

< 2i(1—a/n)clea/n—l i

A(Si)  (33)
for some constant ¢ (n,k,a) and Moy(n, k,a,€). We should now compute the
volume A(S7;). The set Sy, consists of points z € R" with ||z|| in the interval
[ai,b;). Then A(S1;) = V,,(b* — a¥). By a Taylor expansion,

ar = 92 log/2 ) (1 _ n?loglog M + 2n(i + 1)log2 — 2nlog e 4 n* log(27r))

4log M
+R (34)

in the limit M — oo with everything else fixed and

log? log M

Rl < g " 01

with co(n, k, a, €) independent of 4. Similar approximation holds for b?. Using
the expansion,

A(S14) = Vi (b — a)

%

(35)

log® log M
= (272" 1og 2)nV, log"/*> "' M + O (ogog) .

10g27n/2 M

15



By substitution of (35) into (33), we have

. 1 n—a/2—1 M
 Bldf X0 = alp(a)da < 20070/ 2 ey e/ n 28
S1,i
N 10gn7a/272M
Cc)—mM8————————
M

for some constants cs(n, k, a, €). Of the two terms in the right side, the latter
converges to zero faster with respect to M and consequently becomes smaller
after some threshold My(n, k, a, €). O

After removing the sets 5’1)2», we are left with 5’1,0. However, it does not
pose problems.

Lemma 8. Assume that (2) holds and o > n. Then there exists a threshold
Mo(n, k, «, €) such that for any M > My, we have

1 n—a/2—1 M
Eldf | X1 = z]p(x)dr < ce“/"_logT

S1,¢
for some constant c(n, k, ).

Proof. By Lemma 4 and the definition of SI,C,

E[dfll,k|X1 = x|p(w)dx < clM_a/”/ p($>1—a/ndx

5‘170 Sl,C

. 1 n/27o¢/2M -
< 9 (1—04/n)016a/n—1 0og )\(SI,C) (36)

for some constant c¢;(n, k, a). 51,0 consists of points x € R™ with

|z|| < v/2log M — nloglog M — 2i*log2 + 2log e — nlog(2m) < /3log M
once M exceeds some threshold depending on n, k, « and €. This implies that
A(S1.0) < 3V2V, log"'? M. (37)
Also, we compute
9i"(1=a/n) _ oi"(1=a/m)10g2 < 1661 pf. (38)
Substituting Equations (37) and (38) into (36) yields

10gn7a/271 M

B[d§ | X1 = z]p(z)dx < 3"/ %¢, V,,e/m ! —

Si1,c

16



Lemmas 7 and 8 imply that for a > n,

E[d‘f‘,k|X1 = zlp(x)dr = | E[d‘f‘,k\Xl = z|p(z)dz
S1 Sl,C

+ Z/g Eld} ;| X1 = z]p(z)dz
i=0 1,i

1ogn—a/2—1 M

< Cea/n—l
- M

*

4 X 1 nfoz/271 M
+ Z 21(1—a/n)06a/n—1 0og

, M
=0

1 n—a/2—1 M o0 )
< cea/"*logT(l + Y 2i=e/m) - (39)
=0

for some constant c(n, k, o) and M > My. We conclude

Lemma 9. Assume that (2) holds and oo > n. Then there exists a threshold
My(n, k, o, €) such that for any M > My, we have

1 n—a/2—1 M
Edf ;| X1 = z]p(x)dx < cer/n-1%8 W
51 ’ M

for some constant c(n, k, «).

7 Region 5
Region 2 is defined by

elog™? M < < log™'% M

Sy ={zxeR": i _p(a:)_w}.

(40)
As mentioned earlier, M is assumed to be large enough to ensure that S5 has
a positive volume. It is necessary to obtain an approximation to P(X; € S5).
This can be done rather straightforwardly:

Lemma 10. Assuming (2), it holds that

2721V, log" ' M

P(X1€SQ)= M

(1-e)+R

with

Clog2 log M log" ™2 M

<
IRl < -

for some constant c(n,€).

17



Proof. S5 consists of points x with
]| € [a, b]
a = /2log M — nloglog M + 2log e — nlog(2m)
b= /2log M — nloglog M — 2loge — nlog(2r).

We compute
P(X, € 8;) = (27r)_n/2/ p(z)dz = (2m) "0V, / n=le=37" qy
Sa

b
— (27r)_"/2nVn/ n— 1e—§a2—(x—a)a—%(m—a)2dl,

b
:nVnp(a)a"_l/ e~ (@a)agy

b
+ nVnp(a)/ (x”fl — a"’l)e*(w*a)a*%(zfafdx

a

b
+ nVnp(a)a”*I/ (e*%(gﬂf‘l)2 — 1)67(‘7}7@)@6&&

a

=L +1+ 13
with
nV,log" > M "
11:$an 1/a e (z a)adﬂf
_ nVn 1Ogn/2M n72(1 o —(b= a)a)

n/2
I, = nV, 1Og / M/ n—1 _ n— ) —(z—a)a—1%(z— a)zdl'

nV, 1og”/2

13:76]\4 a” 1/a (e” 3(z—a)? —1)e~@agy,

During the proof it is easiest to employ the Big-Oh notation. Such error
terms depend here on n and e.

1. The term I,

By a Taylor expansion, in analog to Equation (34),

nloglog M log e nlog(2m) log?log M
= /2log M — - o2 28"
“ 6N T S alog M | Valog M 2v2log M | \ log? M

(41)

nloglog M log e nlog(2m) log?log M
b=+/2logM — — — Ol ———7+r—].
o8 22log M  2logM 2\/2log M * log®/? M

(42)

18



By (41)-(42),
-1 2
_ V2log e 0 log 1ogM) (43)

h—
¢ Vlog M ( log?’/2 M

and
| o—(-a)a _ LIRS O inIVITog MO(25esd)]
=1- 621056‘*0(10%2015”[) =1-640 <10g1(2)g10]\g4l\4> . (44)
Also,
@ = 22 logn 1 A 4 0 (1525}3% ) | (45)

Using Equations (44) and (45) in the expression for Iy yields

V., log™'? M log log M
nValog" " M Ton /a1y niz—1 g +O< Loglog M )] T
logZ™™/2 M

I, =
! eM
log? log M
O(25 06
( log M )]
_ 2n/2=1p Y, log" ! M(1 _ &)+ 0 log? log M log™ % M .
eM M

2. The term Iy

By the mean-value theorem,
|mn—1 _ an—1| < |bn—1 _ an—1| < logn/273/2M

for some constant ¢;(n, €). Also, a=* < ¢3log™Y/? M for some ¢y(n, €). We have

nl n—3/2 M b
cinVy, log / o (a—a)a g,

Iy <
2= eM
< creanVy, log" 2 M
- eM ’
3. The term I3
Now
|I5] < %a"‘l(l - e_%(b_a)z)/ e~ (@aagy, (46)
€ a

Again,
(47)

b
/ e—(x—a)adx _ a—l(l _ e—(b—a)a) < a_l.
a
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Moreover, by the expansion for b — a appearing in Equation (43),

1 e b0 = L (b —a)? + (b~ a)*) < o (48)
for some constant cs(n, €) Finally,
a""% < cqlog™/* i M. (49)
for some constant c4(n, €). Substituting (47)-(49) into (46) yields
cscanVi, log" =2 M
L] < 3C4 eMg .
The proof is finished since the terms I7,I> and I3 have been addressed. O

In general, to establish asymptotics, it is useful to truncate d; ; to avoid
too large values. To this end, we choose some L > 0 (recall that at this point,
a,n,k and € stay fixed) and define

L
el/ny/log M

The power for log M is carefully chosen to ensure the correct order of magnitude
with large L rendering the event 1 — I, neglible. The following lemma verifies
this fact; the bound is designed to hold after some threshold My, which depends
on L itself. However, after the threshold we get an upper bound which goes
exponentially to zero with respect to L.

IL:](d1’k< )

Lemma 11. Under (2) and for any L > 0, there exists a threshold My(n, k, «, €, L)
such that for all M > My, it holds that

Eld (1 — I1)| X1 € So] < e(n, k, v, €) log /2 Mec(mha0 L
for some positive constant c(n, k, a, €).
Proof. The proof employs Holder’s inequality:

E[dik(l — IL)‘Xl < SQ]

L
< \/E[d?|X; € Sa]y| P(d1 > ————=|X1 € S2). 50
= [ 1,k| 1 2}\/ ( 1,k El/nw| 1 2) ( )
By Lemma 4 and the definition of S, there exists My(n, k, a, €) such that
E[d}%|X1 € S2] = E[E[d}%|X1]|X1 € 9]
< e Bl(p(X1)M) 7" X, € 8]
< ere2/Mlog™ M (51)
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for some constant c¢i(n,k,«) and all M > M,. We want to bound P(dy, >
Le=Ynlog1/? M|X; € S3) in order to finish the proof. By Lemma 2, we have
for0 <r <1andzx €Sy,

coer™ log”/2 M
M

n

we(r) > cap(a)r™ > (52)

for some constant co(n). Then because w,(r) is strictly increasing with respect
to r, using Lemma 1 we have

P(dy ), > M|X1 € 52)

L
el/ny/log

L
(@x, (die) > wxy <61/"\/logM

co L™
3\4 |X1 S Sg)

M—1\ [*
= k( ) / WA — w)M Ry
k coLmM—1

with coL" M~ < 1 (which can be imposed by taking a sufficiently large thresh-

old My). We use
M-1 MF
<
k Bl

(l-w)<e™

) | X1 € 57)

< P(wx, (dix) >

and

to obtain for M > co L™ + 4k,

M-1\ [*
k‘( )/ WL —w)M R gy
k C2L"M71

1
< Mk}/ wk)—le—(]\/[—k:—l)wdw
co L M1

1

1 1

SM’“/ whle 2 Mw gy,
co L M—1

The last integral can be solved by partial integration or alternatively, we ap-
proximate

1 . 00 2ttt LMt L
/ W lemsMw g, < / Wrlem3Mw g,
c: i=0 2

S LM —1 ieg LM M1

oo

. i—1 n

S 22(2+1)kC§LnkM7k672 co L .
=0
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Furthermore,

e . e .
ZQ(¢+1)ke—2'*1cQL” < 26—2"7102L’”+(i+1)k10g2
i=0 i=0

i—-2 . 1n o n
S 6_2 coL S e csL

o

I
=

3

for some constant c3(n,k,€) assuming without losing generality that co L™ >
4klog?2 (using i + 1 < 2¢). We conclude that

P(dy ;> |X, =z) < chLrkemesl”, (53)

L
el/ny/log M

In light of (50), (51) and (53) we have arrived to the conclusion
E[dtll,k(l - IL)le S Sz] S C4Lnk/2(3_czan IOg_a/Q M

for some constant ¢4(n, k, a, €). The term L™/2 can be dropped, as it is neglible
compared to the exponential decay with respect to L. O

The variable Y emerged in Equation (7). It was defined by

Mp(x)

y = 20
logn/QM

(54)

A major idea behind our proofs is the asymptotic uniformity of Y as shown by

Lemma 12. Suppose that (2) holds. Let h(y) be a measurable function [e, e 1] —
[0,1]. Then

—1

E[h(Y)|X1 € SQ] — I f€2 /e h(y)dy

in the limit M — co.

Proof. The function
2

1
Me™32Y

S =
) (27)/2 log™* M

(55)

is strictly decreasing on y € [a,b] with a and b defined in Equations (41) and
(42). Tt has the inverse s~ : [e,e~!] = [a, b]:

s (y) = \/—210gy—n10glogM+2logM—nlog27r

with the first derivative denoted by Ds~!'. Conditionally on X; € S,, the
variable || X1 || has the density

2

nVy
2m)"/2P(X, € S5)”

nfleféy

pnxl\l(y) = (

22



and Y has the density (on [a, b])

Pix. (s~ ) Ds ™ (y)]
nVps t(y)" !
(@m)"/?P(X, € S5)
~ nVpys Hy)m ! log"/? M
o MP(Xl S Sg)

|DS_1<y)‘610g y+ 5 loglog M —log M+ % log 2w

1Ds™ (y)]. (56)

Because y € [¢,e71], we have in the limit M — oo with everything else fixed,

_ _ _ logy nloglogM  log2r \"/?7/?
1 n—1 _ 21oe M n/2—1/2 1— — —
) (21og M) log M 2log M 2log M

_ log log M
_ n/2—1/2
(2log M) (1+O< og ))
(57)

Also, by Lemma, 10,

2n/2=1nY log" "t M log? log M
P(X, € Sy) = na log (1-¢?) (1 +o (Ogog)> (58)

eM log M
and
_ 1
|Ds™H(y)| =

yv/—2logy — nloglog M + 2log M — nlog 2w

1 loglog M
=—— (140 ——) ). 59
v (1 ( log M )) )

By Equations (56)-(59) we have

3
_ _ € log? log M
pix (s Hy)IDs™H(y)| = 1_ 2 (1 +0 (bgM))

€ log? log M
1_62+0< oy ) (60)

By this approximation,

e [ log? log M
B € sl = 1 [ a0 (P52

—1

€ €
=1 _62/6 h(y)dy

in the limit M — oo. ]

Next we will find out the asymptotic behavior of E[df,;[X1 € S|, which
together with the approximation for P(X; € Ss) takes care of region Sy. The
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key to the analysis is Lemma 12. The following represents the nearest neighbor
distance in terms of the small ball probability and the variable Y. We invoke
the event I, to bound d; j; L stays fixed in this considerations the idea being
the limit L — oo after taking the limit M — oo.

Lemma 13. Assume that (2) holds and o > n. Then

n/2 M o L «
E[f! (M) I.|X; € S5)
20/210g®/2 M

E[d?)kILle ESQ] = + Ry,

where Y is defined in Equation (54) and
|Ry| < clog=®/?7t M
for some constant c(n,a, €, L).
Proof. We first collect a few useful facts. If x € Sy, then by Lemma 5
[ #]]"ws (r) = p(a) f(|lz]lr) — p(z) R (61)
or equivalently

por (Lot 4 Ry

p(z

r =
]

with
0 < Ry <r?f(||z|r).

x € S implies

!

1
2 <l < er/log M (62)

C1

for some constant ¢1(n,€). The indicator function I, ensures that we only need

to consider
L

et/n\/log M’

0<r<

Then by (62)

LCl
lzllr < =7 (63)
By a Taylor expansion, for any real number 5 € R and z € S5,
2% = (21og M)?/?| < ¢510g?/*7! M (64)

for some constant ca(n, €, ). Moreover, f is an increasing continuous function
allowing a bound on Rjy:

L2f(55%) c
Ry <12 < e/n/ o 78
1T f(”.THT)_ 62/”10gM — IOgM

(65)
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for

e L2 f(£5%)
3= 62/71 :

Having made the preliminary observations, we are ready for the first step to-
wards completing of the proof. We have for 2 € Sy by Equation (61)

1 X1 [["wx, (d1,x) + Rz) “

/! 1)
Eld$ 11| X, = 2] = E] ( p||X11||“ Ip| X1 = 7]
with o e .
== log M

(Rg is Ry with dy j instead of r multiplied by I). The challenging part is to
modify the argument for f=1. We first tackle the easier task of replacing ||z||®
with a function of M. To this end, we observe that

1 X || wx4 (da,k) «
P(Xll) + R2)

20/2 10g®/? M

-1
E[d(f’kIL‘Xl = {,13] = E[ ( IL|X1 = LL'] +R3 (67)

with

IX00x, (1) o\ /2 g2
— - 4+ R Xq||7¥=27%~1 M| X, = x].
R Xl og /2 M)IL|X, = ]

By Lemma 5 and Equations (61), (63) and (65) we find a constant c4(n, €, L)
such that

R3—E[f1(

3 c3 Ly c3
< < Z <
ap S i)+ o =7 <61/") togar = (68)

for z € Sy and 0 < r < Le '/ logfl/2 M. Using the previous inequality and
the fact that f~! is an increasing function together with Equation (64) allows
us to bound

ol (r) e
p(x) log

|Rs| < ca(n, e, —a)f~ (cq)log™ />t M. (69)

We move to the argument for f~!. Again, it would be useful to get rid of the
norm |lz||™. This is facilitated by modifying the argument appearing in (67)
(due to conditionalization, we may use z instead of X7 in the expressions):

lall"oo (i) o 2" s (due) log™ > M

o) o(@) fot fa,

where by Equation (64) (to bound w,(d1 1), we use Equations (68) and (62))

[z 2"/ log""* Mwy (drs) , _ _c5
p(@) "= log M

|Ry| = (70)
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for some constant c5(n, ¢, L).
In summary, this far we have shown that

Eldf 1| X1 = 7]
n/2, 1 1) 1o n/2 o
E[f_l (2 R Y R4>
20/210g®/? M

IL|X1 :SL‘]—FR?” (71)

where (66), (69) and (70) bound the three correction terms.
While the correction terms Ry, and Ry are small, they appear inside the
argument for f~!. The best we can say about their effect is

E[lf 272wy, (dy 1) log™* M
p(Xl)

(202w, (dy ) log™? M\
~f p(X1) Hz|% =]

< (R2 + Ry) sup [D(fH(B)Y)] (72)
te[0,f—1(2n/2+1¢y)]

+ Ry + R4>

assuming without losing generality that |Ry + R4| < ¢4. So, we need to bound
the derivative of the function f~!(#)* on bounded intervals. We observe that

a —1 a—1
D(F (1)) = Dj}(f“)(t)) (73)

Furthermore,

Df(t) = nt”_l/

ety(l)dy+tn/ y(l)ety(l)dy
B(0,1) B(0,1)

1
> nt”_l/ ety(l)dy > —nVpt" L, (74)
B(0,1) 2

because .
/ y(l)ety(l)dy = / / (y(l))zety(”dydt > 0.
B(0,1) 0 JB(0,1)
Using (74) in (73) yields

20,

D) <

n >« and f~! is an increasing function implying that

sup ffl(t)nfa < f71(2n/2+1c4)n7a.
te0,f-1(2n/2+1¢y)]
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Using the upper bound in (72) shows that for « € Ss,

n/2,, oe™/2 o
1 (2 x, (1) Lo M+R2+R4)
E[

p(X1)

20/2 log™/? M
F1 (2"/2wx1 (d1.1) log"/? M)‘*
[

IL|X1 = Z‘]

p(X1)
20/2 10g®/? M
f_1 (2"/2wa1 (d1,k)

IL‘Xl = $] +R5

Y

:E[ ) IL|X1:(E]+R5

20/2 10g™/? M

with |Rs| < cglog™*/?>~1 M for some constant cg(n,a,e, L). The proof is fin-
ished by recalling the earlier observation (71). The final form of the claim is
achieved via the tower rule E[...|X; € Sa] = E[E]...|X1]X; € Sa]. O

In Lemma 13, we find the term Y, which has the asymptotic uniformity
property as proven in Lemma 12. Connecting the two results mainly involves
removing the truncation Iy, but takes some technical effort. The function g was
defined in Equation (26).

Lemma 14. Assume that (2) holds and o« > n. Then

—1

€ n/2
a/2 o € 2
(2log M)*/ZE[d] | X1 € Sa] — (k—l)!(l—eg)/e g( )dy

i the limit M — oo.

Proof. By Lemma 13, we know that
(2log M)*/2E[dS I | X1 € So]

22 Mwy, (d “
- E[f! (YX( 1”“)) 1| X1 € So] = 0

in the limit M — oo with (n,k, a, €, L) fixed. We write
2"/ Muwx, (dix)\ "
E[f71 <;1( 17k)) IL|X1 S SQ]
n/2 w e}
Jo, B (Bl X = alp(o)de
P(Xl € 52) '
Using Equation (55) and Lemma 1 (recall that Y depends only on X),

272 Mwx, (d “
E[f_l (;1( Lk)) IL|X1 :3?]

wa(Le= Y/ 10g=1/2
()T e
0

o2\
(1w (2] e
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) = + R, (75)

M-1\ (M —1)! MF*
k( )‘ (k—D!(M—-1-Fk)!  (k—1)!

with |Ry| < ¢y M*~! for some constant ¢, (k). Also, because ||z|| behaves asym-
potically as v/2log M and p(x) > log" P M ) S, Equation (68) shows that

M
Wz(ﬁ) < % (76)
for some constant cy(n, €, L). This implies that for w < w,(Le™ /™ log™ /% M),
(1 —w)Mh=t = = (M=k=De . Ry = e™Mw 4 Ry + Ry (77)
with
|Ro| < |(1 — w)M—F=1 _ o= (M—k=Djw| _ ((M—k=1)(log(1-w)Fw) _ 1
<3
and

|R3‘ < ewa(e(kfl)w _ 1) < CT\Z—

for some constant c3(n, k, a, €, L). By Equations (75)-(77) together with the fact
that f~! is an increasing function,

M -1 wm(Le—l/n 10g71/2 M) 2n/2M @
k( . ) / W — )M ( w) d
0

s([l[1)
k wa (Le™ /™ log ™'/ M) n/2 @
:7M '/ wh—le=Mw =1 (2 MW) dw
(k-1 /), s(|z()
+ R4+ Rs
with
R < (M) - A / T e
= k k—1"J,

2n/2 M\
x (1 —w)M=k=1g-1 (6‘") dw

oM™t n/2 @
< Cleq/ Wbl (2Mw> do
0 €

1, on/?
_ cick f 1(7271€ 2 )«

- kM
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and

MFE oM™t om/2 N g @
‘R5| < OJlg—l'e—Mw _ (1 _ w)M_k_l‘f_l 7(*} dw

n/2 «
chesft (72 - 62)
<
M

Observe that the bounds for Ry and R5 hold for any = € S;. By a change of
variables,

Mk wm(L571/2 10g’1/2 M) el Mo el 2n/2Mw @
YR w e f — ] dw
(k—=1!Jo s(ll=l)

1 /OO ho1 . (2n/2w>a
= — wi eV f — ) dw
(k—=1!Jo s(ll=l)
1 /Oo k—1,—w p—1 <2n/2w>a
- w e f — | dw
(k—1)! Mw, (Le=1/m log=1/2 M) s(ll)

1 /°° R _1(2"/%)“
= — w e “f — dw + Rg.
(k=11 Jq s([l«])) ¢

We would like to show that

lim limsup sup Rg
L=oo Moo z€S,

= k-1 (2w -
= lim limsup sup/ w'TreT Y fT < > dw =20
L—=00 Moo 2€S2 J Mw,(Le=1/n1log=1/2 M) s(llzl)
(78)

To see that this is true, we observe that by Lemma 6, for some constant
cq4(n, k, a, €) there is the bound

wh=le—w =1 ( 2n/2w ) < whlemw 1 <2n/2w)
s(([=l) €

< e M1+ w)e™

with the upper bound integrable on [0, c0) and independent of x € S;. Moreover,
by Equation (52)

L
lim liminf Mw,(—————) =
i timinf sup M, (77— ) = 00

showing that (78) indeed holds.
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In summary, we have shown that

/2 [ “
lim limsupE[f_1 (le(dl’k)) 11X, € S9]

L—oo p oo Y
0o L_1 _ _ n/2,, a
LT s e (228)" pla)dwda
= 1m
L—oco M—>oop P(Xl e SQ)
+ fs2 (R4 + R5 + Ra)p(m)dm
P(X; € 85y)

I L p (22 x e
s o 1) [Q(Y>| 1€ 5]

and similarly with lim inf instead of lim sup; the last limit exists by Lemma 12,
which shows that

2n/2 € et 2n/2
el (% ) mesd o g [ o (55 )

in the limit M — oco. We have established that

—1

€ n/2
. . a/2 o _ € 2 d
nggo h]\gljip@bg M)*=E[df ; IL]| X1 € So] ) /E g ( ” > y.

On the other hand, Lemma 11 shows that

lim lim sup(2log M)*/?|E[d§ , IL| X1 € So] — E[d§ ;| X1 € S| =0

L—oo p—oo

finalizing the proof. O

Now we are able to put everything together to conclude region Ss:

Lemma 15. Assume that (2) holds and o > n. Then

lim lim Mlog®*™ "M [ E[d$,|X; = a]p(z)dz

e—0 M—o0 So
_ n—e/2= 1y, /Oog <1> dy < oo
(k—1)! 0 ) '
Proof. The claim follows from Lemmas 10 and 14:

M log®/#+1=m pp E[df y| X1 = z]p(z)dx
S2

= E| ‘ik\Xl € S3]P(X, € S3)
gn/2-a/2-1py, <7t fon/2

My 9( ” )dy
gn—a/2=1py, (2P g

IR ) // I (y) dy
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in the limit M — oco. We would like to show that

2 /21 )
1 1
Jraw oG [0 G
2-n/2¢ Y 0 Yy
in the limit e — 0, which amounts to showing that g(y~!) is an integrable
function. This is best done using Lemma 6, which shows that

[ () ()

1
< C/ (1 + log® y_l)dy+0/ y~ /" dy
0 1

for some constant c¢(n, k, «). Both terms in the right side are finite (the second
one because « > n) verifying the integrability requirement. O

8 Region 53

S3 consists of points, where the density p takes small values:
elog™? M )
7

To bound nearest neighbor distances on S3, we need similar tools as for Sz, but
only upper bounds are needed providing some more flexibility. The sets Ss ; are
defined analogously to (32):

Sy ={zeR": p(z) <

n/2 n/2
& n . o_i_1€log " M _;elog" " M
Szi={reR": 2 —a < p(z) <2 7 }
for 0 < i < ¢* with
1
= (9D o t0g M) + 1.
log 2

Moreover, Sg)c =S5\ Ué;ogg)i. Then we have

Lemma 16. Under (2), it holds that for some threshold My(n,€), we have for
M > My and 0 < i <1* that

P(X; € 83,;) < 2%#

for some constant c¢(n).

Proof. The set 5’31 consists of points € R with
]| € [a, 0]
a =+/2log M — nloglog M — 2loge + ilog4 — nlog(2)
b=+/2log M —nloglog M — 2loge + (i + 1)log4 — nlog(2r). (79)
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Moreover,
(80)

for x € 53, Using the mean value theorem for a and b we have for 0 < i < *,

81
log M (81)

after some threshold My(n, €). Also, we may take ||z|| < +/3log M for 0 <i < i*
as the term 2 log M inside the square root (79) grows faster than the other terms.
Then

b
)\(Sg)i) = nVn/ x"—ldx S 3%/2—1/2nvn(b_ a) logn/Zfl/QM
< 3n/243/2y logn/2fl M. (2)

Combining Equations (80)-(82), we have

~ ) ~ 1 n/2 M
P(X; € 85,) = / p(a)de < 27A(S5,) 82
Ss.s M
elog" ' M

< 9-ign/2+3/2 1
< 3 nV, i

O

Assessing the contributions from 5‘3,1' is convenient by using the function f
together with the small ball probability. The proof idea is essentially similar to
that used for Sy in Section 7, but because we need only an upper bound, the
proof is easier.

Lemma 17. Suppose that (2) holds and o > n. Then for some threshold
Moy(n, o, k,€), we have for M > My and 0 < i < i* that

logn—a/Z—l M

/ E[d$ ) X1 = z]p(z)dz < 2 "e(loge ™t +i+1)
S3,i ' M

for some constant c(n, k, «).

Proof. We decompose

[ E[dik\Xl = z|p(x)dx = [ E[dikf(dl,k < 1)|X1 = z|p(x)dx

S3.i S3.i

+ EldY  I(dy x> 1)| Xy = z]p(z)dx

S3,i
= (Il + IQ)P(Xl S gg,i)
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with
I = B[d§ , I(dy s < 1)| X7 € Ss,]
I = B[d§ , I(d1 e > 1)| X1 € S3.4).

P(X; € 5’31) was computed in Lemma 16.

1. The term I

If 0 <r < 1, we have
]| we (r) = (27T)_”/2||:r||"/ e3P gy
B(z,r)

= (zw)*n/2||x||n/ o~ Hlu=al? = lol? =" (s-2) g,
B(z,r)

> e Hol"pla) [ T =) ), (89)
B(0,r

where the function f was defined in Lemma 5. This implies that

P e3 | Xa | wx, (dur)
p(X1)
[Be]

dig <

By taking M large enough, we may ensure that

Vieg M < |[z| < v/3log M (85)

on z € S, for 0 <4 < i*. Then by Lemma 6 and Equations (84)-(85),

1 (emuxln"wxl <d1,k>)°‘
o p(Xl)
Eldf  I(d1 < 1)[ X1 = 2] < E| log®/2 M | X1 = «]
1+ log® (1 + 2'i+"+2M:JX1 (dl,k))
< E| | X = 1]

log®/? M
for some constant ¢;(n, «). Now
log(1+ 2" 2e ! Muwx, (dix)) < (i +n +2)log2 + loge ' + log(27" " %¢
+ Mwx, (di,x))
< (i+n+2)log2+loge ! +log(l+ Mwx, (dix))
< (i+n+2)log2+loget + Mwx, (dy 1)

recalling that 0 < € < 1. The a-moment of the conditional expectation of the
last expression is bounded by cz(log €' +i + 1) for some constant cy(n, k, ) by
Lemma 1 and Equation (13).
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2. The term Iy
By Holder’s inequality, Lemma 3 and Equation (85),

I, < \/E[d%%‘Xl S S’gyi}\/P(dl,k > 1‘X1 S SS,i)

< ¢y logoc/2 M\/P(dl,k > I‘Xl € SB,'L’)

for some constant c4(n, k, ). Equation (18) applies here: for x € 53,1»,

M k rM—k-1 o
P < ()
M-k-1 (M —k—1)w, (1)

< ¢5(n, k)ef%(”’k)flM
for some constant cz(n, k). It would be sufficient to show that for any j > 0,

sup wz(1)Mlog™/ M — oo (86)

0<i<i*,z€Ss,;

in the limit M — oo. By Equations (83) and (85) taking into account that on
Ss.i,

. n/2 n/2—a—1
S oi elog"’* M S elog M

p(x) > 72 i :
we have
_ap@)fllzll) o —1 €
we(l) >e 2 >e 2 log M
(02 e 2 € ppogartap/ (VIos M)
_1 € (1)
> e 2 ex/logMy d
el 4M10ga+1_n/2M»/B(O,1) y
1 € 1 1
>e 2 A(B(0,1 meoyl) > pexvice M,
>e 24M10g°‘+1*”/2M (BO,1)n{y e R": y >2})ezv

The term ezV°8 M approaches infinity faster than log’ M for any j > 0. This
shows (86) and we conclude that I approaches oo faster than log? M (for any
j > 0) in the limit M — oo. O

The region 5376' is easier, because by taking ¢* as a large number, we are
able to control the probability of this set.

Lemma 18. Suppose that (2) holds and o« > n. Then for some threshold
My(n, k, o, €) we have for M > My, that

E[df | X1 = z]p(z)de < ce———————
L w

for some constant c(n, k, a).
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Proof. On 5’370 we have

_elog™? M elog"/?Tt M
<27 < .
p(z) < 7S i
We define o N
R, = 21+IS3,C \ 2153’0’
where N ‘ i
2'Szc={reR": 27"z € S5}
We may assume that ||z]] < 2y/log M on R; and consequently

]| < 2'\/log M

on R; for any ¢ > 0. Now by Lemma 3,

[ Bl = alp(e)ds <er [ (lal® + Dpta)do
R;

R;

< ¢1(21og®? M + 1)/ p(x)dz
' /2 L 2i
: 2m)"/2elog™ >t M
< 9%y log®/? M <( )" e 0]%4 ) A(R;), (87)

where ¢1(n) is some constant, and to be exact,
co = 2(2m) 7" 2¢y

The factor 2 comes from the fact that log“/ 2 M > 1 for M > 3 (which trivially
can be assumed without losing generality). A(R;) is roughly bounded by

AMRi) <V sup 2| < 2"V, log™® M

r€ER;

By substitution into (87), we find out that

Eld§ X, = alpla)do < 3 [ Eldf[ X, = alp(a)do

S3,c
/2-1 / /2—a—1 2% -1
log" ™ M (2m)"/ 2elog"* T M
(n+a)i g
<cVpe— g 2 ( )
and now it is rather obvious that the sum does not pose problems. O

Lemma 19. Assume that (2) holds, « > n and € < 1/2 (only small values of
€ matter in any case). Then there exists a threshold My(n, k, a, €) such that for
any M > My(n, k, o, €), we have

1 n—a/2—1M
/ E[df | X1 = z]p(z)dz < celog 1%
S3 ’ M

for some constant c(n, k, ).
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Proof. We decompose

[ Bl 1% = (e = Y / Bl 4| X = alp(a)de
3 y 3,1

+[ Eld} y| X1 = z]p(z)dz.
S3.c

By Lemma 17,
1 n—a/2—1 M
Z Eldf | X1 = z]p(z)dr < ce————— ZQ (loge ' +i+1).
SS 2
Lemma 18 finalizes the proof. O

9 Proof of Theorem 2

Previously we have examined the regions S7, So and S3, which were defined in
terms of € and M. We decompose

(M 1og®/ =" M)B[d5,] = Mog®/* = M( [ Bl ,|X, = alp(a)da
S1

+ [ Eldi | X0 = 2lp(z)de + [ Eldy,[ Xy = z]p(x)dr)
Sa Ss

=Dem+Ioen+ 150
with
I = Mlog®? 7 M [ BldS | Xy = a]p(x)dz

S1

Ipen = Mlog®? = M [ BldS | Xy = 2]p(x)d
Sa

Iy = Mlog®?™ =" M [ BlAS | Xy = alp(a)da.
S3

Lemmas 9 and 19 show that

lim limsup Iy ¢, a7 + I3,¢,p0 = 0.
=0 Moo

Also by Lemma 15,

n—e/2=1py, [ (1
lim li I . = = — ) dy.
tigtimsu T s = i [T (5) o

We conclude that
lim (M log®/?™'=" M)Ed,] = lim i (Iyenr+ Taer+ Is,enr)
M—o0 e—

oM
2n a/2 17’LV / ( )
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