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Abstract

A novel (to our knowledge) nonassociative Octonionic ternary gauge
field theory is explicitly constructed based on a ternary-bracket structure
involving the octonion algebra. The ternary bracket was defined earlier
by Yamazaki. The antisymmetric rank-two field strength Fµν is defined in
terms of the ternary-bracket [Bµ, Bν ,g] involving an auxiliary octonionic-
valued coupling g = gaea . The ternary bracket cannot be rewritten
in terms of 2-brackets, [A, B, C] 6= 1

4
[[A, B], C]. It is found that gauge-

invariant matter kinetic terms for an octonionic-valued scalar field can be
introduced in the action if one starts instead with an octonionic-valued
rank-three antisymmetric field strength Fµνρ = ∂ρAµν + [Aµν , Aρ,g]+
permutations, which is defined in terms of an antisymmetric tensor field
of rank two Aµν = Aa

µνea and Aµ = Aa
µea. We conclude with some

preliminary steps towards the construction of generalized ternary gauge
field theories involving both 3-Lie algebras and octonions.

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics,
see [1], [2], [3], [4], [7], [8], for references, among many others. A thorough dis-
cussion of the relevance of ternary and nonassociative structures in Physics has
been provided in [5], [9], [10]. The earliest example of nonassociative structures
in Physics can be found in Einstein’s special theory of relativity. Only colin-
ear velocities are commutative and associative, but in general, the addition of
non-colinear velocities is non-associative and non-commutative.

Recently, tremendous activity has been launched by the seminal works of
Bagger, Lambert and Gustavsson (BLG) [12], [13] who proposed a Chern-
Simons type Lagrangian describing the world-volume theory of multiple M2-
branes. The original BLG theory requires the algebraic structures of generalized
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Lie 3-algebras and also of nonassociative algebras. Later developments by [14]
provided a 3D Chern-Simons matter theory with N = 6 supersymmetry and
with gauge groups U(N)× U(N), SU(N)× SU(N). The original construction
of [14] did not require generalized Lie 3-algebras, but it was later realized that it
could be understood as a special class of models based on Hermitian 3-algebras
[15], [16].

A Nonassociative Gauge theory based on the Moufang S7 loop product (not
a Lie algebra) has been constructed by [17]. Taking the algebra of octonions
with a unit norm as the Moufang S7-loop, one reproduces a nonassociative
octonionic gauge theory which is a generalization of the Maxwell and Yang-
Mills gauge theories based on Lie algebras. BPST -like instantons solutions
in D = 8 were also found. These solutions represented the physical degrees
of freedom of the transverse 8-dimensions of superstring solitons in D = 10
preserving one and two of the 16 spacetime supersymmetries. Nonassociative
deformations of Yang-Mills Gauge theories involving the left and right bimodules
of the octonionic algebra were presented by [18].

The novel (to our knowledge) nonassociative octonionic ternary gauge theory
developed in this work differs from the nonassociative gauge theories of [17]
in many respects, mainly that it is based on a ternary bracket involving the
octonion algebra that was proposed by Yamazaki [11]. It also differs from the
work by [12], [13] in that our octonionic-valued gauge fields Ba

µea; a = 0, 1, 2, ....7
are not, and cannot be represented, in terms of matrices Aµ = Aab

µ f cd
ab =

(Ãµ)cd, defined in terms of f cd
ab which are the structure constants of the 3-Lie

algebra [ta, tb, t
c] = f cd

ab td. This construction is not unlike writing the matrices
Aµ = Aa

µf bc
a = (Aµ)bc of ordinary Yang-Mills gauge theory in terms of the

adjoint representation of the gauge algebra : [ta, tb] = f c
ab tc. Furthermore,

our field strengths Fµν are explicitly defined in terms of a 3-bracket [Bµ, Bν ,g]
involving an auxiliary octonionic-valued scalar field g = gaea which plays the
role of a ”coupling” function. Whereas the definition of Fµν by [12], [13] was
based on the standard commutator of the matrices (Ãµ)a

c (Ãν)c
b − (Ãν)a

c (Ãµ)c
b.

The nonassociative and noncommutative octonionic ternary gauge field the-
ory is based on a ternary-bracket structure involving the octonion algebra. The
ternary bracket obeys the fundamental identity (generalized Jacobi identity)
and was developed earlier by Yamazaki [11]. Given an octonion X it can be
expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (2)

where the fully antisymmetric structure constants cijk are taken to be 1 for the
combinations (124), (235), (346), (457), (561), (672), (713). The octonion conju-
gate is defined by ēo = eo, ēm = −em

2



X̄ = xo eo − xm em. (3)

and the norm is

N(X) = | < X X > | 12 = | Real (X̄ X) | 12 = | (xo xo + xk xk) | 12 . (4)

The inverse

X−1 =
X̄

< X X >
, X−1X = XX−1 = 1. (5)

The non-vanishing associator is defined by

(X,Y,Z) = (XY)Z−X(YZ) (6)

In particular, the associator

(ei, ej , ek) = (eiej)ek − ei(ejek) = 2 dijkl el

dijkl =
1
3!

εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (7)

Yamazaki [11] defined the three-bracket as

[ u, v, x ] ≡ Du,v x =
1
2

( u(vx)− v(ux) + (xv)u − (xu)v + u(xv) − (ux)v ) .

(8)
After a straightforward calculation when the indices span the imaginary ele-
ments a, b, c, d = 1, 2, 3, ......, 7, and using the relationship [21]

cabd cdcm = − dabcm + δac δbm − δbc δam (9a)

the ternary bracket becomes

[ ea, eb, ec ] = fabcd ed = [ dabcd + 2 δac δbd − 2 δbc δad ] ed (9b)

whereas e0 has a vanishing ternary bracket

[ ea, eb, e0 ] = [ ea, e0, eb ] = [ e0, ea, eb ] = 0 (9c)

It is important to note that fabcd 6= ± cabd cdcm otherwise one would have been
able to rewrite the ternary bracket in terms of ordinary 2-brackets as follows
[ea, eb, ec] ∼ 1

4 [ [ea, eb], ec ].
The ternary bracket (8) obeys the fundamental identity

[ [x, u, v], y, z ] + [ x, [y, u, v], z ] + [ x, y, [z, u, v] ] = [ [x, y, z], u, v ]
(10)

A bilinear positive symmetric product < u, v >=< v, u > is required such that
that the ternary bracket/derivation obeys what is called the metric compatibility
condition
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< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = 0 (11)

The symmetric product remains invariant under derivations. There is also the
additional symmetry condition required by [11]

< [u, v, x], y > = < [x, y, u], y > (12)

The ternary product provided by Yamazaki (8) obeys the key fundamental iden-
tity (10) and leads to the structure constants fabcd that are pairwise antisym-
metric but are not totally antisymmetric in all of their indices : fabcd = −fbacd =
−fabdc = fcdab; however : fabcd 6= fcabd; and fabcd 6= − fdbca. The associator
ternary operation for octonions (x, y, z) = (xy)z − x(yz) does not obey the fun-
damental identity (10) as emphasized by [11]. For this reason we cannot use the
associator to construct the 3-bracket.

We define the field strength in terms of the ternary bracket as

Fµν = ∂µBν − ∂νBµ + [ Bµ, Bν , g ] (13)

where g = gaea is an octonionic-valued ”coupling” function which is not inert
under octonionic gauge transformations. Only the scalar part of g remains
invariant. Under the local gauge transformations

δ(Bm
µ em) = − (∂µΛm(x)) em + Λab(x) [ea, eb, B

c
µ ec] (14)

δ(gm em) = Λab(x) [ea, eb, g
c ec] (15)

and after some straightforward algebra involving an exchange of indices, one
can verify that the ternary field strength Fµν defined in terms of the 3-brackets
(8, 9b) transforms properly (homogeneously) under the ternary gauge trans-
formations if, and only if, the gauge parameters (functions) Λm(x); Λab(x) are
field-dependent and obey the following relationship

(∂[µΛab) Bc
ν] − (∂[µΛa) Bb

ν] gc = 0 (16a)

involving the coupling function components gc and the Bc
µ field. The antisym-

metrization of indices [µν] is performed with unit weight. Since the first term in
(16a) is also antisymmetric in the internal ab indices, the second term in (16a)
should be antisymmetric as well, and one can infer that ∂µΛa = Ba

µ ⇒ Λa(x) =∫
Ba

µdxµ. Hence one has found the field-dependent expression for Λa(x) that
leads to the field-dependent relationship for Λab(x) in terms of Ba

µ(x) and gc(x)
given by

(∂[µΛab) Bc
ν] − Ba

[µ Bb
ν] gc = 0 (16b)

The field dependence of the gauge parameter Λa(x) does not occur in ordinary
Yang-Mills theory because it is based on 2-brackets. Therefore, the gauge trans-
formations themselves, involving ternary brackets, are now highly nonlinear
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in the fields. This is one of the key differences. To sum up, if eq-(16a) is
obeyed then Fµν transforms homogeneously under the infinitesimal ternary
gauge transformations as

δ(Fm
µν em) = Λab [ ea, eb, F c

µν ec ] = Λab F c
µν f m

abc em ⇒ δFm
µν = Λab F c

µν f m
abc

(17)
The result (17) is a direct consequence of the fundamental identity (10) because
the 3-bracket (8) is defined as a derivation

[ [ea, eb, Bµ], Bν , g ] + [ Bµ, [ea, eb, Bν ], g ] + [ Bµ, Bν , [ea, eb, g] ] =

[ ea, eb, [Bµ, Bν , g] ] (18)

The parameter (function) Λ0(x) involved in the transformation δB0
µ = ∂µΛ0(x),

corresponding to the real (identity) element e0 of the octonion algebra leads to
δF 0

µν = 0, where the field strength component is Abelian-Maxwell-like F 0
µν =

∂µB0
ν−∂νB0

µ. The finite ternary transformations can be obtained by ”exponen-
tiation” as follows

F ′ = F + δF +
1
2!

δ(δF ) +
1
3!

(δ(δ(δF ))) + .... (19)

where δ(Fm
µν em) = Λab[ea, eb, F

c
µνec]; δ(δF ) = Λmn[ em, en,Λab[ea, eb, F

c
µνec] ];

...... Given the octonionic valued field strength Fµν = F a
µν ea , with real valued

components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7, a gauge invariant action under ternary
infinitesimal gauge transformations in D-dim is

S = − 1
4κ2

∫
dDx < Fµν Fµν > (20)

κ is a numerical parameter introduced to make the action dimensionless and it
can be set to unity for convenience. The < > operation extracting the e0 part
is defined as < XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under infinitesimal
ternary gauge transformations of the action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν ec Λab [ea, eb, Fµν n en] > +

− 1
4

∫
dDx < Λab [ea, eb, F c

µν ec] Fµν n en > =

−1
4

∫
dDx Λab F c

µν Fµν n ( < ec fabnk ek > + < fabck ek en > ) = 0.

(21)
since

< ec fabnk ek > + < fabck ek en > = fabnk δck + fabck δkn = fabnc + fabcn =
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[ dabnc +2 δan δbc − 2 δbn δac ] + [ dabcn +2 δac δbn − 2 δbc δan ] = 0 (22)

because dabnc+dabcn = 0; dnabc+dcabn = 0, due to the total antisymmetry of the
associator structure constant dnabc under the exchange of any pair of indices. In-
variance δS = 0, only occurs if, and only if, δF = Λab[ea, eb, F

cec] 6= Λab[F cec, ea, eb].
The ordering inside the 3-bracket is crucial. One can check that if one sets
δF = Λab[F cec, ea, eb], the variation δS leads to a term in the integral which is
not zero. However, under δF = Λab[ea, eb, F

cec], the variation δS is indeed zero
as shown. This is a consequence of the fact that [ea, eb, ec] 6= [ec, ea, eb] when
the 3-bracket is given by eq-(8).

To show that the action is invariant under finite ternary gauge transforma-
tions requires to follow a few steps. Firstly, one defines

< x y > ≡ Real [ x̄ y ] =
1
2

( x̄ y + ȳ x ) ⇒ < x y > = < y x > (23)

Despite nonassociativity, the very special conditions

x(x̄u) = (xx̄)u; x(ux̄) = (xu)x̄; x(xu) = (xx)u; x(ux) = (xu)x (24)

are obeyed for octonions resulting from the Moufang identities. Despite that
(xy)z 6= x(yz) one has that their real parts obey

Real [ (x y) z ] = Real [x (y z) ] (25)

Due to the nonassociativity of the algebra, in general one has that (UF )U−1 6=
U(FU−1). However, if and only if U−1 = Ū ⇒ ŪU = UŪ = 1, as a result of the
the very special conditions (24) one has that F ′ = (UF )U−1 = U(FU−1) =
UFU−1 = UFŪ is unambiguously defined. One can equate the result of the
exponentiation procedure in eq-(19) to the expression

F ′ = UFU−1 = UFŪ = eΣk(Λab)ek (F c tc) e−Σk(Λab)ek ; k = 1, 2, 3, ...., 7.
(26)

where Σk(Λab)ek is a complicated function of Λab. It yields the finite gauge
transformations which agree with the infinitesimal ternary ones when Λab(x) are
infinitesimals. For instance, to lowest order in Λab, one has that Σk satisfies
2Σkckcd = Λabfabcd and which follows by comparing the transformations in (19)
to those in (26), to lowest order.

In ordinary associative Yang-Mills involving 2-brackets, it is well known that
the finite gauge transformations are

(Fn
µν)′ Tn = eiΛmTm Fn

µνTn e−iΛmTm . (27)

where Tm are the Hermitian Lie-algebra generators obeying the commutation
relations [Tm, Tn] = ifmnpTp. It is a challenging work to derive the explicit
functional dependence Σk(Λab)ek in eq-(26) that matches the transformation in
eq-(19), to all orders in Λab, for the ternary-brackets case.
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Dropping the spacetime indices for convenience in the expressions for Fµν , Fµν ,
and by repeated use of eqs-(24-25), when U−1 = Ū , the action density is also
invariant under (unambiguously defined) gauge transformations of the form
F ′ = UFU−1 = UFŪ ,

< F ′ F ′ > = Re [F̄ ′ F ′] = Re [(UF̄U−1) (UFU−1)] = Re [(UF̄ ) ( U−1 (UF U−1) )] =

Re [(U F̄ ) (U−1 U) (FU−1)] = Re [(UF̄ ) (FU−1)] = Re [(FU−1) (UF̄ )] =

Re [F ( U−1 (U F̄ ) )] = Re [F (U−1U) F̄ ] = Re [F F̄ ] = Re [F̄ F ] = < F F > .
(28)

If the action (20) is invariant under finite ternary gauge transformations one
can impose the condition S[Aa

µ; ga] = S[(Aa
µ)′; (ga)′ = Ca], where C = Caea

is a constant octonionic-valued coupling which can be obtained from gauging
the octonionic-valued coupling function g(x) to a constant C. The physical
interpretation of the octonionic-valued coupling g = gaea deserves further in-
vestigation. The real part of the coupling g0 can be set to a constant, since
g0 is inert under gauge transformations, and it decouples from the definition of
the field strength Fµν because e0 has a vanishing 3-bracket with other elements
of the octonion algebra. The coupling g0 = constant can be incorporated into
the field strength in the same fashion as it occurs in ordinary Yang-Mills. One
may rewrite the physical coupling g0 as a prefactor in front of the 3-bracket as
Fµν = ∂µBν−∂νBµ+g0[Bµ, Bν ,g], and reabsorb g0 into the definition of the Bµ

field as Fµν = 1
g0

(
∂µ(g0Bν)− ∂ν(g0Bµ) + [g0Bµ, g0Bν ,g]

)
. Thus Fµν → 1

g0 Fµν

and the action is rescaled as S → 1
(g0)2 S as it is customary in the Yang-Mills

action.
Having formulated a gauge invariant action (20) the next step is to introduce

gauge invariant matter terms like (DµΦ)2 where Φ = Φaea is an octonionic-
valued scalar and DµΦ = ∂µΦ + [Aµ,Φ,g]. However, there is a caveat. If
derivative DµΦ transforms homogeneously, when δΦ = Λab[ea, eb,Φ], one arrives
to the conditions (∂µΛab)Φc − (∂µΛa)Φbgc = 0 which would impose additional
spurious constraints on the scalar field Φ. For this reason, gauge invariant
matter terms in the action can be introduced if one starts instead with an
octonionic-valued rank-three antisymmetric field strength

Fµνρ = ∂ρAµν + ∂µAνρ + ∂νAρµ +

[Aµν , Aρ, g] + [Aνρ, Aµ, g] + [Aρµ, Aν , g] (29)

defined in terms of the antisymmetric tensor field of rank two Aµν = Aa
µνea, the

field Aµ = Aa
µea, and the auxiliary coupling function g = gaea. Under the local

gauge transformations

δ(Ad
µνed) = ∂[µΛd

ν](x) ed + Λab(x) [ea, eb, Ac
µνec] (30a)

δ(Ad
µed) = − (∂µΛd(x)) ed + Λab(x) [ea, eb, Ac

µec]; δ(gded) = Λab(x) [ea, eb, g
cec];

(30b)
the antisymmetric field strength Fµνρ will transform homogeneously
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δ(F d
µνρed) = Λab [ea, eb, F c

µνρec] (30c)

if, and only if, the following conditions are met

∂[µΛa
ν] Ab

ρ gc − Aa
µν (∂ρΛb) gc + (∂ρΛab) Ac

µν = 0 (31)

in conjunction with similar equations obtained by a permutation of the space-
time indices. A particular solution to the field-dependent conditions on the
gauge parameters (31) is

∂ρΛb = Ab
ρ ⇒ Λb(x) =

∫ x

0

Ab
ρ(x

′) dx′ρ (32a)

∂[µΛa
ν](x) = Aa

µν(x); Λab = constant (32b)

Therefore, eqs-(32) determine the field-dependent behavior of Λa(x),Λa
ν(x) in

terms of the gauge fields Aρ, Aµν . One must emphasize that despite that Λab =
constant in (32b) this does not mean that one has rigid global transformations
for the gauge fields Aµ, Aµν in eqs-(30a, 30b), due to the fact that the gauge
parameters Λa(x),Λa

ν(x) are explicitly x-dependent !. Therefore, one has truly
local (nonlinear) gauge transformations for the gauge fields. It is true, however,
that the homogeneous transformation for the field strength δ(F d

µνρed) given by
eq-(30c) does exhibit a rigid global behavior when Λab = constant. There are
other solutions to eq-(31) besides those in eqs-(32) that do not involve setting
Λab = constant. In this case there is also a field dependence on the coupling
function gc(x). For simplicity, we shall focus only in the solutions in eqs-(32).

Omitting internal indices, now one can introduce gauge invariant scalar mat-
ter by defining the covariant derivative in an explicit nonlinear manner as

DµΦ = ∂µΦ + l2 [Aµν , Aν , Φ, ] (33)

the above nonlinear covariant derivative is defined both in terms of Aµ and Aµν .
l is a parameter of length dimensions that must be introduced because Aµν has
dimensions of length−2. One may verify that DµΦ transforms homogeneously
when δΦ = Λab[ea, eb,Φ] if, and only if, the same conditions in eqs-(31) are
satisfied. In this case no additional spurious constraints on the fields are in-
troduced. Hence, the same field-dependent conditions on the gauge parameters
given by eqs-(32a,32b) are still valid. Furthermore, an action

S =
∫

dDx < − 1
2

1
(3!κ2)

Fµνρ Fµνρ +
1
2

(DµΦ)2 > (34)

is invariant under the gauge transformations given by eqs-(30); κ is a parameter
of suitable dimensions introduced in order to render the action dimensionless.
The motivation in constructing an octonionic-valued field strength in terms of
ternary brackets is because the ordinary 2-bracket does not obey the Jacobi
identity
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[ ei, [ ej , ek ] ] + [ ej , [ ek, ei ] ] + [ ek, [ ei, ej ] ] = 3 dijkl el 6= 0 (35)

If one has the ordinary Yang-Mills expression for the field strength

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] (36)

because the 2-bracket does not obey the Jacobi identity, one has an extra (spu-
rious) term in the expression for

[ Dµ, Dν ] Φ = [ Fµν , Φ ] + ( Aµ, Aν , Φ ) (37)

given by the crucial contribution of the non-vanishing associator (Aµ, Aν ,Φ) =
(AµAν)Φ − Aµ(AνΦ) 6= 0. For this reason, due to the non-vanishing condition
(35), the ordinary Yang-Mills field strength does not transform homogeneously
under ordinary gauge transformations involving the parameters Λ = Λaea

δAµ = ∂µΛ + [Aµ,Λ] (38)

and it yields an extra contribution of the form

δFµν = [Fµν ,Λ] + ( Λ, Aµ, Aν) (39)

As a result of the additional contribution (Λ, Aµ, Aν) in eq-(39), the ordinary
Yang-Mills action S =

∫
< FµνFµν > will no longer be gauge invariant. Under

infinitesimal variations eqs-(38), the variation of the action is no longer zero but
receives spurious contributions of the form δS = −4F l

µνΛiAµjAνkdijkl 6= 0 due
to the non-associativity of the octonion algebra.

To finalize we discuss further constructions, like having an octonionic-valued
and SU(N)-valued gauge field Aµ = Aam

µ (ea ⊗ Tm) involving the SU(N) alge-
bra generators Tm,m = 1, 2, 3, ...., N2 − 1 and the octonion algebra generators
ea, a = 0, 1, 2, 3, ...., 7; i.e. one has octonionic-valued components for the SU(N)
gauge fields. The commutator is

[ Aµ, Aν ] = [ Aam
µ (ea ⊗ Tm), Abn

ν (eb ⊗ Tn) ] =

1
2

Aam
µ Abn

ν {ea, eb} ⊗ [Tm, Tn] +
1
2

Aam
µ Abn

ν [ea, eb]⊗ {Tm, Tn} (40)

where
{ea, eb} = − 2 δab eo, [ea, eb] = 2 cabc ec (41)

and for the SU(N) Hermitian generators one has

{Tm, Tn} =
1
N

δmn + dmnp Tp, [Tm, Tn] = i fmnp Tp (42)

One may note that the r.h.s of (40) involves both commutators and anti-
commutators. Due to the fact that the octonion algebra does not obey the
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Jacobi identities this will spoil the gauge invariance of typical Yang-Mills ac-
tions as described before. Let us have instead a ternary Lie algebra (3-Lie
algebra) obeying the ternary commutation relations

[ Tm, Tn, Tp ] = fmnpq Tq (43)

and such that the ternary-bracket structure-constants fmnpq obey the fun-
damental identity. A 3-Lie-algebra and octonionic-valued field is defined by
Aµ ≡ Ama

µ (Tm ⊗ ea). However, the triple commutator

[ Aµ, Aν , Aρ ] = [ Ami
µ (Tm ⊗ ei), Anj

ν (Tn ⊗ ej), Apk
ρ (Tp ⊗ ek) ] (44)

would furnish a very complicated expression for the r.h.s of eq-(44). To simplify
matters one could define the ternary bracket as

[ Aµ, Aν , Aρ ] ≡ Ami
µ Anj

ν Apk
ρ [Tm, Tn, Tp]⊗ [ei, ej , ek] =

Ami
µ Anj

ν Apk
ρ fmnpq fijkl (Tq ⊗ el) (45)

so that one has closure in the r.h.s of eq-(45). It is warranted to explore further
these generalized ternary gauge field theories involving 3-Lie algebras and octo-
nions. In particular, the plausible physical applications of the action (34) and
the role of these octonionic ternary gauge theories in M-theory.
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