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Abstract: A Smarandache multi-space is a union of n spaces A1, A2, · · · , An

with some additional conditions holding. Combining Smarandache multi-

spaces with linear vector spaces in classical linear algebra, the conception

of multi-vector spaces is introduced. Some characteristics of a multi-vector

space are obtained in this paper.
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1. Introduction

The notion of multi-spaces is introduced by Smarandache in [6] under his idea
of hybrid mathematics: combining different fields into a unifying field([7]), which is
defined as follows.

Definition 1.1 For any integer i, 1 ≤ i ≤ n let Ai be a set with ensemble of
law Li, and the intersection of k sets Ai1 , Ai2 , · · · , Aik of them constrains the law
I(Ai1, Ai2 , · · · , Aik). Then the union of Ai, 1 ≤ i ≤ n

Ã =
n⋃

i=1

Ai

is called a multi-space.

As we known, a vector space or linear space consists of the following:
(i) a field F of scalars;
(ii) a set V of objects, called vectors;
(iii) an operation, called vector addition, which associates with each pair of

vectors a,b in V a vector a + b in V , called the sum of a and b, in such a way that
(1) addition is commutative, a + b = b + a;
(2) addition is associative, (a + b) + c = a + (b + c);
(3) there is a unique vector 0 in V , called the zero vector, such that a + 0 = a

for all a in V ;
(4) for each vector a in V there is a unique vector −a in V such that a + (−a) = 0;
(iv) an operation ·, called scalar multiplication, which associates with each scalar

k in F and a vector a in V a vector k · a in V , called the product of k with a, in
such a way that

(1) 1 · a = a for every a in V ;
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(2) (k1k2) · a = k1(k2 · a);
(3) k · (a + b) = k · a + k · b;
(4) (k1 + k2) · a = k1 · a + k2 · a.

We say that V is a vector space over the field F , denoted by (V ; +, ·).
By combining Smarandache multi-spaces with linear spaces, a new kind of alge-

braic structure called multi-vector space is found, which is defined in the following.

Definition 1.2 Let Ṽ =
k⋃

i=1
Vi be a complete multi-space with binary operation set

O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃

i=1
Fi a multi-filed space with double binary

operation set O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k

and ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ ,
(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multipli-

cation ·i;
(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);
(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

if all those operation results exist, then Ṽ is called a multi-vector space on the multi-
filed space F̃ with a binary operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

For subsets Ṽ1 ⊂ Ṽ and F̃1 ⊂ F̃ , if (Ṽ1; F̃1) is also a multi-vector space, then call
(Ṽ1; F̃1) a multi-vector subspace of (Ṽ ; F̃ ).

The subject of this paper is to find some characteristics of a multi-vector space.
For terminology and notation not defined here can be seen in [1], [3] for linear alge-
braic terminologies and in [2], [4] − [11] for multi-spaces and logics.

2. Characteristics of a multi-vector space

First, we have the following result for multi-vector subspace of a multi-vector
space.
Theorem 2.1 For a multi-vector space (Ṽ ; F̃ ), Ṽ1 ⊂ Ṽ and F̃1 ⊂ F̃ , (Ṽ1; F̃1) is
a multi-vector subspace of (Ṽ ; F̃ ) if and only if for any vector additive +̇, scalar
multiplication · in (Ṽ1; F̃1) and ∀a,b ∈ Ṽ , ∀α ∈ F̃ ,

α · a+̇b ∈ Ṽ1

if their operation result exist.

Proof Denote by Ṽ =
k⋃

i=1
Vi, F̃ =

k⋃
i=1

Fi. Notice that Ṽ1 =
k⋃

i=1
(Ṽ1

⋂
Vi). By

definition, we know that (Ṽ1; F̃1) is a multi-vector subspace of (Ṽ ; F̃ ) if and only if
for any integer i, 1 ≤ i ≤ k, (Ṽ1

⋂
Vi; +̇i, ·i) is a vector subspace of (Vi, +̇i, ·i) and F̃1

is a multi-filed subspace of F̃ or Ṽ1
⋂

Vi = ∅.
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According to the criterion for linear subspaces of a linear space ([3]), we know
that for any integer i, 1 ≤ i ≤ k, (Ṽ1

⋂
Vi; +̇i, ·i) is a vector subspace of (Vi, +̇i, ·i) if

and only if for ∀a,b ∈ Ṽ1
⋂

Vi, α ∈ Fi,

α ·i a+̇ib ∈ Ṽ1

⋂
Vi.

That is, for any vector additive +̇, scalar multiplication · in (Ṽ1; F̃1) and ∀a,b ∈ Ṽ ,
∀α ∈ F̃ , if α · a+̇b exists, then α · a+̇b ∈ Ṽ1. ♮

Corollary 2.1 Let (Ũ ; F̃1), (W̃ ; F̃2) be two multi-vector subspaces of a multi-vector
space (Ṽ ; F̃ ). Then (Ũ

⋂
W̃ ; F̃1

⋂
F̃2) is a multi-vector space.

For a multi-vector space (Ṽ ; F̃ ), vectors a1, a2, · · · , an ∈ Ṽ , if there are scalars
α1, α2, · · · , αn ∈ F̃ such that

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where 0 ∈ Ṽ is an unit under an operation + in Ṽ and +̇i, ·i ∈ O(Ṽ ), then the
vectors a1, a2, · · · , an are said to be linearly dependent. Otherwise, a1, a2, · · · , an to
be linearly independent.

Notice that in a multi-vector space, there are two cases for linearly independent
vectors a1, a2, · · · , an:

(i) for any scalars α1, α2, · · · , αn ∈ F̃ , if

α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an = 0,

where 0 is a unit of Ṽ under an operation + in O(Ṽ ), then α1 = 0+1
, α2 =

0+2
, · · · , αn = 0+n

, where 0+i
, 1 ≤ i ≤ n are the units under the operation +i

in F̃ .
(ii) the operation result of α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · +̇n−1αn ·n an does not exist.

Now for a subset Ŝ ⊂ Ṽ , define its linearly spanning set
〈
Ŝ

〉
to be

〈
Ŝ

〉
= { a | a = α1 ·1 a1+̇1α2 ·2 a2+̇2 · · · ∈ Ṽ , ai ∈ Ŝ, αi ∈ F̃ , i ≥ 1}.

For a multi-vector space (Ṽ ; F̃ ), if there exists a subset Ŝ, Ŝ ⊂ Ṽ such that Ṽ =
〈
Ŝ

〉
,

then we say Ŝ is a linearly spanning set of the multi-vector space Ṽ . If the vectors
in a linearly spanning set Ŝ of the multi-vector space Ṽ are linearly independent,
then Ŝ is said to be a basis of Ṽ .

Theorem 2.2 Any multi-vector space (Ṽ ; F̃ ) has a basis.

Proof Assume Ṽ =
k⋃

i=1
Vi, F̃ =

k⋃
i=1

Fi and the basis of the vector space (Vi; +̇i, ·i)

is ∆i = {ai1, ai2, · · · , aini
}, 1 ≤ i ≤ k. Define
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∆̂ =
k⋃

i=1

∆i.

Then ∆̂ is a linearly spanning set for Ṽ by definition.
If vectors in ∆̂ are linearly independent, then ∆̂ is a basis of Ṽ . Otherwise,

choose a vector b1 ∈ ∆̂ and define ∆̂1 = ∆̂ \ {b1}.
If we have obtained the set ∆̂s, s ≥ 1 and it is not a basis, choose a vector

bs+1 ∈ ∆̂s and define ∆̂s+1 = ∆̂s \ {bs+1}.
If the vectors in ∆̂s+1 are linearly independent, then ∆̂s+1 is a basis of Ṽ . Other-

wise, we can define the set ∆̂s+2. Continue this process. Notice that for any integer
i, 1 ≤ i ≤ k, the vectors in ∆i are linearly independent. Therefore, we can finally
get a basis of Ṽ . ♮

Now we consider the finite-dimensional multi-vector space. A multi-vector space
Ṽ is finite-dimensional if it has a finite basis. By Theorem 2.2, if for any integer
i, 1 ≤ i ≤ k, the vector space (Vi; +i, ·i) is finite-dimensional, then (Ṽ ; F̃ ) is finite-
dimensional. On the other hand, if there is an integer i0, 1 ≤ i0 ≤ k, such that the
vector space (Vi0; +i0, ·i0) is infinite-dimensional, then (Ṽ ; F̃ ) is infinite-dimensional.
This enables us to get the following corollary.

Corollary 2.2 Let (Ṽ ; F̃ ) be a multi-vector space with Ṽ =
k⋃

i=1
Vi, F̃ =

k⋃
i=1

Fi. Then

(Ṽ ; F̃ ) is finite-dimensional if and only if for any integer i, 1 ≤ i ≤ k, (Vi; +i, ·i) is
finite-dimensional.

Theorem 2.3 For a finite-dimensional multi-vector space (Ṽ ; F̃ ), any two bases
have the same number of vectors.

Proof Let Ṽ =
k⋃

i=1
Vi and F̃ =

k⋃
i=1

Fi. The proof is by the induction on k. For

k = 1, the assertion is true by Theorem 4 of Chapter 2 in [3].
For the case of k = 2, notice that by a result in linearly vector space theory (see

also [3]), for two subspaces W1, W2 of a finite-dimensional vector space, if the basis
of W1

⋂
W2 is {a1, a2, · · · , at}, then the basis of W1

⋃
W2 is

{a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1
, ct+1, ct+2, · · · , cdimW2

},

where, {a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1
} is a basis of W1 and {a1, a2, · · · , at,

ct+1, ct+2, · · · , cdimW2
} a basis of W2.

Whence, if Ṽ = W1
⋃

W2 and F̃ = F1
⋃

F2, then the basis of Ṽ is also

{a1, a2, · · · , at,bt+1,bt+2, · · · ,bdimW1
, ct+1, ct+2, · · · , cdimW2

}.

Assume the assertion is true for k = l, l ≥ 2. Now we consider the case of
k = l + 1. In this case, since
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Ṽ = (
l⋃

i=1

Vi)
⋃

Vl+1, F̃ = (
l⋃

i=1

Fi)
⋃

Fl+1,

by the induction assumption, we know that any two bases of the multi-vector space

(
l⋃

i=1
Vi;

l⋃
i=1

Fi) have the same number p of vectors. If the basis of (
l⋃

i=1
Vi)

⋂
Vl+1 is

{e1, e2, · · · , en}, then the basis of Ṽ is

{e1, e2, · · · , en, fn+1, fn+2, · · · , fp, gn+1, gn+2, · · · , gdimVl+1
},

where {e1, e2, · · · , en, fn+1, fn+2, · · · , fp} is a basis of (
l⋃

i=1
Vi;

l⋃
i=1

Fi) and {e1, e2, · · · , en,

gn+1, gn+2, · · · , gdimVl+1
} a basis of Vl+1. Whence, the number of vectors in a basis

of Ṽ is p + dimVl+1 − n for the case n = l + 1.
Therefore, by the induction principle, we know the assertion is true for any

integer k. ♮

The number of a finite-dimensional multi-vector space Ṽ is called its dimension,
denoted by dimṼ .

Theorem 2.4(dimensional formula) For a multi-vector space (Ṽ ; F̃ ) with Ṽ =
k⋃

i=1
Vi

and F̃ =
k⋃

i=1
Fi, the dimension dimṼ of Ṽ is

dimṼ =
k∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,k}

dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii).

Proof The proof is by induction on k. For k = 1, the formula is the trivial case
of dimṼ = dimV1. for k = 2, the formula is

dimṼ = dimV1 + dimV2 − dim(V1

⋂
dimV2),

which is true by Theorem 6 of Chapter 2 in [3].
Now assume the formula is true for k = n. Consider the case of k = n + 1.

According to the proof of Theorem 2.15, we know that

dimṼ = dim(
n⋃

i=1

Vi) + dimVn+1 − dim((
n⋃

i=1

Vi)
⋂

Vn+1)

= dim(
n⋃

i=1

Vi) + dimVn+1 − dim(
n⋃

i=1

(Vi

⋂
Vn+1))

= dimVn+1 +
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,n}

dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii)
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+
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,n}

dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii

⋂
Vn+1)

=
n∑

i=1

(−1)i−1
∑

{i1,i2,···,ii}⊂{1,2,···,k}

dim(Vi1

⋂
Vi2

⋂
· · ·

⋂
Vii).

By the induction principle, we know this formula is true for any integer k. ♮

From Theorem 2.4, we get the following additive formula for any two multi-vector
spaces.

Corollary 2.3(additive formula) For any two multi-vector spaces Ṽ1, Ṽ2,

dim(Ṽ1

⋃
Ṽ2) = dimṼ1 + dimṼ2 − dim(Ṽ1

⋂
Ṽ2).

3. Open problems for a multi-ring space

Notice that Theorem 2.3 has told us there is a similar linear theory for multi-
vector spaces, but the situation is more complex. Here, we present some open
problems for further research.

Problem 3.1 Similar to linear spaces, define linear transformations on multi-vector
spaces. Can we establish a new matrix theory for linear transformations?

Problem 3.2 Whether a multi-vector space must be a linear space?

Conjecture A There are non-linear multi-vector spaces in multi-vector spaces.

Based on Conjecture A, there is a fundamental problem for multi-vector spaces.

Problem 3.3 Can we apply multi-vector spaces to non-linear spaces?
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