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On Algebraic Multi-Vector Spaces
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Abstract: A Smarandache multi-space is a union of n spaces Ay, Ag,- -+, Ay,
with some additional conditions holding. Combining Smarandache multi-
spaces with linear vector spaces in classical linear algebra, the conception
of multi-vector spaces is introduced. Some characteristics of a multi-vector
space are obtained in this paper.
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1. Introduction

The notion of multi-spaces is introduced by Smarandache in [6] under his idea
of hybrid mathematics: combining different fields into a unifying field([7]), which is
defined as follows.

Definition 1.1 For any integer i,1 < i < n let A; be a set with ensemble of
law L;, and the intersection of k sets A;,, Ai,,--+, A, of them constrains the law
I(A;, Aiyy -, Ai ). Then the union of A;, 1 <i<n

i=1

1s called a multi-space.

As we known, a vector space or linear space consists of the following:

(7) a field F of scalars;

(77) a set V of objects, called vectors;

(7i1) an operation, called vector addition, which associates with each pair of
vectors a,b in V' a vector a+ b in V, called the sum of a and b, in such a way that

(1) addition is commutative, a4+ b = b + a;

(2) addition is associative, (a+b)+c=a+ (b + c);

(3) there is a unique vector 0 in V', called the zero vector, such that a4+ 0 =a
for all ain V;

(4) for each vector a in V'there is a unique vector —a in V' such that a + (—a) = 0;

(1v) an operation -, called scalar multiplication, which associates with each scalar
k in F and a vector a in V a vector k- a in V, called the product of k£ with a, in
such a way that

(1) 1-a=a for every a in V;
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(2) (k1k2) - a = ki(ks - a);

B)k-(a+b)=k-a+k-Db;

( ) (]f1+]{32) a—]ﬁ a+l<:2 a.
We say that V' is a vector space over the field F', denoted by (V ;+,-).

By combining Smarandache multi-spaces with linear spaces, a new kind of alge-
braic structure called multi-vector space is found, which is defined in the following.

- k
Definition 1.2 Let V = U V; be a complete multi-space with binary operation set

i=1
- , -k

OWV)=A(+i,) | 1 <i<m} and F = U F; a multi-filed space with double binary
i=1

operation set O(F) = {(44, %;) | 1 < i < k}. If for any integers i,j, 1 <i,j < k
andVa,b,c €V, ki, ky € F,

(i) (Vi; 44, ) is a vector space on F; with vector additive +; and scalar multipli-
cation -;;

(i4) (a+ib)+;c = a+;(b+;c);

(’LZ’L) (]{71 +; ]fg) ja= ]fl +; (1{32 j a)
if all those operation results exist, then V is called a multi-vector " space on the multi-
filed space F with a binary operation set O(V) denoted by (V; F).

For subsets V; € V and F;, C F, if (Vl, Fl) is also a multi-vector space, then call
(Vi; Fy) a multi-vector subspace of (V F).

The subject of this paper is to find some characteristics of a multi-vector space.
For terminology and notation not defined here can be seen in [1], [3] for linear alge-
braic terminologies and in [2], [4] — [11] for multi-spaces and logics.

2. Characteristics of a multi-vector space

First, we have the following result for multi-vector subspace of a multi-vector
space.
Theorem 2.1 For a multi-vector space (‘7, F), VicVand F, C F, (‘717}7]) is
a multi-vector subspace of (V;F) if and only if for any vector additive +, scalar
multiplication - in (\N/l7 151) andVa,b eV, Va € F,

a-atb eV,
if their operation result exist.

k
Proof Denote by V = U Vi, F = U F;. Notice that V; = U(VlﬂV) By

=1
definition, we know that (Vl7 Fl) is a multl vector subspace of (V; F) if and only if
for any integer 7,1 < ¢ < k, ng NVi +4, ) is a vector subspace of (V;, +;, ;) and F}
is a multi-filed subspace of I or Vi V; = 0.



According to the criterion for linear subspaces of a linear space ([3]), we know
that for any integer 7,1 <4 <k, (Vi Vi; +4, ) is a vector subspace of (Vj, +, ) if
and only if for Va,b € ViNV,, a € F;,

Qe a+2b c ‘710‘/;
That is, for any vector additive +, scalar multiplication - in (f/l7 ]51) and Va,b € V,

Va € F, if a - a+b exists, then a - a+b € V5. il

Corollary 2.1 Let (U Fl) (W F2) be two multi-vector subspaces of a multi-vector
space (V; F). Then (UNW; Fy N\ F) is a multi-vector space.

For a multi-vector space (V; F ), vectors aj, as, -, a, € V, if there are scalars
a1, Qa, -+, ay, € F such that

Q11 a;+10 g Aty 10y Ay = 0,

where 0 € V is an unit under an operation + in V and +;,; € O(‘N/), then the
vectors aj, as, - - -, a, are said to be linearly dependent. Otherwise, a;,as, -, a, to
be linearly independent.

Notice that in a multi-vector space, there are two cases for linearly independent
vectors aj, as, - -, a,:

(1) for any scalars oy, g, -+, @, € F,if

Q11 a;+10g g Astg - 10y Ay = 0,

where 0 is a unit of V under an operation + in O(V), then oy = 0y, =
Oty -y = 04, where 04,1 < ¢ < n are the units under the operation +;
in F.

(i) the operation result of oy -3 a;+1a -9 as+o -+ +n_10, = &, does not exist.

Now for a subset S C V, define its linearly spanning set <§ > to be

<§>:{a|a:a1-1a1—1—1a2-2a2—]—2...6‘7,&,'Eg,aieﬁ’,izl}.

For a multi-vector space (‘77 F), if there exists a subset S, S C V such that V = <§ >,

then we say Sisa linearly spanning set of the multi-vector space V. If the vectors
in a linearly spanning set S of the multi-vector space V are linearly independent,
then S is said to be a basis of V.

Theorem 2.2 Any multi-vector space (V: F) has a basis.

Proof Assume V= U Vi, F= U F; and the basis of the vector space (V;; +4, )
is A; = {aj1, a0, -+, A, } 1< < k Define



s

Then A is a linearly spanning set for V by definition.

If vectors in A are linearly independent, then A is a basis of V. Otherwise,
choose a vector by € A and define A; = A\ {by}.

If we have obtained the set As,s > 1 and it is not a basis, choose a vector
byy1 € A, and define A,y = A\ {b,1}.

If the vectors in AS+1 are linearly independent, then As+1 is a basis of V. Other-
wise, we can define the set A, . Continue this process. Notice that for any integer
1,1 < i < k, the vectors in A; are linearly independent. Therefore, we can finally
get a basis of V. b

Now we consider the finite-dimensional multi-vector space. A multi-vector space
V is finite-dimensional if it has a finite basis. By Theorem 2.2, if for any integer
i,1 < i < k, the vector space (V;; 4, ) is finite-dimensional, then (V; F) is finite-
dimensional. On the other hand, if there is an integer ig, 1 < 7y < k, such that the
vector space (Vi,: 44y, i) i infinite-dimensional, then (V; F) is infinite-dimensional.
This enables us to get the following corollary.

Corollary 2.2 Let (V F) be a multi-vector space with V= U Vi, F= U E;,. Then

=1
(V: F) is finite-dimensional if and only if for any integer i,1 < i < k, (Vl, +i, i) 1S
finite-dimensional.

Theorem 2.3 For a finite-dimensional multi-vector space (f/, ]5), any two bases
have the same number of vectors.

Proof Let V = U Vi and F = U F;. The proof is by the induction on k. For

k=1, the assertlon is true by Theorem 4 of Chapter 2 in [3].

For the case of k = 2, notice that by a result in linearly vector space theory (see
also [3]), for two subspaces Wy, W; of a finite-dimensional vector space, if the basis
of Wi Wy is {a;,as,- -, a;}, then the basis of Wy W5 is

{ala Ao, , Ay, bt+l> bt+2> T bdimW1aCt+1> Cit2," "7, Cding}a
where, {al, s,y a;, b1, biya, o, baimw, b is a basis of Wy and {a;,as, -, ay,
Cii1,Ciyo, " cdlsz} a basis of Ws.

Whence if V=W;UW, and F=F U F5, then the basis of V is also

{ala Qg, Ay, bt+l> bt+2> T bdimW1aCt+1> Cit2," "7, Cding}~

Assume the assertion is true for k = [,l > 2. Now we consider the case of
k =1+ 1. In this case, since



!
= U UW—I—Iv :(UFZ)UE+17
i=1 i=1
by the induction assumption, we know that any two bases of the multi-vector space
! 1 !

(U Vi; U F;) have the same number p of vectors. If the basis of (U V;) NV is
=1 =1 i=1
{e1,e3,---,e,}, then the basis of V' is

{e17 €2, ", €y, fn+17 fn+27 e f;m n+1,8n+2," " gdimVl+1}
where {e1,eq, -, e,, £41,f40,- -+, £,} is a basis of(U Vi; U F;) and {e;,eq, -+, €,,
Zn+1;8nt2s " -5 Bdimvi,, } @ basis of V}H Whence, the number of vectors in a basis

of V is p+ dimV, 1 —n for the case n =1+ 1.

Therefore, by the induction principle, we know the assertion is true for any
integer k. il

The number of a finite-dimensional multi-vector space V is called its dimension,
denoted by dimV.

. ok
Theorem 2.4(dimensional formula) For a multi-vector space (V; F) with V = U V;
i=1

-k .
and F'= | F;, the dimension dimV of V is

i=1

k
dimV =" (—1)""* 3 dim(Vir (\Vie (- - [ Vai)-

i=1 {i1,i2,---4i}C{1,2,--,k}

Proof The proof is by induction on k. For k = 1, the formula is the trivial case
of dimV = dimV;. for k = 2, the formula is

dimV = dimVy + dimVy — dim(V; () dimVz),

which is true by Theorem 6 of Chapter 2 in [3].
Now assume the formula is true for & = n. Consider the case of £ = n + 1.
According to the proof of Theorem 2.15, we know that

n

Vi) + dimV, 1 — dim((| ) V) ﬂ Vii1)

i=1

Cs

dimV = dzm(

@
Il
A

= dzm( Vi) + dimVy 11 — dim(

Cs
Cs

(V ﬂ Vn-‘rl

@
Il
—

=1

= dimVj1 + Z(—l)i‘l 3 dim(Va (Vi () Vis)



n

+ Z(—l)i_l > dim(Vir (Vi () [( Vi [ ) Vas1)
_1>i—1

[y

i {i1,i2,-+,ii}C{1,2,-,n}

= > dim(Via (\Via [+ (Vi)
i=1 {i1,i2,-ii} C{1,2,--,k}
By the induction principle, we know this formula is true for any integer k. il

From Theorem 2.4, we get the following additive formula for any two multi-vector
spaces.

Corollary 2.3(additive formula) For any two multi-vector spaces Vi, Vs,

dim(\~/1 U \72) = dimV; + dimVy — dim(\~/1 ﬂ \72)

3. Open problems for a multi-ring space

Notice that Theorem 2.3 has told us there is a similar linear theory for multi-
vector spaces, but the situation is more complex. Here, we present some open
problems for further research.

Problem 3.1 Similar to linear spaces, define linear transformations on multi-vector
spaces. Can we establish a new matrixz theory for linear transformations?

Problem 3.2 Whether a multi-vector space must be a linear space?
Conjecture A There are non-linear multi-vector spaces in multi-vector spaces.
Based on Conjecture A, there is a fundamental problem for multi-vector spaces.

Problem 3.3 Can we apply multi-vector spaces to non-linear spaces?
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