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Abstract:

We consider a system of two free bodies in de Sitter invariant quantum mechanics.
De Sitter invariance is understood such that a set of operators describing a system
satisfies commutation relations of the de Sitter algebra. Our approach does not in-
volve quantum field theory, de Sitter space and its geometry (metric and connection).
At very large distances the standard relative distance operator describes a well known
cosmological acceleration. In particular, the cosmological constant problem does not
exist and there is no need to involve dark energy or other fields for solving this prob-
lem. At the same time, for systems of macroscopic bodies this operator does not have
correct properties at lesser distances and should be modified. We propose a modifi-
cation which has correct properties, reproduces Newton’s gravity and the precession
of Mercury’s perihelion if the width of the de Sitter momentum distribution ¢ for a
macroscopic body is inversely proportional to its mass m. We argue that fundamen-
tal quantum theory should be based on a Galois field with a large characteristic p
which is a fundamental constant characterizing laws of physics in our Universe. Then
one can give a natural explanation that 6 = const R/(mG) where R is the radius of
the Universe (such that A = 3/R? is the cosmological constant) and G is a quantity
defining Newton’s gravity. A very rough estimation gives G ~ R/(mylInp) where my
is the nucleon mass. If R is of order 10%m then Inp is of order 10%° and therefore
p is of order exp(10%°). In the formal limit p — oo gravity disappears, i.e. in our
approach gravity is a consequence of finiteness of nature.
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Chapter 1

Introduction

1.1 The main idea of this work

Let us consider an isolated system of two particles and pose a question whether
they interact or not. In theoretical physics there is no unambiguous criterion for
answering this question. For example, in classical (i.e. non quantum) nonrelativistic
and relativistic mechanics the criterion is clear and simple: if the relative acceleration
of the particles is zero they do not interact, otherwise they interact. However, those
theories are based on Galilei and Poincare symmetries, respectively and there is no
reason to believe that such symmetries are exact symmetries of nature.

In quantum mechanics the criterion can be as follows. If F is the energy
operator of the two-particle system and F; (i = 1,2) is the energy operator of particle
1 then one can formally define the interaction operator U such that

E=E +E+U (1.1)

Therefore the criterion can be such that the particles do not interact if U = 0, i.e.
E =F, + E,.

In local quantum field theory (QFT) the criterion is also clear and simple:
the particles interact if they can exchange by virtual quanta of some fields. For
example, the electromagnetic interaction between the particles means that they can
exchange by virtual photons, the gravitational interaction - that they can exchange
by virtual gravitons etc. In that case U in Eq. (1.1) is an effective operator obtained
in the approximation when all degrees of freedom except those corresponding to the
given particles can be integrated out.

A problem with approaches based on Eq. (1.1) is that the answer should
be given in terms of invariant quantities while energies are reference frame dependent.
Therefore one should consider the two-particle mass operator. In standard Poincare
invariant theory the free mass operator is given by M = My(q) = (m?+q?)"/?+(m2+
q2)1/ 2 where the m; are the particle masses and q is the relative momentum operator.
In classical approximation q becomes the relative momentum and M, becomes a
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function of q not depending on the relative distance r between the particles. Therefore
the relative acceleration is zero and this case can be treated as noninteracting.

Consider now a two-particle system in de Sitter (dS) invariant theory. A
question arises how dS invariance should be understood on quantum level. Typically it
is understood such that QFT should be considered on dS space. However, as argued
e.g. in Ref. [1] (see also Sect. 1.3 of the present paper), the notion of spacetime
background is not physical. On quantum level the only consistent definition of dS
invariance is that the operators describing the system satisfy commutation relations
of the dS algebra. This definition does not involve General Relativity (GR), QFT, dS
space and its geometry (metric, connection etc.). Then the only consistent definition
of an elementary particle is that it is described by an irreducible representation (IR) of
the dS algebra. Therefore a possible definition of the free two-particle system can be
such that the system is described by a representation where not only the energy but
all other operators are given by sums of the corresponding single-particle operators.
In representation theory such a representation is called the tensor products of IRs.

In other words, we consider only quantum mechanics of two free particles
in dS invariant theory. In that case, as shown in Refs. [2, 3, 4] and others (see also
Sect. 2.3 of the present paper), the two-particle mass operator can be explicitly cal-
culated. It can be written as M = My(q) + V where V is an operator depending
not only on q. In classical approximation V' becomes a function depending on 7.
As a consequence, the relative acceleration is not zero and the result for the rela-
tive acceleration describes a well known cosmological repulsion (sometimes called dS
antigravity). From a formal point of view this result coincides with that obtained
in GR on dS spacetime. However, our result has been obtained without involving
Riemannian geometry, metric, connection and dS spacetime.

One might argue that the above situation contradicts the law of inertia
according to which if particles do not interact then their relative acceleration must
be zero. However, this law has been postulated in Galilei and Poincare invariant
theories and there is no reason to believe that it will be valid for other symmetries.
Another argument might be such that dS invariance implicitly implies existence of
other particles which interact with the two particles under consideration. Therefore
the above situation resembles a case when two particles not interacting with each other
are moving with different accelerations in a nonhomogeneous field and therefore their
relative acceleration is not zero. This argument has much in common with a well
known discussion of whether empty spacetime can have a curvature and whether a
nonzero curvature implies the existence of dark energy or other fields. However, as
already noted, in Sect. 1.3 we argue that fundamental quantum theory should not
involve spacetime at all. Therefore our result demonstrates that the cosmological
constant problem does not exist and the cosmological acceleration can be easily (and
naturally) explained without involving dark energy or other fields.

In QFT interactions can be only local and there are no interactions at
a distance (sometimes called direct interactions), when particles interact without



an intermediate field. In particular, a potential interaction (when the force of the
interaction depends only on the distance between the particles) can be only a good
approximation in situations when the particle velocities are much less than the speed
of light ¢. The explanation is such that if the force of the interaction depends only
on the distance between the particles and the distance is slightly changed then the
particles will feel the change immediately, but this contradicts the statement that
no interaction can be transmitted with the speed greater than the speed of light.
Although standard QFT is based on Poincare symmetry, physicists typically believe
that the notion of interaction adopted in QFT is valid for any symmetry. However,
the above discussion shows that the dS antigravity is not caused by exchange of
any virtual particles. In particular a question about the speed of propagation of dS
antigravity in not physical. In other words, the dS antigravity is an example of a
true direct interaction. It is also possible to say that the dS antigravity is not an
interaction at all but simply an inherent property of dS invariance.

On quantum level, de Sitter and anti de Sitter (AdS) symmetries are
widely used for investigating QFT in curved spacetime. However, it seems rather
paradoxical that such a simple case as a free two-body system in dS invariant theory
has not been widely discussed. According to our observations, such a situation is a
manifestation of the fact that even physicists working on dS QFT are not familiar
with basic facts about IRs of the dS algebra. It is difficult to imagine how standard
Poincare invariant quantum theory can be constructed without involving well known
results on IRs of the Poincare algebra. Therefore it is reasonable to think that when
Poincare invariance is replaced by dS one, IRs of the Poincare algebra should be
replaced by IRs of the dS algebra. However, physicists working on QFT in curved
spacetime argue that fields are more fundamental than particles and therefore there
is no need to involve IRs.

Our discussion shows that the notion of interaction depends on symmetry.
For example, when we consider a system of two particles which from the point of view
of dS symmetry are free (since they are described by a tensor product of IRs), from
the point of view of our experience based on Galilei or Poincare symmetries they are
not free since their relative acceleration is not zero. This poses a question whether
not only dS antigravity but other interactions are in fact not interactions but effective
interactions emerging when a higher symmetry is treated in terms of a lower one.

In particular, is it possible that quantum symmetry is such that on classical
level the relative acceleration of two free particles is described by the same expression
as that given by the Newton gravitational law and corrections to it? This possibility
has been first discussed in Ref. [2]. It is clear that this possibility is not in mainstream
according to which gravity is a manifestation of the graviton exchange. We will
not discuss whether or not the results on binary pulsars can be treated as a strong
indirect indication of the existence of gravitons and why gravitons have not been
experimentally detected yet. We believe that until the nature of gravity has been
unambiguously understood, different possibilities should be investigated. We believe



that a very strong argument in favor of our approach is as follows. In contrast
to theories based on Poincare and AdS symmetries, in the dS case the spectrum
of the free mass operator is not bounded below by (m; + ms). As a consequence,
it is not a problem to indicate states where the mean value of the mass operator
has an additional contribution —Gmims/r with possible corrections (here G is the
gravitational constant). A problem is to understand reasons why macroscopic bodies
have such wave functions.

If we accept dS symmetry then the first step is to investigate the structure
of dS invariant theory from the point of view of IRs of the dS algebra. This problem
is discussed in Refs. [3, 4, 1]. In Ref. [2] we discussed a possibility that gravity is
simply a manifestation of the fact that fundamental quantum theory should be based
not on complex numbers but on a Galois field with a large characteristic p which is
a fundamental constant defining the laws of physics in our Universe. This approach
to quantum theory, which we call GFQT, has been discussed in Refs. [5, 6, 7] and
other publications. In Refs. [8, 9] we discussed additional arguments in favor of our
hypothesis about gravity. We believe that the results of the present paper give strong
indications that our hypothesis is correct. Before proceeding to the derivation of the
results, we would like to discuss a general structure of fundamental quantum theory.

1.2 Remarks on the cosmological constant prob-
lem

The discovery of the cosmological repulsion (see e.g. Refs. [10, 11]) has ignited a
vast discussion on how this phenomenon should be interpreted. The majority of
authors treat this phenomenon as an indication that the cosmological constant (CC)
A in GR is positive and therefore the spacetime background has a positive curvature.
According to Refs. [12, 13], the observational data on the value of A define it with
the accuracy better than 5%. Therefore the possibilities that A = 0 or A < 0 are
practically excluded. To discuss the CC problem in greater details, we first discuss
the following well-known problem: How many independent dimensionful constants
are needed for a complete description of nature? A paper [14] represents a trialogue
between three well known scientists: M.J. Duff, L.B. Okun and G. Veneziano (see
also Ref. [15] and references therein). The results of their discussions are summarized
as follows: LBO develops the traditional approach with three constants, GV argues in
favor of at most two (within superstring theory), while MJD advocates zero. According
to Ref. [16], a possible definition of a fundamental constant might be such that it
cannot be calculated in the existing theory. We would like to give arguments in favor
of the opinion of the first author in Ref. [14]. One of our goals is to argue that the
cosmological and gravitational constants cannot be fundamental physical quantities.

Consider a measurement of a component of angular momentum. The result
depends on the system of units. As shown in quantum theory, in units 7/2 = 1 the



result is given by an integer 0,£1,+£2,.... But we can reverse the order of units and
say that in units where the angular momentum is an integer [, its value in kg-m?/sec
is (1.05457162 - 1073* - [ /2)kg - m*/sec. Which of those two values has more physical
significance” In units where the angular momentum components are integers, the
commutation relations between the components are

[M,, M,) = 2iM, [M.,M,] =2iM, [M,, M,]=2iM,

and they do not depend on any parameters. Then the meaning of [ is clear: it shows
how big the angular momentum is in comparison with the minimum nonzero value 1.
At the same time, the measurement of the angular momentum in units kg - m?/sec
reflects only a historic fact that at macroscopic conditions on the Earth in the period
between the 18th and 21st centuries people measured the angular momentum in such
units.

The fact that quantum theory can be written without the quantity 7 at
all is usually treated as a choice of units where i = 1/2 (or h = 1). We believe that a
better interpretation of this fact is simply that quantum theory tells us that physical
results for measurements of the components of angular momentum should be given in
integers. Then the question why £ is as it is, is not a matter of fundamental physics
since the answer is: because we want to measure components of angular momentum
in kg - m?/sec.

Our next example is the measurement of velocity v. Let (E, p) be a particle
four-momentum defined by its energy and momentum. Then in special relativity the
quantity I,p = E? —p?c? is an invariant which is denoted as m?c*. The reason is that
in usual situations Iop > 0 and m coincides with the standard particle mass. However,
the mathematical structure of special relativity does not impose any restrictions on
the values of observable quantities £ and p; in particular it does not prohibit the
case I,p < 0. Particles for which this case takes place are called tachyons and their
possible existence is widely discussed in the literature. The velocity vector v is defined
as v = pc?/E. The fact that any relativistic theory can be written without involving
c is usually described as a choice of units where ¢ = 1. Then for known particles the
quantity v = |v| can take only values in the range [0,1] while for tachyons it can take
values in the range (1, 00). However, we can again reverse the order of units and say
that relativistic theory tells us that for known particles the results for measurements
of velocity should be given by values in [0,1] while in general they should be given by
values in [0, 00). Then the question why c is as it is, is again not a matter of physics
since the answer is: because we want to measure velocity in m/sec.

One might pose a question whether or not the values of & and ¢ may change
with time. As far as h is concerned, this is a question that if the angular momentum
equals one then its value in kg - m?/sec will always be 1.05457162 - 1073*/2 or not.
It is obvious that this is not a problem of fundamental physics but a problem how
the units (kg, m, sec) are defined. In other words, this is a problem of metrology and
cosmology. At the same time, the value of ¢ will always be the same since the modern



definition of meter is the length which light passes during (1/(3 - 10%))sec.

It is often believed that the most fundamental constants of nature are h, ¢
and G. The units where i = ¢ = G = 1 are called Planck units. Another well known
notion is the chG cube of physical theories. The meaning is that any relativistic
theory should contain ¢, any quantum theory should contain / and any gravitational
theory should contain G. However, the above remarks indicates that the meaning
should be the opposite. In particular, relativistic theory should not contain ¢ and
quantum theory should not contain h. The problem of treating G is a key problem of
this paper and will be discussed below.

A standard phrase that relativistic theory becomes non-relativistic one
when ¢ — oo should be understood such that if relativistic theory is rewritten in
conventional (but not physical!) units then ¢ will appear and one can take the limit
¢ — 00. A more physical description of the transition is that all the velocities in
question are much less than unity. We will see in Section 2.3 that those definitions
are not equivalent. Analogously, a more physical description of the transition from
quantum to classical theory should be that all angular momenta in question are very
large rather than i — 0.

Consider now what happens if we assume that dS symmetry is funda-
mental. We will see that in our approach dS symmetry has nothing to do with dS
space but now we consider standard notion of this symmetry. The dS space is a
four-dimensional manifold in the five-dimensional space defined by

x] + a5 + a3 + ;) — x5 = R? (1.2)

In the formal limit R — oo the action of the dS group in a vicinity of the point
(0,0,0,0,24 = R) becomes the action of the Poincare group on Minkowski space. In
the literature, instead of R, the cosmological constant (CC) A = 3/R? is often used.
Then A > 0 in the dS case, A < 0 in the AdS one and A = 0 for Poincare symmetry.
The dS space can be parameterized without using the quantity R at all if instead of
zq, (a=0,1,2,3,4) we define dimensionless variables £, = z,/R. It is also clear that
the elements of the SO(1,4) group do not depend on R since they are products of
conventional and hyperbolic rotations. So the dimensionful value of R appears only
if one wishes to measure coordinates on the dS space in terms of coordinates of the
flat five-dimensional space where the dS space is embedded in. This requirement does
not have a fundamental physical meaning. Therefore the value of R defines only a
scale factor for measuring coordinates in the dS space. By analogy with ¢ and %, the
question why R is as it is, is not a matter of fundamental physics since the answer is:
because we want to measure distances in meters. In particular, there is no guaranty
that the CC is really a constant, i.e., does not change with time. It is also obvious
that if dS symmetry is assumed from the beginning then the value of A has no relation
to the value of G.

If one assumes that spacetime background is fundamental then in the spirit
of GR it is natural to think that the empty spacetime is flat, i.e., that A = 0 and this



was the subject of the well-known dispute between Einstein and de Sitter. However,
as noted above, it is now accepted that A # 0 and, although it is very small, it is
positive rather than negative. If we accept parameterization of the dS space as in Eq.
(1.2) then the metric tensor on the dS space is

Guv = N — ZEMZEV/(R2 + xpl'p) (]_3)

where p1, v, p = 0,1,2,3, n,, is the diagonal tensor with the components 1y = —n11 =
—n9o = —n33 = 1 and a summation over repeated indices is assumed. It is easy to
calculate the Christoffel symbols in the approximation where all the components of
the vector x are much less than R: T'),,, = —x,m.,,/ R?. Then a direct calculation
shows that in the nonrelativistic approximation the equation of motion for a single

particle is
a=rc’/R? (1.4)

where a and r are the acceleration and the radius vector of the particle, respectively.

Suppose now that we have a system of two noninteracting particles and
(r;,a;) (i = 1,2) are their radius vectors and accelerations, respectively. Then Eq.
(1.4) is valid for each particle if (r,a) is replaced by (r;, a;), respectively. Now if we
define the relative radius vector r = r; — ro and the relative acceleration a = a; — ay
then they will satisfy the same Eq. (1.4) which shows that the dS antigravity is
repulsive. It terms of A it reads a = Arc?/3 and therefore in the AdS case we have
attraction rather than repulsion.

The fact that even a single particle in the Universe has a nonzero acceler-
ation might be treated as contradicting the law of inertia but, as already noted, this
law has been postulated only for Galilean or Poincare symmetries and we have a = 0
in the limit R — oco. A more serious problem is that, according to standard expe-
rience, any particle moving with acceleration necessarily emits gravitational waves,
any charged particle emits electromagnetic waves etc. Does this experience work in
the dS world? This problem is intensively discussed in the literature (see e.g., Ref.
[17] and references therein). Suppose we accept that, according to GR, the loss of
energy in gravitational emission is proportional to the gravitational constant. Then
one might say that in the given case it is not legitimate to apply GR since the con-
stant GG characterizes interaction between different particles and cannot be used if
only one particle exists in the world. However, the majority of authors proceed from
the assumption that the empty dS space cannot be literally empty. If the Einstein
equations are written in the form G, + Ag,, = (87G/c*)T,, where T, is the stress-
energy tensor of matter then the case of empty space is often treated as a vacuum
state of a field with the stress-energy tensor T3¢ such that (87G/c*)Te = —Ag,,.
This field is often called dark energy. With such an approach one implicitly returns
to Einstein’s point of view that a curved space cannot be empty. Then the fact that
A # 0 is treated as a dark energy on the flat background. In other words, this is an
assumption that Poincare symmetry is fundamental while dS one is emergent.
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However, in this case a new problem arises. The corresponding quantum
theory is not renormalizable and with reasonable cutoffs, the quantity A in units
li = ¢ = 1 appears to be of order 1/i% = 1/G where [p is the Planck length. It
is obvious that since in the above theory the only dimensionful quantities in units
h =c=1are G and A, and the theory does not have other parameters, the result
that GA is of order unity seems to be natural. However, this value of A is at least
by 120 orders of magnitude greater than the experimental one. In supergravity the
disagreement can be reduced but even in best scenarios it exceeds 40 orders of mag-
nitude. Numerous efforts to solve this CC problem have not been successful so far
although many explanations have been proposed.

Many physicists argue that in the spirit of GR, the theory should not
depend on the choice of the spacetime background (a principle of background inde-
pendence) and there should not be a situation when the flat background is preferable.
Moreover, although GR has been confirmed in several experiments in Solar system, it
is not clear whether it can be extrapolated to cosmological distances. In other words,
our intuition based on GR with A = 0 cannot be always correct if A # 0. In Ref.
[18] this point of view is discussed in details. The authors argue that a general case
of Einstein’s equation is when A is present and there is no reason to believe that a
special case A = 0 is preferable.

In summary, numerous attempts to resolve the CC problem have not con-
verged to any universally accepted theory. All those attempts are based on the notion
of spacetime background and in the next section we discuss whether this notion is
physical.

1.3 Should physical theories involve spacetime
background?

From the point of view of quantum theory, any physical quantity can be
discussed only in conjunction with the operator defining this quantity. For example,
in standard quantum mechanics the quantity ¢ is a parameter, which has the meaning
of time only in classical limit since there is no operator corresponding to this quantity.
The problem of how time should be defined on quantum level is very difficult and is
discussed in a vast literature (see e.g., Refs. [19] and references therein). It has been
also well known since the 1930s [20] that, when quantum mechanics is combined with
relativity, there is no operator satisfying all the properties of the spatial position op-
erator. In other words, the coordinates cannot be exactly measured even in situations
when exact measurements are allowed by the non-relativistic uncertainty principle.
In the introductory section of the well-known textbook [21] simple arguments are
given that for a particle with mass m, the coordinates cannot be measured with the
accuracy better than the Compton wave length h/me. This fact is mentioned in
practically every textbook on quantum field theory (see e.g., Ref. [22]). Hence, the
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exact measurement is possible only either in the non-relativistic limit (when ¢ — 00)
or classical limit (when 7 — 0). Another well known example discussed in standard
textbooks on Quantum Electrodynamics (see e.g. Ref. [23]) is that in this theory
there is no way to define a photon wave function in coordinate representation.

We accept a principle that any definition of a physical quantity is a de-
scription how this quantity should be measured. In quantum theory this principle
has been already implemented but we believe that it should be valid in classical the-
ory as well. From this point of view, one can discuss if coordinates of particles can
be measured with a sufficient accuracy, while the notion of spacetime background,
regardless of whether it is flat or curved, does not have a physical meaning. Indeed,
this notion implies that spacetime coordinates are meaningful even if they refer not
to real particles but to points of a manifold which exists only in our imagination.
However, such coordinates are not measurable. To avoid this problem one might try
to treat spacetime background as a reference frame. Note that even in GR, which
is a pure classical (i.e., non-quantum) theory, the meaning of reference frame is not
clear. In standard textbooks (see e.g., Ref. [24]) the reference frame in GR is defined
as a collection of weightless bodies, each of which is characterized by three numbers
(coordinates) and is supplied by a clock. Such a notion (which resembles ether) is not
physical even on classical level and for sure it is meaningless on quantum level. There
is no doubt that GR is a great achievement of theoretical physics and has achieved
great successes in describing experimental data. At the same time, it is based on
the notions of spacetime background or reference frame, which do not have a clear
physical meaning.

In classical field theories (e.g. in classical electrodynamics), spatial co-
ordinates are meaningful only as the coordinates of test particles. However, in GR
spacetime is described not only by coordinates but also by a curvature. The philos-
ophy of GR is that matter creates spacetime curvature and in the absence of matter
spacetime should be flat. Therefore A # 0 implicitly implies that spacetime is not
empty. However, the notion of spacetime without matter is fully unphysical and, in
our opinion, it is a nonphysical feature of GR that there are solutions when mat-
ter disappears but spacetime still exists and has a curvature (a zero curvature for
Minkowski spacetime and a nonzero curvature if A # 0). This feature cannot be
justified even taking into account the fact that GR is a pure classical theory. In some
approaches (see e.g. Ref. [25]), when matter disappears, the metric tensor becomes
not the Minkowskian one but zero, i.e. spacetime disappears too. Also, as argued in
Ref. [26], the metric tensor should be dimensionful since g, dz*dz” should be scale
independent. Then the absolute value of the metric tensor is proportional to the
number of particles in the Universe.

In Loop Quantum Gravity (LQG), spacetime is treated on quantum level
as a special state of quantum gravitational field. This construction is rather compli-
cated and one of its main goals is to have a quantum generalization of spacetime such
that GR should be recovered as a classical limit of quantum theory. However, so far
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LQG has not succeeded in proving that GR is a special case of LQG in classical limit.

Another approach where spacetime is not fundamental but emergent is
based on holographic principle and the recent work by Verlinde [27]. As noted in
this paper, " Space s in the first place a device introduced to describe the positions
and movements of particles. Space is therefore literally just a storage space for infor-
mation...”. This implies that the emergent spacetime is meaningful only if matter is
present. The author of Ref. [27] states that in his approach one can recover Einstein
equations where the coordinates and curvature refer to the emergent spacetime. How-
ever, it is not clear how to treat the fact that the formal limit when matter disappears
is possible and spacetime formally remains although, if it is emergent, it cannot exist
without matter.

In quantum theory, if we have a system of particles, its wave function (rep-
resented as a Fock state or in other forms) gives the maximum possible information
about this system and there is no other way of obtaining any information about the
system except from its wave function. So the information encoded in the emergent
space should be somehow extracted from the system wave function. However, to the
best of our knowledge, there is no theory relating the emergent space with the system
wave function. Typically the emergent space is described in the same way as the
"fundamental” space, i.e. as a manifold and it is not clear how the points of this
manifold are related to the wave function. The above arguments showing that the
"fundamental” space is not physical can be applied to the emergent space as well.
In particular, the coordinates of the emergent space are not measurable and it is not
clear what is the meaning of those coordinates where there are no particles at all. It
is also known that at present the holographic principle is only a hypothesis which has
not been experimentally verified. At the same time, since the nature of gravity is a
very difficult fundamental problem, we believe that different approaches for solving
this problem should be welcome.

We believe that in view of this discussion, it is unrealistic to expect that
successful quantum theory of gravity will be based on quantization of GR or on emer-
gent spacetime. The results of GR might follow from quantum theory of gravity only
in situations when spacetime coordinates of real bodies is a good approximation while
in general the formulation of quantum theory should not involve spacetime back-
ground at all. One might take objection that coordinates of spacetime background in
GR can be treated only as parameters defining possible gauge transformations while
final physical results do not depend on these coordinates. Analogously, although the
quantity z in the Lagrangian density L(x) is not measurable, it is only an auxil-
iary tool for deriving equations of motion in classical theory and constructing Hilbert
spaces and operators in quantum theory. After this construction has been done, one
can safely forget about background coordinates and Lagrangian. In other words, a
problem is whether nonphysical quantities can be present at intermediate stages of
physical theories. This problem has a long history discussed in a vast literature.
Probably Newton was the first who introduced the notion of spacetime background
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but, as noted in a paper in Wikipedia, ”Leibniz thought instead that space was a
collection of relations between objects, given by their distance and direction from one
another”. As noted above, the assumption that spacerime exists and has a curvature
even when matter is absent is not physical. We believe that at the fundamental level
unphysical notions should not be present even at intermediate stages. So Lagrangian
can be at best treated as a hint for constructing a fundamental theory. As stated in
Ref. [21], local quantum fields and Lagrangians are rudimentary notion, which will
disappear in the ultimate quantum theory. Those ideas have much in common with
the Heisenberg S-matrix program and were rather popular till the beginning of the
1970’s. In view of successes of gauge theories they have become almost forgotten.

In summary, although the most famous successes of theoretical physics
have been obtained in theories involving spacetime background, this notion does not
have a physical meaning. Therefore a problem arises how to explain the fact that
physics seems to be local with a good approximation. In Section 2.3 it is shown
that the result of GR on the dS space given by Eq. (1.4) is simply a consequence
of dS symmetry on quantum level when semiclassical approximation works with a
good accuracy. For deriving this result there is no need to involve dS space, metric,
connection, dS QFT and other sophisticated methods. The first step in our approach
is discussed in the next section.

1.4 Symmetry on quantum level

If we accept that quantum theory should not proceed from spacetime background, a
problem arises how symmetry should be defined on quantum level. Note that each
system is described by a set of independent operators and they somehow commute
with each other. We accept that by definition, the rules how they commute define a
Lie algebra which is treated as a symmetry algebra.

Such a definition of symmetry on quantum level is in the spirit of Dirac’s
paper [28]. We believe that for understanding this Dirac’s idea the following ex-
ample might be useful. If we define how the energy should be measured (e.g., the
energy of bound states, kinetic energy etc.), we have a full knowledge about the
Hamiltonian of our system. In particular, we know how the Hamiltonian should com-
mute with other operators. In standard theory the Hamiltonian is also interpreted
as an operator responsible for evolution in time, which is considered as a classical
macroscopic parameter. In situations when this parameter is a good approximate
parameter, macroscopic transformations from the symmetry group corresponding to
the evolution in time have a meaning of evolution transformations. However, there is
no guaranty that such an interpretation is always valid (e.g., at the very early stage
of the Universe). In general, according to principles of quantum theory, self-adjoint
operators in Hilbert spaces represent observables but there is no requirement that
parameters defining a family of unitary transformations generated by a self-adjoint
operator are eigenvalues of another self-adjoint operator. A well known example from
standard quantum mechanics is that if P, is the x component of the momentum
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operator then the family of unitary transformations generated by P, is exp(iP,x/h)
where x € (—00,00) and such parameters can be identified with the spectrum of the
position operator. At the same time, the family of unitary transformations generated
by the Hamiltonian H is exp(—iHt/h) where t € (—o0,00) and those parameters
cannot be identified with a spectrum of a self-adjoint operator on the Hilbert space of
our system. In the relativistic case the parameters x can be formally identified with
the spectrum of the Newton-Wigner position operator [20] but it is well known that
this operator does not have all the required properties for the position operator. So,
although the operators exp(iP,x/h) and exp(—iHt/h) are well defined, their physical
interpretation as translations in space and time is not always valid.

The definition of the dS symmetry on quantum level is that the operators
M® (a,b = 0,1,2,3,4, M® = —M"?) describing the system under consideration
satisfy the commutation relations of the dS Lie algebra so(1,4), i.e.,

[A]\4ab7 Mcd] — _i(nachd + nbdMac . ,r]adec . nbcMad) (15)
where 1% is the diagonal metric tensor such that n® = —nl! = —p?? = 3 =
—n* = 1. These relations do not depend on any free parameters. One might say
that this is a consequence of the choice of units where 7 = ¢ = 1. However, as noted
above, any fundamental theory should not involve the quantities 7 and c.

With such a definition of symmetry on quantum level, dS symmetry looks
more natural than Poincare symmetry. In the dS case all the ten representation
operators of the symmetry algebra are angular momenta while in the Poincare case
only six of them are angular momenta and the remaining four operators represent
standard energy and momentum. If we define the operators P* as P* = M* /R then
in the formal limit when R — oo, M* — oo but the quantities P* are finite, the
relations (1.5) become the commutation relations for representation operators of the
Poincare algebra such that the dimensionful operators P* are the four-momentum
operators. Note also that the above definition of the dS symmetry has nothing to do
with dS space and its curvature.

In view of the above remarks, one might think that the dS analog of the
energy operator is M*°. However, in dS theory all the operators M® (a = 1,2, 3,4) are
on equal footing. This poses a problem whether a parameter describing the evolution
defined by the Hamiltonian is a fundamental quantity even on classical level (see Sect.
3.7).

A theory based on the above definition of the dS symmetry on quantum
level cannot involve quantities which are dimensionful in units A = ¢ = 1. In partic-
ular, we inevitably come to conclusion that the dS space, the gravitational constant
and the cosmological constant cannot be fundamental. The latter appears only as a
parameter replacing the dimensionless operators M* by the dimensionful operators
P* which have the meaning of momentum operators only if R is rather large. There-
fore the cosmological constant problem does not arise at all but instead we have a
problem why nowadays Poincare symmetry is so good approximate symmetry. This
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is rather a problem of cosmology but not quantum physics.

1.5 Remarks on semiclassical approximation in
quantum mechanics

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that a Hilbert space H is projective means that if
1 € H is a state then const 1) is the same state. The matter is that not the probability
itself but only relative probabilities of different measurement outcomes have a physical
meaning. In particular, normalization of states to one is only a matter of convention.
This observation will be important in Chap. 4 while in this and the next chapters we
will always work with states ¢ such that ||[¢|| = 1 where ||...|| is a norm. It is defined
such that if (...,...) is a scalar product in H then ||| = (¥, )2

In quantum theory every physical quantity is described by a selfadjoint
operator. Each selfadjoint operator is Hermitian i.e. satisfies the property (19, A1) =
(Atpg, 1) for any states belonging to the domain of A. If A is an operator of some
quantity then the mean value of the quantity and its uncertainty in state 1) are given
by A = (¢, Av) and AA = ||(A — A)3||, respectively. The condition that a quantity
corresponding to the operator A is semiclassical in state i) can be defined such that
|AA| < |A]. This implies that the quantity can be semiclassical only if |A4] is rather
large. In particular, if A = 0 then the quantity cannot be semiclassical.

Let B be an operator corresponding to another physical quantity and B
and AB be the mean value and the uncertainty of this quantity, respectively. We
can write AB = {A, B}/2 + [A, B]/2 where the commutator [A, B] = AB — BA
is anti-Hermitian and the anticommutator {A, B} = AB + BA is Hermitian. Let
[A, B] = —iC and C be the mean value of the operator C.

A question arises whether two physical quantities corresponding to the
operators A and B can be simultaneously semiclassical in state 1. Since ||t |]|[12|| >
|(¥1,102)], we have that

AAAB 2 S|, ({A— A, B~ B} +[4, B)) (1.6
Since (1, {A — A, B — B}) is real and (¢, [A, BJt) is imaginary, we get

AAAB > ~|C| (1.7)

N | —

This condition is known as a general uncertainty relation between two quantities. A
well known special case is that if P is the £ component of the momentum operator
and X is the operator of multiplication by z then [P, X| = —ih and ApAx > h/2.
The states where ApA = h/2 are called coherent ones. They are treated such that the
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momentum and the coordinate are simultaneously semiclassical in a maximal possible
way. A well known example is that if

¥(o) = —zeaplme = 550 — )]

then X = 2, P = py, Az = a/v/2 and Ap = h/(aV/2).

Consider first a one dimensional motion. In standard textbooks on quan-
tum mechanics, the presentation starts with a wave function ¢)(x) in coordinate space
since it is implicitly assumed that the meaning of space coordinates is known. Then
a question arises why P = —ihd/dx should be treated as the momentum operator.
The explanation is as follows.

Consider wave functions having the form ¢ (x) = exp(ipox/h)a(x) where
the amplitude a(z) has a sharp maximum near x = xy € [z, x5] such that a(z) is
not small only when = € [z1,25]. Then Az is of order x5 — x; and the condition
that the coordinate is semiclassical is Ax < |xg|. Since —ihdi(x)/dx = pop(x) —
ihexp(ipox/h)da(x)/dx, we see that 1(x) will be approximately the eigenfunction of
—thd/dz with the eigenvalue py if |poa(z)| > hlda(z)/dx|. Since |da(z)/dz| is of order
la(z)/Ax|, we have a condition |ppAx| > h. Therefore if the momentum operator
is —ihd/dx, the uncertainty of momentum Ap is of order h/Ax, |po| > Ap and this
implies that the momentum is also semiclassical. At the same time, [poAx|/27h is
approximately the number of oscillations which the exponent makes on the segment
[x1, x5]. Therefore the number of oscillations should be much greater than unity. In
particular, semiclassical approximation cannot be valid if Az is very small, but on the
other hand, Ax cannot be very large since it should be much less than x,. Another
justification of the fact that —ihd/dx is the momentum operator is that in the formal
limit 7 — 0 the Schroedinger equation becomes the Hamilton-Jacobi equation. This
discussion resembles a well known discussion on the validity of geometrical optics:
it is valid when the wave length is much less than characteristic dimensions of the
problem.

We conclude that the choice of —ihd/dx as the momentum operator is jus-
tified from the requirement that in semiclassical approximation this operator becomes
the classical momentum. However, it is obvious that this requirement does not define
the operator uniquely: any operator P such that P — P disappears in semiclassical
limit, also can be called the momentum operator.

One might say that the choice P = —ihd/dx can also be justified from the
following considerations. In nonrelativistic quantum mechanics we assume that the
theory should be invariant under the action of the Galilei group, which is a group of
transformations of Galilei spacetime. The 2 component of the momentum operator
should be the generator corresponding to spatial translations along the z axis and
—ihd/dx is precisely the required operator. In this consideration one assumes that
spacetime has a physical meaning while, as noted in Sect. 1.3, this is not the case.

As noted in Sect. 1.4, one should start not from spacetime but from a sym-
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metry algebra. Therefore in nonrelativistic quantum mechanics we should start from
the Galilei algebra and consider its IRs. For simplicity we again consider a one di-
mensional case. Let P, = P be one of representation operators in an IR of the Galilei
algebra. We can implement this IR in a Hilbert space of functions (p) such that
S22 [0(p)|Pdp < oo and P is the operator of multiplication by p, i.e. Py (p) = pi(p).
Then a question arises how the operator of the x coordinate should be defined. In
contrast with the momentum operator, the coordinate one is not defined by the rep-
resentation and so it should be defined from additional assumptions. Probably a
future quantum theory of measurements will make it possible to construct opera-
tors of physical quantities from the rules how these quantities should be measured.
However, at present we can construct necessary operators only from rather intuitive
considerations.

By analogy with the above discussion, one can say that semiclassical wave
functions should be of the form ¢ (p) = exp(—izop/h)a(p) where the amplitude a(p)
has a sharp maximum near p = py € [p1, pe] such that a(p) is not small only when
p € [p1,p2]. Then Ap is of order ps — p; and the condition that the momentum is
semiclassical is Ap < |po|. Since ihdiy(p)/dp = xo1p(p) +ihexp(—izop/h)da(p)/dp, we
see that 1 (p) will be approximately the eigenfunction of ihd/dp with the eigenvalue x
if |zoa(p)| > hl|da(p)/dp|. Since |da(p)/dp| is of order |a(p)/Ap|, we have a condition
|zoAp| > h. Therefore if the coordinate operator is X = ihd/dp, the uncertainty
of coordinate Az is of order h/Ap, |zo| > Az and this implies that the coordinate
defined in such a way is also semiclassical. We can also note that |zoAp|/27h is
approximately the number of oscillations which the exponent makes on the segment
[p1, p2] and therefore the number of oscillations should be much greater than unity.
It is also clear that semiclassical approximation cannot be valid if Ap is very small,
but on the other hand, Ap cannot be very large since it should be much less than py.

Although this definition of the coordinate operator has much in common
with standard definition of the momentum operators, several questions arise. First
of all, by analogy with the discussion about the momentum operator, one can say
that the condition that in classical limit the coordinate operator should become the
classical coordinate does not define the operator uniquely. One might require that
the coordinate operator should correspond to translations in momentum space or
be the operator of multiplication by x where the z representation is defined as a
Fourier transform of the p representation but these requirements are not justified.
The condition |zg| > Az might seem to be unphysical since z, depends on the choice
of the origin in the x space while Ax does not depend on this choice. Therefore a
conclusion whether the coordinate is semiclassical or not depends on the choice of the
reference frame. However, one can notice that not the coordinate itself has a physical
meaning but only a relative coordinate between two particles.

Nevertheless, the above definition of the coordinate operator is not fully
in line with what we think is a physical coordinate operator. To illustrate this point,
consider, for example a measurement of the distance between some particle and the
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electron in a hydrogen atom. We expect that Az cannot be less than the Bohr radius.
Therefore if xq is of order of the Bohr radius, the coordinate cannot be semiclassical.
One might think that the accuracy of the coordinate measurement can be defined as
|Ax /x| and therefore if we succeed in keeping Az to be of order of the Bohr radius
when we increase |xg| then the coordinate will be measured with a better and better
accuracy when |zo| becomes greater. This intuitive understanding might be correct
if the distance to the electron is measured in a laboratory where a distance is of
order of centimeters or meters. However, is this intuition correct when we measure
distances between macroscopic bodies? In the spirit of GR, the distance between two
bodies which are far from each other should be measured by sending a light signal and
waiting when it returns back. However, when a reflected signal is obtained, some time
has passed and we don’t know what happened to the body of interest (e.g. if the body
is moving with a high speed, if the Universe is expanding etc.). For such experiments
the logic is opposite to what we have with the standard definition of the coordinate
operator in quantum mechanics: the accuracy of measurements is better not when
the distance is greater but when it is less. One might think that if we consider not
very long time intervals then for nonrelativistic particles such a measurement defines
the coordinate with a good accuracy. However, it is a problem how to define the
distance operator between a macroscopic body and a photon. This observation is in
line with the remarks in Sect. 1.3 that it is not possible to define the photon wave
function in coordinate representation.

Consider now the nonrelativistic Schroedinger equation for a free particle
with the mass m and energy E. A separation of variables in spherical coordinates
makes it possible to consider this equation separately in states with the orbital angular
momentum /:

d*>x  2mE  I(l+1)
dr? +1 h* r? )
where x(r) is a radial wave function such that [~ |x(r)[*dr < co. A solution satisfying
the condition x(0) = 0 is proportional to j;(kr) where k = (2mFE)'/?/h and

x=0 (1.8)

i) = (- (2

rdx’ =z

(1.9)

is a spherical Bessel function of the {th order. One might think that at very large
distances this solution is semiclassical. The asymptotic expression for j;(x) at very
large distances can be obtained from Eq. (1.9) by differentiating only sinz and the
result is jj(x) ~ sin(x — Iw/2). Therefore the result is a linear combination of two
rapidly oscillating exponents and semiclassical approximation is valid. A question
arises at what distances this approximation is correct. The asymptotic decomposition
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of the spherical Bessel function at large distances is (see e.g. Ref. [29])
M—1
Ji(x) = sin(z — In/2) Z (14 1/2,2m)(22) 7™ + O(|z]) M) +
m=0
M—1
cos(ax —Im/2)[ Y (=1)™(1+1/2,2m + 1)(22) "> + O(J«|) M~ (1.10)
m=0

where (a,b) = 27%(4a® — 1)(4a® — 3%)---[4a® — (2b — 1)?]/b! is the Hankel symbol.
Therefore when [ is large, for the validity of the approximation j;(z) ~ sin(x — Il /2),
the quantity x = kr should be not only much greater than [ but even much greater
than /2. Nevertheless, as argued in standard textbooks (see e.g. Ref. [30]), for the
validity of semiclassical approximation it suffices to require that [ > 1 regardless
whether j;(z) ~ sin(x — In/2) is valid or not. We will investigate the validity of
semiclassical approximation in Sect. 3.4. In macroscopic experiments the condition
[ > 1 is always satisfied with a very high accuracy. For illustration, consider a photon
moving in approximately radial direction away from the the Earth surface. Suppose
that the photon energy equals the bound energy of the ground state of the hydrogen
atom (27.2ev). Then in units ¢ = h = 1 this energy is of order 10”/cm. Therefore
even if the lever arm of the photon trajectory with respect to the Earth center is
1em, the value of [ is of order 107. In other experiments considered in GR this value
is greater by many orders of magnitude. On the other hand, it is usually tacitly
assumed that the width of the momentum distribution is sufficiently large. However,
in Chaps. 3-5 we argue that in GFQT this is not always the case.

1.6 The content of this paper

In Chap. 2 we construct IRs of the dS algebra following the book by Mensky [31]. This
construction makes it possible to show that the well known cosmological repulsion is
simply a kinematical effect in dS quantum mechanics. The derivation involves only
standard quantum mechanical notions. It does not require dealing with dS space,
metric tensor, connection and other notions of Riemannian geometry. As argued in
the preceding sections, fundamental quantum theory should not involve spacetime at
all. In our approach the cosmological constant problem does not exist and there is
no need to involve dark energy or other fields for explaining this problem.

In Chap. 3 we construct IRs in the basis where all quantum numbers are
discrete. This makes it possible to investigate for which two-body wave functions one
can get standard Newton’s law of gravity and the precession of Mercury’s perihelion.
The explicit construction is given in Sects. 3.5 and 3.6. In Sects. 3.7 and 3.8 we discuss
the problem of evolution in dS theory and well known gravitational experiments with
light.

In Chap. 4 we argue that fundamental quantum theory should be based
on Galois fields rather than complex numbers. In our approach, standard theory
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is a special case of a quantum theory over a Galois field (GFQT) in a formal limit
when the characteristic of the field p becomes infinitely large. We tried to make the
presentation as self-contained as possible without assuming that the reader is familiar
with Galois fields.

In Chap. 5 we construct semiclassical states in GFQT and discuss the
problem of calculating the gravitational constant. Finally, Chap. 6 is the discussion.
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Chapter 2

Basic properties of de Sitter
invariant quantum theories

2.1 dS invariance vs. AdS and Poincare invariance

As already mentioned, the motivation for this work is to investigate whether standard
gravity can be obtained in the framework of a free theory. In standard nonrelativistic
approximation, gravity is characterized by the term —G'mymy/r in the mean value of
the mass operator. Here G is the gravitational constant, m; and msy are the particle
masses and r is the distance between the particles. Since the kinetic energy is always
positive, the free nonrelativistic mass operator is positive definite and therefore there
is no way to obtain gravity in the framework of the free theory. Analogously, in
Poincare invariant theory the spectrum of the free two-body mass operator belongs
to the interval [m; 4+ my, 00) while the existence of gravity necessarily requires that
the spectrum should contain values less than mq + ms.

In theories where the symmetry algebra is the AdS algebra so(2,3), the
structure of IRs is well known (see e.g. Ref. [32]). In particular, for positive energy
IRs the AdS Hamiltonian has the spectrum in the interval [m,oc0) and m has the
meaning of the mass. Therefore the situation is pretty much analogous to that in
Poincare invariant theories. In particular, the free two-body mass operator again has
the spectrum in the interval [m; +ms, 00) and therefore there is no way to reproduce
gravitational effects in the free AdS invariant theory.

As noted in Sect. 1.2, the existing experimental data practically exclude
the possibility that A < 0 since the cosmological acceleration is not zero and is a
consequence of repulsion, not attraction. This is a strong argument in favor of dS
symmetry vs. Poincare and AdS ones. As argued in Sect. 1.4, quantum theory should
start not from spacetime but from a symmetry algebra. Therefore the choice of dS
symmetry is natural and the cosmological constant problem does not exist. However,
the majority of physicists prefer to start from a flat spacetime and treat Poincare
symmetry as fundamental while dS one as emergent.
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In contrast to the situation in Poincare and AdS invariant theories, the
free mass operator in dS theory is not bounded below by the value of m; + msy. The
discussion in Sect. 2.3 shows that this property by no means implies that the theory is
unphysical. Therefore if one has a choice between Poincare, AdS and dS symmetries
then the only chance to describe gravity in a free theory is to choose dS symmetry.

2.2 IRs of the dS Algebra

If we accept dS symmetry on quantum level as described in Sect. 1.4, a question
arises how elementary particles in quantum theory should be defined. A discussion
of numerous controversial approaches can be found, for example in the recent paper
[33]. Although particles are observables and fields are not, in the spirit of QFT, fields
are more fundamental than particles, and a possible definition is as follows [34]: It is
simply a particle whose field appears in the Lagrangian. It does not matter if it’s stable,
unstable, heavy, light—if its field appears in the Lagrangian then it’s elementary,
otherwise it’s composite. Another approach has been developed by Wigner in his
investigations of unitary irreducible representations (UIRs) of the Poincare group
[35]. In view of this approach, one might postulate that a particle is elementary if
the set of its wave functions is the space of an IR of the symmetry group or Lie
algebra in the given theory. Since we do not accept approaches based on spacetime
background then by analogy with the Wigner approach we accept that, by definition,
elementary particles in dS invariant theory are described by IRs of the dS algebra by
Hermitian operators. For different reasons, there exists a vast literature not on such
IRs but on UIRs of the dS group. References to this literature can be found e.g., in
our papers [4, 1] where we used the results on UIRs of the dS group for constructing
IRs of the dS algebra by Hermitian operators. In this section we will describe the
construction proceeding from an excellent description of UIRs of the dS group in a
book by Mensky [31]. The final result is given by explicit expressions for the operators
M® in Eq. (2.15). The readers who are not interested in technical details can skip
the derivation.
The elements of the SO(1,4) group will be described in the block form

g a’ gy
g=1| b r ¢ (2.1)
g6 d" gi
where
al
a = CL2 bT: H bl b2 b3 H T 650(3) (22)
3
a

and the subscript 7 means a transposed vector.
UIRs of the SO(1,4) group belonging to the principle series of UIRs are
induced from UIRs of the subgroup H (sometimes called “little group”) defined as
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follows [31]. Each element of H can be uniquely represented as a product of elements
of the subgroups SO(3), A and T: h = rrqar where

cosh(t) 0 sinh(T) 1+a%/2 —al a?/2
TA = 0 1 0 ar = —a 1 —a (2.3)
sinh(t) 0 cosh(r) —a?/2 al 1-a%/2

The subgroup A is one-dimensional and the three-dimensional group T is the dS
analog of the conventional translation group (see e.g., Ref. [31]). We believe it
should not cause misunderstandings when 1 is used in its usual meaning and when to
denote the unit element of the SO(3) group. It should also be clear when r is a true
element of the SO(3) group or belongs to the SO(3) subgroup of the SO(1,4) group.
Note that standard UIRs of the Poincare group are induced from the little group,
which is a semidirect product of SO(3) and four-dimensional translations and so the
analogy between UIRs of the Poincare and dS groups is clear.

Let 7 — A(r;s) be an UIR of the group SO(3) with the spin s and 74 —
exp(imgsT) be a one-dimensional UIR of the group A, where myg is a real parameter.
Then UIRs of the group H used for inducing to the SO(1,4) group, have the form

A(TTAaT; mqas, S) = exp(imdST)A(r; S) (2-4)

We will see below that mgs has the meaning of the dS mass and therefore UIRs of the
SO(1,4) group are defined by the mass and spin, by analogy with UIRs in Poincare
invariant theory.

Let G=SO(1,4) and X = G/H be the factor space (or coset space) of G
over H. The notion of the factor space is well known (see e.g., Ref. [31]). Each
element x € X is a class containing the elements xgh where h € H, and z¢ € G
is a representative of the class x. The choice of representatives is not unique since
if ¢ is a representative of the class x € G/H then xghgy, where hg is an arbitrary
element from H, also is a representative of the same class. It is well known that X
can be treated as a left G space. This means that if x € X then the action of the
group GG on X can be defined as follows: if g € GG then gz is a class containing gzg
(it is easy to verify that such an action is correctly defined). Suppose that the choice
of representatives is somehow fixed. Then gz = (97)c(g, x)g where (g,x)y is an
element of H. This element is called a factor.

The explicit form of the operators M depends on the choice of represen-
tatives in the space G/H. As explained in papers on UIRs of the SO(1,4) group (see
e.g., Ref. [31]), to obtain the possible closest analogy between UIRs of the SO(1,4)
and Poincare groups, one should proceed as follows. Let v, be a representative of
the Lorentz group in the factor space SO(1,3)/SO(3) (strictly speaking, we should
consider SL(2,C)/SU(2)). This space can be represented as the velocity hyperboloid
with the Lorentz invariant measure

dp(v) = d*v /v, (2.5)
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where vy = (1 + v?)/2. Let I € SO(1,4) be a matrix which formally has the same
form as the metric tensor 1. One can show (see e.g., Ref. [31] for details) that
X = G/H can be represented as a union of three spaces, X, X_ and X, such that
X, contains classes vph, X_ contains classes vy Ih and X, has measure zero relative
to the spaces X, and X_.

As a consequence, the space of UIR of the SO(1,4) group can be imple-
mented as follows. If s is the spin of the particle under consideration, then we use
||...]| to denote the norm in the space of UIR of the group SU(2) with the spin s. Then
the space of UIR is the space of functions { f1(v), fa(v)} on two Lorentz hyperboloids
with the range in the space of UIR of the group SU(2) with the spin s and such that

/[Hfl(V)W +[L(V)[Pldp(v) < o0 (2.6)

It is well-known that positive energy UIRs of the Poincare and AdS groups
(associated with elementary particles) are implemented on an analog of X, while
negative energy UIRs (associated with antiparticles) are implemented on an analog
of X_. Since the Poincare and AdS groups do not contain elements transforming these
spaces to one another, the positive and negative energy UIRs are fully independent.
At the same time, the dS group contains such elements (e.g., I [31]) and for this
reason its UIRs can be implemented only on the union of X; and X_. Even this fact
is a strong indication that UIRs of the dS group cannot be interpreted in the same
way as UIRs of the Poincare and AdS groups.

A general construction of the operators M® is as follows. We first define
right invariant measures on G = SO(1,4) and H. It is well known that for semisim-
ple Lie groups (which is the case for the dS group), the right invariant measure is
simultaneously the left invariant one. At the same time, the right invariant measure
dr(h) on H is not the left invariant one, but has the property dgr(hoh) = A(ho)dgr(h),
where the number function h — A(h) on H is called the module of the group H. It
is easy to show [31] that

A(rTaar) = exp(—3T) (2.7)

Let dp(x) be a measure on X = G/H compatible with the measures on G and H.
This implies that the measure on G can be represented as dp(z)dg(h). Then one can
show [31] that if X is a union of X, and X_ then the measure dp(x) on each Lorentz
hyperboloid coincides with that given by Eq. (2.5). Let the representation space be
implemented as the space of functions ¢(z) on X with the range in the space of UIR
of the SU(2) group such that

/ lo(@)|Pdp(z) < oo (2.8)

Then the action of the representation operator U(g) corresponding to g € G is defined
as

Ulg)e(a) = [A((g~H 2)m)] A" ) s mas,s) (g ) (2.9)
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One can directly verify that this expression defines a unitary representation. Its
irreducibility can be proved in several ways (see e.g., Ref. [31]).

As noted above, if X is the union of X, and X _, then the representation
space can be implemented as in Eq. (2.4). Since we are interested in calculating only
the explicit form of the operators M¢, it suffices to consider only elements of g € G
in an infinitely small vicinity of the unit element of the dS group. In that case one
can calculate the action of representation operators on functions having the carrier
in X, and X_ separately. Namely, as follows from Eq. (2.7), for such g € G, one has
to find the decompositions

1

g vy = vir'(ta@)r g vl =V Ir"(77)a(@)r (2.10)

where ;7" € SO(3). In these expressions it suffices to consider only elements of H
belonging to an infinitely small vicinity of the unit element.

The problem of choosing representatives in the spaces SO(1,3)/SO(3) or
SL(2.C)/SU(2) is well known in standard theory. The most usual choice is such that
vy, as an element of SL(2,C) is given by

_U0+1—|—VJ

2(1 + vp) (2.11)

A\

Then by using a well known relation between elements of SL(2,C) and SO(1,3) we
obtain that v, € SO(1,4) is represented by the matrix

Vo v’ 0
vi=1 v 1+vwl/(vg+1) 0 (2.12)
0 0 1

As follows from Egs. (2.4) and (2.9), there is no need to know the ex-
pressions for (a’)r and (a”)r in Eq. (2.10). We can use the fact [31] that if e is the
five-dimensional vector with the components (e = 1,0,0,0,e* = —1) and h = r7aar,
then he = exp(—7)e regardless of the elements r € SO(3) and ap. This makes it pos-
sible to easily calculate (v, v”r,(7")a, (77)4) in Eq. (2.10). Then one can calculate
(r’,r”) in these expressions by using the fact that the SO(3) parts of the matrices
(Vi) tgtvy and (v7;) g vy are equal to ' and r”, respectively.

The relation between the operators U(g) and M® is as follows. Let Ly,
be the basis elements of the Lie algebra of the dS group. These are the matrices with
the elements

(Lab)g = 63nba — OpNad (2.13)

They satisfy the commutation relations
[Lab7 Lcd] - nacLbd - nbcLad - nadLbc + ndeac (214>
Comparing Egs. (1.5) and (2.14) it is easy to conclude that the M should be the

representation operators of —iL®. Therefore if ¢ = 1 4 wq L%, where a sum over
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repeated indices is assumed and the wgy, are such infinitely small parameters that
Wap = —Whe then U(g) = 1 + iwe, M.

We are now in position to write down the final expressions for the operators
M. Their action on functions with the carrier in X, has the form

0 sxv
J=1 N == —ivg— 4+ 22Y
(V) +s, ZU00V+UO+1’
0 0 3 SXV
B— = Iy42
masv +ilge TV TVt LT
3 + 1o ( 0, 3) (2.15)
= Mgsvy + ivg(V=—~+ = :
dsvo (Voo T3
where J = {M2 M3, M2}, N = {MO, M2, M%), B = {M*, M* M*®}, s is the
spin operator, 1(v) = —iv x 9/0v and & = M*. The action of the generators on

functions with the carrier in X_ is analogous [4, 1] but the corresponding expressions
will not be needed in this paper.

2.2.1 Discussion

In deriving Eq. (2.15) we used only the commutation relations (1.5), no approxi-
mations have been made and the results are exact. In particular, the dS space, the
cosmological constant and the Riemannian geometry have not been involved at all.
Nevertheless, the expressions for the representation operators is all we need to have
the maximum possible information in quantum theory.

As shown in the literature (see e.g. Ref. [31]), the above construction of
IRs applies to IRs of the principle series where mys is a real parameter such that
|mas| > 0. Therefore such IRs are called massive.

A problem arises how mygg is related to the standard particle mass m in
Poincare invariant theory. A general notion of contraction has been developed in Ref.
[36]. In our case it can be performed as follows. Let us assume that mgs > 0 and
define m = mys/R, P = B/R and E = £/R. The set of operators (F,P) is the
Lorentz vector since its components can be written as M% (v = 0,1,2,3). Then, as
follows from Eq. (1.5), in the limit when R — oo, mgs — 0o but mgys/R is finite, one
obtains a standard representation of the Poincare algebra for a particle with the mass
m such that P = mv is the particle momentum and E = muy is the particle energy.
Therefore m is the standard mass in Poincare invariant theory and the operators of
the Lorentz algebra (N, J) have the same form for the Poincare and dS algebras.

In Sect. 1.2 we argued that fundamental physical theory should not con-
tain dimensional parameters at all. In this connection it is interesting to note that
the de Sitter mass myg is a ratio of the radius of the Universe R to the Compton wave
length of the particle under consideration. Therefore even for elementary particles
the de Sitter masses are very large. For example, if R is of order 10%°m then the de
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Sitter masses of the electron, the Earth and the Sun are of order 10°, 109 and 10,
respectively.

In Standard Model (based on Poicare invariance) only massless Weyl par-
ticles are treated as fundamental. Such particles are characterized by helicity rather
than spin. In view of this fact one can pose a problem whether the above IRs have a
physical meaning. First of all, we note that the results on IRs can be applied not only
to elementary particles but even to macroscopic bodies when it suffices to consider
their motion as a whole. This is the case when the distances between the bodies are
much greater that their sizes. In Poincare invariant theory, IRs describing massless
Weyl particles can be obtained as a limit of massive IRs when m — 0 with a special
case of representatives in the factor space SL(2,C)/SU(2). However, in dS theory
such a limit does not exist and therefore there are no Weyl particles in dS theory (see
Sect. 6 in Ref. [1]). In his book [31] Mensky notes that as dS analogs of massless IRs
one might consider either IRs with mgs = 0 belonging to the complementary series
or IRs with —imgs = 1/2 belonging to the discrete series but these possibilities have
not been investigated in details. In standard theory it is believed that the photon is
a true massless particle. The present upper level for its mass is 10~'8ev which seems
to be an extremely tiny quantity. However, the corresponding dS mass is of order
10'° and so even the mass which is treated as extremely small in Poincare invariant
theory might be very large in dS invariant theory. In the present paper we assume
that the photon can be described by IRs of the principle series discussed above.

The operator N contains ¢0/0v which is proportional to the standard
coordinate operator i0/0p. The factor vy in N is needed for Hermiticity since the
volume element is given by Eq. (2.5). Such a construction can be treated as a
relativistic generalization of standard coordinate operator and then the orbital part
of N is proportional to the Newton-Wigner position operator [20]. However, it is
well known that this operator does not satisfy all the requirements for the coordinate
operator. First of all, as noted in Sect. 1.3, in relativistic theory the coordinate
cannot be measured with the accuracy better than i/mc. Another argument is as
follows. If we find eigenfunctions of the x component of the Newton-Wigner position
operator with eigenvalues x and construct a wave function which at ¢ = 0 has a
finite carrier in x then, as follows from the Schroedinger equation with the relativistic
Hamiltonian, at any ¢ > 0 this function will have an infinite carrier. In other words,
the wave function will be instantly spread over the whole space while the speed of
propagation should not exceed c¢. These remarks show that the construction of the
physical coordinate operator is far from being obvious.

As noted in Sect. 1.3, in experiments with the photon discussed in GR,
the orbital angular momentum is very large. Therefore in this case the spin term in
J can be neglected. The same is true for macroscopic bodies if their internal rotation
is not extremely fast. Since |vy > |v|, the orbital part of the operator N is also much
greater than its spin part. The orbital part of the operator B is typically much greater
than its spin part; this is clear even from the fact that in Poincare limit this part is
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proportional to R while the spin does not depend on R. In view of these remarks, in
the present paper we will not consider spin effects.

It is well known that in Poincare invariant theory the operator Iop = E? —
P2 is the Casimir operator, i.e., it commutes with all the representation operators.
According to the well known Schur lemma in representation theory, all elements in
the space of IR are eigenvectors of the Casimir operators with the same eigenvalue.
In particular, they are the eigenvectors of the operator Iop with the eigenvalue m?.
As follows from Eq. (1.5), in the dS case the Casimir operator of the second order is

1

12:—5

> MyM® =+ N - B> - J (2.16)
ab

and a direct calculation shows that for operators (2.15) the numerical value of I, is
m2s — s(s+ 1) +9/4. In Poincare invariant theory the value of the spin is related to
the Casimir operator of the fourth order which can be constructed from the Pauli-
Lubanski vector. An analogous construction exists in dS invariant theory but we will
not dwell on this.

2.3 dS quantum mechanics and cosmological re-
pulsion

Consider the nonrelativistic approximation when |v| < 1. If we wish to work with
units where the dimension of velocity is m/sec, we should replace v by v/c. If
p = mv then it is clear from the expressions for B in Eq. (2.15) that p becomes the
real momentum P only in the limit R — oco. Now by analogy with nonrelativistic
quantum mechanics (see Sect. 1.5), we define the position operator r as i9/0p and
in that case the operator N in Eq. (2.15) becomes —FEr. At this stage we do not
have any coordinate space yet. However, the consideration in Sect. 1.5 shows that
there exist states where both, p and r are semiclassical. In this approximation we
can treat them as usual vectors and neglect their commutators. Then as follows from
Eq. (2.15)

P =p+mer/R H=p?/2m+cpr/R (2.17)

where H = E —mc? is the classical nonrelativistic Hamiltonian. As follows from these

expressions,
P2 mcr?
HP,r)=——
(P,r) 2m 2R?

The last term in this expression is the dS correction to the nonrelativistic
Hamiltonian. It is interesting to note that the nonrelativistic Hamiltonian depends
on c although it is usually believed that ¢ can be present only in relativistic theory.
This illustrates the fact mentioned in Section 1.2 that the transition to nonrelativistic
theory understood as |v| < 1 is more physical than that understood as ¢ — oo. The

(2.18)
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presence of ¢ in Eq. (2.18) is a consequence of the fact that this expression is written in
standard units. In nonrelativistic theory c is usually treated as a very large quantity.
Nevertheless, the last term in Eq. (2.18) is not large since we assume that R is very
large. The result for one particle given by Eq. (1.4) is now a consequence of the
equations of motion for the Hamiltonian given by Eq. (2.18).

Another way to show that our results are compatible with GR is as follows.
The well known result of GR is that if the metric is stationary and differs slightly from
the Minkowskian one then in the nonrelativistic approximation the curved spacetime
can be effectively described by a gravitational potential ¢(r) = (goo(r) — 1)/2¢*. We
now express 7o in Eq. (1.2) in terms of a new variable ¢ as xy = t +t3/6 R* — tx*/2R%.
Then the expression for the interval becomes

ds®* = dt*(1 — r*/R?) — dr* — (rdr/R)? (2.19)

Therefore, the metric becomes stationary and ¢(r) = —r®/2R? in agreement with Eq.
(2.18).

Consider now a system of two free particles described by the variables p;
and r; (j = 1,2). Define the standard nonrelativistic variables

Py =pi+p2 q=(map1 — mup2)/(m1 +mo)
Ry = (miry +mory)/(m1 +my) T =1 — 1) (2.20)

where now we use r to denote the relative radius vector. Then if the particles are
described by Eq. (2.15), the two-particle operators P and E in the non-relativistic
approximation are given by

iMy(q) @ B P2, ) )

P=Pp+ aq

where My(q) = my + my + q*/2my» and my, is the reduced two-particle mass. As a
consequence, the nonrelativistic mass operator (E? — P2?)Y/2 in first order in 1/R is
given by
2 .
q t, 0 3
+—(q=— + = 2.22
s R(qaq 5) (2.22)

Therefore the classical internal nonrelativistic two-body Hamiltonian is

M:m1+mg+

2

q qr
Hnr(qa I‘) = 2m12 + E

(2.23)

where q and r are the classical relative momentum and radius vector. Hence in
semiclassical approximation the relative acceleration is again given by Eq. (1.4).
The fact that two free particles have a relative acceleration is well known
for cosmologists who consider dS symmetry on classical level. This effect is called
the dS antigravity. The term antigravity in this context means that the particles
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repulse rather than attract each other. In the case of the dS antigravity the relative
acceleration of two free particles is proportional (not inversely proportional!) to the
distance between them. This classical result is a special case of the dS symmetry on
quantum level when semiclassical approximation works with a good accuracy.

In dS theory, the spectrum of the free two-body operator (2.22) is not
bounded below by m; + ms and a question arises whether this is acceptable or not.
In spherical coordinates the internal two-body Hamiltonian corresponding to the non-
relativistic mass operator is

q* i, 0 3

Hm"_ U 5
+ R(qaq +35)

2m12

(2.24)

where ¢ = |q|. This operator acts in the space of functions ¢(q) such that

/O 1¥(q)*¢*dg < oo

and the eigenfunction g of H,, with the eigenvalue K satisfies the equation

. 2
Wi _ile” (g 4 2%RK )k (2.25)

q =
dq mig

The solution of this equation is

2
Vg = \/Eq_?’/?exp(ZRq — 2iRKIng) (2.26)
m 2m12

and the normalization condition is (¢, ¥k) = 0(K — K’). The spectrum of the
operator H,, formally belongs to the interval (—oo,00) but this is a consequence
of the nonrelativistic approximation and the fact that the square root for the mass
operator was calculated in first order in 1/R. However, the spectrum of H,, for sure
has negative values and therefore the spectrum of the mass operator has values less
than m; + mao.

Suppose that 1(q) is a wave function of some state. As follows from Eq.
(2.26), the probability to have the value of the energy K in this state is defined by
the coefficient ¢(K’) such that

() = \/§ | et

If 1(q) does not depend on R and R is very large then ¢(K') will practically be different
from zero only if the integrand in Eq. (2.27) has a stationary point go, which is defined
by the condition K = ¢3/2m1,. Therefore, for negative K, when the stationary point
is absent, the value of ¢(K) will be exponentially small.

This result confirms that, as one might expect from Eq. (2.23), the dS
antigravity is not important for local physics when r < R. At the same time, at

2

R
;mq + 2iRKIng)v(q)+/ddq (2.27)
1

2
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cosmological distances the dS antigravity is much stronger than any other interaction
(gravitational, electromagnetic etc.). Since the spectrum of the energy operator is
defined by its behavior at large distances, this means that in dS theory there are
no bound states. This does not mean that the theory is unphysical since stationary
bound states in standard theory become semistationary with a very large lifetime if
R is large. For example, as shown in Eqs. (14) and (19) of Ref. [37], a semiclassical
calculation of the probability of the decay of the two-body composite system gives
that the probability equals w = exp(—me/H) where € is the binding energy and H is
the Hubble constant. If we replace H by 1/R and assume that R = 10?®m then for
the probability of the decay of the ground state of the hydrogen atom we get that
w is of order exp(—10%) i.e., an extremely small value. This result is in agreement
with our remark after Eq. (2.27).

In Ref. [3] we discussed the following question. In standard quantum me-
chanics the free Hamiltonian Hy and the full Hamiltonian H are not always unitarily
equivalent since in the presence of bound states they have different spectra. However,
in dS theory there are no bound states, the free and full Hamiltonians have the same
spectra and therefore they are unitarily equivalent. Hence one can work in the for-
malism when interaction is introduced not by adding an interaction operator to the
free Hamiltonian but by a unitary transformation of this operator.

Although the example of the dS antigravity is extremely simple, we can
draw the following very important conclusions.

In our approach the phenomenon of the cosmological acceleration has an
extremely simple explanation in the framework of dS quantum mechanics for a system
of two free bodies. There is no need to involve dS space and Riemannian geometry
since the fact that A # 0 should be treated not such that the spacetime background
has a curvature (since the notion of the spacetime background is meaningless) but as
an indication that the symmetry algebra is the dS algebra rather than the Poincare
or AdS algebras. Therefore for explaining the fact that A # 0 there is no need to
imvolve dark energy or other quantum fields.

Our result is in favor of the argument in Sect. 1.3 that in quantum theory it
is possible to reproduce classical results of GR. Indeed, we see that standard classical
dS antigravity has been obtained from a quantum operator without introducing any
classical background. When the position operator is defined as r = i(0/0q) and time
is defined by the condition that the Hamiltonian is the evolution operator then one
recovers the classical result obtained by considering a motion of particles in classical
dS spacetime.

The second conclusion is as follows. We have considered the particles as
free, i.e. no interaction into the two-body system has been introduced. However, we
have realized that when the two-body system in the dS theory is considered from
the point of view of the Galilei invariant theory, the particles interact with each
other. Although the reason of the effective interaction in our example is obvious,
the existence of the dS antigravity poses the problem whether other interactions, e.g.
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gravity, can be treated as a result of transition from a higher symmetry to Poincare
or Galilei one.

The third conclusion is that if the dS antigravity is treated as an interaction
then it is a true direct interaction since it is not a consequence of the exchange of
virtual particles.

Finally, the fourth conclusion is as follows. The result of Eq. (2.26) shows
that in the free dS theory the spectrum of the free Hamiltonian is not bounded below
by zero and therefore the spectrum of the free mass operator has values less than
my + mg (see also Refs. [2, 4, 8, 1]). Therefore the fact that the spectrum of the
free mass operator is not bounded below by the value m; + ms, does not necessarily
mean that the theory is unphysical. Moreover, if we accept the above arguments
that dS symmetry is more relevant than Poincare and AdS ones, the existence of the
spectrum below my 4+ ms is inevitable.

Our final remark is as follows. The consideration in this chapter involves
only standard quantum-mechanical notions and in semiclassical approximation the
results on the cosmological acceleration are compatible with GR. As argued in Sect.
1.5, the standard coordinate operator has some properties which do not correspond
to what is expected from physical intuition; however, at least from mathematical
point of view, at cosmological distances semiclassical approximation is valid with
a very high accuracy. At the same time, as discussed in the next chapter, when
distances are much less than cosmological ones, this operator should be modified.
We consider a modification when the wave function contains a rapidly oscillating
exponent depending on R. Then the probability to have negative values of K is not
exponentially small as it should be in our approach to gravity.
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Chapter 3

Algebraic description of irreducible
representations

3.1 Construction of IRs in discrete basis

In this section we construct a pure algebraic implementation of IRs such that the
basis is characterized only by discrete quantum numbers. This approach is of interest
not only in standard dS quantum theory but also because the results can be used in
a quantum theory over a Galois field (GFQT). To make relations between standard
theory and GFQT more straightforward, we will modify the commutation relations
1.5 by writing them in the form

[]\4&!77 Mcd] — —Qi(UaCMbd + nbdMac . ,r]adec . nbcMad) (31>

One might say that these relations are written in units h/2 = ¢ = 1. However, as
noted in Sect. 1.2, fundamental quantum theory should not involve quantities & and ¢
at all, and Eq. (3.1) indeed does not contain these quantities. The reason for writing
the commutation relations in the form (3.1) rather than (1.5) is that in this case the
minimum nonzero value of the angular momentum is 1 instead of 1/2. Therefore the
spin of fermions is odd and the spin of bosons is even. This will be convenient in
GFQT where 1/2 is a very large number (see Chap. 4).

As noted in Sect. 2.2, in this paper we will consider only massive IRs
and will neglect spin effects. Therefore our goal is to construct massive spinless IRs
in a discrete basis. By analogy with the method of little group in standard theory,
one can first choose states which can be treated as rest ones and then obtain the
whole representation space by acting on such states by certain linear combinations of
representation operators.

Since B is a possible choice of the dS analog of the momentum operator,
one might think that the rest states ey can be defined by the condition Bey = 0.
However, in the general case this is not consistent since, as follows from Eq. (3.1),
different components of B do not commute with each other: as follows from Eq. (3.1)
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and the definitions of the operators J and B in Sect. 2.2, these operators commute
with each other according to the rules

[J7, J% = [B?, B*] = 2iejuJ' [J7, B¥] = 2ie;u B’ (3.2)

where the indices 7, k.l can take the values 1,2, 3, d;;, is the Kronecker symbol, e;x
is the absolutely antisymmetric tensor such that ejo3 = 1 and a sum over repeated
indices is assumed. Therefore a subspace of elements ey such that Bley = 0 (j =
1,2,3) is not closed under the action of the operators B’.

Let us define the operators J' = (J+B)/2 and J” = (J —B)/2. As follows
from Eq. (3.1), they satisfy the commutation relations

7T =0 [J7, % = 2ieu "t [T, T4 = 2iejad! (33)

Since in Poincare limit B is much greater than J, as an analog of momentum one
can treat J’ instead of B. Then one can define rest states ey by the condition that
J'eg = 0. In this case the subspace of rest states is defined consistently since it is
invariant under the action of the operators J’. Since the operators J’ and J” commute
with each other, one can define the internal angular momentum of the system as a
reduction of J” on the subspace of rest states. In particular, in Ref. [2] we used such
a construction for constructing IRs of the dS algebra in the method of SU(2) x SU(2)
shift operators proposed by Hughes for constructing IRs of the SO(5) group [38]. In
the spinless case the situation is simpler since for constructing IRs it suffices to choose
only one vector ey such that

J/eo = J”@O =0 [260 = (’LU + 9)60 (34)

The last requirement reflects the fact that all elements from the representation space
are eigenvectors of the Casimir operator I, with the same eigenvalue. When the
representation operators satisfy Eq. (3.1), the numerical value of the operator I, is
not as indicated after Eq. (2.16) but

L=w—s(s+2)+9 (3.5)

where w = m?g. Therefore for spinless particles the numerical value equals w + 9.
As follows from Eq. (3.1) and the definitions of the operators (J, N, B, )
in Sect. 2.2, in addition to Eqs. 3.2, the following relations are satisfied:

[£,N] =2iB [£,B] = 2iN [J,&] =0 [B?, N*] = 2i§;,.€ [J7, N¥] = 2ie;uN'  (3.6)
We define e; = 2€¢g and
ens1 = 28e, — [w+ (2n 4+ 1)%e, (3.7)

These definitions make it possible to find e, for any n = 0,1, 2.... As follows from Eqs.
(3.2), (3.6) and (3.7), Je,, = 0 and B?¢,, = 4n(n+2)e,. We use the notation J, = J!,
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J, = J?, J, = J* and analogously for the operators N and B. Instead of the (zy)
components of the vectors it may be sometimes convenient to use the + components
such that J, = J. + J_, J, = —i(J+ — J_) and analogously for the operators N and
B. We now define the elements e,,;; as

(2k + 1)1

() (By) e (3.8)

Enkl =

Then a direct calculation using Eqs. (3.2-3.8) gives

n+1—k n+1+k
Eepp = ———e, w204 1),
Enkl 2(n+1)6+1,k1 20 +1) [w+ (2n + 1))ep—1,m
1(2k+1—-0D(2k+2 -1
Nienp = ( ) )

8(n+1)(2k + 1)(2k + 3) {entnin -
[w+ (2n + 1)?)en_1pi1} —

ﬁ{(n F1—k)(n+2 = k)eniiptie —

(n+k)(n+1+k)[w+2n+1)2e, 14112}
—i(l+ 1)1 +2)

8(n + 1)(2k + 1)(2k + 3) {entipsnie =

(w4 (2n + 1) en_1hs1042} +

N_enp =

7
m{(n + 1-— ]C)(TL + 2 — k)€n+17]€_1,l —

m+k)(n+1+k)w+ (2n+ 1)2]en_17;€_1,l}
—i(l+1)(2k+1-1)

A(n+1)(2k + 1)(2k + 3) {entipriim =

[w + (2n + 1)*en—1ps1001} —

1
n—+1{(n +1-— k;)(n +2— k)6n+1,k_171_1 —

(n+k)(n+1+k)[w+2n+1)2e, 15111} (3.9)

Nz Enkl =
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2k +1-0)02k+2-1)
202k + 1)(2k +3) MM

2+ 1—-k)(n+1+k)epp11-2

(I+1)(1+2)
k1 1)@k 1 3) e
2(n+1—k)n+1+k)enr—1,
(I+1)(2k+1-1)
2(2k + 1)(2k + 3) LT
An+1—k)(n+1+k)e,p—11-1
Jienp = 2k +1—=Depri—1 J-eppr = (L + 1)enrit
Sk = 2(k — Denw (3.10)

B+€nkl =

B_enn = 5

B.en =

where at a fixed value of n, kK =0,1,..n, 1l = 0,1,...2k and if [ and k£ are not in this
range then e, = 0. Therefore, the elements e,;; form a basis of the spinless IR with
a given w.

The next step is to define a scalar product compatible with the Hermiticity
of the operators (£,B,N,J). Since B? + J? is the Casimir operator for the so(4)
subalgebra and

(B2 + J2)enkl = 4n(n + 2)enkl (311)

the vectors e, with different values of n should be orthogonal. Since J? is the
Casimir operator of the so(3) subalgebra and J?e,;; = 4k(k + 1)e,n, the vectors e,
with different values of k also should be orthogonal. Finally, as follows from the
last expression in Eq. (3.10), the vectors e, with the same values of n and k and
different values of [ should be orthogonal since they are eigenvectors of the operator
J, with different eigenvalues. Therefore, the scalar product can be defined assuming
that (eg,€9) = 1 and a direct calculation using Eqgs. (3.4-3.8) gives

n

(enkis €nkt) = (2k + 1)!051450202%“ H[w + (27 + 1)2] (3.12)

J=1

where C* = n!/[(n — k)!k!] is the binomial coefficient. At this point we do not
normalize basis vectors to one since, as will be discussed below, the normalization
(3.12) has its own advantages.

Each element of the representation space can be written as

T = Z c(n, k,)enn

nkl

where the set of the coefficients ¢(n, k, 1) can be called the wave function in the (nkl)
representation. As follows from Eqs. (3.9) and (3.10), the action of the representation
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operators on the wave function can be written as

n—k n+2+k
& k1) = -1 —_— 2 2
c(n, k,1) - c(n—1,k1)+ 2+ 2) [w + (2n + 3)7]
c(n+1,k1)

(2 1 =02k — 1
N+c(n,k,l)zz( s D2k l){—c(n—l,k;—l,l)—

Sk~ 12k +1) 'n
%[w @43 en+ 1 k—1,1)} -

1+ 2
Z(n_lgj)(n_k)c(n—1,k+1,l+2)+
iln+k+2)(n+k+3) 9
2+ 9) w4+ (2n+3)°le(n+ 1, k+ 1,1+ 2)
B —i(l — 1)l 1
N_c(n, k1) = 8(2k—1)(2k+1){ﬁc(n_1’k_1’l_2>_

%_i_z[w +@2n+3)%e(n+1,k—1,1—2)} +
iln—1—k)(n—k)

o cn—1,k+1,1) —
in+k+2)(n+k+3) 5
2 1 1
20 +2) [w+ (2n +3)%Je(n+ 1,k +1,1)
Nec(n b l) = ——Ck =0 (Lo 1)

42k — 1)(2k + 1) (b
%[w +@2n+3)?le(n +1,k—1,1 - 1)} —

+ 2

i(n nf)(”’ k)c(n,_.l,k-+-1,l4-1)‘+

' 2
z(n+k+n357;+k+3)[w+(2n+3)2]c(n+1,]€+17l+1)
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(2k —1—=1)(2k — 1)

202k — 1)(2k + 1)

2(n —k)(n+ 24+ k)e(n,k+ 1,1+ 2)

(1 - 1)l

C2(2k —1)(2k 4+ 1)

2(n—k)(n+ 2+ k)c(n, k+1,1)
12k — 1)

(2k —1)(2k+ 1)

An—k)(n+2+k)e(n,k+1,1+1)

Jyce(n, k1) = 2k — De(n, k, 1+ 1) J_c(n, k1) =lc(n, k, 1 — 1)

Joen, k1) =2(k = U)e(n, k, 1) (3.14)

Bic(n, k1) =

cn,k—1,1) —

B_c¢(n, k1) = cnyk—1,1—2)+

B.c(n, k1) = —

cnyk—1,1—1) —

We use é,); to denote basis vectors normalized to one and é(n, k,[) to
denote the wave function in the normalized basis. As follows from Eq. (3.12), the
vectors €, can be defined as

buts = {2k + DICLCECE oy [[lw + 25+ ) e (315)

=1

As noted in Sects. 2.2 and 2.3, the operator B is the dS analog of the usual momentum
P such that in Poincare limit B = 2RP. The operator J has the same meaning as
in Poincare invariant theory. Then it is clear from Eqgs. (3.13) and (3.14) that for
macroscopic bodies the quantum numbers (nkl) are much greater than 1. With this
condition, a direct calculation using Eqs. (3.12-3.15) shows that the action of the
representation operators on the wave function in the normalized basis is given by

55(71, k, l) = %[(n - k)(n + k)(w + 4n2)]1/2
[E(n + 1, k, 1) + &(n — 1, k,1)]

i(w n2 1/2
N é(n, k1) = (Z#{(Zk —D[(n+k)é(n—1,k—1,1) —

(n—kKén+1LEk=10]+I[(n+k)én+1,k+1,14+2)—
(n—Fk)e(n—1L,k+1,1+2)]}

o An2)1/2
N, k1) =~ 4 ke~ 1k~ 1,0 - 2) -

(n—kyén+1,k—1,1—2)]—2k—=D[(n—k)é(n—1,k+1,1) —
(n+k)e(n+1,k+1,0)]}

NﬁmﬁJ%:_W@k_$£+4ﬁwﬂﬂn+man—Lk—Ll—U—

(n—Fk}én+1L,k—1,1-1)+(n—k)én—1k+1,1+1)—
n+k)n+1,k+1,1+1)} (3.16)
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[(n —K)(n+ k)]'/2
2k

B+6(n, k, l) -
lé(n,k+1,1+2)}

{(2k — D)&(n, k —1,1) —

—k)(n + k)2

B i(n. k1) = o

lé(n, k—1,1—2)}
B.é(n, k1) = —=[1(2k — D) (n — k)(n + k)]Y*{é(n,k — 1,1 — 1) +

é(nyk+1,141)
Joé(n, k1) = [1(2k — D]Y?é(n, k, 1+ 1)
J_&(n, k1) = [1(2k — D)]Y?é(n, k,1 — 1)
J.é(n, k1) = 2(k — 1)é(n, k, 1) (3.17)

{(2k — D)é(n, k+1,1) —

1
k
}

3.2 Semiclassical approximation

Consider now the semiclassical approximation in the é,;; basis. By analogy with the
discussion of the semiclassical approximation in Sects. 1.5 and 2.3, we assume that a
state is semiclassical if its wave function has the form

é(n, k1) = a(n, k, Dexpli(—ny + ka + (I — k)5)] (3.18)

where a(n, k, 1) is an amplitude, which is not small only in some vicinities of n = ny,
k = ko and [ = lo. We also assume that when the quantum numbers (nkl) change
by one, the main contribution comes from the rapidly oscillating exponent. Then, as
follows from the first expression in Eq. (3.16), the action of the dS energy operator
can be written as

1
E&(n, k, 1) ~ —[(ng — ko) (no + ko) (w + 4n)"%cos(p)é(n, k, 1) (3.19)
L
Therefore the semiclassical wave function is approximately the eigenfunction of the
dS energy operator with the eigenvalue

n—o[(no — ko) (no + ko) (w + 4n2)]Y?cosep.

We will use the following notations. When we consider not the action of
an operator on the wave function but its approximate eigenvalue in the semiclassical
state, we will use for the eigenvalue the same notation as for the operator and this
should not lead to misunderstanding. Analogously, in eigenvalues we will write n,
k and [ instead of ng, ko and [y, respectively. By analogy with Eq. (3.19) we can
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consider eigenvalues of the other operators and the results can be represented as

£ = %[(n )+ k) (w + 4n%)] Peosy

N, = (w+ 4712)1/2{—%[(/{: — l)cosacosf + ksinasinf] +
ose [(k — l)sinacosf — kcosasinf]}

n
N, = (w+ 4n2)1/2{—%[(k — l)cosasinf — ksinacosf] +

cosp

[(k — l)sinasinf + kcosacosf3]}

N:L: 12k — 1) (w + 4n2)]1/2(%3in<pcosa — %cosgpsina)

B, = %[(n — k)(n + E)]Y?[(k — )cosacosp + ksinasinf]

B, = %[(n —k)(n + E)]"?[(k — I)cosasinf — ksinacosf]

B, = —%[Z(Qk —D)(n — k)(n + k)]*?cosa

Jo = 2[1(2k — )]Y?cosB T, = 2[1(2k — 1)]/*sinp

J,=2(k—1) (3.20)

Since B is the dS analog of p and in classical theory J = r X p, one might expect that
BJ = 0 and, as follows from the above expressions, this is the case. It also follows
that B? = 4(n? — k?) and J? = 4k? in agreement with Eq. (3.11).

In Sect. 2.3 we described semiclassical wave functions by six parameters
(r,p) while in the basis é,; the six parameters are (n,k,l, ¢, «,3). Since in the
dS theory the ten representation operators are on equal footing, it is also possible to
describe a semiclassical state by semiclasscal eigenvalues of these operators. However,
we should have four constraints for them. As follows from Eqgs. (2.16) and (3.20), the
constraints can be written as

E+N-B*~JP=w NxB=-£&J (3.21)

As noted in Sect. 2.3, in Poincare limit £ = 2RE, B = 2Rp (since we have replaced
Eq. (1.5) by Eq. (3.1)) and the values of N and J are much less than £ and B.
Therefore the first relation in Eq. (3.21) is the Poincare analog of the well known
relation E? — p? = m?.

The quantities (nklpaf) can be expressed in terms of semiclassical eigen-
values (€,N, B, J) as follows. The quantities (nkl) can be found from the relations

B*+J=4n®> =4k J,=2(k-1) (3.22)
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and then the angles (paf3) can be found from the relations

2En , BN
B(w + 4n?)1/2 e =  B(w + 4n2)1/?
cosa = —JB,/(BJ.) sina=(BxJ),/(BJ.)
cosfB=Jy/J. sinf=J,/J, (3.23)

cosp =

where B = [B|, J = |J| and J, = (JZ + J2)V2. In semiclassical approximation,
uncertainties of the quantities (nkl) should be such that An < n, Ak < k and Al <
[. On the other hand, those uncertainties cannot be very small since the distribution
in (nkl) should be such that all the ten approximate eigenvalues (£, N, B, J) should
be much greater than their corresponding uncertainties. The assumption is that for
macroscopic bodies all these conditions can be satisfied.

In Sect. 2.3 we discussed operators in Poincare limit and corrections of
order 1/R to them, which lead to the dS antigravity. A problem arises how the dS
antigravity can be recovered in the basis defined in this chapter. The first question is
how Poincare limit should be defined. In contrast to Sect. 2.3, we can now work not
with the unphysical quantities v or p = mv defined on the Lorentz hyperboloid but
directly with semiclassical eigenvalues of the representation operators. In contrast to
Sect. 2.3, we now define p = B/(2R), m = w'/?/(2R) and E = (m? + p?)"/2. Then
Poincare limit can be defined by the requirement that when R is large, the quantities
& and B are proportional to R while N and J do not depend on R. In this case, as
follows from Eq. (3.21), in Poincare limit £ = 2RE and B = 2Rp.

In has been noted in Sect. 2.3 that if r is defined as i0/0p then in semi-
classical approximation N = —2Fr. If this result is correct in the formalism of this
chapter then it is obvious that the second relation in Eq. (3.21) is the Poincare analog
of the relation J = r x p. However a problem arises how r should be defined in the
present formalism and how to prove whether N = —2FEr or not. If B and J are given
and B # 0 then a requirement that r x p = J does not define r uniquely. One can de-
fine parallel and perpendicular components of r as r = 7;B/|B|+r, and analogously
N = NB/|B| + N ;. Then the relation r x p = J defines uniquely only r, and it
follows from the second relation in Eq. (3.21) that N} = —2Fr,. However, it is not
clear yet how 7 should be defined and whether the last relation is also valid for the
parallel components of N and r. As follows from the second relation in Eq. (3.23), it
will be valid if |sing| = r|/R, i.e. ¢ is the angular coordinate. As noted in Sect. 1.5,
semiclassical approximation for a physical quantity can be valid only in states where
this quantity is rather large. Therefore if R is very large then ¢ is very small if the
distances are not cosmological (i.e. they are much less than R). Hence the problem
arises whether this approximation is valid. This is a very important problem since
in standard approach it is assumed that nevertheless ¢ can be considered semiclas-
sically. We will investigate this problem in the subsequent sections while in this one
we assume that this is the case.
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Consider now corrections to Poincare limit in the present formalism. Since
B =2Rp and J =r, x p then it follows from Eq. (3.22) that in first order in 1/R?
k*/n* = r? /R?. Therefore as follows from the first expression in Eq. (3.20), in first
order in 1/R? the results on £ and N can be represented as

I‘2

€ =2ER(1— 5z) N=—2Er (3.24)
The result for the energy is in agreement with Eq. (2.18).

As follows from Eq. (3.5), the two-body operator W, which is an analog
of the quantity w can be defined such that if I, is the two-body Casimir operator
(2.16) then

L=W-S8*+9 (3.25)

where S is the two-body spin operator which can be expressed in terms of the two-
body Casimir operator of the fourth order. Then as follows from Egs. (2.16) and
(3.5)

W = w1 + wo + 25152 -+ 2N1N2 — 2B1B2 — 2J1J2 -+ 82 +9 (326)

and, taking into account Eq. (3.24) we get
W =W, —4E Eor® — 2J,J5 + 8% +9 (3.27)

where r = 1 — 1y, Wy = 4R?I,p and Iyp, is the Casimir operator of the second
order in Poincare invariant theory. If E is the two-body energy operator in Poincare
invariant theory and P is the two-body Poincare momentum then lLp = E? — P2
This operator is sometimes called the mass operator squared although in general
Ip is not positive definite (e.g. for tachyons). However, for macroscopic bodies
it is positive definite, i.e. can be represented as M¢, the classical value of which
is M = m? + m3 + 2E1Fy — 2p1ps. Let M? = W/4R? be the mass squared in
Poincare invariant theory with dS corrections. In the nonrelativistic approximation
M = my + my + H,,, where H,, is the nonrelativistic Hamiltonian in the c.m. frame.
Then it follows from Eq. (3.27) that in first order in 1/R?

2 2
q mioY
H = — 3.28
(r.q) 2myo 2R? (3.28)

A question arises why this expression is different from that given by Eq.
(2.23). The explanation is as follows. In this and preceding chapters we considered
different implementations of IRs of the dS algebra. All such implementations are
unitarily equivalent. Therefore if O is the set of operators defined by Egs. (3.9,3.10)
and O is the set of operators defined by Eq. (2.15) then there exists a unitary operator
U such that O = UOU~'. Let now (0;,0;,U;) (j = 1,2) be the corresponding
operators for particles 1 and 2. In the preceding chapter we discussed a possibility that
the representation operators for the two-body system are O; 4O, while in this chapter
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we discussed a possibility that they are represented as O; + 0. These possibilities
are not equivalent. As follows from the discussion in the subsequent chapters, from
the point of view of the approach based on Galois fields, the implementation of IRs in
this chapter is more fundamental than in the preceding one. Nevertheless, on classical
level they are equivalent since classical equations of motion for the Hamiltonian (3.28)
are the same as for the Hamiltonian (2.23). Note the correction to the Hamiltonian
is always negative and proportional to mis in the nonrelativistic approximation.

3.3 Two-body relative distance operator

In Sect. 1.5 we discussed semiclassical approximation for the coordinate operator in
standard quantum mechanics. In this section we investigate how the relative distance
operator can be defined in dS invariant theory. As noted in the preceding section,
among the operators of the dS algebra there are no operators which can be identified
with the distance operator but there are reasons to think that in semiclassical ap-
proximation the values of £/ and N are given by Eq. (3.24). From the point of view
of our experience in Poincare invariant theory, the dependence of E' on r might seem
to be unphysical since the energy depends on the choice of the origin. However, as
already noted, only invariant quantities have a physical meaning; in particular the
two-body mass can depend only on relative distances which do not depend on the
choice of the origin.

In view of Eq. (3.24) one might think that the operator D = &N, — &N,
might be a good operator which in semiclassical approximation is proportional to
E1 For at least in main order in 1/R% However, the operator D defining the relative
distance should satisfy the following conditions. First of all, it should not depend
on the motion of the two-body system as a whole; in particular it should commute
with the operator which is treated as a total momentum in dS theory. As noted
in the preceding section, the single-particle operator J’ is a better candidate for the
total momentum operator than B. Now we use J’ to denote the total two-particle
operator J| + J,. Analogously, we use J” to denote the total two-particle operator
J17+J5”. As noted in the preceding section, J” can be treated as the internal angular
momentum operator. Therefore, since D should be a vector operator with respect to
internal rotations, it should properly commute with J”. In summary, the operator D
should satisfy the relations

[J7,D¥ =0 [J7, D¥| = 2iej D' (3.29)
By using Egs. (3.2) and (3.6) one can explicitly verify that the operator
D= 52N1 — 51N2 — Nl X N2 (330)

indeed satisfies Eq. (3.29). If Poincare approximation is satisfied with a high accuracy

then obviously D ~ D.
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In contrast to the situation in quantum mechanics, different components of
D do not commute with each other and therefore are not simultaneously measurable.
However, since [D? J”] = 0, by analogy with quantum mechanics one can choose
(D2,J72,J)) as a set of diagonal operators. The result of explicit calculations is

D? = (£2 4+ N?)(E2 + N2) — (£1E + N1Ny)? — 4(J,By + J,By) —4J,J,  (3.31)

It is obvious that in typical situations the last two terms in this expression are much
less than the first two terms and for this reason we accept an approximation

D? ~ (£} + N2)(&5 + N3) — (£1& + NN,)? (3.32)

At this point no assumption that semiclassical approximation is valid has
been made. If Eq. (3.24) is valid then, as follows from Eq. (3.32), in first order in 1/ R?
D? = 16 Ef E3R*r? where r = |r|. In particular, in the nonrelativistic approximation
D? = 16mim3R%*r?, i.e. D? is proportional to r* what justifies treating D as a dS
analog of the relative distance operator. On the other hand, as noted in the preceding
section, there are reasons to believe that macroscopic wave functions are semiclassical
in (k, 1) but it is not clear whether their n-dependence is semiclassical. For this reason
we consider an approximation when the (k,l) dependence is semiclassical while it
should be investigated when the n dependence is semiclassical too.

Note that the operators in Eq. (3.16) act over the variable n while the
operators in Eq. (3.17) don’t. The formulas defining the action of the operators in Eq.
(3.16) contain multipliers (n + k) and (n — k). We expect that k& < n and therefore
one might expect that the main contribution to the operator N can be obtained if
kin (n + k) and (n — k) is neglected. Let N|; be the operator N obtained in this
approximation. Then it follows from Egs. (3.16) and (3.17) that

i w + 4n?
- Z[(n— k)(n+ k)

Nyé(n, k, 1) 1Y2Blé(n — 1, k1) — &(n+1,k,1)] (3.33)

In our approximation we can replace B by its semiclassical value and take into account
(see the preceding section) that B = 2[(n — k)(n + k)]'/? where B = |B|. Then, as
follows from Eqgs. (3.16) and (3.17), in this approximation

' B
N é(n, k, 1) = %(w 4n) Y2 e (n — 1,k 1) — é(n+ 1, k, 1) =

B
1 B
Nié(n, k1) = = (w+ An®Y2[e(n — 1, k1) + é(n + 1, k, Dl(5 xJ)
n
1
Ee(n, k1) = RB(w +4nHY2[e(n — 1,k 1) + é(n + 1,k,1)] (3.34)

where N is the remaining part of the operator N. As follows from the above ex-
pression, this part is indeed orthogonal to B. Since we assume that J/n is of order
1/R, N, already contains a factor of order 1/R.

45



For brevity of notations we will omit the (k,1) dependence of wave func-
tions and will replace é(n, k, 1) by ¥(n). Then Eq. (3.34) can be written as

__i 2\1/2 i _i 2\1/2
N =2 (w+40")*[BA+ -(Bx DB| €= Blw+4n)/*B  (335)

where the action of the operators A and B is defined as

?

Ab(n) = Lfin+ 1)~ b(n— 1] Bo(n) = glé(n+ 1) 46— 1] (330
The relations between the operators A, B and n are
[A,n]=iB [B,n]=—iA [AB =0 A*+B =1 (3.37)

As noted in Sect. 1.5, in standard quantum theory the semiclassical wave
function in momentum space contains a factor exp(—ipz). Since n is now the dS
analog of p,R, we assume that 1)(n) contains a factor exp(—iny), i.e. the angle ¢ is
the dS analof of z/R. It is reasonable to expect that since all the ten representation
operators of the dS algebra are angular momenta, in dS theory one should deal only
with angular coordinates wich are dimensionless. If ¢)(n) = a(n)exp(—iny) and we
assume that in semiclassical approximation the main contribution in Eq. (3.36) is
given by the exponent then

Adb(n) = singpu(n) Bu(n) ~ cospt(n) (3.38)

in agreement with the first two expressions in Eq. (3.23). Therefore if ¢ is the dS
analog of z/R and z < R, we recover the result that N ~ —2Er,. Eq. (3.38)
can be treated in such a way that A is the operator of the quantity sing and B is
the operator of the quantity cosy. However, the following question arises. As noted
in Sect. 1.5, semiclassical approximation for a quantity can be correct only if this
quantity is rather large. At the same time, we assume that A is the operator of the
quantity which is very small if R is large.

If ¢ is small, we have sing =~ ¢ and in this approximation A can be treated
as the operator of the angular variable . This seems natural since in standard theory
the operator of the z coordinate is id/dp, and A is the finite difference analog of
derivative over n (there is no derivative over n since n is the discrete variable and can
take only values 0,1,2...). When ¢ is not small, the argument that 4 is the operator
of the quantity siny is as follows. Since

0 (2[) 20+1
&’I"CSZ’H(,O Z m

one might think that

> 2l |A21+1
O =
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can be treated as the operator of the quantity (. Indeed, as follows from this expres-
sion and Eq. (3.37), [®,n] =i what is the dS analog of the relation [z, p,] = 1.
For a two-body system we define the operator

BlBQ BlBQ Bl(BQ X Jg)
G=1- BBy — SRR R 4By —
4711%2 1=z BlBQ A1A2 2%23132 Al 2
(Bl X Jl)BQ (Bl X Jl)(BQ X Jg)
2%13132 A2Bl 4%1%23132 8182 (339)

Then, as follows from Eqs. (3.32) and (3.35)

5152+N1N2 = (w1+4nf)1/2(w2+4n%)1/2(1—G) D2 = (w1+4nf)(wg+4n§)(2G—G2)

(3.40)
By analogy with standard theory, we can consider the two-body system in its c.m.
frame. Since we choose B + J as the dS analog of momentum, the c.m. frame can
be defined by the condition By + J; + By + Jo = 0. Therefore, as follows from Eq.
(3.22), ny = ny. This is an analog of the condition that the magnitudes of particle
momenta in the c.m. frame are the same. Another simplification can be achieved if
the position of particle 2 is chosen as the origin. Then Jo =0, J; = (r; x B;)/2R,
By = 2n5 and Eq. (3.39) has a much simpler form:

B
G=1-—2(BB,— ALA,) (3.41)
27L1

In the approximation when B; can be replaced by cosp; and A; - by sing; (i = 1,2),
we can again recover the above result D? = 16 EY E3 R*r? if |1 4 @a| = r)|/R.

We conclude that if standard semiclassical approximation is valid then
dS corrections to the two-body mass operator are of order (r/R)*. This result is
in agreement with standard intuition that dS corrections can be important only at
cosmological distances while in the Solar system these corrections are negligible. On
the other hand, as it has been already noted, those conclusions are based on belief
that the angular distance ¢, which is of order /R, can be considered semiclassically
in spite of the fact that it is very small. In the next section we investigate whether
this is the case. Since from now on we are interested only in distances which are much
less than cosmological ones, we will neglect all corrections of order /R and greater.
In particular, we accept the approximation that |B;| = 2n;, |Bs| = 2ns and the c.m.
frame is defined by the condition B; + B, = 0.

By analogy with standard theory, it is convenient to consider the two-body
mass operator if individual particle momenta n; and ns are expressed in terms of the
total and relative momenta N and n. In the c.m. frame we can assume that By is
directed along the positive direction of the z axis and then B, is directed along the
negative direction of the z axis. Therefore the quantum number N characterizing the
total dS momentum can be defined as N = n; — ny. In nonrelativistic theory the
relative momentum is defined as q = (maep1 — mip2)/(m;1 + me) and in relativistic
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theory as q = (Eyp1 — E1p2)/(F1 + E2). Therefore, taking into account the fact that
in the c.m. frame the particle momenta are directed in opposite directions, one might
define n as n = (many + miny)/(my + ms) or n = (Eqnq + E1ns)/(Ey + Es). These
definitions involve Poincare masses and energies. Another possibility is n = (n; +
n2)/2. In all these cases we have that n — (n+1) when ny — (ny+1), ny — (na+1)
and n — (n — 1) when ny — (ny — 1), ng — (ng — 1). In what follows, only this
feature is important.

Although so far we are working in standard dS quantum theory over com-
plex numbers, we will argue in the next chapters that fundamental quantum theory
should be finite. We will consider a version of quantum theory where complex num-
bers are replaced by a Galois field. In this approach only those functions ;(n;) and
19(n9) are physical which have a finite carrier in n; and ng, respectively. Therefore
we assume that ¢;(ny) can be different from zero only if ny € [n1min, N1mas] and
analogously for 19(ns). If Nimez = Nimin + 01 — 1 then a necessary condition that
ny is semiclassical is 9; < n;. At the same time, since ; is the dS analog of Ap, R
and R is very large, we expect that d; > 1. We use v; to denote n; — nymi,. Then
if Y1 (1) = a1(vy)exp(—ip11y), we can expect by analogy with the consideration in
Sect. 1.5 that the state v (ry) will be semiclassical if |p1d;| > 1 since in this case
the exponent makes many oscillations on [0, d;]. Even this condition indicates that
1 cannot be extremely small. Analogously we can consider the wave function of par-
ticle 2, define do as the width of its dS momentum distribution and v = ny — Nomin.
The range of possible values of N and n is shown in Fig. 3.1 where it is assumed

A

Figure 3.1: Range of possible values of N and n.

that 6; > 5. The minimum and maximum values of N are Npin = Mimin — "N2maz
and Nyae = Nimaz — N2min, respectively. Therefore N can take 01 + do values. Each
incident dashed line represents a set of states with the same value of N and different
values of n. We now use n,,;, and n,,4, to define the minimum and maximum values
of the relative dS momentum n. For each fixed value of N those values are different,
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i.e. they are functions of N. Let 6(N) = nupaz — Nmin for a given value of N. It is
easy to see that 6(N) = 0 when N = N,,;;, and N = N,,,, while for other values of
N, 6(N) is a natural number in the range (0, 0pmqe:] Where 0p4 = min(dy,d2). The
total number of values of (N, n) is obviously 0,0z, i.e.

Nmaz

> S(N) = b6 (3.42)

N=Nmin

As follows from Eq. (3.36)

(B1By — A1 Ag) i (n1)1ha(n2) = %Wl (n1+D)tho(na +1) + b1 (ng — 1) (ng — 1)] (3.43)

Therefore in terms of the variables N and n
1

Hence the operator (BB — .A;1.A5) does not act on the variable N while its action on
the variable n is described by the same expressions as the actions of the operators B;
(1 =1,2) on the corresponding wave functions. Therefore, considering the two-body
system, we will use the notation B = BBy — A;As and formally the action of this
operator on the internal wave function is the same as in the second expression in Eq.
(3.36). With this notation and with neglecting terms of order r/R and higher, Eqgs.
(3.27) and (3.41) can be written as

G=1-B I,=4R*M? — 2(w; + 4n>)"*(w, + 402G (3.45)

Since both, the operator D? and the dS correction to the operator I, are
defined by the same operator G, physical quantities corresponding to D? and I, will
be semiclassical or not depending on whether the quantity corresponding to G is
semiclassical or not. As follows from Eq. (3.37), the spectrum of the operator B
can be only in the range [0,1] and therefore, as follows from Eq. (3.45), the same is
true for the spectrum of the operator G. Hence, as follows from Eq. (3.45), any dS
correction to the operator I is negative and in the nonrelativistic approximation is
proportional to particle masses.

3.4 Validity of semiclassical approximation

Since classical mechanics works with a very high accuracy at macroscopic level, one
might think that the validity of semiclassical approximation at this level is beyond any
doubts. However, to the best of our knowledge, this question has not been investigated
quantitavely. As discussed in Sect. 1.5, such quantities as coordinates and momenta
are semiclassicall if their uncertainties are much less than the corresponding mean
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values. Consider wave functions describing the motion of macroscopic bodies as a
whole (say the wave functions of the Sun, the Earth, the Moon etc.). It is obvious
that uncertainties of coordinates in these wave functions are much less than the
corresponding macroscopic dimensions. What are those uncertainties for the Sun, the
Earth, the Moon, etc.? What are the uncertainties of their momenta? In quantum
mechanics, the validity of semiclassical approximation is defined by the product ArAp
while each uncertainty by itself can be rather large. Do we know what scenario takes
place for macroscopic bodies?

In this section we consider several models of the function 1 (n) where it
is be possible to explicitly calculate G and AG and check whether the condition
AG < |G| (showing that the quantity G in the state 1 is semiclassical) is satisfied.
As follows from Eq. (3.37), [G,n] = iA where formally the action of this operator
on the internal wave function is the same as in the first expression in Eq. (3.36).
Therefore, as follows from Eq. (1.7), AGAn > A/2.

As noted in Sect. 1.5, one might think that a necessary condition for
the validity of semiclassical approximation is that the exponent in the semiclassical
wave function makes many oscillations in the region where the wave function is not
small. We will consider wave functions ¢(n) containing exp(—ipn) such that i(n)
can be different from zero only if n € [nin, Nmae]. Then, if 6 = nyae — Nonin + 1, the
exponent makes |p|d /27 oscillations on [, Nmae] and ¢ should satisfy the condition
|| > 1/6. The problem arises whether this condition is sufficient.

Our first example is such that 1(n) = exp(—ipn) /52 if 1 € [Nmin, Nmaz)-
Then a simple calculation gives

_ —1)Y/2 _
G=1-cosp+ %cosgp AG = 0 1)5 O A= (1-— %)singo
182
7= (o + M) /2 A = 5(2 172 (3.46)

12

Since ¢ is of order r/ R, we will always assume that ¢ < 1. Therefore for the validity
of the condition AG < G, |¢| should be not only much greater than 1/6 but even
much greater than 1/6'/4. Note also that AGAn is of order §'/2, i.e. much greater
than A. This result shows that the state ¥ (v) is strongly non-semiclassical. The
calculation shows that for ensuring the validity of semiclassical approximation, one
should consider functions () which are small when n is close t0 T,in OF M-

The second example is ¢(v) = const C{exp(—ipr) where v = n — Ny,
and const can be defined from the normalization condition. Since C§ = 0 when v < 0
or v > ¢, this function is not zero only when v € [0, d]. The result of calculations is
that const? = 1/C%; and

. 2 .
~_ 4 cosp o sinp 2 11 5 Osing
G=1 coscp—l—(H_l AG_[5+1+62+O(53)] A_5+1
_ o
n = é(nmm—}-nmw) An = m (347)
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Now for the validity of the condition AG < G, || should be much greater than 1/§%/2
and AGAn is of order | A| which shows that the function is semiclassical. The matter
is that ¢ () has a sharp peak at v = §/2 and by using Stirling’s formula it is easy
to see that the width of the peak is of order ¢'/2. It is also clear from the expression
for G that this quantity equals the semiclassical value 1 — cosp with a high accuracy
only when |p| > 1/§'/2. This example might be considered as an indication that
a semiclassical wave function such that the condition |@| > 1/6 is sufficient, should
satisfy the following properties. On one hand the width of the maximum should be
of order § and on the other the function should be small when n is close to n,,;, or
Nmaz -

In view of this remark, the third example is 1(v) = const exp(—ipv)v (6 —
v) if n € [Mynin, Nmaz). Then the normalization condition is const? = [§(6* —1)/30] 7!
and the result of calculations is

_ 5cos 1 - . S,
G=1—cosp+ 52¢ +O(ﬁ) Azsmgo(l—ﬁ) = (Nmin + Nmaz) /2
— 10 15cos 1
G? = (1 — cosp)* + ﬁ(coscp — cos2¢) + 5 Ld O(ﬁ)
1 5 15cosp 1 0
AG = 5[103m o+ —5 + 0(52)] BBV (3.48)

Now G =~ 1 — cosp if |p| > 1/§ but AG < |G| only if |¢| > 1/6%* and AGAn is
of order |A| only if |¢| > 1/6'/2. The reason why the condition |p| > 1/4 is not
sufficient is that G2 approximately equals its classical value (1 — cosp)? only when
|| > 1/6%4. The term with 1/6% in G2 arises because when v is close to 0, ¥(v) is
proportional only to the first degree of ¥ and when v is close to ¢, it is proportional
to d —v.

Our last example is 1(v) = const exp(—ipv)[v(6 —v)]? if n € [Nomin, Nmaz)-
It will suffice to estimate sums S.°_ ¥ by 6+1/(k 4 1) + O(6%). In particular, the
normalization condition is const® = 35-18/4° and the result of calculations is

_ 6cos 1 T , 6., _

G=1-cosp+ 52¢ +O(ﬁ) A = sing (1—§) N = (Nmin + Nmaz) /2

— 12 1

G? = (1 — cosp)® + ﬁ(cosgp — cos2p) + O(ﬁ)

AG = 1[1237L77,2<,0 + O(i)]l/2 n= 0 (3.49)
4] )2 2v/11

In this example the condition |p| > 1/4 is sufficient to ensure that AG < |G| and
AGAn is of order |Al.

At the same time, the following question arises. If we wish to perform
mathematical operations with a physical quantity in classical theory, we should guar-
antee that not only this quantity is semiclassical but a sufficient number of its powers
is semiclassical too. Since the classical value of G is proportional to ©? and ¢ is small,
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there is no guaranty that for the quantity G this is the case. Consider, for example,
whether G? is semiclassical. It is clear from Eq. (3.49) that G2 is close to its classical
value (1 — cosp)? if |p| > 1/6. However, A(G?) will be semiclassical only if G* is
close to its classical value (1 — cosp)*. A calculation with the wave function from the
last example gives

— 24
G* = (1 — cosp)* + 52 “(1 — cosp)®(3 + 4cosp) +

84 35-9 1
50 — (1 — cosp)?(64cos*p + 11cosp — 6) + 555 + O(E)

(3.50)

Therefore G4 will be close to its classical value (1 — cosp)* only if |p| > 1/§%5.
Analogously, if ¥(v) = const[v(§ — v)]? then G? will be semiclassical but G® will not.
This consideration shows that a suficient number of powers of G will be semiclassical
only if ¢(n) is sufficiently small in vicinities of 7., and 7,,4,. On the other hand, in
the example described by Eq. (3.47), the width of maximum is much less than ¢ and
therefore the condition |p| > 1/§ is still insufficient.

The problem arises whether it is possible to find a wave function such that
the contributions of the values of v close to 0 or J is negligible while the effective
width of the maximum is or order 4. For example, it is known that for any segment
la,b] and any € < (b — a)/2 it is possible to find an infinitely differentiable function
f(z) on [a, b] such that f(z) =0if z ¢ [a,b] and f(x) = 1if z € [a+¢€, b—¢]. However,
we cannot use such functions for several reasons. First of all, the values of v can be
only integers: v = 0,1,2,...6. Another reason is that for correspondence with GFQT
we can use only rational functions and even exp(—ivy) should be expressed in terms
of rational functions (see Sect. 3.6).

In view of this discussion, we accept that the functions similar to that
described in the second example give the best approximation for semiclassical ap-
proximation since in that case the condition || > 1/6'/? guarantees that sufficiently
many quantities G* (k =1, 2,. ...) will be semiclassical. In this example it is possible
to give an explicit formula for G*. The calculation involves hypergeometric functions

= (=8 + k),
F(=0,—0 4k k+1;1) Z
p l'k+1

where (k); is the Pochhammer symbol. Such sums are finite and can be calculated
by using the Saalschutz theorem [29]: F(—0, =0+ k; k+1;1) = k!(20 + k)!/01(6 + k)!.
As a result,

P Lo oy (=k)i(—0):
G _?c%[HQ;(—n cos(lgp)(k+1)l(6+1)l] (3.51)
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In particular,

— 2(1 — cosp)(1 + 2cosp) 3cos2¢p
2 —(1— 2
@ = (1 —cosp)"+ 51 G+ 10 +2)
—= 3(1 — cosp)?(2 + 3cosyp)
3 . 3
G3 = (1 — cosyp)” + G+ 1)
9(1 — cosp)(4cos*p + 2cosp — 1) 15co0s3¢
(0+1)(6+2) (6+1)(6+2)(0+3)
— 4(1 — 3 4
(20cos*p + 18cosp — 1) N 60(1 — cosy)(8cos®p + 4cos*p — 4cosp — 1)
(0+1)(6+2) (6+1)(6+2)(0+3)

105cosdp
O+ 1)(0+2)(d+3)(d+4)

+

(3.52)

Since ¢ is of order /R, the condition || > 1/6/? is definitely satisfied
at cosmological distances while the problem arises whether it is satisfied in the So-
lar system. Since ¢ can be treated as 2RAq where Aq is the width of the relative
momentum distribution in the internal two-body wave function, d is of order rAgq.
For understanding what the order of magnitude of this quantity is, one should have
estimations of Aq for macroscopic wave functions. However, to the best of our knowl-
edge, the existing theory does not make it possible to give reliable estimations of this
quantity.

Below we argue that Ag is of order 1/r, where r, is the gravitational
(Schwarzschild) radius of the component of the two-body system which has the
greater mass. Then ¢d is of order r/r,. This is precisely the parameter defining
when standard Newtonian gravity is a good approximation to GR. For example, the
gravitational radius of the Earth is of order 0.01m while the radius of the Earth is
Rp = 6.4 x 10°n. Therefore Rp/r, is of order 10°. The gravitational radius of the
Sun is of order 3000m, the distance from the Sun to the Earth is or order 150 x 109m
and so r/r, is of order 10%. At the same time, the above discussion shows that the
condition ¢d > 1 is not sufficient for ensuring semiclassical approximation while the
condition || > 1/6/2 is. Hence we should compare the quantities /R and (r,/R)"/2.
Then it is immediately clear that the requirement || > 1/6'/2 will not be satisfied
if R is very large. If R is of order 10%m then in the example with the Earth r/R is
of order 107 and (r,/R)'/? is of order 10~'* while in the example with the Sun r/R
is of order 107 and (r,/R)"/? is of order 107'°. Therefore in these examples the re-
quirement || > 1/6%/? is not satisfied. We conclude that for systems of macroscopic
bodies, semiclassical approximation can be valid only if standard distance operator
is modified.
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3.5 Newton’s law of gravity

The notion of standard distance operator comes from Poincare invariant particle and
nuclear physics. In these theories there is no parameter R; in particular rapidly oscil-
lating exponents do not contain this parameter. One of the reasons why semiclassical
approximation with this distance operator can be valid is as follows. It will be argued
in the next chapters that in GFQT the width ¢ of the n-distribution for a macroscopic
body is inversely proportional to its mass. Therefore for nuclei and elementary parti-
cles the quantity ¢ is much greater than for macroscopic bodies and the requirement
| > 1/6'/% can be satisfied in some situations. On the other hand, such a treatment
of the distance operator for macroscopic bodies is incompatible with semiclassical ap-
proximation since, as discussed in the preceding section, ¢ is typically much less than
1/6Y/2. For this reason the interpretation of the distance operator should be mod-
ified such that the rapidly oscillating exponents are not exp(—ipn) but exp(—ixn)
where y is much greater than ¢ and is a function of r to be determined. Note that
when we discussed the operator D? compatible with the standard interpretation of
the distance operator, we did not neglect J in this operator and treated |¢| as ||/ R.
However, when we neglect all corrections of order 1/R and higher, we neglect J in D?
and replace ¢ by x which does not vanish when R — co. As shown in Sect. 3.3, the
operator D? is rotationally invariant since the internal two-body momentum operator
is a reduction of the operator J° on the two-body rest states, D satisfies Eq. (3.29)
and therefore [J7, D?] = 0. Hence x can be only a function of r but not ry,.

Ideally, a physical interpretation of an operator of a physical quantity
should be obtained from the quantum theory of mesurements which should describe
the operator in terms of a measurement of the corresponding physical quantity. How-
ever, although quantum theory is known for 80+ years, the quantum theory of mea-
surements has not been developed yet. Our judgment about operators of different
physical quantities can be based only on intuition and comparison of theory and ex-
periment. As noted in Sect. 1.5, in view of our macroscopic experience, it seems
unreasonable that if the uncertainty Ar of r does not depend on r then the relative
accuracy Ar/r in the measurement of r is better when r is greater.

When exp(—ipn) is replaced by exp(—ixn), the results obtained in the
preceding section remain valid but ¢ should be replaced by x. Suppose that y =
f(C(pd)*) where ¢ = /R, C is a constant and f(z) is a function such that f(z) =
x + o(x) where the correction o(x) will be discussed later. Then Ay ~ Cp* 1§*A¢p.
If o is replaced by x then, as follows from Eq. (3.47), A(x?) is of order x/6'/? and
therefore Ay is of order 1/8'/2. As a consequence, Ap = const - p(8)~* /52, As
discussed in the preceding section, the value of (¢d) is typically much greater than
unity. Hence the accuracy of the measurement of ¢ is better when o < 0. In that
case the relative accuracy A/ is better for lesser values of ¢ and, as noted in Sect.
1.5, this is a desired behavior in view of our macroscopic experience. If @ < 0 then
Ay = const - p(¢6)lel/61/2. In view of quantum mechanical experience, one might
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expect that the accuracy should be better if § is greater. On the other hand, in our
approach ¢ is inversely proportional to the masses of the bodies under consideration
and our macroscopic experience tells us that the accuracy of the measurement of
relative distance does not depend on the mass. Indeed, suppose that we measure a
distance by sending a light signal. Then the accuracy of the measurement should not
depend on whether the signal is reflected by the mass 1kg or 1000kg. Therefore at
macroscopic level the accuracy should not depend on §. Hence the optimal choice is
a = —1/2. In that case Ap ~ const - p3/? and x = f(C/(©d)*/?). Then, if C is of
order unity, the condition x > 1/§'/2, which, as explained in the preceding section,
guarantees that semiclassical approximarion is valid, is automatically satisfied since
in the Solar system we always have (R/r)/2 > 1. We will see below in this section
that such a dependence of x on ¢ and ¢ gives a natural explanation of the Newton
law of gravity.

As follows from Eqs. (3.47), with ¢ replaced by y, the mean value of
the operator GG is 1 — cosy with a high accuracy. Consider two-body wave functions
having the form (N,n) = [0(N)/(0:165)]"*¥(n). As follows from Eq. (3.42), such
functions are normalized to one. Then, as follows from Eq. (3.45), the mean value of
the operator I, can be written as

I, =4R*M? + AL, AT, = —2[(wy + 4n2)(wy 4 4n2)|V2F (81, 64, )

Flhbng) =55 > SV{1 - coslf ()

)
2 N=Nmin

(3.53)

Strictly speaking, the semiclassical form of the wave function exp(—ixn)a(n) cannot
be used if §(N) is very small; in particular, it cannot be used when 6(N) = 0. We
assume that in these cases the internal wave function can be modified such that the
main contribution to the sum in Eq. (3.53) is given by those N where §(NN) is not
small.

If ¢ is so large that the argument « of cos in Eq. (3.53) is extremely small,
then the correction to Poincare limit is negligible. The next approximation is that
this argument is small such we can approximate cos(a) by 1 — «?/2. Then, taking
into account that f(a) = a+ o(«) and that the number of values of N is d; + Jo we
get
1/201 + 02

0102|¢|

Now, by analogy with the derivation of Eq. (3.28), it follows that the classical non-
relativistic Hamiltonian is

AL = —C?[(w; + 4n3)(wy + 4n3)] (3.54)

q2 1My R02 1 1

H = — - _
(I', CI) 2m12 2(m1 + mg)’l“ (51 + 52

(3.55)

We see that the correction disappears if the width of the dS momentum distribution
for each body becomes very large. In standard theory (over complex numbers) there is
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no limitation on the width of distribution while, as noted in the preceding section, in
semiclassical approximation the only limitation is that the width of the dS momentum
distribution should be much less than the mean value of this momentum. In the next
chapters we argue that in GFQT it is natural that the width of the momentum
distribution for a macroscopic body is inversely proportional to its mass. Then we
recover the Newton gravitational law. Namely, if

R
§; = =1,2), C?*G'=2G 3.56
g 012 (3.56)
then )
q mime
H = -G 3.57
(r.q) 2Mm1s r ( )

We conclude that in our approach gravity is simply a dS the correction to the standard
nonrelativistic Hamiltonian. This correction is spherically symmetric since, as noted
in the beginning of this section, when all corrections of order 1/R are neglected, the
dependence of D? on J disappears.

3.6 Precession of Mercury’s perihelion

It is well known that in GR and other field theories, the N-body system can be de-
scribed by a Hamiltonian depending only on the degrees of freedom corresponding to
these bodies only in order v? since even in order v* one should take into account other
degrees of freedom. In the literature on GR the N-body Hamiltonian is discussed tak-
ing into account post-Newtonian corrections to the Hamiltonian (3.57). Among those
corrections there is one which does not depend on velocities at all but is quadratic in
G /r. Namely, the Hamiltonian with post-Newtonian corrections discussed in a vast
literature (see e.g. Ref. [24]) is

2

q m1Mms Glemg(ml + my)

H -

()

3.58
2m12 ( )

where (...) contains relativistic corrections of order v?. The last term in this expression
is responsible for the precession of the perihelion of Mercury’s orbit.

For calculating this effect in our approach, one should choose the form
of the function f in Eq. (3.53). A question arises whether one can give arguments
in favor of a specific choice. In the subsequent chapters we argue that fundamen-
tal quantum theory should be based on Galois fields rather than complex numbers.
A question arises whether this imposes any restrictions on the form of wave func-
tions. In standard theory, any complex number can be always written in the form
z = |z|exp(ic). However, in our approach there can be no trigonometric functions
and square roots and a direct correspondence between GFQT and standard theory
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takes place only for wave functions represented as rational functions (see the discus-
sion in Sect. 4.1). From this point of view, the function f(z) should be such that
explif(z)n| = [exp(if(x))]™ is a rational function.

Since f(x) = z+o(x), a possible way to get rid of trigonometric functions
is to choose f(z) = arcsin(x). However, in that case exp(if(z)) = cos(f(z)) +
isin(f(z)) = (1 — 22)"/2 + iz contains a square root what, from the point of view of
the above remarks is unacceptable. One can get rid of both, trigonometric functions
and square roots, by choosing f(z) = 2arctg(x/2) since in this case

, 1 —2%/4+ix
exp(if(z)) = ﬁ (3.59)
Then Eq. (3.53) can be written as
. RN |46(N) | — C?
AL, =2 4n? An2)VA{ [ 5(N ——] -1} (3.60
= o+ w40 Pl 30 S ET ) -1 (660

Suppose that one tries to calculate this expression by expending in pow-
ers of C?/|5(N)p|. Then the term linear in C?/|6(N)¢| gives the Newton law (as
explained in the preceding section) but the next terms are singular since 6(N) = 0 if
N = Npin and N = N,.;,. As noted above, semiclassical approximation does not ap-
ply if 6(N) is small, so for such values of N Eq. (3.60) should be modified. However,
if we consider only a case when mo > my then d; > 05 and, as it is clear from Fig.
3.1, the main contribution to Eq. (3.60) is given by those N where §(/N) = d2. Then
replacing 6(N) in Eq. (3.60) by 0o we get

— c? 11 1
ATy = —[(wy + 4nf)(ws + 4n3)]V 2 — (= + — 3.61
2 [( 1 1)( 2 2)] ‘90‘((51 52 1+02/(4(52’<,0’) ( )
Then, as follows from Eq. (3.56), in the nonrelativistic approximation
M? = M — gGrrzlmg(ml +my) ————— (3.62)
r 14+ Gmgy/2r

where M? is the mean value of the operator I,/4R? and Mg is the mean value of
the mass operator squared in Poincare invariant theory. Now we can expand this
expression in powers of G/r and take into account only the linear and quadratic
terms. Then calculating the square root from the both parts of this expression with
the same accuracy, we get that if my > m; then the nonrelativistic Hamiltonian is

2 2 2
q mime  G*myms;

H = -G 3.63

This result is in agreement with Eq. (3.58) if mq > m.
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It is well known that the contribution of the last term of Eq. (3.58) to the
precession of Mercury’s perihelion is 43" per century. This is less than 1% of the total
precession 5600”. It is believed that the main contributions to the total precession
(the precession of the equinoxes and the gravitational tugs of the other planets) are
known with a very high accuracy. Nevertheless, in the literature there are different
opinions on whether, the contribution 43” of GR fully explains the data or not. In
our approach this result has been recovered from the point of view of correspondence
between standard theory and GFQT. Therefore our consideration can be treated as
an argument in favor of the result obtained in GR.

In summary, we have shown that if y = f(C/(pd)*/?) then in the frame-
work of our approach, the first term of expansion of Al in G/r reproduces standard
Newtonian gravity while the second term reproduces the result of GR for the pre-
cession of Mercury’s perihelion if the width of the dS momentum distribution for a
macroscopic body is inversely proportional to its mass. In the subsequent chapters
we argue that in GFQT this property has a natural explanation.

3.7 Remarks on the problem of evolution in de
Sitter invariant quantum theory

In Sects. 3.5 and 3.6 it has been shown how the terms in the classical Hamiltonian
responsible for Newton’s law of gravity and the precession of Mercury’s perihelion
can be recovered in the framework of our approach. However, classical equations of
motions have not been discussed. In classical mechanics, if the classical Hamiltonian
is known then the evolution can be described by the Hamilton equations or the
Hamilton-Jacobi equation. Since we believe that quantum theory is more general
than classical one, this conclusion should be substantiated from the point of view of
semiclassical approximation in quantum theory. However, as noted in Sect. 1.3, the
problem of time is an unsolved problem of quantum theory since there is no operator
corresponding to t.

In standard quantum mechanics it is assumed that ¢ is a parameter de-
scribing the evolution of a quantum system via the Schroedinger equation. Then in a
special case when a semiclassical wave function contains a rapidly oscillating exponent
exp(1S) where S is the classical action, one recovers the Hamilton-Jacobi equation
from the Schroedinger equation. However, the consideration is Sect. 3.4 shows that
the presence of rapidly oscillating exponent does not always guarantee that semiclas-
sical approximation is valid. In our approach the Newton law and the result for the
precession of Mercury’s perihelion have been obtained from wave functions containing
a rapidly oscillating exponent exp(—ixn) instead of exp(—ipn) in standard theory.
Since y depends on the width of the dS momentum distribution, the index of the
exponent can no longer be treated as a classical action.

Another problem in describing evolution in dS quantum theory is as fol-

o8



lows. The classical Hamiltonian, which is believed to be responsible for classical
evolution, is extracted from the operator M = (I/4R?)Y/2. This operator is treated
as the mass operator, i.e. the Hamiltonian in the c.m. frame. Therefore M defines
the evolution in the c.m. frame such that if ¢ is the internal wave function then its
dependence on time t is defined by
0Y(t)
= = M) (3.64)
However, in dS theory the operator MY which can be called the dS
Hamiltonian, is not distinguished among the other operators. The operator I has a
clear meaning as a Casimir operator, i.e. as the operator commuting with all the dS
operators M. In the general case this operator is not even positive definite. This
situation has a clear analogy with standard relativistic theory where there is no law
that the Casimir operator E? — P? should be positive definite.
In view of these remarks, it is natural to think that in dS theory the
evolution should be described by a parameter 7 such that

Y(7)
or

Then it is clear that 7 and ¢t have even different dimensions. In the nonrelativistic
approximation, Egs. (3.64) and (3.65) are equivalent if the relation between ¢ and 7
is t = 4R*(my + my)7. They are also equivalent in the case when only one particle
is nonrelativistic and the mass of this particle is much greater than the energy of
the other particle (e.g. when particle 1 is a photon and particle 2 is a macroscopic
body). However, in the general case those equations are not equivalent. This poses a
problem of how the evolution parameter should be defined.

= Ly (3.65)

?

3.8 Remarks on gravitational experiments with
light

As already noted, in GR and other field theories, a closed description of a
system with a fixed number of particles is possible only with the accuracy (v/c)?. In
particular, there is no closed description of two-body systems where one of the bodies
is a photon. However, in our approach the particles are free and there is no problem
to write down all the ten operators of the dS algebra for such systems.

The results of Sects. 3.3-3.6 give grounds to believe that the operator D
is a natural dS generalization of the distance operator in standard theory. However,
as noted in Sects. 1.3 and 1.5, the notion of the distance operator for the photon
is problematic. From the formal point of view, in the consideration of the operator
D it has not been assumed that the particle in question is nonrelativistic. Therefore
one might try to see what happens if the formal results involving D are applied to
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a two-body system where particle 1 is relativistic (e.g. it is a photon) while particle
2 is nonrelativistic and has the mass much greater than the energy of particle 1. It
is not clear whether semiclassical approximation can be applied to the photon but in
any case, if §; > d, then the details of the photon wave function are not important
and by using Eq. (3.56) we obtain by analogy with Eq. (3.57) that

E
M= M, — G212

(3.66)

where M is the mean value of the two-body mass in standard units, M is the mean
value of the two-body mass in Poincare invariant theory and £ = (w; + 4n?)Y/? /2R
is the energy of particle 1 in standard units. Therefore we have a full analogy with
the Newton gravitational law but the mass of particle 1 is replaced by its energy.

Consider first the case when the photon travels in the radial direction from
the Earth surface to the height H. In that case one can formally define the potential
energy of the photon near the Earth surface by U(H) = E1gH/c? in standard units.
Therefore when the photon travels in the radial direction from the Earth surface to
the height H, the relative change of its kinetic energy is AE|/E; = gH/c?. We
have a full analogy with classical mechanics but now the change of the energy is
small. Nevertheless, from the formal point of view, the result is in agreement with
GR and the usual statement is that this small effect has been measured in the famous
Pound-Rebka experiment.

The conventional interpretation of the above effect has been criticized by
L.B. Okun in Ref. [39]. In his opinion, ”a presumed analogy between a photon and a
stone” is wrong. The reason is that " the energy of the photon and hence its frequency
w = E/h do not depend on the distance from the gravitational body, because in the
static case the gravitational potential does not depend on the time coordinate t. The
reader who is not satisfied with this argument may look at Mazwell’s equations as
given e.g. in section 5.2 of ref. [40]. These equations with time independent metric
have solutions with frequencies equal to those of the emitter”. In Ref. [39] the result
of the Pound-Rebka experiment is explained such that not the photon looses its
kinetic energy but the differences between the atom energy levels on the height H
are greater than on the Earth surface and ” As a result of this increase the energy
of a photon emitted in a transition of an atom downstairs is not enough to excite a
reverse transition upstairs. For the observer upstairs this looks like a redshift of the
photon. Therefore for a competent observer the apparent redshift of the photon is a
result of the blueshift of the clock.”.

As noted in Ref. [39], ” A naive (but obviously wrong!) way to derive the
formula for the redshift is to ascribe to the photon with energy E a mass m, = E/c?
and to apply to the photon a non-relativistic formula AE = —m,A¢ treating it like a
stone. Then the relative shift of photon energy is AE/E = —Ag¢/c?, which coincides
with the correct result. But this coincidence cannot justify the absolutely thoughtless
application of a nonrelativistic formula to an ultrarelativistic object.”

60



However, in our approach no nonrelativistic formulas for the photon have
been used and the result AE,/E; = gH/c* has been obtained in a fully relativistic
approach. As already noted, the only problematic point in deriving this result is that
the notion of the coordinate operator for the photon is not clear. In the framework of
our approach a stone and a photon are simply particles with different masses; that is
why the stone is nonrelativistic and the photon is ultrarelativistic. Therefore there is
no reason to think that in contrast to the stone, the photon will not loose its kinetic
energy. At the same time, we believe that Ref. [39] gives strong arguments that
energy levels on the Earth surface and on the height H are different.

We believe that the following point in the arguments of Ref. [39] is not
quite consistent. A stone, a photon and other particles can be characterized by their
energies, momenta and other quantities for which there exist well defined operators.
Those quantities might be measured in collisions of those particles with other par-
ticles. At the same time, the notions of ”frequency of a photon” or ”frequency of
a stone” have no physical meaning. The terms ”"wave function” and ”particle-wave
duality” have arisen at the beginning of quantum era in efforts to explain quantum
behavior in terms of classical waves but now it is clear that no such explanation ex-
ists. The notion of wave is purely classical; it has a physical meaning only as a way of
describing systems of many particles by their average characteristics. In particular,
such notions as frequency and wave length can be applied only to classical waves, i.e.
to systems consisting of many particles. If a particle wave function (or rather a state
vector is a better name) contains expli(pr — Et)/h| then by analogy with the theory of
classical waves one might say that the particle is a wave with the frequency w = E/h
and the wave length A = 27wh/p. However, such defined quantities w and A are not
real frequencies and the wave lengths measured e.g. in spectroscopic experiments.
The term ”wave function” may be misleading since in quantum theory it defines not
amplitudes of waves but only amplitudes of probabilities. In what follows, speaking
about w and A\ we will mean only frequencies and wave lengths measured in exper-
iments with classical waves. Those quantities necessarily involve classical space and
time. Then the relation £ = hw between the energies of particles in classical waves
and frequencies of those waves is only an assumption that those different quantities
are related in such a way. This relation has been first proposed by Planck for the
description of the blackbody radiation and the experimental data indicate that it is
valid with a high accuracy. However, there is no guaranty that this relation is always
valid with the absolute accuracy, as the author of Ref. [39] assumes. In spectroscopic
experiments not energies and momenta of emitted photons are measured but wave
lengths of the radiation obtained as a result of transitions between different energy
levels. In particular, there is no experiment confirming that the relation £ = hw
is always exact, e.g. on the Earth surface and on the height H. In summary, the
Pound-Rebka experiment cannot be treated as a model-independent confirmation of
GR.

Another experiment widely discussed in the literature is the deflection
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of light by the Sun. The result is usually represented such that if p is the impact
parameter and r, is the gravitational radius of the Sun then the deflection angle is
6 = (1 + y)ry/p where v depends on the theory and in GR v = 1. It is believed
that v = 1 has been experimentally confirmed with the accuracy better than 1%.
A question arises how this result can be obtained in the framework of a quantum
approach. If we take the result given by Eq. (3.66) and assume that the evolution is
defined by the Hamilton equations with M or I in place of the classical Hamiltonian
(see the discussion in the preceding section) then the result corresponds to v = 0.
This is probably an indication that, as already noted, the notion of the coordinate
operator for a photon is problematic. In the texbook [41], the deflection is treated as a
consequence of one-graviton exchange. The author defines the vertices responsible for
the interaction of a virtual graviton with a scalar nonrelativistic particle and with a
photon and in that case the cross-section of the process described by the one-graviton
exchange corresponds to the result with v = 1. The problem is that there is no other
way of testing the photon-graviton vertex and we believe that it is highly unrealistic
that when the photon travels in the x direction from —oo to 400, it exchanges only
by one virtual graviton with the Sun. Therefore a problem of how to recover the
result with v = 1 in quantum theory remains open.
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Chapter 4

Why is GFQT more pertinent
physical theory than standard one?

4.1 What mathematics is most pertinent for quan-
tum physics?

Since the absolute majority of physicists are not familiar with Galois fields, our first
goal in this chapter is to convince the reader that the notion of Galois fields is not
only very simple and elegant, but also is a natural basis for quantum physics. If a
reader wishes to learn Galois fields on a more fundamental level, he or she might start
with standard textbooks (see e.g. Ref. [42]).

In view of the present situation in modern quantum physics, a natural
question arises why, in spite of big efforts of thousands of highly qualified physicists
for many years, the problem of quantum gravity has not been solved yet. We believe
that a possible answer is that they did not use the most pertinent mathematics.

For example, the problem of infinities remains probably the most chal-
lenging one in standard formulation of quantum theory. As noted by Weinberg [22],
"Disappointingly this problem appeared with even greater severity in the early days of
quantum theory, and although greatly ameliorated by subsequent improvements in the
theory, it remains with us to the present day’. The title of the recent Weinberg’s
paper [43] is ”Living with infinities”. A desire to have a theory without divergences
is probably the main motivation for developing modern theories extending QFT, e.g.
loop quantum gravity, noncommutative quantum theory, string theory etc. On the
other hand, in theories over Galois fields, infinities cannot exist in principle since any
Galois field is finite.

The key ingredient of standard mathematics is the notions of infinitely
small and infinitely large. The notion of infinitely small is based on our everyday
experience that any macroscopic object can be divided by two, three and even a
million parts. But is it possible to divide by two or three the electron or neutrino? It
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seems obvious that the very existence of elementary particles indicates that standard
division has only a limited meaning. Indeed, consider, for example, the gram-molecule
of water having the mass 18 grams. It contains the Avogadro number of molecules
6-10%3. We can divide this gram-molecule by ten, million, billion, but when we begin
to divide by numbers greater than the Avogadro one, the division operation loses its
meaning.

If we accept that the notion of infinitely small can be only approximate
in some situations then we have to acknowledge that fundamental physics cannot
be based on continuity, differentiability, geometry, topology etc. We believe it is
rather obvious that these notions are based on our macroscopic experience. For
example, the water in the ocean can be described by equations of hydrodynamics but
we know that this is only an approximation since matter is discrete. The reason why
modern quantum physics is based on these notions is probably historical: although
the founders of quantum theory and many physicists who contributed to it were highly
educated scientists, discrete mathematics was not (and still is not) a part of standard
physics education.

The notion of infinitely large is based on our belief that in principle we can
operate with any large numbers. In standard mathematics this belief is formalized
in terms of axioms about infinite sets (e.g. Zorn’s lemma or Zermelo’s axiom of
choice) which are accepted without proof. Our belief that these axioms are correct
is based on the fact that sciences using standard mathematics (physics, chemistry
etc.) describe nature with a very high accuracy. It is believed that this is much
more important than the fact that, as follows from Goedel’s incompleteness theorems,
standard mathematics cannot be a selfconsistent theory since no system of axioms
can ensure that all facts about natural numbers can be proved.

Standard mathematics contains statements which seem to be counterintu-
itive. For example, the interval (0, 1) has the same cardinality as (—oo, 00). Another
example is that the function tgx gives a one-to-one relation between the intervals
(—m/2,7/2) and (—o00,00). Therefore one can say that a part has the same number
of elements as a whole. One might think that this contradicts common sense but in
standard mathematics the above facts are not treated as contradicting.

Another example is that we cannot verify that a +b = b+ a for any num-
bers a and b. At the same time, in the spirit of quantum theory there should be no
statements accepted without proof (and based only on belief that they are correct);
only those statements should be treated as physical, which can be experimentally
verified, at least in principle. Suppose we wish to verify that 1004+200=200-+100.
In the spirit of quantum theory it is insufficient to just say that 100+200=300 and
2004-100=300. We should describe an experiment where these relations can be veri-
fied. In particular, we should specify whether we have enough resources to represent
the numbers 100, 200 and 300. We believe the following observation is very impor-
tant: although standard mathematics is a part of our everyday life, people typically
do not realize that standard mathematics is implicitly based on the assumption that
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one can have any desirable amount of resources.

Suppose, however that our Universe is finite. Then the amount of resources
cannot be infinite. In particular, it is impossible in principle to build a computer
operating with any number of bits. In this scenario it is natural to assume that
there exists a fundamental number p such that all calculations can be performed only
modulo p. Then it is natural to consider a quantum theory over a Galois field with the
characteristic p. Since any Galois field is finite, the fact that arithmetic in this field
is correct can be verified (at least in principle) by using a finite amount of resources.

Let us look at mathematics from the point of view of the famous Kronecker
expression: ” God made the natural numbers, all else is the work of man”. Indeed, the
natural numbers 0, 1, 2... have a clear physical meaning. However only two operations
are always possible in the set of natural numbers: addition and multiplication. In
order to make addition reversible, we introduce negative integers -1, -2 etc. Then,
instead of the set of natural numbers we can work with the ring of integers where three
operations are always possible: addition, subtraction and multiplication. However,
the negative numbers do not have a direct physical meaning (we cannot say, for
example, "I have minus two apples”). Their only role is to make addition reversible.

The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, as noted above,
division has only a limited meaning.

In mathematics the notion of linear space is widely used, and such impor-
tant notions as the basis and dimension are meaningful only if the space is considered
over a field or body. Therefore if we start from natural numbers and wish to have a
field, then we have to introduce negative and rational numbers. However, if, instead
of all natural numbers, we consider only p numbers 0, 1, 2, ... p—1 where p is prime,
then we can easily construct a field without adding any new elements. This construc-
tion, called Galois field, contains nothing that could prevent its understanding even
by pupils of elementary schools.

Let us denote the set of numbers 0, 1, 2,...p — 1 as F},. Define addition
and multiplication as usual but take the final result modulo p. For simplicity, let
us consider the case p = 5. Then Fjy is the set 0, 1, 2, 3, 4. Then 1 4+ 2 = 3 and
1+3=4asusual, but 24+3 =0, 34+ 4 =2 etc. Analogously, 1-2=2,2-2 =4,
but 2-3 =1, 3-4 = 2 etc. By definition, the element y € F}, is called opposite
to x € F, and is denoted as —x if x +y = 0 in F,. For example, in F5 we have
-2=3, -4=1 etc. Analogously y € F), is called inverse to x € F}, and is denoted as
1/x if xzy = 1 in F,. For example, in F; we have 1/2=3, 1/4=4 etc. It is easy to
see that addition is reversible for any natural p > 0 but for making multiplication
reversible we should choose p to be a prime. Otherwise the product of two nonzero
elements may be zero modulo p. If p is chosen to be a prime then indeed F}, becomes
a field without introducing any new objects (like negative numbers or fractions). For
example, in this field each element can obviously be treated as positive and negative
simultaneously!
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The above example with division might also be an indication that, in the
spirit of Ref. [44], the ultimate quantum theory will be based even not on a Galois
field but on a finite ring (this observation was pointed out to me by Metod Saniga).

One might say: well, this is beautiful but impractical since in physics and
everyday life 243 is always 5 but not 0. Let us suppose, however that fundamental
physics is described not by ”usual mathematics” but by "mathematics modulo p”
where p is a very large number. Then, operating with numbers which are much less
than p we will not notice this p, at least if we only add and multiply. We will feel
a difference between ”"usual mathematics” and "mathematics modulo p” only while
operating with numbers comparable to p.

We can easily extend the correspondence between F), and the ring of in-
tegers Z in such a way that subtraction will also be included. To make it clearer we
note the following. Since the field F), is cyclic (adding 1 successively, we will obtain
0 eventually), it is convenient to visually depict its elements by the points of a circle
of the radius p/27 on the plane (z,y). In Fig. 4.1 only a part of the circle near the
origin is depicted. Then the distance between neighboring elements of the field is

Figure 4.1: Relation between F,, and the ring of integers

equal to unity, and the elements 0, 1, 2,... are situated on the circle counterclockwise.
At the same time we depict the elements of Z as usual such that each element z € Z
is depicted by a point with the coordinates (z,0). We can denote the elements of F,
not only as 0, 1,... p—1 but also as 0, £1, £2,,...£(p — 1)/2, and such a set is called
the set of minimal residues. Let f be a map from F), to Z, such that the element
f(a) € Z corresponding to the minimal residue a has the same notation as a but is
considered as the element of Z. Denote C(p) = P/ @)% and let Uy be the set of
elements a € F, such that |f(a)] < C(p). Then if a;, as, ...a, € Uy and ny, ny are such
natural numbers that

n < (p—1)/2C(p), n2 < In((p—1)/2)/(Inp)*"? (4.1)

then
flay £as +...a,) = f(ar) £ f(az) £ ...f(an)

if n <n; and

flaras...an) = f(a1)f(az)...f(an)
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if n < my. Thus though f is not a homomorphism of rings Fj, and Z, but if p is
sufficiently large, then for a sufficiently large number of elements of Uy the addition,
subtraction and multiplication are performed according to the same rules as for ele-
ments z € Z such that |z| < C(p). Therefore f can be treated as a local isomorphism
of rings F, and Z.

The above discussion has a well known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a curvature defined by a very large number p but we do not notice it when we deal
only with numbers much less than p. This number should be treated as a fundamental
constant describing laws of physics in our Universe.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light ¢ is infinitely large but in relativistic physics it is finite. Analogously, from the
point of view of classical theory, the Planck constant A is infinitely small but in quan-
tum theory it is finite. Therefore it is natural to think that in the future quantum
physics the quantity p will be not infinitely large but finite.

Let us note that even for elements from U, the result of division in the field
F, differs generally speaking, from the corresponding result in the field of rational
number @). For example the element 1/2 in F), is a very large number (p + 1)/2. For
this reason one might think that physics based on Galois fields has nothing to with
the reality. We will see in the subsequent section that this is not so since the spaces
describing quantum systems are projective. It is also clear that in general the meaning
of square root in F), is not the same as in (). For example, even if v/2 in F), exists, it
is a very large number of the order at least p'/2. Another obvious fact is that GFQT
cannot involve exponents and trigonometric functions since they are represented by
infinite sums. Therefore a direct correspondence between wave functions in GFQT
and standard theory can exist only for rational functions. This remark has been used
in Sect. 3.6 for choosing the form of the wave function describing the precession of
Mercury’s perihelion.

By analogy with the field of complex numbers, we can consider a set F:
of p* elements a + bi where a,b € F), and i is a formal element such that i* = —1.
The question arises whether F2 is a field, i.e. we can define all the four operations
except division by zero. The definition of addition, subtraction and multiplication in
F,> is obvious and, by analogy with the field of complex numbers, one could define
division as 1/(a+bi) = a/(a*+b*) —ib/(a* + b*). This definition can be meaningful
only if a®> + b* # 0 in F), for any a,b € F, i.e. a*> +? is not divisible by p. Therefore
the definition is meaningful only if p cannot be represented as a sum of two squares
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and is meaningless otherwise. We will not consider the case p = 2 and therefore p
is necessarily odd. Then we have two possibilities: the value of p (mod4) is either 1
or 3. The well known result of number theory (see e.g. the textbooks [42]) is that a
prime number p can be represented as a sum of two squares only in the former case
and cannot in the latter one. Therefore the above construction of the field Fj. is
correct only if p (mod4) = 3. By analogy with the above correspondence between £,
and Z, we can define a set U in F)2 such that a +bi € U if a € Uy and b € Uy. Then
if f(a+ bi) = f(a)+ f(b)i, f is a local homomorphism between F,: and Z + Zi.

In general, it is possible to consider linear spaces over any fields. Therefore
a question arises what Galois field should be used in GFQT. It is well known (see e.g.
Ref. [42]) that any Galois field can contain only p™ elements where p is prime and n
is natural. Moreover, the numbers p and n define the Galois field up to isomorphism.
It is natural to require that there should exist a correspondence between any new
theory and the old one, i.e. at some conditions the both theories should give close
predictions. In particular, there should exist a large number of quantum states for
which the probabilistic interpretation is valid. Then, in view of the above discussion,
the number p should necessarily be very large and we have to understand whether
there exist deep reasons for choosing a particular value of p or this is simply an
accident that our Universe has been created with this value. In any case, if we accept
that p is a universal constant then the problem arises what the value of n is. Since
we treat GFQT as a more general theory than standard one, it is desirable not to
postulate that GFQT is based on F2 (with p = 3 (mod4)) because standard theory
is based on complex numbers but vice versa, explain the fact that standard theory
is based on complex numbers since GFQT is based on Fj:. Therefore we should find
a motivation for the choice of F,» with p = 3 (mod4). Arguments in favor of such
a choice are discussed in Refs. [5, 6, 7] and in this paper we will consider only this
choice.

4.2 Correspondence between GFQT and standard
theory

For any new theory there should exist a correspondence principle that at some con-
ditions this theory and standard well tested one should give close predictions. Well
known examples are that classical nonrelativistic theory can be treated as a special
case of relativistic theory in the formal limit ¢ — oo and a special case of quantum
mechanics in the formal limit 7 — 0. Analogously, Poincare invariant theory is a
special case of dS or AdS invariant theories in the formal limit R — oo. We treat
standard quantum theory as a special case of GFQT in the formal limit p — oo.
Therefore a question arises which formulation of standard theory is most suitable for
its generalization to GFQT.

A well-known historical fact is that quantum mechanics has been originally
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proposed by Heisenberg and Schroedinger in two forms which seemed fully incompati-
ble with each other. While in the Heisenberg operator (matrix) formulation quantum
states are described by infinite columns and operators — by infinite matrices, in the
Schroedinger wave formulations the states are described by functions and operators
— by differential operators. It has been shown later by Born, von Neumann and
others that the both formulations are mathematically equivalent. In addition, the
path integral approach has been developed.

In the spirit of the wave or path integral approach one might try to replace
classical spacetime by a finite lattice which may even not be a field. In that case
the problem arises what the natural quantum of spacetime is and some of physical
quantities should necessarily have the field structure. However, as argued in Sect.
1.3, fundamental physical theory should not be based on spacetime.

We treat GFQT as a version of the matrix formulation when complex
numbers are replaced by elements of a Galois field. We will see below that in that
case the columns and matrices are automatically truncated in a certain way, and
therefore the theory becomes finite-dimensional (and even finite since any Galois field
is finite).

In conventional quantum theory the state of a system is described by a
vector T from a separable Hilbert space H. We will use a "tilde” to denote elements
of Hilbert spaces and complex numbers while elements of linear spaces over a Galois
field and elements of the field will be denoted without a "tilde”.

Let (€1, €, ...) be a basis in H. This means that & can be represented as

.% - élél -+ égég + (42)

where (¢4, ¢, ...) are complex numbers. It is assumed that there exists a complete
set of commuting selfadjoint operators (A;, A,,...) in H such that each & is the
eigenvector of all these operators: Ajéi = S\jiéi. Then the elements (€, €, ...) are
mutually orthogonal: (é;,€é;) = 0 if ¢ # j where (...,...) is the scalar product in H. In
that case the coefficients can be calculated as

(€, €;)
Their meaning is that |¢]|%(é;, €;)/(Z, T) represents the probability to find Z in the
state €;. In particular, when = and the basis elements are normalized to one, the
probability equals |¢;|%.

Let us note that the Hilbert space contains a big redundancy of elements,
and we do not need to know all of them. Indeed, with any desired accuracy we can
approximate each € H by a finite linear combination

(4.3)

& =

F = G181 + Caby + ...0nEn (4.4)

where (¢, €, ...¢,) are rational complex numbers. This is a consequence of the well
known fact that the set of elements given by Eq. (4.4) is dense in H. In turn, this set
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is redundant too. Indeed, we can use the fact that Hilbert spaces in quantum theory
are projective: ¢ and cy represent the same physical state. Then we can multiply
both parts of Eq. (4.4) by a common denominator of the numbers (¢, éa, ...C,). As
a result, we can always assume that in Eq. (4.4) & = d, + ib; where a; and b; are
integers.

The meaning of the fact that Hilbert spaces in quantum theory are pro-
jective is very clear. The matter is that not the probability itself but the relative
probabilities of different measurement outcomes have a physical meaning. We be-
lieve, the notion of probability is a good illustration of the Kronecker expression
about natural numbers (see Sect. 4.1). Indeed, this notion arises as follows. Sup-
pose that conducting experiment N times we have seen the first event n; times, the
second event ny times etc. such that ny + ny + ... = N. We define the quantities
w;(N) = n;/N (these quantities depend on N) and w; = limw;(N) when N — oo.
Then wj; is called the probability of the ith event. We see that all the information
about the experiment is given by a set of natural numbers, and in real life all those
numbers are finite. However, in order to define probabilities, people introduce ad-
ditionally the notion of rational numbers and the notion of limit. Another example
is the notion of mean value. Suppose we measure a physical quantity such that in
the first event its value is ¢, in the second event - ¢ etc. Then the mean value of
this quantity is defined as (q1n; + gang + ...)/N if N is very large. Therefore, even
if all the ¢; are integers, the mean value might be not an integer. We again see that
rational numbers arise only as a consequence of our convention on how the results of
experiments should be interpreted.

The Hilbert space is an example of a linear space over the field of complex
numbers. Roughly speaking this means that one can multiply the elements of the
space by the elements of the field and use the properties a(bz) = (ab)# and a(bi+éj) =
abz + acy where a, 5,6 are complex numbers and 7,y are elements of the space.
The fact that complex numbers form a field is important for such notions as linear
dependence and the dimension of spaces over complex numbers.

By analogy with conventional quantum theory, we require that in GFQT
linear spaces V over [z, used for describing physical states, are supplied by a scalar
product (...,...) such that for any x,y € V and a € F, (x,y) is an element of F:
and the following properties are satisfied:

(z,9) = (y,2), (ax,y) =alv,y), (v,ay) =a(z,y) (4.5)

We will always consider only finite dimensional spaces V over F,.. Let
(e1,€2,...ey) be a basis in such a space. Consider subsets in V' of the form z =
cie1 + caes + ...cpe, where for any 7, j

¢ €U, (e,e)elU (4.6)

On the other hand, as noted above, in conventional quantum theory we can describe
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quantum states by subsets of the form Eq. (4.4). If n is much less than p,
fle)=¢, [f((ei,e5) = (&,€)) (4.7)

then we have the correspondence between the description of physical states in pro-
jective spaces over 2 on one hand and projective Hilbert spaces on the other. This
means that if p is very large then for a large number of elements from V', linear com-
binations with the coefficients belonging to U and scalar products look in the same
way as for the elements from a corresponding subset in the Hilbert space.

In the general case a scalar product in V' does not define any positive
definite metric and thus there is no probabilistic interpretation for all the elements
from V. In particular, (e,e) = 0 does not necessarily imply that e = 0. However,
the probabilistic interpretation exists for such a subset in V' that the conditions (4.7)
are satisfied. Roughly speaking this means that for elements c,e; + ...c,e,, such that
(e;,€:),ci¢; < p, f((es,e;)) > 0 and ¢;¢; > 0 for all @ = 1,...n, the probabilistic
interpretation is valid. It is also possible to explicitly construct a basis (e, ...en)
such that (e;,ex) = 0 for j # k and (e;, e;) # 0 for all j (see the subsequent chapter).
Then z = cie; + ...cyen (¢; € Fj2) and the coefficients are uniquely defined by
¢; = (ej,@)/(ej, €5)-

As usual, if A; and A, are linear operators in V' such that

(A1z,y) = (z, Agy) Vao,yeV (4.8)

they are said to be conjugated: A; = Aj. It is easy to see that A7* = A; and thus
A = Ay, If A= A* then the operator A is said to be Hermitian.

If (e,e) # 0, Ae = ae, a € Fjp, and A* = A, then it is obvious that
a € F,. In the subsequent section (see also Refs. [5, 6]) we will see that there also
exist situations when a Hermitian operator has eigenvectors e such that (e,e) = 0
and the corresponding eigenvalue is pure imaginary.

Let now (Aj,...Ax) be a set of Hermitian commuting operators in V', and
(€1,...en) be a basis in V' with the properties described above, such that A;e; = Aje;.
Further, let (1211, flk) be a set of Hermitian commuting operators in some Hilbert
space H, and (€j, é, ...) be some basis in H such that fljei = S\jiéi. Consider a subset
c1e1 + o€y + ...cpe, in Vosuch that, in addition to the conditions (4.7), the elements
e; are the eigenvectors of the operators A; with A\j; belonging to U and such that
f(Ni) = ;\ji. Then the action of the operators on such elements have the same form
as the action of corresponding operators on the subsets of elements in Hilbert spaces
discussed above.

Summarizing this discussion, we conclude that if p is large then there
exists a correspondence between the description of physical states on the language of
Hilbert spaces and selfadjoint operators in them on one hand, and on the language
of linear spaces over [} and Hermitian operators in them on the other.

The field of complex numbers is algebraically closed (see standard text-
books on modern algebra, e.g. Ref. [42]). This implies that any equation of the nth

71



order in this field always has n solutions. This is not, generally speaking, the case for
the field Fj2. As a consequence, not every linear operator in the finite-dimensional
space over Fp2 has an eigenvector (because the characteristic equation may have no
solution in this field). One can define a field of characteristic p which is algebraically
closed and contains Fj,.. However such a field will necessarily be infinite and we
will not use it. We will see in this chapter that uncloseness of the field F2 does
not prevent one from constructing physically meaningful representations describing
elementary particles in GFQT.

In physics one usually considers Lie algebras over R and their represen-
tations by Hermitian operators in Hilbert spaces. It is clear that analogs of such
representations in our case are representations of Lie algebras over F), by Hermitian
operators in spaces over F,.. Representations in spaces over a field of nonzero char-
acteristics are called modular representations. There exists a wide literature devoted
to such representations; detailed references can be found for example in Ref. [45]
(see also Ref. [5]). In particular, it has been shown by Zassenhaus [46] that all
modular IRs are finite-dimensional and many papers have dealt with the maximum
dimension of such representations. At the same time, it is worth noting that usually
mathematicians consider only representations over an algebraically closed field.

From the previous, it is natural to expect that the correspondence between
ordinary and modular representations of two Lie algebras over R and F}, respectively,
can be obtained if the structure constants of the Lie algebra over F,, - c,il, and the
structure constants of the Lie algebra over R - &, are such that f(c},) = &, (the
Chevalley basis [47]), and all the ¢}, belong to Uy. In Refs. [5, 2, 48] modular analogs
of IRs of su(2), sp(2), so(2,3), so(1,4) algebras and the osp(1,4) superalgebra have
been considered. Also modular representations describing strings have been briefly
mentioned. In all these cases the quantities 6@ take only the values 0, +1, +2 and the
above correspondence does take place.

It is obvious that since all physical quantities in GFQT are discrete, this
theory cannot involve any dimensionful quantities and any operators having the con-
tinuous spectrum. We have seen in the preceding chapter than the so(1,4) invariant
theory is dimensionless and it is possible to choose a basis such that all the operators
have only discrete spectrum. For this reason one might expect that this theory is
a natural candidate for its generalization to GFQT. In what follows, we consider a
generalization of dS invariant theory to GFQT. This means that symmetry is defined
by the commutation relations (3.1) which are now considered not in standard Hilbert
spaces but in spaces over Fj,.. We will see in this chapter that there exists a corre-
spondence in the above sense between modular IRs of the finite field analog of the
so(1,4) algebra and IRs of the standard so(1,4) algebra. At the same time, there is
no natural generalization of the Poincare invariant theory to GFQT.

Since the main problems of QFT originate from the fact that local fields
interact at the same point, the idea of all modern theories aiming to improve QFT is to
replace the interaction at a point by an interaction in some small space-time region.

72



From this point of view, one could say that those theories involve a fundamental
length, explicitly or implicitly. Since GFQT is a fully discrete theory, one might
wonder whether it could be treated as a version of quantum theory with a fundamental
length. Although in GFQT all physical quantities are dimensionless and take values
in a Galois field, on a qualitative level GFQT can be thought to be a theory with
the fundamental length in the following sense. The maximum value of the angular
momentum in GFQT cannot exceed the characteristic of the Galois field p. Therefore
the Poincare momentum cannot exceed p/R. This can be interpreted in such a way
that the fundamental length in GFQT is of order R/p.

One might wonder how continuous transformations (e.g. time evolution
or rotations) can be described in the framework of GFQT. A general remark is that if
theory B is a generalization of theory A then the relation between them is not always
straightforward. For example, quantum mechanics is a generalization of classical
mechanics, but in quantum mechanics the experiment outcome cannot be predicted
unambiguously, a particle cannot be always localized etc. As noted in Sect. 1.3,
even in the framework of standard quantum theory, time evolution is well-defined
only on macroscopic level. Suppose that this is the case and the Hamiltonian H; in
standard theory is a good approximation for the Hamiltonian H in GFQT. Then one
might think that exp(—iH;t) is a good approximation for exp(—iHt). However, such
a straightforward conclusion is problematic for the following reasons. First, there can
be no continuous parameters in GFQT. Second, even if ¢ is somehow discretized, it
is not clear how the transformation exp(—iHt) should be implemented in practice.
On macroscopic level the quantity Ht is very large and therefore the Taylor series
for exp(—iHt) contains a large number of terms which should be known with a high
accuracy. On the other hand, one can notice that for computing exp(—iHt) it is
sufficient to know Ht only modulo 27 but in this case the question about the accuracy
for m arises. We see that a direct correspondence between the standard quantum
theory and GFQT exists only on the level of Lie algebras but not on the level of Lie
groups.

4.3 Modular IRs of dS algebra and spectrum of dS
Hamiltonian

Consider modular analogs of IRs constructed in Sect. 3.1. We noted that the basis
elements of this IR are e,;; where at a fixed value of n, k =0,1,..nand [ = 0,1, ...2k.
In standard case, IR is infinite-dimensional since n can be zero or any natural number.
A modular analog of this IR can be only finite-dimensional. The basis of the modular
IR is again e, where at a fixed value of n the numbers k and [ are in the same
range as above. The operators of such IR can be described by the same expressions
as in Egs. (3.9-3.14) but now those expressions should be understood as relations in
a space over F2. However, the quantity n can now be only in the range 0,1,...INV
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where N can be found from the condition that the algebra of operators described by
Egs. (3.9) and (3.10) should be closed. It follows from these expressions, that this is
the case if w + (2N +3)> =0 in F,, and N + k + 2 < p. Therefore we have to show
that such N does exist.

In the modular case w cannot be written as w = p? with u € F), since the
equality a® + b* = 0 in F}, is not possible if p = 3 (mod4). In terminology of number
theory, this means that w is a quadratic nonresidue. Since —1 also is a quadratic
nonresidue if p = 3 (mod4), w can be written as w = —j? where i € F, and for
i1 obviously two solutions are possible. Then N should satisfy one of the conditions
N + 3 = £/ and one should choose that with the lesser value of N. Let us assume
that both, i and —f are represented by 0, 1,...(p — 1). Then if i is odd, —i =p— [
is even and wvice versa. We choose the odd number as fi. Then the two solutions are
Ny = (2 —3)/2 and Ny =p — (s + 3)/2. Since N; < Ny, we choose N = (ji — 3)/2.
In particular, this quantity satisfies the condition N < (p — 5)/2. Since k < N, the
condition N + k 4 2 < p is satisfied and the existence of N is proved. In any realistic
scenario, w is such that w < p even for macroscopic bodies. Therefore the quantity
N should be at least of order p*/2. The dimension of IR is

Dim:Zi(zkﬂ) = (N+1)(%N2+2N+1) (4.9)

n=0 k=0

and therefore Dim is at least of order p*/2.

The relative probabilities are defined by ||c(n, k,1)enn||?. In standard the-
ory the basis states and wave functions can be normalized to one such that the normal-
ization condition is Y~ ., |¢(n, k,1)|* = 1. Since the values ¢(n, k,[) can be arbitrarily
small, wave functions can have an arbitrary carrier belonging to [0, 00). However,
in GFQT the quantities |c¢(n, k,1)[* and ||e,u|* belong F,. Roughly speaking, this
means that if they are not zero then they are greater or equal than one. Since for
probabilistic interpretation we should have that Y, .. ||c(n, k, 1)e,ul]* < p, the prob-
abilistic interpretation may take place only if ¢(n, k, 1) = 0 for n > npmaz, Mmee << N.
That is why in Chap. 3 we discussed only wave functions having the carrier in the
range [Mmin, Mmaz)-

As follows from the spectral theorem for selfadjoint operators in Hilbert
spaces, any selfadjoint operator A is fully decomposable, i.e. it is always possible to
find a basis, such that all the basis elements are eigenvectors (or generalized eigen-
vectors) of A. As noted in Sect. 4.2, in GFQT this is not necessarily the case since
the field F)2 is not algebraically closed. However, it can be shown [42] that for any
equation of the Nth order, it is possible to extend the field such that the equation
will have N + 1 solutions. A question arises what is the minimum extension of F)p,
which guarantees that all the operators (£, N, B, J) are fully decomposable.

The operators (B, J) describe a representation of the so(4) = su(2)xsu(2)
subalgebra. It is easy to show (see also the subsequent section) that the operators
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of the representations of the su(2) algebra are fully decomposable in the field F.
Therefore it is sufficient to investigate the operators (£,IN). They represent compo-
nents of the so(4) vector operator M» (v = 1,2, 3,4) and therefore it is sufficient to
investigate the dS energy operator £, which with our choice of the basis has a rather
simpler form (see Eqgs. (3.9) and (3.13)). This operator acts nontrivially only over
the variable n and its nonzero matrix elements are given by

n+1—k
2(n+1)

n+1+k

gnfl,n = m

[w+©2n+1)?% Epin= (4.10)
Therefore, for a fixed value of k it is possible to consider the action of £ in the
subspace with the basis elements e, (n =k, k+1,...N).

Let A(X) be the matrix of the operator € — A such that A(\), = Epik ik —
Adgr- We use A7(A) to denote the determinant of the matrix obtained from A(X) by
taking into account only the rows and columns with the numbers ¢,q + 1, ...r. With
our definition of the matrix A(\), its first row and column have the number equal
to 0 while the last ones have the number K = N — k. Therefore the characteristic

equation can be written as

AFN) =0 (4.11)

In general, since the field Fj. is not algebraically closed, there is no guaranty that
we will succeed in finding even one eigenvalue. However, we will see below that in a
special case of the operator with the matrix elements (4.10), it is possible to find all
K + 1 eigenvalues.

The matrix A(A) is three-diagonal. It is easy to see that

ATF(A) = =AATN) — Ay g Ay AT () (4.12)

Let A, be a solution of Eq. (4.11). We denote e, = €4k . Then the element

x(A) = Z{(—l)%gfl(kz)eq/[ﬁ Assal} (4.13)

is the eigenvector of the operator £ with the eigenvalue )\;. This can be verified
directly by using Egs. (3.13) and (4.10-4.13).

To solve Eq. (4.12) we have to find the expressions for Af(A) when ¢ =
0,1,...K. Tt is obvious that AJ(\) = —\, and as follows from Eqgs. (4.10) and (4.12),

o w+ (2k+3)°

By(N) = 2(k + 2)

(4.14)

If w = —f? then it can be shown that Af(\) is given by the following expressions. If
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q is odd then

(g+1)/2 l
AN = D Clynyyo [TV + (i — 2k — s + D (—1) et D2
=0 s=1
<qﬁ>/z (2k + 25+ 1)(fi — 2k — 4s + 1) (i — 2k — 4s — 1) (@15)
20k+ (¢g+1)/2+s) :
s=Il+1
and if ¢ is even then
q/2 l
NI = (=0 3O, T2 + (i — 2k — 4s + 1) (-1) 7>
=0 s=1
(g+1)/2 - N
2%+ 25 + 1) (i — 2k — 4s — 1)(ji — 2k — 4s —
H (2k+2s+1)(n—2k —4s — 1)(n — 2k — 4s — 3) (4.16)

el 2(k+q/24+s+1)

Indeed, for ¢ = 0 Eq. (4.16) is compatible with A)(\) = —\, and for ¢ = 1 Eq. (4.15)
is compatible with Eq. (4.14). Then one can directly verify that Egs. (4.15) and
(4.16) are compatible with Eq. (4.12).

With our definition of fi, the only possibility for K is such that

i = 2K + 2k 4+ 3 (4.17)

Then, as follows from Egs. (4.15) and (4.16), when K is odd or even, only the term
with | = [(K +1)/2] (where [(K + 1)/2] is the integer part of (K 4 1)/2) contributes
to AKX (\) and, as a consequence

AE(N) = (=N N2+ (o — 2j — 4k + 1) (4.18)

where 7(K) = 0if K isodd and r(K) = 1if K is even. If p = 3 (mod 4), this equation
has solutions only if F), is extended, and the minimum extension is Fj2. Then the
solutions are given by

A=+i(i — 2k —4s+1) (s=1,2..[(K+1)/2)) (4.19)

and when K is even there also exists an additional solution A = 0. When K is odd,
solutions can be represented as

A= 12i, 161, ... + 21K (4.20)
while when K is even, the solutions can be represented as

A =0, 44, £8i,... £ 2K (4.21)

76



Therefore the spectrum is equidistant and the distance between the neighboring ele-
ments is equal to 4i. As follows from Eqgs. (4.17), all the roots are simple and then,
as follows from Eq. (4.13), the operator £ is fully decomposable. It can be shown
by a direct calculation [6] that the eigenvectors e corresponding to pure imaginary
eigenvalues are such that (e,e) = 0 in F,. Such a possibility has been mentioned in
the preceding section.

Our conclusion is that if p = 3 (mod 4) then all the operators (£, N, B, J)
are fully decomposable if F), is extended to F2 but no further extension is necessary.
This might be an argument explaining why standard theory is based on complex
numbers. On the other hand, our conclusion is obtained by considering states where
n is not necessarily small in comparison with p'/? and standard physical intuition
does not work in this case. One might think that the solutions (4.20) and (4.21)
for the eigenvalues of the dS Hamiltonian indicate that GFQT is unphysical since
the Hamiltonian cannot have imaginary eigenvalues. However, such a conclusion is
premature since in standard quantum theory the Hamiltonian of a free particle does
not have normalized eigenstates (since the spectrum is pure continuous) and therefore
for any realistic state the width of the energy distribution cannot be zero.

If A is an operator of a physical quantity in standard theory then the
distribution of this quantity in some state can be calculated in two ways. First, one
can find eigenvectors of A, decompose the state over those eigenvectors and then the
coefficients of the decomposition describe the distribution. Another possibility is to
calculate all moments of A, i.e. the mean value, the mean square deviation etc. Note
that the moments do not depend on the choice of basis since they are fully defined
by the action of the operator on the given state. A standard result of the probability
theory (see e.g. Ref. [49]) is that the set of moments uniquely defines the moment
distribution function, which in turn uniquely defines the distribution. However in
practice there is no need to know all the moments since the number of experimental
data is finite and knowing only several first moments is typically quite sufficient.

In GFQT the first method does not necessarily defines the distribution.
In particular, the above results for the dS Hamiltonian show that its eigenvectors
Yo (kL Deng are such that c(n,k,l) # 0 for all n = k,..N, where N is at
least of order p'/2. Since the c(n,k,l) are elements of F,2, their formal modulus
cannot be less than 1 and therefore the formal norm of such eigenvectors cannot
be much less than p (the equality (e,e) = 0 takes place since the scalar product
is calculated in F),). Therefore eigenvectors of the dS Hamiltonian do not have a
probabilistic interpretation. On the other hand, as already noted, we can consider
states > ., c(n, k,l)eqr such that c(n, k1) # 0 only if nym < n < Ny, where
Nmae << N. Then the probabilistic interpretation for such states might be a good
approximation if at least several first moments give reasonable physical results (see
the discussion of probabilities in Sect. 4.1). In Chap. 3 we discussed semiclassical
approximation taking into account only the first two moments: the mean value and
mean square deviation.
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Chapter 5

Semiclassical states in modular
representations

5.1 Semiclassical states in representations of su(2)
algebra

The uncertainty relations between the coordinate and momentum and between the
angular coordinate and angular momentum are widely discussed in the literature.
However, to the best of our knowledge, the uncertainty relation between different
components of the angular momentum is not widely discussed. This problem is espe-
cially important in de Sitter invariant theories where all the representation operators
are angular momenta. In this section we consider the simplest case of the uncertainty
relations between the operators (J,, Jy, J;) in representations of the su(2) algebra.
The commutation relations between these operators are given by Eq. (3.6). The
discussion in this section is applied both, in the standard and modular cases.

As follows from Eq. (3.10), the operators (Jy, J_, J,) do not change the
values of n and k. Therefore is s = 2k is fixed, the basis of IR of the su(2) algebra
can be written as e; where [ =0, 1, ...s,

Jyep=(s+1—Deisy Joeg=(1+Deyyr J.eg=(s—2D)e; (e, e) =C  (5.1)

anf C! = s!/(I!(s—1)!) is the binomial coefficient. In particular, ¢ is the eigenvector of
J. with the eigenvalue s — 2l. The Casimir operator of the second order for the su(2)
algebra is J? and in the representation (5.1) all the vectors from the representation
space are eigenvectors of J? with the eigenvalue s(s + 2).
Let /) be an analog of e, in the basis when J, is diagonalized, i.e. J$el($) =
(s — 2l)el($) and egy) be an analog of ¢ in the basis when J, is diagonalized, i.e.
s

Jyel) = (s —20)el”). A possible expression for e/ is

x (_i)l -
el( ) _ 5o72 C’éZF(—l, —q;—5;2)e, (5.2)
q=0
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where F' is the standard hypergeometric function. This can be varified by using Eq.
(5.1) and the relation [29]
(=s+@)F(=l,—q¢— L =52) + (s = 20) F (=1, —¢; —s;2) —
gF(=l,—q+1;-5;2) =0 (5.3)

Analogously one can verify that a possible expression for el(y) is

Cl ,
el(y) = 573 ZF(—Z, —q; —s;2)i%e, (5.4)
q=0

By using the relation [29]

s

> CIF(=1,—q;—s;2)F (=, —q; —s;2) = 2°6y/C!. (5.5)
q=0
and Eqgs. (5.2) and (5.4), it is easy to show that the normalization of the vectors el(x)
and el(y) is the same as the vectors e, i.e.
(€l($), el(/a:)) = (€l(y), €l(/y)) - C’iéw (56)
If ¢®)(1) is the wave function in the basis el(x) and c¢® (1) is the wave function
in the basis ¢/’ then it follows from Eqs. (5.2) and (5.4) that

]

-] S
@) = 5o/ Z CIF (=1, —q; —s;2)c(q)
q=0

S

_ 2_1/2 > (=i)ICIF(—1, —q; —s;2)c(q) (5.7)

q=0

) ()

Our goal is to construct states, which are semiclassical in all the three
components of the angular momentum. According to a convention adopted in Sect.
3.1, for the approximate semiclassical eigenvalues of the operators (.J,, J,, J,) we will
use the same notations (J,, Jy,J,), respectively. In the modular case we require
additionally that those numbers are integers such that their magnitude is much less
than p (more rigorously, we should require that those numbers belong to the set Uy
discussed in Sect. 4.1).

Since the values of (J,, Jy, J,) in semiclassical states are very large, we can
work in the approximation J? + J; 4+ J2 =~ s°. By using the above results one can
show that

Y CIF(—q, 1 —5;2) = (L +2)"'(1 - 2)' (5.8)
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Then, as a consequence of Egs. (5.7) and (5.8), a possible choice of the wave function
is

1) = [(s+ o + T +iJy) (s 4+ T (s + Jo)* (T, + i)
W) = [(s 4 Jy + . — id) (s + T (s + J,) 7T, + i)
c(l) = 2°7[(s + J,) (s + J))° (s + J.)* (T, + i) (5.9)

Note that in standard case the dependence of ¢(l) on [ is in agreement with Eqgs.
(3.20) and (3.23).

Consider the distribution of probabilities over [ in ¢(l). As follows from
Egs. (5.1) and (5.9), the normalization sum for ¢(l) is

D= Zp (s + Jo) (s + J)*[s(s + J.))° (5.10)

where

p(l) = 2°C(s + Jo) (s + J) % (s + L) (s — J.) (5.11)

Since there in no nontrivial division in this expression, it follows from Eq. (5.10)
that in the modular case the probabilistic interpretation is valid if p < p. Since
the number s for macroscopic bodies is very large, this condition will be satisfied if
slns < Inp. We see that not only p should be very large but even (np should be very
large.

As follows from Egs. (5.10) and (5.11),

Zp )(s—20) = J.p (5.12)

and therefore with our notations the number J, is the exact mean value of the operator
J.. The fact that in the modular case the probabilistic interpretation is valid, implies
that even in this case we can use standard mathematics for qualitative understanding
of the distribution (5.11). In particular, we can use the Stirling formula for the
binomial coefficient in this expression and formally consider [ as a continuous variable.
Then it follows from Eq. (5.11) that the maximum of the function p(l) is at | = I
such that Iy = (s — J.)/2, and in the vicinity of the maximum

S(l — l0)2

p(l) ~ p[2mlo(s — lo)/S]”Qexp[—m

(5.13)
Therefore in the vicinity of the maximum the distribution is Gaussian with the width
[lo(s —1o)/s]*/2. If Iy and s — [y are of order s (i.e. Iy is not close to zero or s/2), this
quantity is of order s'/2.

In standard quantum mechanics, the semiclassical wave function contains
a factor exp(ipr), which does not depend on the choice of the quantization axis.
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The reason for choosing the wave functions in the form (5.9) is to have an analogous
property in our case. As seen from these expressions, if the quantization axis changes
then the dependence of the wave function on [ with the new quantization axis can
be obtained from the original dependence by using a cyclic permutation of indices
(x,y, z). Therefore, if the quantization axis is x or y, the distribution over [ is again
given by Eq. (5.13) but [y is such that Iy = (s —J,)/2 or |y = (s — J,))/2, respectively.

In the above example, the carrier of the wave function ¢(l) contains all
integers in the range [0, s] but |¢(1)|* has a sharp maximum with the width of order
s'/2. In GFQT it is often important that the carrier should have a width which is
much less than the corresponding mean value. Since properties of the state defined
by the wave function ¢(l) depend mainly on the behavior of ¢(I) in the region of
maximum, one can construct states which have properties similar to those discussed
above but the carrier of ¢(l) will belong to the range [lnin, lnaz] Where Uz — lnin 1S
of order s'/2.

Our conclusion is as follows. It is possible to construct states, which are
simultaneously semiclassical in all the three components of the angular momentum if
all the quantities (J, Jy, J,) are of order s. Then the uncertainty of each component
is of order s!/2. The requirement that neither of the components (J,,J,, J.) should
be small is analogous to the well known requirement in standard quantum mechanics
that in semiclassical states neither of the momentum components should be small.

5.2 Semiclassical states in GFQT

In Sect. 3.2 we discussed semiclassical states in standard theory and noted that they
can be defined by ten numbers (£, N, B, J), which are subject to constraints (3.21).
For semiclassical states all those numbers are very large and the numbers (€, B) are
very large even for elementary particles. Semiclassical wave functions can be described
by parameters (nklpa/3), which can be expressed in terms of (£,N,B,J) by using
Egs. (3.22) and (3.23).

In GFQT one should use the basis defined by Eq. (3.8) and the coefficients
c(n, k, 1) should be elements of F,.. Therefore, a possible approach to constructing
a semiclassical wave function in GFQT is to express those coefficients in terms of
(£,N,B, J). First of all, since the numbers (£, N, B, J) are very large, we can assume
that they are integers. Then, in general, the relations (3.21) cannot be exact but can
be valid with a high accuracy. As noted in Chap. 4, a probabilistic interpretation
can be possible only if ¢(n, k,1) # 0 for n € [Nyin, "maz)s k& € [Kmin, Kmaex) and [ €
[Linins lmaz). Therefore our task is obtain integer values of ¢(n, k, ) at such conditions.

As noted in Sect. 3.2, a semiclassical wave function should be such that
the amplitude is a function, which is significant only in a relatively small region,
which can be called the region of maximum. It cannot be extremely narrow since in
the region of maximum the change of the wave function should be mainly governed
by the exponents in Eq. (3.18). It follows from these considerations and Eq. (3.23)
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that the semiclassical wave function in the region of maximum should have a factor
(2Eng — iBN)" = [~ JB, —i(B x J),)fme==%(J, +iJ,)" "

where ng is some value of n inside the interval [1,,in, Nme:| and J is an integer close
to (J2 + J2 + J2)/2. At the same time, the norm of ¢(n, k,l)enr should be a slowly
changing function of (nkl) in the region of maximum. Our nearest aim is to show
that a possible semiclassical wave function can be written as

c(n, k1) = 20— "mintlmes=l(9g ) ;BN)"mas="[— JB, — i(B x J),]*mas—F
(n—k)! (2kmaz) k!
(Mamin — k)1 (2k) Kz

e (2K —D)!
(J+.J.) 2k — L)

where the amplitude a(n, k,1) is a slowly changing function in the region of its maxi-
mum. Since (2k)! = 27k!(2k—1)!!, this expression does not contain nontrivial divisions
in F}, and therefore the correspondence principle with standard theory is satisfied if
le(n, k,1)]* < p.

By using Egs. (3.12) and (3.20) one can explicitly verify that in the region
of maximum ||c(n, k,)ennl||* = p(n, k,1)|a(n, k,1)|* where

(Jp = idy)FFmin (T, 4 0, i

a(n, k,1) (5.14)

ﬁ(n’ k’ l) — 4n—nmin+lmaz—lBQ(nmaz—n+l€maz—k)(Ja% + J;)kMGl_kmzn+l_lmzn

et (2kmas)! (2kmas)! Ias! - (2 — 1))
(4 Jo) 7 (2k + A Ty T Ty oy
(2kmaz — lnaz)!y, (0 —k)! n! (n+k+1)!
[ (2k — lynas)! H(nmm - k;)!][(nmm - k)!” (n+ 1) )
(w + 4nd) =[] J(w + (2 + 1)°] (5.15)

J=1

This expression is written in the form showing that multipliers in each square brackets
do not contain nontrivial divisions in F,. Then by using Eq. (3.20), it is easy to show
that in the region of maximum

pln, k1) = pn+ 1,k 1) = plnk+1,0) = pln, k, 1+ 1)

Therefore the norm of ¢(n, k,l)e,x is indeed a slowly changing function of (nkl) in
the region of maximum.

Since Eq. (5.15) does not contain a nontrivial division, there is a chance
that a probabilistic interpretation in GFQT will be valid. As noted in Sect. 4.2,
only ratios of probabilities have a physical meaning. Therefore the problem arises
whether it is possible to find a constant C' such that p(n, k,l) = Cp(n,k,1), for all
N € [Nmins Pmaz)s k& € [Emin, Emaz) and 1 € [lnin, lmaz), the conditions p(n, k,[) < p,
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a(n, k,1)* < p are satisfied and the sum > . p(n, k,)|a(n, k,1)|* also is much less
than p. It is clear that for this purpose it is desirable to obtain for p(n, k,[) the least
possible value.

It is immediately seen from Eq. (5.15), that a factor

e TT . (2kmaz)! (2kmaz)!
Cl — (JIZ + JyZ)kmam kmzn H (w + (2] + 1)2][(k ')2][(2k —l )'l ']
le max - max max )"max -

can be included into C'. The next observation is as follows. If |p| is the magnitude of
standard momentum then, as noted in Sect. 3.1 (see Eq. (3.11)), n is of order |p|R
and k is of order |p|r. Therefore one might expect that in situations we are interested
in, the conditions k < n and Ak < An are satisfied, where Ak = k00 — Kmin and
AN = Nypazr — Nmin- However, although R is very large, the relation An > k is valid
only if R is extremely large.

We first consider the case An < k. Since

(n(%;!k)! = (A T+E) (0 + 2+ ki) [0+ 1+ Kin) - - (i + 2 +
Kmin)][(Temin + 1 + Kmin) + + + (Rinaz + 2)][(Mmae + 1) - - (n + 2)] (5.16)

the factor Co = (Nyin + 1+ Kmin) - - - (Mumae +2) can be included into C'. Analogously,
since
|

Nomin:

the factor C3 = [npin -+ (Mmin + 1 — kmin)] can be included into C'. Then a direct
calculation gives

p(n, k, 1) = 47 "min B2mas =ntkmar=k)(J2 4 pl=tmin (] 4 ], )26 hmin)
(2K + 1)1 + 1)(lmaz—l)(2k +1- lmaa:)(lmgc—l)(2]€ +1- lma$)(2kmaz—2k)
(Momin + 1= K tnmn) omin + 1)t Mo + 1= K) (b
(14 2 4 Eomin) (ki) (Ponin + 2 4 Fonin) (n—mnin) (7 2) (mmes )

(w+4ng)" =" T (w+ (25 +1)? (5.18)

J=Nmin

where (a),, is the Pochhammer symbol.
It follows from this expression that in the region of maximum

p(n, k1) m 482+ T2 T + )22 (nin + 1 = k) an(Tnin + 1) An
(Mmin + 1 = k) ar(? + 2 = Epin) Ak (Manin + 2+ Kmin) an(w + 4n2)2"  (5.19)

83



where An = Nae — Nnin, Dk = Kmaz — Kmin and Al = 102 — lnin. Now we take into
account that An > Ak, An > Al and in the nonrelativistic approximation w > n?.
Then the condition p(n, k, 1) < p can be approximately written in the form

Anlnw < Inp (5.20)

If An > k or An and k are of the same order, this estimation is valid too.
Therefore not only the number p should be very large, but even [np should
be very large. As a consequence, if In(|a(n, k,[)|) < p the condition

> oln k,Dla(n, k,D* < p

nkl

is satisfied since In(AnAkAl) < Inp.

5.3 Many-body systems in GFQT and gravita-
tional constant

In quantum theory, state vectors of a system of N bodies belong to the
Hilbert space which is the tensor product of single-body Hilbert spaces. This means
that state vectors of the N-body systems are all possible linear combinations of func-
tions

w(nl, ]ﬁ, ll, ..ny, ]CN, ZN) = wl(nl, kl, ll) . -wN(nN, kN, ZN) (521)

By definition, the bodies do not interact if all representation operators of the sym-
metry algebra for the N-body systems are sums of the corresponding single-body
operators. For example, the energy operator £ for the N-body system is a sum
E1+ &+ ...+ En where the operator &; (i = 1,2,...N) acts nontrivially over its ”own”
variables (n;, k;, [;) while over other variables it acts as the identity operator.

If we have a system of noninteracting bodies in standard quantum theory;,
each ¥;(n;, k;, ;) in Eq. (5.21) is fully independent of states of other bodies. How-
ever, in GFQT the situation is different. Here, as shown in the preceding section, a
necessary condition for a wave function to have a probabilistic interpretation is given
by Eq. (5.20). Since we assume that p is very large, this is not a serious restriction.
However, if a system consists of N components, a necessary condition that the wave
function of the system has a probabilistic interpretation is

N
Z dilnw; < Inp (5.22)

i=1

where ; = An; and w; = 4R?*m? where m; is the mass of the subsystem i. This
condition shows that in GFQT the greater the number of components is, the stronger
is the restriction on the width of the dS momentum distribution for each component.

84



This is a crucial difference between standard theory and GFQT. A naive explanation
is that if p is finite, the same set of numbers which was used for describing one body
is now shared between N bodies. In other words, if in standard theory each body
in the free N-body system does not feel the presence of other bodies, in GFQT this
is not the case. This might be treated as an effective interaction in the free N-body
system.

In Chaps. 2 and 3 we discussed a system of two free bodies such their
relative motion can be described in the framework of semiclassical approximation.
We have shown that the mean value of the mass operator for this system differs
from the expression given by standard Poincare theory. The difference describes an
effective interaction which we treat as the dS antigravity at very large distances and
gravity when the distances are much less than cosmological ones. In the latter case
the result depends on the total dS momentum distribution for each body (see Eq.
(3.55)). Since the interaction is proportional to the masses of the bodies, this effect
is important only in situations when at least one body is macroscopic. Indeed, if
neither of the bodies is macroscopic, their masses are small and their relative motion
is not described in the framework of semiclassical approximation. In particular, in
this approach, gravity between two elementary particles has no physical meaning.

The existing quantum theory does not make it possible to reliably calculate
the width of the total dS momentum distribution for a macroscopic body and at best
only a qualitative estimation of this quantity can be given. The above discussion
shows that the greater is the mass of the macroscopic body, the stronger is the
restriction on the dS momentum distribution for each subsystem of this body. Suppose
that a body with the mass M can be treated as a composite system consisting of
similar subsystems with the mass m. Then the number of subsystems is N = M/m
and, as follows from Eq. (5.22), the width 0 of their dS momentum distributions
should satisfy the condition Ndlnw < Inp where w = 4R?>m?. Since the greater
the value of d is, the more accurate is the semiclassical approximation, a reasonable
scenario is that each subsystem tends to have the maximum possible § but the above
restriction allows to have only such value of § that it is of the order of magnitude not
exceeding Inp/(Nlnw).

The next question is how to estimate the width of the total dS momentum
distribution for a macroscopic body. For solving this problem one has to change
variables from individual dS momenta of subsystems to total and relative dS momenta.
Now the total dS momentum and relative dS momenta will have their own momentum
distributions which are subject to a restriction similar to that given by Eq. (5.22).
If we assume that all the variables share this restriction equally then the width of
the total momentum distribution also will be a quantity not exceeding Inp/(Nlnw).
Suppose that m = Nymg where mg is the nucleon mass. The value of N; should be
such that our subsystem still can be described by semiclassical approximation. Then
the estimation of ¢ is

§ = Nimplnp/[2MIn(2RNymy)] (5.23)
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Suppose that N7 can be taken to be the same for all macroscopic bodies. For example,
it is reasonable to expect that when N, is of order of 103, the subsystems still can
be described by semiclassical approximation but probably this is the case even for
smaller values of V.

In summary, although calculation of the width of the total dS momentum
distribution for a macroscopic body is a very difficult problem, GFQT gives a reason-
able qualitative explanation why this quantity is inversely proportional to the mass of
the body. With the estimation (5.23), the result given by Eq. (3.55) can be written
in the form (3.57) where

2const RIn(2RNymy)
G =
Nimglnp

(5.24)

In Chaps. 1 and 4 we argued that in theories based on dS invariance and/or
Galois fields, neither the gravitational nor cosmological constant can be fundamental.
In particular, in units 7/2 = ¢ = 1, the dimension of G is length? and its numerical
value is (% where [p is the Planck length (Ip &~ 107 m). Eq. (5.24) is an additional
indication that this is the case since G depends on R (or the cosmological constant)
and there is no reason to think that it does not change with time. One might think
that since GA is dimensionless in units h/2 = ¢ = 1, it is possible that only this
combination is fundamental. Let u = 2Rmg be the dS nucleon mass and A = 3/R?
be the cosmological constant. Then Eq. (5.24) can be written as

G 12const In(Nyp)
B ANyplnp

As noted in Sect. 1.2, standard cosmological constant problem arises when one tries
to explain the value of A from quantum theory of gravity assuming that this theory
is QFT, G is fundamental and the dS symmetry is a manifestation of dark energy (or
other fields) on flat Minkowski background. Such a theory contains strong divergences
and the result depends on the value of the cutoff momentum. With a reasonable
assumption about this value, the quantity A is of order 1/G and this is reasonable
since (G is the only parameter in this theory. Then A is by more than 120 orders of
magnitude greater than its experimental value. However, in our approach we have
an additional parameter p which is treated as a fundamental constant. Eq. (5.25)
shows that GA is not of order unity but is very small since not only p but even Inp
is very large. For a rough estimation, we assume that the values of const and N; in
this expression are of order unity. Then assuming that R is of order 10?°m, we have
that p is of order 10*? and Inp is of order 10%°. Therefore p is a huge number of order
exp(10%%). In the preceding chapter we argued that standard theory can be treated as
a special case of GFQT in the formal limit p — co. The above discussion shows that
restrictions on the width of the total dS momentum arise because p is not infinitely
large. It is seen from Eq. (5.25) that gravity disappears in the above formal limit.
Therefore in our approach gravity is a consequence of the fact that dS symmetry is
considered over a Galois field rather than the field of complex numbers.

(5.25)
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Chapter 6

Discussion and conclusion

As noted in Sect. 1.1, the main idea of this work is that gravity might be not an
interaction but simply a manifestation of de Sitter invariance over a Galois field. This
is obviously not in the spirit of mainstream approaches that gravity is a manifestation
of the graviton exchange or holographic principle. Our approach does not involve
General Relativity, quantum field theory (QFT), string theory, loop quantum gravity
or other sophisticated theories. We consider only systems of two free bodies in de
Sitter invariant quantum mechanics.

We argue that quantum theory should be based on the choice of symmetry
algebra and should not involve spacetime at all. Then the fact that we observe the
cosmological repulsion is a strong argument that the de Sitter (dS) symmetry is a more
pertinent symmetry than Poincare or anti de Sitter (AdS) ones. As shown in Refs.
[4, 1] and in the present paper, the phenomenon of the cosmological repulsion can be
easily understood by considering semiclassical approximation in standard dS invariant
quantum mechanics of two free bodies. In the framework of this consideration it
becomes immediately clear that the cosmological constant problem does not exist and
there is no need to involve dark energy or other fields. This phenomenon can be easily
explained by using only standard quantum-mechanical notions without involving dS
space, metric, connections or other notions of Riemannian geometry. One might
wonder why such a simple explanation has not been widely discussed in the literature.
According to our observations, this is a manifestation of the fact that even physicists
working on dS QFT are not familiar with basic facts about irreducible representations
(IRs) of the dS algebra. It is difficult to imagine how standard Poincare invariant
quantum theory can be constructed without involving well known results on IRs of the
Poincare algebra. Therefore it is reasonable to think that when Poincare invariance
is replaced by dS one, IRs of the Poincare algebra should be replaced by IRs of the
dS algebra. However, physicists working on QFT in curved spacetime believe that
fields are more fundamental than particles and therefore there is no need to involve
IRs.

The assumption that quantum theory should be based on dS symmetry
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implies several far reaching consequences. First of all, in contrast to Poincare and AdS
symmetries, the dS one does not have a supersymmetric generalization. Moreover, as
argued in our papers [4, 1], in dS invariant theories only fermions can be fundamental.

One might say that a possibility that only fermions can be elementary
is not attractive since such a possibility would imply that supersymmetry is not
fundamental. There is no doubt that supersymmetry is a beautiful idea. On the
other hand, one might say that there is no reason for nature to have both, elementary
fermions and elementary bosons since the latter can be constructed from the former.
A well know historical analogy is that the simplest covariant equation is not the
Klein-Gordon equation for spinless fields but the Dirac and Weyl equations for the
spin 1/2 fields since the former is the equation of the second order while the latter
are the equations of the first order.

The key difference between IRs of the dS algebra on one hand and IRs of
the Poincare and AdS algebras on the other is that in the former case one IR describes
a particle and its antiparticle simultaneously while in the latter case a particle and its
antiparticle are described by different IRs. As a consequence, in dS invariant theory
there are no neutral elementary particles and transitions particle<»antiparticle are
not prohibited. As a result, the electric charge and the baryon and lepton quantum
numbers can be only approximately conserved. These questions are discussed in
details in Ref. [1].

In the present paper, another feature of IRs of the dS algebra is important.
In contrast to IRs of the Poincare and AdS algebras, in IRs of the dS algebra the
particle mass is not the lowest value of the dS Hamiltonian which has the spectrum
in the range (—o0,00). As a consequence, the free mass operator of the two-particle
system is not bounded below by (m; 4+ my) where m; and my are the particle masses.
The discussion in Sect. 2.3 shows that this property by no means implies that the
theory is unphysical.

In 2000, Clay Mathematics Institute announced seven Millennium Prize
Problems. One of them is called ”Yang-Mills and Mass Gap” and the official descrip-
tion of this problem can be found in Ref. [50]. In this description it is stated that
the Yang-Mills theory should have three major properties where the first one is as
follows: ”It must have a ”mass gap;” namely there must be some constant A > 0 such
that every excitation of the vacuum has energy at least A.” The problem statement
assumes that quantum Yang-Mills theory should be constructed in the framework of
Poincare invariance. However, as follows from the above discussion, this invariance
can be only approximate and dS invariance is more general. Meanwhile, in dS theory
the mass gap does not exist. Therefore we believe that the problem has no solution.

Since in Poincare and AdS invariant theories the spectrum of the free mass
operator is bounded below by (m + ms), in these theories it is impossible to obtain
the correction —Gmymsy/r to the mean value of this operator. However, in dS theory
there is no law prohibiting such a correction. It is not a problem to indicate internal
two-body wave functions for which the mean value of the mass operator contains

88



—Gmymsy/r with possible post-Newtonian corrections. The problem is to show that
such wave functions are semiclassical with a high accuracy. As shown in Chaps. 2
and 3, in semiclassical approximation any correction to the standard mean value of
the mass operator is negative and proportional to the energies of the particles. In
particular, in the nonrelativistic approximation it is proportional to mmes.

Our consideration poses a very important question of how the distance
operator should be defined. In standard quantum mechanics the coordinate and
momentum are canonically conjugated and the relation between the coordinate and
momentum representations are given by the Fourier transform. This definition of
the coordinate operator works in atomic and nuclear physics but the problem arises
whether it is physical at macroscopic distances. In Chap. 3 we argue that it is not and
that the coordinate operator should be defined differently. We propose a modification
of the coordinate operator which has correct properties, reproduces Newton’s gravity,
and the precession of Mercury’s perihelion if the width of the de Sitter momentum
distribution for a macroscopic body is inversely proportional to its mass. In Sects.
3.7 and 3.8 we also discuss a problem of evolution and gravitational experiments with
light.

In Chaps. 4 and 5 we argue that quantum theory should be based on
Galois fields rather than complex numbers. We tried to make the presentation as
simple as possible without assuming that the reader is familiar with Galois fields. Our
version of a quantum theory over a Galois field (GFQT) gives a natural qualitative
explanation why the width of the total dS momentum distribution of the macroscopic
body is inversely proportional to its mass. In this approach neither G nor A can
be fundamental physical constants. We argue that only GA might have physical
meaning. The calculation of this quantity is a very difficult problem since it requires
a detailed knowledge of wave functions of many-body systems. However, GFQT gives
clear indications that GA contains a factor 1/Inp where p is the characteristic of the
Galois field. We treat standard theory as a special case of GFQT in the formal limit
p — 0. Therefore gravity disappears in this limit. Hence in our approach gravity is a
consequence of the fact that dS symmetry is considered over a Galois field rather than
the field of complex numbers. In Chap. 5 we give a very rough estimation of G which
shows that Inp is of order 10*. Therefore p is a huge number of order exp(10%°).

In our approach gravity is a phenomenon which has a physical meaning
only in situations when at least one body is macroscopic and can be described in
the framework of semiclassical approximation. The result (3.53) shows that gravity
depends on the width of the total dS momentum distributions for the bodies under
consideration. However, when one mass is much greater than the other, the momen-
tum distribution for the body with the lesser mass is not important. In particular, this
is the case when one body is macroscopic and the other is the photon. At the same
time, the phenomenon of gravity in systems consisting only of elementary particles
has no physical meaning since gravity is not an interaction but simply a kinematical
manifestation of dS invariance over a Galois field in semiclassical approximation. In
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this connection a problem arises what is the minimum mass when a body can be
treated as macroscopic. This problem requires understanding of the structure of the
many-body wave function.
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