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Abstract: A physical model of the electron is suggested according to the Basic Structures of Matter (BSM) 

hypothesis (later published as a BSM-SG theory). BSM-SG is based on an alternative concept about the physical 

vacuum assuming that the space contains underlying superfine structure of nodes formed of super-dens sub-

elementary particles, which are also involved in the structure of the elementary particles. The proposed grid 

structure is formed of vibrating nodes possessing quantum features and energy well. It is admitted that this 

hypothetical structure could be accounted for the missing “dark matter” in the Universe. The signature of such 

“dark matter” is apparent in the galactic rotational curves and in the relation between masses of the supermassive 

black whole in the galactic centre and the host galaxy. The suggested model of the electron possesses oscillation 

features with anomalous magnetic moment and embedded signatures of the Compton wavelength and the fine 

structure constant. The analysis of the interactions between the oscillating electron and the nodes of the vacuum 

grid structure allows obtaining physical meaning for some fundamental constants. 
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1. Introduction 
The “dark matter” is a hot topic in the cosmology today. Currently it is accepted that the “dark matter” 
predominates the visible matter in the Universe. In recent years it has been found that most of galaxies contain in 
their centre a supermassive black hole in order of billion solar masses. A surprising strong relation has been found 
between the mass of the supermassive black hole and the total mass of the whole galaxy, so they are in kind of 
balance1 (L. Ferrarese, D. Merrit, 2000). Another peculiar fact for existence of hidden matter comes from the 
rotational curves of the galaxies. One of the largest rotation curve data base of spiral galaxies clearly shows that 
the “dark matter” is rather a rule, than exception (see the article “An analysis of 900 optical rotation curves: Dark 
matter in a corner?”, by D. F. Roscoe, (1999)2). It stands to reason raising a question: Isn’t the “dark” matter a 
hidden type of matter around us and even “within us”? Such idea further leads to the conclusion that the currently 
adopted concept about the physical vacuum may not be correct. This required an extensive study of some features 
of the physical vacuum such as the Zero Point Energy, the quantum fluctuations, the vacuum polarization, the 
Plank’s length and frequency and so on. In such aspect, the theoretical articles provided by T. H. Boyer3, H. E. 
Puthoff4,5,6, H. E. Puthoff et al7, B. Haisch et al.8 appeared quite useful. F. M. Meno9 envisions hypothetical three-
dimensional non-spherical particles called gyrons possessing a gyroscopic effect. He associate the Planck’s length 
and mass to some of the gyron’s parameters, although he does not suggest a detailed physical model of this gyron 
and does not envision a possible organization of the gyrons into stable structures. The articles “Experimental 
evidence that the gravitational constant varies with the orientation” by M.  M. Gershteyn et al10 and the “Speed of 
gravity revisited” by M. Ibison et al11 lead to the idea that the Newton’s law of gravitation might be derivable 
instead of postulated. This idea obtained some theoretical treatment by H. E. Puthoff4 (1989) who derived the 
Newton’s law of gravitation starting from the Planck’s frequency, , and using one hypothesis of Sakharov. 
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where:  c – is the light velocity, h – is the Planck constant, G – is the gravitational constant 

Here we may express an idea about existence of some hypothetical structure in the microscale range, 
related in some way to . This could be regarded as a further development of the concept of the string theories 

which assume an existence of some hypothetical string-like objects (open or closed loops) in a microscale range 
possessing a finite length but zero thickness.  What could be the results if these hypothetical extended objects 
possessed a finite width, while their dimensions are far beyond the observational limit. In such case these strings 

PL
ω

 
 

* Published in Physics Essays, International Journal Dedicated to Fundamental Questions in Physics, 16,  No 2, 

180-195, (2003) 

 

1 



should be regarded as material objects in a three-dimensional space and they might be organized in structures. It 
stands to reason that we are able to observe enormously large structures in the macroscale range of the Universe, 
but structures may exist also in the microscale range12. 
 One additional consideration that the Newton’s law of gravitation might be derivable from a more 
fundamental one comes from its comparison with the law of optical radiation. In its simplest form, when the 

surface of two areas A1 and A2 are parallel each other, the irradiation flux, Φ , is given by: 2

1 2
LA A rΦ = where 

L – is the emitted radiance and r – is the distance between the two surfaces (visible in the subtended angle).  If the 
two bodies are parallel disks, the radiation law depends only on the visible surfaces but not on the disk thickness. 
In the same time the Newton’s gravitational law depends on the thickness or the bulk matter of the bodies. But 
why they both have one and a same dependence on the distance? It seams that the Newton’s gravitational mass 
could have some dependence on the area of the closed surface of some unknown real structure on which some 
hypothetical substance may exercise pressure. 
 The above-mentioned citations and logical considerations were helpful in the search for appropriate 
model of the alternative vacuum concept. An idea was born that the Planck’s frequency could be a parameter of 
some intrinsic type of matter involved in some unknown sub-elementary particles from which both - the vacuum 
structure and the elementary particles are built. These hypothetical sub-elementary particles may possess 
enormous mass density and may interact between themselves in a classical void space. Their gravitational 
interactions, however, may distinguish from the Newton’s gravitation by the degree of proportionality to the 
distance. In such aspect, we me refer such type of gravitational interactions as Super Gravitation (SG). The 
hypothetical sub-elementary particles, for instance, may form stable structures if their SG forces in a classical 
void space is inverse proportional to the cube of the distance. In such way they may form a stable spatial grid. At 
the same time the Newton’s gravitation acting between the elementary particles and their formations (atomic 
nuclei, atoms, molecules) could be a result of the SG field propagation trough the interconnected elements of the 
spatial grid. The SG field, however, may leak at some close distance between atoms and molecules (some types 
of Wan der Waals forces) or well polished solid objects (Casimir forces). 
 
 
2. Brief introduction into the concept of BSM hypothesis  

The presented above considerations served as a starting point for development of a hypothesis called Basic 
Structures of Matter (BSM)13, associated to the class of the unified theories. According to the BSM concept14 the 
Super Gravitation (SG) force, FIG, between two objects comprised of same type of intrinsic matter put in a 
classical void space is proportional to the product of their intrinsic masses and the Super gravitational constant 
and inverse proportional to the cube of the distance. 
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where: G0 – is the SG constant, m01 and m02 – are intrinsic masses, r – is the distance. 
It is assumed that the space known as a physical vacuum possesses a underlying grid structure formed of 

two types of sub-elementary particles arranged in nodes. These two sub-elementary particles are built respectively 
by two types of intrinsic matter with different density. They both have a shape of hexagonal prisms with length to 
diameter ration > 1, while the dimensional ratio between both prisms is 2:3. They possess also a similar internal 
structure with twisted component, but left and right handed respectively. Prisms of the same type (intrinsic matter 
and handedness) are attracted in a pure void space by forces according to defined above SG law. The attraction 
forces between the different types of prisms, however, are smaller and dependable on the node distance and they 
may convert to repulsion at some critical value of this distance. Additionally the prisms of both types possess SG 
anisotropy along their axis with a left and right twisting component respectively, defined by their lower level 
structure. For this reason they are called twisted prisms, although, they are not externally twisted. The formation 
of such sub-elementary particles is possible from much simpler spherical particles, following pure geometrical 
principles and preservation of the integrity of the lower level structures in the upper level structures. A 
hypothetical scenario for this is provided in Chapter 12 of BSM. According to the BSM concept, the two types of 
prisms build the underlying structure of the physical vacuum and the elementary particles as well. The structural 
integrity in both cases is assured by the SG law, defined by Eq. (2).  The elementary component of the vacuum 
structure is a node called a Cosmic Lattice (CL) node. The CL node is formed of four prisms of a same type held 
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by SG forces in positions like the four axes in a tetrahedron, but the connected prisms have some limited freedom 
of angular deviation. The vacuum structure is formed by alternatively arranged nodes of both types with some 
gaps between the prisms of the neighboring nodes. The spatial CL structure is similar to the atomic lattice in a 
diamond. It is assumed that such structure fills the volume of the visible Universe, so the space in BSM is 
referenced as a CL space. The elementary particles are built by the same prisms, but arranged in configuration of 
helical structures inside of which a different type of spatial structure (internal lattice) from the same prisms exists. 
The internal lattice, however, is denser than the CL structure, so the latter could not penetrate inside the internal 
lattice. Therefore, the CL space should exercise a pressure on the internal lattice of the particle. The pressure 
parameter of the CL space leads to derivation of a mass equation in BSM (Chapter 3). It is estimated that the node 
distance is in order of 10-20 (m), while the overall size of any elementary particle is larger by few orders. In the 
same time the density of the intrinsic matter from which the prisms are built is many orders larger that the average 
density of any elementary particles. In such conditions the CL space is able to carry the elementary particles, 
while an accumulation of these particles in a closed volume may influence but very weakly the node distance of 
the CL space in a close proximity (a large mass accumulation may distort slightly the node distance in the 
surrounding space leading to a space curvature according to the General Relativity).  

One specific feature of the CL space is the ability of the CL nodes to be displaced by the denser internal 
lattice of the moving elementary particles (every particle is in motion due to the galactic rotation). Such effect 
involves a disconnection, a displacement with simultaneously folding of the CL node and returning, unfolding and 
reconnection to the previous position of CL structure. The connection energy during the displacement is 
transferred to a kinetic energy. Such unique feature does not have counterpart in any concept of aether or ideal 
fluid. The folding properties of the CL nodes are also closely related to the inertial properties of the atomic matter 
in CL space and play a role in the equivalence between the gravitational and inertial mass. 

Analysing the dynamics and mutual interactions of the CL nodes, it is possible to associate some of their 
features with known physical parameters and constants such as, the Zero Point Energy of the vacuum, the light 
velocity, the Compton frequency (or wavelength), the permeability and permitivity of the free space. Figure 1 
illustrates the geometry of a single CL node in a position of geometrical equilibrium. The four prisms are held by 
SG forces defined by Eq. (2). 

 
Fig. 1. CL node formed of four prisms shown by thick black lines 

 
The CL node is characterized by two sets of axes: one set of 4 axes along anyone of the prisms called 

abcd axes, and another set of 3 orthogonal axes called xyz axes. In a geometrical equilibrium the angle between 
anyone of abcd axes is 109.5o. The external tips of the prisms in a geometrical equilibrium define the apex points 
of a tetrahedron. The xyz axes pass through the middle of every two opposite edges of the tetrahedron. In the same 
time, the orthogonal xyz axes of the neighbouring CL nodes are commonly aligned. Such arrangement assures 
complex individual oscillations of the CL node, from one side and strong interactions between the neighbouring 
nodes, from the other.  The dynamics and interactions are both governed by the SG law acting between the two 
intrinsic matter substances of the prisms and the time constant for this matter. 

The dynamical behaviour of the CL node is studied by estimating the shape of the return forces (under 
condition of SG law) acting on the deviated from the central position CL node and keeping in mind that the node 
geometry is flexible. For simplification of the analysis, the neighbouring four CL nodes are considered stationary, 
while their interconnecting prisms are always aligned to the CL node under consideration (for details see BSM 
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monograph, BSM_appendix2-1.pdf). This also means, that the SG interactions propagate faster than the 
oscillation period of the CL node. The shapes of the return forces along anyone of xyz and abcd axes are shown 
respectively in Fig 2. (a) and (b). 

Two symmetrical minimums appear along anyone of xyz axes and one minimum along the positive 
direction of anyone of abcd axes. From a point of view of CL node dynamics, they could be associated with 
energy wells, responsible for the ZPE (zero point energy) of the vacuum. 

 
Fig. 2. Return forces versus displacement of the CL node along one of xyz axes (a) and abcd axes (b). Both scales are in 
relative units. 
 

 
The shape and the different stiffness of the return forces along xyz and abcd axes indicates that the CL 

node will possess a complex type of oscillations in which two types of cycles are identifiable: a proper resonance 
cycle and a SPM cycle (the latter is described by a Spatial Precession Momentum vector). The trace of the proper 
resonance cycle is approximately flat but open curve with four bumps, as shown in Fig. 3. 

 
Fig. 3. Trace of single proper resonance cycle of the CL node 

 
 The bumps of the trace curve centred on the two orthogonal axes are caused by the different stiffness for 

node deviations along abcd and xyz axes. The points A and B from the resonance cycle are pretty close but not 
coinciding, so the segment AB points almost at 90 deg in respect to the drawing plane. The lack of coincidence 
between any initial (A) and final (B) point for one proper resonance cycle is a result of the spatial positions of the 
return forces minimums along the two set of axes. The CL node dynamics for the proper resonance cycle could be 
described by a vector called a Node Resonance Momentum (NRM). 

The average plane of the trace is slightly rotating with every NRM cycle, so after a large number of such 
cycles the node trace will passes through the same (arbitrary selected) initial point A. This second type of cycle is 
called a SPM cycle. The vector describing this cycle is called a Spatial Precession Momentum vector (SPM). The 
number of the resonance cycles in one SPM cycle, estimated in BSM, is quite large but constant (due to the 
mutual interactions of the oscillating CL nodes).  The analysis in BSM indicates that this number is related to the 
magnetic permeability of free space (section 2.11.3 in chapter 2 of BSM). 
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The tip of SPM vector for one full cycle circumscribes a closed surface with a central point of symmetry 
and six bumps along the axes xyz. Such type of surface is referenced in BSM as a SPM quasisphere. It is found 
that if the resonance cycle of the CL node is related to the energy wave propagation with a light velocity, the SPM 
cycle should be related to a particular quantum feature of the CL space that assures the constant value of the light 
velocity. This is explainable by the quantum properties of the SPM quasispheres and their mutual interactions. 
The light velocity is considered as energy momentum propagation between two neighbouring nodes (considering 
xyz interconnection coordinates) for one resonance cycle of the CL node ( section 2.11 in Chapter 2 of BSM). The 
frequency of SPM cycle is associated to the well-known Compton frequency. In absence of any electrical charge, 
the SPM quasisphere possesses a central point of symmetry. It is called a Magnetic Quasisphere (MQ), because it 
could provide a physical meaning of the magnetic line. The magnetic line could be formulated as a closed loop in 
CL space involving only MQ type of nodes whose SPM frequencies are synchronized by a running phase 
propagating with a light velocity. Such spatial configuration may exhibit features allowing explanation of the 
stability and direction of the magnetic line, for example: 

- The CL nodes of right-handed prisms are commonly synchronized 
- The CL nodes of the left-handed prisms are commonly synchronized 
- The phase difference between the involved left and right handed nodes determines the direction of the 

magnetic line, referenced to the laboratory frame, for example, +90 deg phase difference for N-S direction and -
90 deg phase difference for S-N direction. 

- The involved MQ nodes may additionally have a helical arrangement along the closed loop. 
The above considerations are for permanent magnetic field. In case of alternative magnetic field, the 

commonly spatially dependable synchronizations of the left and right-handed nodes vary with the time. 
Aligned MQs with a spontaneous phase synchronization (with light velocity) may also exist in an open 

loop, but temporally. This is a normal state of the oscillating CL node when considering the mutual interactions of 
the neighbouring CL nodes and this effect appears to be related to the magnetic permeability of the free space. 

In a presence of charge particle, the SPM quasisphere obtains a deformation as an elongation along its 
diameter connecting two opposite bumps, so it is called an Electrical Quasisphere (EQ). Fig. 4 shows the shape of 
MQ and EQ . 

 
Fig. 4 Shape of MQ (left) and EQ (right) 

 
For analysis simplification when studying the dynamics, the positions of the CL nodes could be 

considered as stationary in a laboratory frame. The electrical field could be presented as spatially oriented and 
synchronized EQ CL nodes. When studying the conditions of energy propagation as a wave, it is convenient to 
use imaginary running CL nodes. Then the phase propagation of the SPM vector with a speed of light through 
stationary positioned CL nodes can be regarded as a running SPM vector. In this manner, the temporal variation 
of the common synchronization of the CL nodes is easily studied. The analysis in such approach leads to 
unveiling the structure of the photon. It is found that the EQ type node possesses a larger energy than MQ type 
(see section 2.10.4.3 Chapter 2 of BSM). The photon wavetrain can be presented as a complex arrangement of 
running EQs with a decreasing elongation from the central axis of the wavetrain to its boundary radius, where 
they are converted to running MQs. Thus, it appears that the photon wavetrain possesses boundary conditions (a 
long standing problem). In the same time the running EQs are align in a helix with a step equal to the photon 
wavelength. 

The analysis of the CL node dynamics as EQ and MQ type and the suggested photon wavetrain structure 
in a normal CL space (possessing a normal Zero Point Energy) are presented in Chapter 2 of BSM. The CL space 
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with a subnormal Zero Point Energy and the behaviour of the charge particles in such case are analysed in 
Chapter 4 of BSM. 

The applied new approach allows admitting that the elementary particles also possess underlying structure 
built by the same sub-elementary particles – the two types of prisms. BSM analysis leads to a conclusion that the 
stable particles, such as proton, neutron and electron (and positron) possess stable structures with well-defined 
spatial geometry and denser internal lattices. They are comprised of complex but understandable three-di-
mensional helical structures whose elementary building blocks are the mentioned above prisms, arranged in a 
strong particular order. The analysis provided in chapter 8 of BSM leads to a conclusion that the protons and 
neutrons are spatially arranged in the atomic nuclei15.   If the suggested vacuum structure is real, the interpretation 
of the scattering experiments should be reconsidered, because both, the vacuum structure and the structure of the 
elementary particles have not been taken into account, so far. 

 
3. A physical model of the electron built by the suggested sub-elementary particles  

According to the BSM concept, the electron possesses the simplest structure among the stable elementary 
particles. The suggested physical model of the electron is comprised of three helical structures, one inside another, 
as illustrated in Fig. 5. The helical structure is comprised of a helical envelope and internal lattice inside this 
envelope. All of them are built by the suggested sub-elementary particles (prisms). The axial section of an 
elementary core from any helix envelope contains 7 prisms of the same type, one in the centre and 6 in the 
periphery. In the same time they are axially displaced (as shown in Fig. 5), so the helix could be considered as 
formed of stacked elementary cores. The two helical structures of the electron possess denser internal lattices 
located in the internal spaces of the helix envelopes (not shown in this figure). 

The dimensions of the physical components of the electron structure are denoted as : RC – the Compton 
radius of electron (known), re - a small electron radius, rp - a small positron radius, se – a helical step. The 
derivation of these dimensions is discussed later. 

 
 

        Fig. 5. Oscillating electron is comprised of three helical structures: 1 – external negative, 2 - internal positive, 3  – 
internal negative core. The internal lattices are not shown. The expanding box in the lower left side shows an elementary 
node of the helical structure 1, formed of 7 right-handed prisms (they are not externally twisted, the twisting is for a concept 
visualization only) 

   
The electron structure, shown in Fig. 5 has two internal lattices spaced inside the volume enclosed by the 

two helical  structures. Each one is built of same type of prisms like their envelopes. The outer lattice has a larger 
whole it its radial section where the internal first order helical structure oscillates. The other internal lattice has a 
smaller whole where the internal core oscillates.  

The geometrical considerations allowing building of internal lattice are illustrated by Fig. 6. 
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Fig. 6 Configuration of the internal lattice of type RL (Rectangular Lattice) inside the cylindrical space enveloped by 

the helical core, which forms the helical structure. The actual number of layers in the radial section is much larger than this 
shown in the figure, because the sprism size is a few orders smaller than the radial section diameter 

 
Following the geometrical considerations every RL node is comprised of rectangular arranged prisms of a 

same type. The question does the RL node contains 4 or 6 prisms could not be replied here, but it is not of 
essential importance in the presented below analysis. The axial section contains number of concentric layers. 
Starting from the cylindrical boundary defined by the helix envelope, the most external layer is connected to the 
helix by SG forces, while every internal layer is connected to the neighbouring external one. The thickness of 
every internal layer is half of the thickness of the neighbouring external layer. The radially aligned prisms of the 
neighbouring nodes are without gaps, while the gap length between the tangentially aligned prisms in the radial 
section varies when moving from external to the internal radius of the layer.  

When considering an open formation of helical structures, as for the electron (the both ends are not 
connected as in a torus) the overall configuration could not be stable if the internal lattices are of rectangular type. 
Such formation, however, can be stabilized if the internal RL structures get some twisting.    

Figure 7 illustrates the radial section of untwisted (a) and twisted (b) RL structures, referenced respectively 
as RL and RL(T). 

 
 

Fig. 7.  Radial section of untwisted (a) and twisted (b) RL structures, referenced respectively as RL and  RL(T). R2 < R1 
 
The stiffness of the RL structure defined by the prism density is about 1000 times larger than the stiffness of 

the CL structure of the vacuum, so the volume of the RL structure is not penetrative even for folded CL nodes. 
Consequently it displaces the CL structure, or in other words, it feels a CL pressure. This is a Static CL pressure.  

The twisted radial stripes of RL(T) modulate the dynamical properties of the CL nodes in the surrounding 
space, more accurately their SPM quasispheres. In such way, they become EQ type nodes arranged in line 
extensions from the twisted radial stripes of RL(T). These spatially arranged EQ nodes form the electrical field of 
the charge particle, in our case – the electron. This is illustrated in Fig. 8. It is evident that in a proximity range the 
electrical lines might be slightly curved but in a far range they appear as emerging from a point. 
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One from both types of the prisms (for instance the right handed) could be associated with the negative 
electricity while the other with the positive one, but keeping in mind that the electrical charge is a property of the 
CL space, related to the presence of EQs and not a property of the prism itself. 

 

 
Fig. 8 Proximity E-field lines (in CL space) emerging from the RL(T) structure 

 
The external helical structure of the electron, referenced in BSM as an external shell, possesses an internal 

denser lattice (from right handed prisms, for example). It is responsible for creation of EQ type CL node as radial 
extensions from the RL(T). The curved line extensions in the proximity to the external electron shell are of 
essential importance for the confined motion that the electron exhibits in CL space.  

The internal helical structure with an internal RL(T) (from a left-handed prisms, respectively) with a 
central core (from right handed prisms) is an internal positron.  When completely inside in the external electron 
shell, it is not able to modulate the external CL space, but when it is outside it appears as a positive charge. When 
the internal positron oscillates inside the electron external shell, its charge only partially appears in CL space with 
a rate of the oscillation cycle. Due to the high oscillation frequency (discussed below) only its magnetic signature 
may interact with the external CL space. 

Considering the oscillation properties of the suggested model of the electron it could be regarded as a 
three-body system: an external helical structure with its internal lattice (external shell built of negative prisms), an 
internal helical structure with its internal lattice (internal shell built of positive prisms) and the central core (built 
of negative prisms). Both, the internal helical structure and the central core oscillate in conditions of ideal bearing 
because their central positions are kept by SG filed and the whole structure has a complete helical symmetry in 
respect to the central core. In such conditions the electron structure will have two proper frequencies 

- a first proper frequency: for the oscillations between the external electron shell and the internal positron 
- a second proper frequency: for the oscillations between the internal positive shell and the central 

negative core (a proper frequency for the internal positron). 
From the analysis of the dynamical properties of the suggested structure it appears that the first proper 

frequency of the electron is equal to the SPM frequency of the CL node. This is the well-known Compton 
frequency. 
 
4. Quantum motion of the electron and derivation of its structural parameters 

The value of the physical constants and parameters used in the presented analysis are given in Table 2 at the 
end of the article, before the discussions. 

It is assumed and extensively discussed in BSM hypothesis that the prisms, formed of superdens intrinsic 
matter possess quite different inertial properties in a pure void space (the very high interaction frequency of this 
matter, may be closer to the Planck frequency and consequently it may have a very small inertial properties). It is 
apparent that the CL structure from its side possesses a time constant which is obviously defined by the proper 
resonance frequency of the CL node. 
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The analysis of the motion behaviour of the electron structure in CL space leads to a conclusion that it will 
possess a preferable type of a screw-like motion. Such motion in the CL space environments is possible if some 
CL nodes are temporally disconnected, displaced and then returned and reconnected to the CL space.  

 Such type of motion is referenced as a confine one. Two types of confined motion are identified: (1) a 
confined motion with optimal and sub-optimal velocities; (2) a confined motion with super-optimal velocities 

 
4.1 Confined motion with optimal and sub-optimal velocities. 
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R

Both, the CL node and the rotating electron oscillate with a Compton frequency. It is found that when the 
tangential velocity of the rotating and oscillating electron is equal to the light velocity, the phase of its first proper 
frequency matches the phase of the SPM vector, propagating with a light velocity. In the same time, the internal 
core oscillation (with a proper frequency of three times the Compton frequency) provides a third harmonic feature 
for this motion. As a result the rotating and oscillating electron exhibits a maximum interaction with the CL space 
- a kind of quantum interaction. The electron axial velocity for this case is (corresponding to a kinetic 

energy of 13.6 eV). It is referenced in BSM as an optimal confined velocity and the motion respectively as an 
optimal confined motion. We may consider that any point of the electron structure corresponding to a radius R 
(measured from the central point of the whole structure) moves with a tangential velocity equal to the speed of 
light (because it appears from the analysis that ). For such point of the structure the following relations 

are valid: 

ax
V α=

e
r �

Peripheral velocity: c        - path: 2 2 2 1 2)
e

R sπ +(4  

Axial velocity:        Vax       - path:  
e
s

 Then the axial velocity is: 
1 22 2 2(4 )

ax e e
V cs R sπ= +                                           (3) 

 
From the Bohr model of hydrogen we know that the kinetic energy of 13.6 eV corresponds to an electron 

motion in orbit of radius , with a velocity given by Eq. (4). 
0
a

2 6

0 0
( 2 ) 2.187691 10

ax
V q h cε α= = = ×        m/s     (4) 

where:  – is the elementary charge, h – is the Planck constant,  - is the permitivity of the vacuum,  - is 

the fine structure constant and c – is the light velocity. 
0
q

0
ε α

Therefore, we arrive to the following two conclusions: 
(1) The screw-like motion of the suggested electron model with a tangential velocity equal to the speed of light is 

energetically equivalent to an electron motion in a circular orbit of radius, a0, according to the Bohr model of 
the hydrogen. 

(2) The fine structure constant appears to be a ratio between the axial and tangential velocity of the electron, when 
it performs an optimal confined motion. 

Combining Eq. (3) and (4) we obtain a step to radius ratio of the electron 
2 1 2(1 ) 2 21.809

e
R s α πα= − =                                (5) 

Now let us assume that the first proper frequency of the electron is equal to the Compton frequency (a 
parameter of the CL node) and the electron structure makes one full rotation for time duration equal to the 
Compton time, tc, that is an reciprocal to the Compton frequency. 

2 (
c

path R ct cπ= = = 1 )
c

ν

c
λ

                                        (6) 

Solving the system of Eq. (5) and (6) we get the value of R and se. 
133.86159 10R −= ×   (m) – the large radius of electron 
141.77061 10

e
s −= ×     (m) – the helical step 

It is not a surprise that the obtained value for R is exactly the Compton radius Rc, which is experimentally 
determined by Arthur Compton. Substituting R with Rc in Eq. (5) and having in mind that , we obtain 

an expression for the helical step, s

2
c
Rπ =

e. 



2 1 2(1 )
e c
s αλ α= −                                                      (7) 

The Compton wavelength,  is related to the Compton frequency, , by the simple expression 
c

λ
c

ν

c
cλ =

c
ν . The light velocity is related to the resonance frequency of the CL node, while the Compton frequency 

is the SPM frequency. Then from Eq. (7) follows a conclusion that: 
The suggested model of the electron is characterised by two embedded fundamental constants: the fine 

structure constant and the Compton wavelength. 
From number of considerations given in section 3.6 and 3.11.2 of Chapter 3 in BSM it appears that 

, and it is assumed that this relation is more accurately expressed by the gyromagnetic factor, g2
e
s ≈

e
r

e

e, that is 

experimentally determined with high accuracy.  
2.002319

e e e
s g r r= =                                                (8) 

From the analysis of the Fractional Quantum Hall experiments in Chapter 4 of BSM, it is found that: 
2 3

p e
r r = . Then all geometrical parameters of the electron are determined. 

At the optimal confined motion with a velocity V  (13.6 eV) the quantum interaction of the 

oscillating electron with the oscillating CL nodes are strongest. It is apparent that the electron may perform a 
screw-like motion also with smaller velocities. Let considering these velocities for which the electron makes a 
complete rotation for a whole number of first proper frequency cycles. Such set of axial velocities could be 
expressed by Eq. (9), where n is an integer. 

ax
α= c

ax
V cα= n                                                                     (9) 

If using the kinetic energy of the electron instead of its axial velocity we have 
2 20.5

c
E hν α= n        (J)                                            (10) 

2 2

0
0.5 ( )

ev c
E h nν α= q      eV                                    (11) 

where: h – is the Planck constant,  - is the Compton frequency,  - is the electron charge 
c

ν
0
q

The integer n is called in BSM a subharmonic number, in order to notify the quantum motion conditions 
of the electron. A quantum motion with a first harmonic velocity corresponds to 13.6 eV, with a second 
subharmonic - 3.4 eV, with a third subharmonic - 1.51 eV and so on. It is evident that the introduced subharmonic 
number, n, matches the quantum number of the electron orbit in the Bohr atomic model. In the same time it is 
informative about the rotational spin motion of the oscillating electron if referencing its rotation cycle to the SPM 
cycle of the CL space: 

13. 6 eV - 1 rotation cycle per SPM cycle (an optimal  confined motion) 
3.4 eV   - 1/2 rotation cycle per SPM cycle 
1.51 eV - 1/3 rotation cycle per SPM cycle  
0.85 eV = 1/4 rotation cycle per  SPM cycle 
SPM cycle period = Compton time  
 
Analysing the confined motion of the electron, it is possible to get some insight about its influence on the 

SPM quasispheres surrounding its trace of motion. It is found that the surrounding EQs of the moving electron 
will cause a formation of spatially ordered synchronization of the surrounding MQs in closed loops, i. e. creation 
of magnetic lines. In such aspect it is useful to analyse the magnetic radius of the electron at different 
subharmonic numbers. We may consider that the rotating SG field of the internal lattice of the electron helical 
structure (that modulates the CL space) could not exceed the light velocity. Then the magnetic influence could be 
extended up to some limited range and we may regard it as a magnetic radius.  

The magnetic radius of electron with a kinetic energy of 13.6 eV is obtained from the analysis of the 
quantum magnetic field (see section 3.11 in Chapter 3 of BSM): 

0
Φ

0
h q

0
Φ = , where h – is the Planck 

constant, q0 – is the electrical charge.  The obtained value of  rmb for 13.6 eV is almost equal to Rc, but slightly 
larger due to the finite thickness of the electron helical structure. The electron model gives also some insight 
about its magnetic moment. The magnetic moment of the electron is considered anomalous because it is 
distinguished from the Bohr definition of magnetic moment by the term (2 )α π . 
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0 (1 )
4 2

e

e

q h

m

αµ
π π

= +                                                   (12) 

where: me – is the mass of the electron 
The anomalous term in Eq. (12) appears because the overall shape of the electron is not a torus but a single 

coil, possessing a helical step. Having such shape the electron is able to advance by a size of a full step, se, for one 
revolution, so these feature contributes to the  “anomalous” term (2 )α π . This feature is not taken into account 
when the magnetic moment is defined from the considerations of the Bohr atom. The magnetic moment is 
discussed in details in section 3.11 Chapter 3 of BSM. 

 
4.2 An Electron motion with super-optimal velocities 

The optimal confined motion of the electron (axial velocity of V c  (m/s) ) could be 

regarded as an ideal case of the screw-like motion. In such motion the rim of the electron structure slides like in a 
thread and the oscillation of the central core (with a proper frequency three times higher than the first proper 
frequency) provides a hummer-drill effect enhancing the interaction with the stationary CL nodes. Keeping in 
mind that the phase of the SPM frequency propagates with the speed of light it is evident that the screwing 
electron is moving as in a lubricated thread. At this quantum velocity the electron exhibits a maximum quantum 
interaction with the CL space. For larger velocities (or energies larger than 13. 6 eV), the motion is still confined, 
but the screwing is not like in a thread (because no point of the electron structure could exceed the light velocity, 
which is restricted by the proper resonance frequency of the CL node). Therefore, we may expect a decrease in 
the quantum efficiency for such velocities. This is discussed in section 3.11.A.1, Chapter 3 of BSM, where an 
expression for the quantum efficiency is derived. The obtained expression appears to be a reciprocal function of 
the relativistic gamma factor. This is in agreement with the mass increase of the electron at relativistic velocities. 

62.18769 10
ax

α= = ×

 
5. Rydberg constant as a signature of the optimal confined motion of the electron  
Let considering a quantum motion of the electron (13.6 eV) with an optimal confined velocity ( , n – is a 
subharmonic number).  The electron energy for  according to Eq. (10) is 

1n =
1n =

20.5
c

E hν α=       (J)                                               (13) 

The energy of  13.6 eV photon is expressed by 

c
E h hcν= = σ     (J)                                               (14) 

 where:   1
c

σ = λ  - is the wavenumber,  - is the Compton frequency, c – is the light velocity 
c

ν
          Equations (13) and (14) provide one and a same energy (13.6 eV). Solving this system for , we get the 
Rydberg constant in wavenumbers 

σ

2

71.097373156 10
2

cR
c

ν ασ ∞= = = ×    [1/m]       (15) 

 The suggested model of the electron contains an embedded fine structure constant as seen from Eq. (7). 
Additional analysis in BSM (section 2.9.6.B of Chapter 2 and section 9.7.5 of Chapter 9, from the first edition of 
BSM) indicates that the fine structure constant is in fact an intrinsic parameter of the CL space. The Compton 
frequency is also a CL space parameter characterizing the CL node dynamics. Then from Eq. (15) it follows that 
the Rydberg constant is also a CL space parameter. The way it was derived indicates that the Rydberg constant 
appears as a characteristic feature of the quantum motion of the electron with an optimal confined velocity. 

6.Quantum motion of the electron in a closed loop trajectory.  

The orbital motion of the electron in atoms could be regarded as a motion in a closed loop, whose trajectory 
follows the equipotential surface of an electrical field defined by one or more positive charges.  

Let considering a repetitive motion in a closed loop. The modulation properties of the internal RL(T) lattice 
in a repetitive motion may cause distortion of the MQs (that is a normal state of the SPM vector) converting them 
into EQs. This will affect the orbital conditions defined by the proximity field of the proton. Let assuming that the 
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orbital motion of the oscillating electron tends to adjust itself to this change by exchanging some reactive energy 
with the CL space, that is hidden for the external observer. Then we may analyse the phase repetitions of the two 
proper frequencies of the electron and the conditions of their match to the phase of the SPM frequency of the CL 
nodes. In such way we may assume that the stability of a repetitive motion in such loop will depend on the phase 
repetition for both, the first and the second proper frequencies of the electron.  

We will try to find the smallest path length at which the quantum loop conditions for an electron moving 
with a velocity corresponding to  (13.6 eV) is fulfilled. Initially we will ignore the relativistic effect for 
simplicity. It is reasonable to look for a path length defined by some CL space parameter. One such parameter is 
the Compton wavelength , related to the Compton frequency   by the simple expression 

1n =

c
λ

c
ν

c
cλ =

c
ν . For 

one orbital cycle in a closed loop with length , the number of turns (electron structure rotations), N
c

λ T, is: 

  137.03235
T c e
N sλ= =                                         (16) 

  The value of NT could be regarded as a condition for a phase repetition for two consecutive passages 
through a chosen point in the loop, keeping in mind a confined (screw-like motion) of the electron. The trace 

length of  (m), however, is quite small, when comparing to the Bohr orbit length of 

 (m).  Therefore, we may look for a phase repetition conditions at larger loop length. From 

Eq. (16) we see that N

122.4263 10
c

λ −= ×
10.325 10−×

0
2 3aπ =

T is close to 1  and this seams not occasional. Then, we may substitute N137.036α = T in 

Eq. (16) by 1 and multiply the result by . The latter is a CL space parameter from one side (a length of SPM 

phase propagation for one SPM cycle) and from the other - the circumference length of the electron structure. In 
such case we obtain: 

α
c

λ

   101
3.24918460 10

T c c
N λ λ

α
−= = ×     (m)             (17) 

We see that the obtained value of Eq. (17) having a dimension of length is equal to the Bohr orbit length 
given by CODATA 98 (see Table 2) up to the 9th significant digit. 

  2       (m)    CODATA     (18) 10

0
3.24918460 10aπ −= ×

where:    (m)  - is the radius of the Bohr atomic model of hydrogen.  10

0
0.5291772083 10a −= ×

The expression (17) is not something new. The important, fact, however, is the way of its derivation related 
with the suggested physical model of the electron. The obtained loop length appears equal to the orbit length of 
the Bohr atom, defined by Bohr atomic radius, ao. The latter is one of the basic parameters used in Quantum me-
chanics. From the BSM point of view, however, the physical meaning of this parameter appears different. 

According to BSM concept, the well known parameter a0 used as a radius in the Bohr model, 
appears defined only by the quantum motion conditions of the electron moving in a closed loop with an 
optimal confined velocity corresponding to an electron energy of 13.6 eV. Then the main characteristic 
parameter of the quantum loop is not its shape, but its length. 

The identity of Eq. (17) and (18) also indicates that the signature of the fine structure constant is 
embedded in the quantum loop. 

Now we may use the new obtained meaning about the quantum loop associated with the Bohr orbit, and 
more specifically the orbital length . For a motion with an optimal confined velocity, the number of electron 

turns in the quantum orbit is equal to the orbital length divided by the helix step (s
0

2 aπ
e). 

0
2

18778.365c

e e

a

s s

π λ
α

= =        turns                          (19) 

Let find at what number of complete orbital cycles (for orbit length of 2 ) the phase repetition of the 

first and second proper frequencies of the electron is satisfied (in other words the smallest number of orbital 
cycles containing whole number of two frequency cycles). The analysis of the confined motion of the electron in 
Chapter 3 and 4 of BSM indicates that its secondary proper frequency is three times higher than the first one (the 
first one is equal to the Compton frequency). Equation (19) shows that the residual number of first proper 

0
aπ
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frequency cycles is close to 1/3. If assuming that it is exactly 1/3 (due to a not very accurate determination of the 
involved physical parameters), then the condition for phase repetition of both frequency cycles will be met for 
three orbital cycles. The whole number of turns then should be 3 ( . Substituting  by its expression 

given by Eq. (7) we get  

)
c

sλ α
e e

s

2 1)α −

2 1 2

2

3(1 )α
α
−

                                                                (20) 

We have ignored so far the relativistic correction, but for accurate estimation it should be taken into 

account. The relativistic gamma factor for the electron velocity of V c  is 
ax

α= 2(1γ = − . Multiplying the 

above expression by the obtained gamma factor we get. 
23 int egerα =                                                         (21) 

The validity of Eq. (20) and (21) could be tested by the following simple procedure: calculating these 
expressions by using the best experimental value of , rounding the result to the closer integer (satisfying the 
condition for two consecutive phase repetitions) and recalculating the corresponding value of . The rounded 
integer (a whole number of turns) could be correct only if the recalculated value is in the range of the accuracy of 
the experimentally determined . Let using the recommended value of experimentally measured  according to 
CODATA 98. 

α
α

αα

37.297352533(27) 10α −= ×      (CODATA 98)16     (22) 
where, the uncertainty error is denoted by the digits in the brackets.  

The calculated values of  from Eq. (20) and (21) exceeds quite a bit the uncertainty value of ex-
perimentally determined  given by Eq. (22). Consequently, the condition for phase repetitions of the two proper 
frequencies is not fulfilled for three orbital cycles with total trace length of 3 2 . Therefore, we may search 

for the next smallest number of orbital cycles in which the phase repetition conditions are satisfied. It stands to 
reason that the approximate value of the orbital cycles could be about 137 (

α
α

0
aπ×

1 ). Then if not considering 

relativistic correction, the corresponding number of electron turns is 

α
2 3)α α(1− . When applying a relativistic 

correction (multiplying by the estimated above gamma factor for the kinetic energy of 13.6 eV) the number of the 

electron turns becomes 3α1 . The phase repetition conditions will be satisfied if this number is 

integer: 3 nt egerα =1 i                                                                                                                                           

Substituting   by its value from CODATA 98 (Eq. (22)) we get α 3 2573380.57α =1  
It is interesting to mention, that the closest integer value of 2573380 is obtained by Michael Wales, using a 

completely different method for analysis of the electron behaviour (See Michael Wales book “Quantum theory; 
Alternative perspectives”)17.  

We may use one additional consideration, for validation the above obtained number. The number of turnes 
multiplied by the time for one turn (the Compton time) will give the total time on the orbit (or the lifetime of the 
excited state, according to the Quantum Mechanics terminology). If accepting that the total number of turns are 
2573380 then we obtain a lifetime of 2.0827x10-14 (s), that appears to be at least two order smaller than the 
estimated lifetime for some excited states of the atomic hydrogen. 

Following the above analysis we may check for phase repetition at 4α1  turns. The participation of  at 
power of four is in agreement also with the following consideration: In the analysis of the vibrational mode of the 
molecular hydrogen, an excellent match between the developed model and observed spectra (section 9.7.5 in 
Chapter 9 of BSM) is obtained if the fine structure constant participates at a power of four. In such case we may 
accept that the phase repetition conditions is satisfied for a number of turns given by the closest integer according  
to Eq. (23). 

α

41 int egerα =                                                          (23) 

Using the CODATA value of  we obtain α 4 352645779.39α =1 .  Rounding to the closest integer we 
obtain an expression for the theoretical value of  (if its experimental estimation is accurate enough). α
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1 4 3(352645779) 7.2973525298 10α − −= = ×           (24) 
The small difference of the theoretically obtained value of  from the experimental one could be caused by 

an experimental error. One of the methods for accurate experimental estimation of  is based on the measure-
ment of the Josephson constant, K

α
α

J. Its connection to  is given by the expression α
1 2

0

2 2
J

e c

K
c m

α
µ λ

 
= 

 


×

                                                 (25) 

where:  - permeability of vacuum, m
0

µ e -  electron mass, c - light velocity,  - Compton wavelength. 
c

λ
The accuracy of  according to this method depends mostly on the accuracy of the Josephson constant 

measurement, because all other parameters are accurately known. The recommended value for this constant 

according to CODATA 98 is    (Hz/V). If replacing  in Eq. (25) with the value 

given by Eq. (22) we will obtain the value of K

α

9483597.898(19) 10
J
K = α

J that is in the uncertainty range given by the CODATA 98. 
The conclusion that the orbital time duration may depends only on  is reinforced also by the consideration 

that the Compton wavelength, , was initially involved in the analysis (Eq. (15), (17), (19)), but it disappeared in 

the derived Eq. (23). Consequently, the phase repetition condition is satisfied not only for the two proper 
frequencies of the electron, but also for the SPM frequency of the CL nodes included in the quantum orbit (  is 

the propagated with a speed of light phase of the SPM vector for one SPM cycle of the CL node (SPM frequency 
= Compton frequency)).  

α
c

λ

c
λ

Table 1 shows the quantum motion parameters of the electron in a quantum loop for velocities 
corresponding to different subharmonic   numbers. 

 
Table 1. Quantum motion parameters of the electron in a quantum loop 

---------------------------------------------------------------------------- 

n       E  (eV)      Vax          Vt           rmb            lql           Lq  ( ) 
o

A
---------------------------------------------------------------------------- 
1       13.6                   c                          1.3626 cα c

R∼
0

2 aπ
2        3.4        2cα        2c                2

c
R

0
aπ2      0.6813 2

3        1.51      3cα        3c                 3
c
R

0
2 aπ 3      0.4542 

4        0.85      4cα        4c         4         
c
R

0
2 aπ 4     0.3406 

5        0.544    5cα        5c                  5
c
R

0
2 aπ 5     0.2725 

---------------------------------------------------------------------------- 
 Table notations: n – is the subharmonic number, E - is the electron energy, Vax - is the axial velocity, Vt - is the tangential 
velocity of the rotating electron structure, rmb - is the equivalent magnetic radius of the electron limited by the speed of light 
modulation of the CL nodes from the rotating electron structure, c - is a light velocity, Rc - is the Compton radius, ao - is the 
Bohr radius, lql - is the trace length for a motion in closed loop (single quantum loop), Lq  - is the length size of a quantum 

loop if its shape is a Hippoped curve with a parameter  3a =  (close to the shape of digit 8). 
The introduced parameter subharmonic number shows the rotational rate of the whole electron structure. 

7. Quantum orbits.  
It is apparent from the provided analysis that a stable quantum loop is defined by the repeatable motion of 

oscillating electron. The shape of such loop, however, is determined by external conditions. Such conditions may 
exist in the following two cases:  

• a quantum loop obtained between particle with equal but opposite charges and same mass, as in the case of  
positronium (see Chapter 3 of BSM) 

• a quantum loop obtained between opposite charged particles but with different masses (a hydrogen atom as 
a most simple case and other atoms and ions as more  complex cases).  
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In both options the quantum loops are repeatable and we may call them quantum orbits. A single quantum 
orbit could contain one or few serially connected quantum loops (in both cases the condition for phases repetition 
is preserved). It is obvious that the shape of the quantum orbit is defined by the proximity field configuration of 
the proton (or protons). The vacuum space concept of BSM allows unveiling not only the electron structure but 
also the physical shape of the proton with its proximity electrical field (chapters 6 and 7 of BSM). The shape of 
any possible quantum orbit is strictly defined by the geometrical parameters of the proton. 

Let considering now the induced magnetic field of the electron motion in a quantum orbit by using the 
elecron magnetic radius. The magnetic radius of the electron moving with different subharmonic numbers  n is 
analysed in section 3.1, Chapter 3 of BSM. Its value for  (a kinetic energy of 13.6 eV) matches the estimated 
magnetic radius corresponding to the magnetic moment of the electron. For larger numbers (decreased electron 
energy), however, the magnetic radius shows an increase.  The physical explanation by BSM is that at decreased 
rate of the electron rotation its SG field of the twisted internal RL structure is able to modulate the surrounding 
CL space up to a larger radius until the rotating modulation of the circumference reaches the speed of light. 
Keeping in mind that the circumference of the electron is equal to the Compton wavelength (with a first order 
approximation) the circumference length of the boundary (defined by the rotation rate) should be a whole number 
of Compton wavelengths. Then the integer number of the Compton wavelengths corresponds to integer 
subharmonic number. In such case, the orbiting electron with optimal or sub-optimal velocity could not cause 
external magnetic field beyond some distance from the nucleus. This provides boundary conditions for the atoms, 
if accepting that in any quantum orbit the electron is moving with optimal or sub-optimal confined velocity 
(integer sub-harmonic number). Here we must open a bracket that the higher energy levels in heavier elements 
come not from a larger electron velocity but from the shrunk CL space affected by the accumulated protons and 
neutrons. Such CL space domain is pumped to larger energy levels in comparison to the CL space surrounding the 
hydrogen atom. 

1n =

The existence of the SG law changes significantly the picture of the orbiting electron in a proximity field of 
the proton. In Chapter 7 of BSM an analysis of Balmer model of Hydrogen atom is developed based on the BSM 
concept of the electron and proton and the SG law influence on the orbital electron motion in the proximity to the 
proton. It appears that the limiting orbit has a length of  while all other quantum orbits are inferior. This 

conclusion is valid not only for the Balmer series in Hydrogen but also for all possible quantum orbits in different 
atoms, if they are able to provide line spectra. Therefore, the obtained physical model of Hydrogen puts a light for 
solving 

0
2 aπ

the boundary conditions problem of the electron orbits in the atoms. 
 

8. Time duration for a stable orbit (lifetime of excited state). 
The following analysis could be valid only for the hydrogen, where the influence of the proton mass on the 

surrounding CL space appears to be negligible.   
Keeping in mind the screw-like confined motion, the axial and tangential velocities will be inverse 

proportional to the subharmonic number. Then the condition for phase repetitions for a motion with a 
subharmonic number n will be satisfied for n times smaller number of electron turns, or the quantum orbit will be 
n times smaller. It is reasonable to consider that the first and second proper frequencies of the electron are stable 
and not dependant on the subharmonic numbers. Then for estimation of the time duration of the orbit (the lifetime 
of excited state) it is more convenient to use the number of the cycles of the first proper frequency of the electron. 
It is equal to the number of electron turns for .  In such way we arrive to the conclusion: 1n =

(a) If conditions for stable quantum orbit are defined only by the phase repetition conditions and the whole 
number of Compton wavelengths, the time duration (lifetime) of the orbiting electron does not depend on 
the subharmonic number of its motion. 

(b) If (a) is valid, the lifetime of the excited state will be equal to the product of the total number of the first 
proper frequency electron cycles (according to Eq. (23)) and the Compton time (the time for one electron 
cycle with the first proper frequency)  

 According to condition (b) the theoretical lifetime for an excited state of hydrogen is 
4 4( ) 2.85407 10

c c
t cτ α λ α −= = = × 12  (s)             (26) 

where:  - is the Compton time. 
c
t
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 Note: The obtained Eq. (26) does not take into account the possible modification of the surrounding 
space in a close proximity to the proton. Such modification (a slight shrinkage, or a space curvature) may cause 
aliasing for the phase repetition conditions due to affected SPM frequency and Compton wavelength, while the 
first and second proper frequencies of the electron are obviously stable. For heavier atoms such modification may 
appear much stronger. For elements with more than one electron the mutual orbital interactions also may lead to 
increase of the real lifetime. 

The physical constants used in this article are given in Table 2. 
 

Table 2. Used fundamental constants16 according to CODATA 98 
 
Constants            Value                            Unit                      Name 
                               
α                    7.297352533(27)x10-3                               fine structure constant 
 c                     2.99792458x108                    m/s               light velocity 

c
λ                   2.426310215x10-12                 m                 Compton wavelength 

 h                    6.62606876(52)x10-34             Js                 Planck constant 

0
ε                   8.854187817x10-12                 F/m          permitivity of free space 

me                   9.10938188(72)x10-31             kg                 electron mass 
ao                    0.5291772083(19)x10-10         m                  Bohr radius 
KJ                   483597.898(19)x109               Hz/V             Josephson constant 

R∞                1.973731568549(83)x107       1/m                Rydberg constant 

 
9. Conclusions and comments 
According to the BSM hypothesis, the physical model of the electron possesses a structure built by sub-
elementary particles, which are also involved in the underlying hypothetical structure of the space (the physical 
vacuum). The suggested electron model with a signature of anomalous magnetic moment exhibits rich oscillation 
and interaction behaviour in such space. Two fundamental physical constants as the fine structure constant and the 
Compton frequency (or wavelength) appear embedded in the electron structure and its dynamical behaviour. The 
analysis leads to the conclusion that the Compton frequency, , expresses simultaneously two different features: 

the SPM frequency of the CL node and the first proper frequency of the oscillating electron. At the same time, the 
Compton wavelength, , expresses the length of the phase propagation of the SPM vector with a light velocity 

for one cycle of the SPM frequency of the CL node. This is in agreement with the relation 

c
ν

c
λ

c
cλ =

c
ν . More 

details about the use of the suggested electron structure for unveiling the meaning of different physical constants 
are provided in the BSM hypothesis13. Further analysis, presented in BSM, leads to derivation of a hydrogen 
model possessing boundary conditions for the electronic orbits, while exhibiting the same energy levels like the 
Bohr atomic model. The obtained model of the hydrogen further served as a base for the suggested spatial 
arrangement of the protons and neutrons in the atomic nuclei15. 
  
 
 
10. Aknowledgements 
I wish to express my gratitude to Mark Porringa for the useful comments and discussions related to the BSM 
hypothesis and particularly this monograph. Special appreciations and thanks are extended to acad. Prof. Dr. 
Asparuh Petrakiev of the Burgas University, Bulgaria, for the organized workshop in August 2003, Varvara, 
Bulgaria and to Angel Manev of the STIL at the Bulgarian Academy of Sciences for the useful discussions. 

References: 
1. L. Ferrarese, D. Merrit, A fundamental relation between supermassive black holes and their host galaxies,  

http://arxiv.org/abs/astro-ph  No. 0006053 v. 2  9 Aug 2000 

 
 

* Published in Physics Essays, International Journal Dedicated to Fundamental Questions in Physics, 16,  No 2, 

180-195, (2003) 

 

16 

http://arxiv.org/abs/astro-ph


 
 

* Published in Physics Essays, International Journal Dedicated to Fundamental Questions in Physics, 16,  No 2, 

180-195, (2003) 

 

17 

2. D. F. Roscoe, An analysis of 900 optical rotation curves: Dark matter in a corner?, Phahama - journal of 
physics, Indian Academy of Sciences, Vol. 53, No 6, Dec 1999, p. 1033-1037 

3. T. H. Boyer, The Classical Vacuum, Scientific American, Aug. 1985, p.70-78. 
4. H. E. Puthoff, Gravity as a zero-point-fluctuation force, Phys. Rev. A, vol. 39, no 5, 2333-2342, (1989) 
5. H. E. Puthoff, Polarizable-Vacuum (PV) Approach to General Relativity, Foundations of Physics, V. 32, No. 6, 

927-943 (2002) 
6. H. E. Puthoff, Can the Vacuum be Engineered for Spaceflight applications, NASA Breakthrough Propulsion 

Physics, conference at Lewis Res. Center, (1977) 
7. H. E. Puthoff, S. Tittle, M. Ibison, Engineering the Zero-Point Field and Polarizable Vacuum for Interstellar 

Flight, First International Workshop in Field Propulsion, Univ. of Sussex, Brighton, UK, Jan 2001, 
http://www.nidsci.org/article3.html  

8. B. Haisch, A. Rueda and H. E. Puthoff, Inertia as a Zero-point filed lorenz force, Phys. Rev. A, 49, 678 (1994). 
See also Science 263, 612 (1994) 

9. F. M. Meno, A Planck-length Atomic Kinetic Model of Physical Reality, Physics Essays, 4, p.94, (1991) 
10. M. L. Gershteyn, L. Gershteyn, A. Gershteyn, O. Karagioz, Experimental evidence that the gravitational 

constant varies with orientation, (2002), http://arxiv.org/abs/physics/0202058 
11. M. Ibison, H. E. Puthoff and S. R. Little. The Speed of Gravity Revisited, posted to LANL archives, 

http://xxx.lanl.gov/abs/physics/9910050 
12. S. Sarg, New approach for building of unified theory about the Universe and some results, 

http://lanl.arxiv.org/abs/physics/0205052 
13. S. Sarg, “Basic Structures of Matter”, monograph, (2001),  http://www.helical-structures.org  
also in National Library of Canada, (2002) http://www.nlc-bnc.ca/amicus/index-e.html (AMICUS No. 27105955) 

(first edition) 
14. S. Sarg, Brief introduction to the Basic Structures of Matter Theory and derived atomic models, Journal of 

Theoretics, (2003), 
      www.journaloftheoretics.com/Links/Papers/Sarg.pdf 
15. S. Sarg, Atlas of atomic nuclear structures according to the Basic Structures of Matter theory 
 www.journaloftheoretics.com/Links?papers/Sarg2.pdf 
 also in Natianl Library of Canada, (2002) http://www.nlc-bnc.ca/amicus/index-e.html 
 (AMICUS No. 27106037) 
16. P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental constants: 1998, Rev. Mod. 

Phys, 72, 351-495, (2000) 
17. M. Wales, Quantum Theory; Alternative Perspectives, Shields Books, http://www.fervor.demon.co.uk 

http://www.nidsci.org/article3.html
http://arxiv.org/abs/physics/0202058
http://xxx.lanl.gov/abs/physics/9910050
http://lanl.arxiv.org/abs/physics/0205052
http://www.helical-structures.org/
http://www.nlc-bnc.ca/amicus/index-e.html
http://www.journaloftheoretics.com/Links/Papers/Sarg.pdf
http://www.journaloftheoretics.com/Links?papers/Sarg2.pdf
http://www.nlc-bnc.ca/amicus/index-e.html
http://www.fervor.demon.co.uk/

